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0. Introduction

In order to obtain a local uniformization theorem, F.-V. Kuhlmann systematized the 
study of the defect of an extension of valued fields. We know that this defect is a power 
of p, the characteristic of the residual field of the valuation. Another approach of the 
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local uniformization problem for a valuation of rank 1 consists in studying the set of key 
polynomials associated with the valuation. The key polynomials have been developed
in [10] and [3], a link between the two approaches is given in [7]. When the set of key 
polynomials does not have limit key polynomials, in [9] it is proved that we can obtain a 
local uniformization theorem for valuations of rank 1. In particular, it is also proved that, 
if the residual field of the valuation is of characteristic zero, we have local uniformization
of the valuation, result known since Zariski.

In [11], a link has been found between the defect and the key polynomials, namely 
the jump of the valuation. In the context of [3], this notion coincides with the degree of 
a limit key polynomial over the degree of a previous key polynomial whose degree is the 
same as those of an infinite family of key polynomials.

In this paper, we aim at studying more precisely the link between the defect and 
the key polynomials. We will express the defect as a product of effective degrees and 
will generalize the result of [11]. The effective degree is closely related to the Newton 
polygon associated with a key polynomial. We will use this result in order to prove a 
local uniformization theorem for valuations of rank 1 centered on an equicharacteristic 
quasi-excellent local domain satisfying some inductive assumptions of defectless of the 
quotient field.

In the first section, we recall some definitions about the center of a valuation and the 
graded algebras associated with a valuation.

In the second section we define the defect of a valuation for a valuation ν of a field 
K having a unique extension μ of a field L. Roughly speaking, the defect is the number 
obtained when equality holds in the inequality:

[L : K] ≤ [Γμ : Γν ][kμ : kν ],

where Γν (resp. Γμ) is the value group of ν (resp. μ) and kν (resp. kμ) is the residual 
field of ν (resp. μ). We know that it is a power of p, the characteristic of kν .

In the third section we first recall the definitions of key polynomials given in [3]
or [9]. From these definitions, we give some characterizations of a complete set of key 
polynomials, which is very useful to determine whether a set of polynomials is a complete 
or a 1-complete set of key polynomials. For a key polynomial Q, we also define the 
effective degree of a polynomial P corresponding to this key polynomial. When we write 
the standard expansion of P in terms of Q, the largest power of Q for which the valuation 
of the monomials in Q is maximal is the effective degree of P . Next, we prove that some 
graded algebras associated with a valuation are euclidean for the effective degree. We end 
this section by recalling that the sequence of effective degrees is decreasing and so, that 
it admits a constant value. If this value is 0 or 1, the set of key polynomial considered is 
1-complete.

In the fourth section, we first prove that the defect of an extension of a valuation is the 
product of the effective degrees of the limit key polynomials provided by the valuation. 
The proof uses the notion of key polynomials of W. Mahboub (see [8]), so it is true 
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for valuation of any rank. The main idea lies in the fact that the Newton polygon has 
only one face if the field is henselian. We compute some defects with four examples of 
M. Vaquié, W. Mahboub and S.D. Cutkosky.

In the next section we prove that there are no limit key polynomials for valuation of 
rank 1 over a defectless field.

In the final section we generalize the results of [9] and prove a local uniformization 
theorem for a valuation of rank 1, with some inductive assumptions of local uniformiza-
tion in lower dimension and no defect for a well-defined extension. From there we can 
prove a second time the local uniformization for a valuation of rank 1 in characteristic 
zero.

The author thanks M. Vaquié who suggested to study the precise link between the 
defect and the limit key polynomial, as well as B. Teissier for his advice on clarification 
and structuration of the notion of key polynomials. The author also thanks W. Mahboub 
for his ability to provide examples of key polynomials verifying or not some properties. 
I gratefully thank M. Spivakovsky for our discussions and careful readings.

Notation. Let ν be a valuation of a field K. We denote Rν = {f ∈ K | ν(f) � 0}. It is 
a local ring whose maximal ideal is given by mν = {f ∈ K | ν(f) > 0}. We then denote 
by kν = Rν/mν the residue field of Rν and Γν = ν(K∗).

For a field K, we will denote by K an algebraic closure of K, by Ksep a separable 
closure of K and by Aut(K|K) the group of automorphisms of K|K.

If R is a ring and I an ideal of R, we will denote by R̂I the I-adic completion of R. 
When (R, m) is a local ring, we will say the completion of R instead of the m-adic 
completion of R and will denote it by R̂.

For all P ∈ Spec(R), we denote by κ(P ) = RP /PRP the residue field of RP .
For α ∈ Zn and u = (u1, ..., un) a n-uplet of elements of R, we write:

uα = uα1
1 ...uαn

n .

For P, Q ∈ R [X] with P =
n∑

i=0
aiQ

i and ai ∈ R[X] such that the degree of ai is strictly 

less than Q, we write:

d ◦
Q(P ) = n.

If Q = X, we will note simply d ◦(P ) instead of d ◦
X(P ).

Finally, if R is a domain, we denote by Frac(R) its quotient field.

1. Center of a valuation, graded algebra associated and saturation

In this section, Γ denotes a totally ordered commutative group.

Definition 1.1. Let R be a ring and P a prime ideal. A valuation ν : R → Γ ∪ {∞}
centered on P is given by a minimal prime ideal P∞ of R included in P and a valuation 
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of the quotient field of R/P∞ centered on P/P∞. The ideal P∞ is the support of the 
valuation, namely P∞ = ν−1(∞).

If R is a local ring with maximal ideal m, we will say that ν is centered on R when 
ν is centered on m.

Definition 1.2. Let R be a ring and ν : R → Γ ∪ {∞} a valuation centered on a prime 
ideal of R. For all α ∈ ν(R \ {0}), we define the ideals:

Pα = {f ∈ R | ν(f) � α};

Pα,+ = {f ∈ R | ν(f) > α}.

We define the graded algebra of R associated with ν by:

grν(R) =
⊕

α∈ν(R\{0})
Pα/Pα,+.

The algebra grν(R) is a domain. For f ∈ R \ {0}, we denote by inν(f) its image in 
grν(R).

When R is a local domain, we give another definition of graded algebra.

Definition 1.3. Let R be a local domain, K = Frac(R) and ν : K∗ � Γ ∪{∞} a valuation 
of K centered on R. For all α ∈ Γ, we define the Rν-submodules of K as follows:

Pα = {f ∈ K | ν(f) � α} ∪ {0};

Pα,+ = {f ∈ K | ν(f) > α} ∪ {0}.

We define the graded algebra associated at ν by:

Gν =
⊕
α∈Γ

Pα/Pα,+.

For f ∈ K∗, we write inν(f) its image in Gν .

Remark 1.4. We have the natural embedding:

grν(R) ↪→ Gν .

Definition 1.5. Let G be a graded algebra without zero divisors. We call saturation of G

the graded algebra G∗ defined by:

G∗ =
{
f

g

∣∣∣∣ f, g ∈ G, g homogeneous, g �= 0
}
.

We say that G is saturated when G = G∗.
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Remark 1.6. For all graded algebra G, we have:

G∗ = (G∗)∗ .

In particular, G∗ is always saturated.

Example 1.7. Let ν be a valuation centered on a local ring R. Then:

Gν = (grν(R))∗ .

In particular, Gν is saturated.

2. Defectless fields

Definition 2.1. ([11], Définition 1.2) A valued field (K, ν) is said to be henselian if for all 
algebraic extension L|K, there exists a unique valuation μ of L which extends ν.

We call henselization of (K, ν) all extension (Kh, μ) of (K, ν) such that (Kh, μ) is 
henselian and for all henselian valued field (L, ν′) and all immersion σ : (K, ν) ↪→ (L, ν′), 
there exists a unique immersion σ′ : (Kh, μ) ↪→ (L, ν′) which extends σ.

(Kh, μ) σ′

(L, ν′)

(K, ν)
σ

�

Remark 2.2. All the henselizations of a given valued field are isomorphic, it is its smaller 
henselian extensions. Moreover, the henselization (Kh, μ) of (K, ν) is an immediate ex-
tension, that is Γν = Γμ and kν = kμ (for a proof see Theorem 7.42 of [6]).

The henselization of a given valued field (K, ν) can be constructed explicitly. We give 
here the construction proposed by Kuhlmann in [6], Chapter 7. Consider μ to be an 
extension of ν on K. Write:

Gd(K|K,μ) = {σ ∈ Aut(K|K) | ∀ α ∈ K, μ(σ(α)) = μ(α)},

Kh(μ) = {α ∈ Ksep | ∀ σ ∈ Gd(K|K,μ), σ(α) = α}.

(Kh(μ), μ) is an henselization of (K, ν), it is an algebraic separable immediate extension 
of (K, ν).

Definition 2.3. Let K be a field with a valuation ν. Consider L a finite extension of K and 
write μ1, ..., μg the valuations of L which extend ν. For 1 � i � g, choose a valuation μi

of K whose restriction on L is μi. We denote by Kh(μi) the field constructed previously. 
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It is an henselization of (K, ν). Moreover, it is a subfield of Lh(μi) := L.Kh(μi) which is 
itself an henselization of (L, μi). We define the defect of the extension L|K in μi by:

dL|K(μi, ν) =
[
Lh(μi) : Kh(μi)

]
eifi

,

where ei = [Γμi
: Γν ] and fi = [kμi

: kν ].

Remark 2.4. By a theorem of Ostrowski (Lemma 11.17 of [6]), we can show that 
dL|K(μi, ν) = pai , where ai ∈ N and p = char(kν).

Proposition 2.5. ([6], Lemma 7.46) Let K be a field with a valuation ν. Consider L a 
finite extension of K and denote by μ1, ..., μg the valuations of L which extend ν. Then:

[L : K] =
g∑

i=1
dieifi,

where di = dL|K(μi, ν), ei = [Γμi
: Γν ] and fi = [kμi

: kν ].

Definition 2.6. Let K be a field with a valuation ν. Consider L a finite extension of K
and denote by μ1, ..., μg the valuations of L which extend ν. We call global defect of the 
extension L|K on ν the quotient:

dL|K(ν) = [L : K]
g∑

i=1
eifi

,

where ei = [Γμi
: Γν ] and fi = [kμi

: kν ].
We say that L is a defectless extension of K when dL|K(ν) = 1.

Remark 2.7. If the extension L|K is normal, then the global defect is a power of p, where 
p = char(kν), because dL|K(ν) = dL|K(μi, ν), for all i ∈ {1, ..., g} (see [6], Lemma 11.3); 
otherwise it is a rational number.

Remark 2.8. dL|K(ν) = 1 if and only if for all i ∈ {1, ..., g}, dL|K(μi, ν) = 1.

Definition 2.9. A field K is said to be defectless if all finite extension of K is defectless.

Proposition 2.10. ([6], Theorem 11.23) All field with a valuation ν such that char(kν) = 0
is a defectless field.
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3. Key polynomials and effective degree

Let K ↪→ K(x) be a simple transcendental extension of fields. Let μ′ be a valuation of 
K(x) and denote μ := μ′

| K . Denote by G the group of values of μ′ and G1 the smallest 
non-zero isolated subgroup of G. Assume that the rank of μ is 1 and μ′(x) > 0. Finally, 
for β ∈ G, recall that:

P ′
β = {f ∈ K(x) | μ′(f) � β} ∪ {0},

P ′
β,+ = {f ∈ K(x) | μ′(f) > β} ∪ {0},

Gμ′ =
⊕
β∈G

P ′
β/P

′
β,+,

and inμ′(f) is the image of f ∈ K(x) in Gμ′ .

Definition 3.1. A complete set of key polynomials for μ′ is a well ordered collection:

Q = {Qi}i∈Λ ⊂ K[x]

such that, for all β ∈ G, the additive group P ′
β∩K[x] is generated by the products under 

the form a 
s∏

j=1
Q

γj

ij
, where a ∈ K and such that 

s∑
j=1

γjμ
′ (Qij

)
+ μ(a) � β.

The set is said to be 1-complete if the previous condition occurs for all β ∈ G1 and if 
for all i ∈ Λ, we have μ′(Qi) ∈ G1.

Theorem 3.2. ([3], Theorem 7.11) There exists a collection Q = {Qi}i∈Λ which is a 
1-complete set of key polynomials.

By Theorem 3.2, we know that there exists a 1-complete set of key polynomials Q =
{Qi}i∈Λ and that the order type of Λ is at most ω × ω. If K is defectless, we will see 
that the order type of Λ is at most ω and there is no limit key polynomial. In particular, 
this is the case when char(kμ) = 0. For all i ∈ Λ, denote βi = μ′(Qi).

Let l ∈ Λ, write:

αi = d ◦
Qi−1

(Qi), ∀ i � l;

αl+1 = {αi}i� l;

Ql+1 = {Qi}i� l.

We also use the notation γl+1 = {γi}i� l, where the γi are all zero, except for a finite 

number and Qγl+1
l+1 =

∏
i� l

Qγi

i .

Definition 3.3. A multiindex γl+1 is said to be standard with respect to αl+1 if 0 � γi <

αi+1, for i � l.
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An l-standard monomial in Ql+1 is a product of the form cγl+1Q
γl+1
l+1 , where cγl+1 ∈ K

and γl+1 is standard with respect to αl+1.
An l-standard expansion not involving Ql is a finite sum 

∑
β

Sβ of l-standard mono-

mials not involving Ql, where β ranges over a some finite subset of G+ and Sβ =
∑
j

dβ,j

is a sum of standard monomials of value β such that 
∑
j

inμ′(dβ,j) �= 0.

Definition 3.4. Let f ∈ K[x] and i � l. An i-standard expansion of f is an expression of 
the form:

f =
si∑
j=0

cj,iQ
j
i ,

where cj,i is an i-standard expansion not involving Qi.

Remark 3.5. Such expansion exists by Euclidean division and is unique, in the sense of 
that the cj,i ∈ K[x] are unique. More precisely, if i ∈ N, we can prove by induction that 
the i-standard expansion is unique.

Definition 3.6. Let f ∈ K[x], i � l and f =
si∑
j=0

cj,iQ
j
i be an i-standard expansion of f . 

We define the i-truncation of μ′, denoted by μ′
i, as being the following pseudo-valuation:

μ′
i(f) = min

0�j�si
{jμ′(Qi) + μ′(cj,i)}.

Remark 3.7. We can prove that μ′
i is a valuation. Moreover, we have:

∀ f ∈ K[x], i ∈ Λ, μ′
i(f) � μ′(f).

Proposition 3.8. Let {Qi}i∈Λ ⊂ K [x]. Denote by H = {f ∈ K[x] | μ′(f) /∈ G1}, and 
for a graded algebra G, denote by G∗ its saturation (see Definition 1.5). Consider the 
following assertions:

1. The set {Qi}i∈Λ is 1-complete.
2. For all f ∈ K[x] \H, there exists i ∈ Λ such that, μ′

i(f) = μ′(f).
3. For all i ∈ Λ, Qi /∈ H and there exists h ∈ H monic or zero such that the set 

{Qi}i∈Λ ∪ {h} is complete.
4. There exists h ∈ H monic or zero such that Gμ′ = (Gμ [{inμ′(Qi)}i∈Λ, inμ′(h)])∗.

Then 1. ⇔ 2. ⇔ 3. and 1. ⇒ 4.

Proof. Let us show that {Qi}i∈Λ is 1-completed if and only if for all f ∈ K[x] \H there 
exists i ∈ Λ such that μ′

i(f) = μ′(f).
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Assume {Qi}i∈Λ is 1-completed, and consider f ∈ K[x] such that μ′(f) ∈ G1. Denote 

β = μ′(f). Then P ′
β ∩K[x] is generated by the products of the form a 

s∏
j=1

Q
γj

ij
, a ∈ K, 

with 
s∑

j=1
γjμ

′ (Qij

)
+ μ(a) � β = μ′(f). Thus μ′

is
(f) � μ′(f). Moreover, by definition, 

for all i ∈ Λ, we have μ′
i(f) � μ′(f). We conclude that μ′

is
(f) = μ′(f). Conversely, if all 

f ∈ K[x] such that μ′(f) ∈ G1 satisfies μ′
i(f) = μ′(f), for some i ∈ Λ, then, f writes as 

a sum of monomials in Qi+1 of value at least μ′(f) � β. So f lies in the ideal generated 
by all there monomials. We can show in the same way that {Qi}i∈Λ is completed if and 
only if for all f ∈ K[x] and for all i ∈ Λ, we have μ′

i(f) = μ′(f).
Let us show that {Qi}i∈Λ is 1-completed if and only if for all i ∈ Λ, Qi /∈ H and there 

exists h ∈ H monic or zero such that the set {Qi}i∈Λ ∪ {h} is completed.
If {Qi}i∈Λ is completed then, by definition, for all i ∈ Λ we have μ′(Qi) ∈ G1 and 

take h = 0. If {Qi}i∈Λ is not completed, there exists an element h ∈ K[x] such that 
μ′(h) /∈ G1 and μ′

i(h) < μ′(h), for all i ∈ Λ. Take h of minimal degree and monic 
satisfying the previous inequality. For f ∈ K[x], consider the standard expansion in 

terms of h: f =
s∑

j=0
cjh

j . Denote m = min{j ∈ {1, ..., s} | cj �= 0}. Denote by μ′
h the 

truncated valuation in terms of h (because μ′(h) /∈ G1). Then:

μ′
h(f) = μ′

h(cmhm) = μ′(cmhm) = μ′(f).

The converse is obvious.
Finally, if {Qi}i∈Λ is 1-completed, then there exists h ∈ H monic or zero such 

that the set {Qi}i∈Λ ∪ {h} is completed, that is P ′
β ∩ K[x] is generated by ele-

ments of the form a 
s∏

j=1
g
γj

j where gj ∈ {Qi}i∈Λ ∪ {h}. So we deduce that Gμ′ =

(Gμ [{inμ′(Qi)}i∈Λ, inμ′(h)])∗. �
Remark 3.9. Note that 4. �⇒ 1. Indeed, consider Example 2.2 of [5], if k is a field and 
ι : k(u, v) ↪→ k [[t]] a monomorphism such that ι(v) = t and ι(u) =

∑
i�1

cit
i with ci ∈ k∗. 

Assume that Q∞ = u −
∑
i�1

civ
i is transcendental over k(u, v). Denote by μ′ the valuation 

of k(u, v) induced by the t-adic valuation of k [[t]] through ι, and by μ the restriction of 
μ′ on K = k(v). The set of key polynomials associated with the extension K ↪→ K(u) is 

{Qi}i�1 with Q1 = u and Qi = u −
i−1∑
j=1

civ
i and Gμ′ = kμ[inμ′(u)].

In the definition below, we use the terminology of [12] with the notation of [3].

Definition 3.10. Let h ∈ K[x]. Consider its i-standard expansion h =
si∑
j=0

cj,iQ
j
i . We call 

the i-th effective degree of h the natural number:
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δi(h) = max{j ∈ {0, ..., si} | jβi + μ′ (cj,i) = μ′
i(h)}.

By convention, δi(0) = −∞.

Remark 3.11. If we denote:

ini(h) =
∑

j∈Si(h,βi)

inμ′(cj,i)Xj ∈ Gμ[inμ′(Qi), X],

where Si(h, βi) = {j ∈ {0, ..., si} | jβi + μ′ (cj,i) = μ′
i(h)}, then δi(h) = d ◦

X(ini(h)).
Moreover, if inμ′

i
(h) = inμ′

i
(g) then δi(h) = δi(g). The definition of the effective degree 

extends naturally to grμ′
i
(K[x]).

Remark 3.12. Remind that, by Proposition 5.2 of [3], for all ordinal number l ∈ Λ, the 
sequence (δl+i(h))i∈N∗ is non-increasing. Thus there exists i0 ∈ N∗ such that δl+i0(h) =
δl+i0+i(h), for all i � 1 and we denote this common value by δl+ω(h) or δl+ω if no 
confusion is possible. Note that δl+ω could be equal to 0.

The next three lemmas generalize Lemmas 2.12, 2.13 and 2.14 of [2]. The proofs are 
almost the same.

Lemma 3.13. Let l ∈ Λ. Then for all f, g ∈ K[x] we have:

δl(fg) = δl(f) + δl(g).

Proof. It is a direct consequence of Remark 3.11. �
Lemma 3.14. For all h ∈ K[x], δi(h) = 0 if and only if inμ′

i
(h) is a unit of grμ′

i
(K[x]).

Proof. If δi(h) = 0 then μ′
i(h) = μ′(h) and inμ′

i
(h) = inμ′

i
(c0,i) in grμ′

i
(K[x]). Since the 

polynomial Qi is irreducible in K[x] and d ◦(c0,i) < d ◦(Qi), the polynomials Qi and c0,i
are coprime in K[x]. Then, there exists U, V ∈ K[x] such that UQi + V c0,i = 1. We 
deduce that μ′

i(V c0,i) = μ′
i(1) < μ′

i(UQi) and that h is a unit of grμ′
i
(K[x]).

Conversely, it is sufficient to apply the Lemma 3.13 and the Remark 3.11. �
Lemma 3.15. For all i ∈ Λ, the ring grμ′

i
(K[x]) is euclidean for δi. That is to say:

∀g, h ∈ K[x], h �= 0, ∃Q,R ∈ K[x], g = hQ + R in grμ′
i
(K[x]) and 0 � δi(R) < δi(h).

Proof. Denote h =
si∑
j=0

cj,iQ
j
i , we can assume without loss of generality that cj,i = 0

for j > δi(h), because μ′(cj,iQj
i ) > μ′

i(cj,iQ
j
i ) and so inμ′

i

(
si∑

j=δi(h)+1
cj,iQ

j
i

)
= 0. We 

can also assume that cδi(h),i = 1 by Lemma 3.14. Note that d ◦(h) = δi(h).d ◦(Qi). 
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By euclidean division in K[x], there exist P, Q ∈ K[x] such that g = hQ + P with 

0 � d ◦(P ) < d ◦(h). Let P =
ti∑

j=0
pj,iQ

j
i be the i-standard expansion of P . If we write 

R =
δi(P )∑
j=0

pj,iQ
j
i , we obtain that h = gQ + R in grμ′

i
(K[x]) and:

δi(P ).d ◦(Qi) � d ◦(pδi(P ),i) + δi(P ).d ◦(Qi) = d ◦(R) � d ◦(P ) < d ◦(h) = δi(h).d ◦(Qi).

Thus, δi(R) = δi(P ) < δi(h). �
The construction of the key polynomials is recursive (see [7,3] and [4]). For l ∈ N∗, we 

construct a set of key polynomials Ql+1 = {Qi}1�i� l; the following alternative holds:

(1) ∃ l0 ∈ N, βl0 /∈ G1;
(2) ∀ l ∈ N, βl ∈ G1.

In case (1), we stop the construction. The set Ql0 = {Qi}1�i� l0−1 is by definition a 
1-complete set of key polynomials and Λ = {1, ..., l0 − 1}. Note that the set Ql0+1 is a 
complete set of key polynomials.

In case (2), if K is defectless, we will prove in Proposition 5.1 that the set Qω =
{Qi}i�1 is infinite and that Λ = N∗. The next propositions will guarantee that the set 
of key polynomials so obtained is also 1-complete.

The next lemma, very useful, allows us to note that there does not exist any increasing 
bounded sequence with valuations of rank 1.

Lemma 3.16. Let ν be a valuation of rank 1 centered on a local noetherian ring R. Denote 
by P∞ the support of ν. Then, ν (R \ P∞) does not contain any increasing bounded 
infinite sequence.

Remark 3.17. From Definition 1.1, the data of a valuation ν centered on a local ring 
(R, m) is the data of a minimal prime ideal P∞ of R (the support of the valuation) and 
of a valuation ν′ of the quotient field of R/P∞ such that R/P∞ ⊂ Rν′ and m/P∞ =
R/P∞ ∩mν′ .

Proof. Let (βi)i�1 be an increasing infinite sequence of ν (R \ P∞) bounded by β. This 
sequence corresponds to a decreasing infinite sequence of ideals of R/Pβ. It is sufficient 
to prove that R/Pβ is of finite length. Denote by m the maximal ideal of R, ν(m) =
min {ν (R \ P∞) \ {0}} and let Γ be the value group of ν. Note that the group ν (R \ P∞)
is archimedean. Indeed, by contradiction, if ν (R \ P∞) is not archimedean, there exist
α, β ∈ ν (R \ P∞), β �= 0 such that, for all n � 1, nβ � α. In particular, the set:

{γ ∈ Γ | ∃ n ∈ N \ {0}, −nβ < γ < nβ}

is a non-trivial isolated subgroup of Γ.
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We deduce that there exists n ∈ N such that:

β � nν(m).

Thus, mn ⊂ Pβ and therefore, there exists a surjective map:

R/mn � R/Pβ . �
Proposition 3.18. ([3], Proposition 3.30) Assume that we have constructed an infinite set 
of key polynomials Qω = {Qi}i�1 such that, for all i ∈ N∗, βi ∈ G1. Assume further 
that the sequence {βi}i�1 is not bounded in G1. Then, the set of key polynomials Qω is 
1-complete.

Proof. It is sufficient to prove that, for all β ∈ G1 and for all h ∈ K [x] such that 
μ′(h) = β, h lies in the Rμ-submodule of K [x] generated by all the monomials of the 

form a 
s∏

j=1
Q

γj

ij
, a ∈ K, such that μ′

(
a

s∏
j=1

Q
γj

ij

)
� β.

Therefore consider h ∈ K [x] such that μ′(h) ∈ G1. Write h =
d∑

j=0
hjx

j . We can 

assume, without loss of generality, that:

∀ j ∈ {0, ..., d}, μ(hj) � 0.

Otherwise it is sufficient to multiply h by an element of K appropriately chosen.
Since the sequence {βi}i�1 is not bounded in G1, there exists i0 ∈ N∗ such that:

μ′(h) < βi0 .

Denote by h =
si0∑
j=0

cj,i0Q
j
i0

the i0-standard expansion of h. This expansion is obtained

by euclidean division, in view of the choice made on the coefficients of h and, since the 
sequence 

{
βi

d ◦(Qi)

}
i�1

is increasing (it is sufficient to take the (i −1)-standard expansion 

of Qi). We prove easily that:

∀ j ∈ {0, ..., si0}, μ (cj,i0) � 0.

Recall that, by construction of the key polynomials, for j ∈ {0, ..., si0}, we have 
μ′
i0

(cj,i0) = μ′ (cj,i0). We then deduce that:

∀ j ∈ {1, ..., si0}, μ′
(
cj,i0Q

j
i0

)
= μ′

i0

(
cj,i0Q

j
i0

)
> μ′(h).

Thus, μ′(h) = μ′ (c0,i0) and so, h is a sum of monomials in Qi0+1 of valuation at least 
μ′(h) (in particular, μ′

i (h) = μ′(h)). �

0
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We now consider two cases:

(1) �{i � 1 | αi > 1} = +∞;
(2) �{i � 1 | αi > 1} < +∞.

In case (1), from Proposition 3.19, we can prove that the infinite set of key polynomials is 
always 1-complete, independently of the characteristic of kμ. In case (2), if the effective 
degree is always 1, and if the set of key polynomials Qω = {Qi}i�1 is not complete, 
we will prove in Proposition 3.20 that the sequence {βi}i�1 is never bounded. In that 
case, Proposition 3.18, we deduce that the set of key polynomials Qω = {Qi}i�1 is also 
1-complete.

Proposition 3.19. ([3], Corollary 5.8) Assume that we have constructed an infinite set of 
key polynomials Qω = {Qi}i�1 such that, for all i ∈ N∗, βi ∈ G1. Furthermore, assume 
that the set {i � 1 | αi > 1} is infinite. Then, Qω is a 1-complete set of key polynomials.

Proof. Let h ∈ K[x]. Like in the proof of Proposition 3.18, it is sufficient to show that 
μ′
i(h) = μ′(h) for a i � 1. However, if we write:

δi(h) = maxSi(h, βi),

where:

Si(h, βi) = {j ∈ {0, ..., si} | jβi + μ′ (cj,i) = μ′
i(h)},

h =
si∑
j=0

cj,iQ
j
i ,

by (1) of Proposition 5.2 of [3], we have:

αi+1δi+1(h) � δi(h), ∀ i � 1.

We deduce that if δi(h) > 0 and αi+1 > 1, then:

δi+1(h) < δi(h),∀ i � 1.

The set {i � 1 | αi > 1} is infinite and the previous inequality does not occur infinitely, 
we conclude that there exists i0 � 1 such that δi0(h) = 0 and so μ′

i0
(h) = μ′(h). �

From now, we assume that we have constructed an infinite set of key polynomials 
Qω = {Qi}i�1 such that αi = 1, for some i sufficiently large. Thus for this i, we have:

Qi+1 = Qi + zi,
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where zi is an i-standard homogeneous expansion, of value βi, which does not contain Qi. 
More we assume that βi ∈ G1 and that there exists h ∈ K[x] such that, for all i � 1:

μ′
i(h) < μ′(h).

Denote by Qω the monic polynomial of smaller degree possible satisfying the previous
inequality. Like in the proof of the Proposition 3.19, we denote:

δi(Qω) = maxSi(Qω, βi),

where:

Si(Qω, βi) = {j ∈ {0, ..., si} | jβi + μ′ (cj,i) = μ′
i(Qω)},

Qω =
si∑
j=0

cj,iQ
j
i .

By (1) of Proposition 5.2 of [3], we have the following inequality:

αi+1δi+1(Qω) � δi(Qω), ∀ i � 1.

Since αi = 1 for i sufficiently large, there exists δω ∈ N∗ such that δω = δi(Qω), for i
sufficiently large.

Proposition 3.20. ([3], Proposition 6.8) Under the previous assumptions, if δω = 1 then 
the sequence {βi}i�1 is not bounded in G1.

4. Defect and effective degree

In this section, we do not assume any assumption about the rank of the valuation. We 
use the construction of key polynomials of W. Mahboub (see [8]). Recall that the order 
type of the set of key polynomials is at most ω × ω.

Lemma 4.1. Let (K, μ) ↪→ (L, μ′) be a finite and simple valued field. Let {Qi}i∈Λ be 
the well ordered set of key polynomials associated with this extension. Then there exists 
n0 ∈ N∗ such that Λ � ωn0, i.e. {Qi}i∈Λ has a finite number of limit key polynomials.

Proof. Let P ∈ K[x] monic and irreducible such that L = K[x]/(P ). Denote also by μ′

the pseudo-valuation of K[x] for which the set of key polynomials is associated with, so 
that for all Q ∈ (P ), μ′(Q) = ∞. Assume that the set {Qωi}i�1 is infinite. Since αωi > 1, 
for all i � 1, the sequence {d ◦(Qωi)}i�1 is increasing. Then there exists n0 ∈ N∗ such 
that d ◦(P ) � d ◦(Qωi), for all i � n0.

Let i � n0. By euclidean division there exist Si, Ri ∈ K[x] such that Qωi = PSi +Ri

with Ri = 0 or 0 � d ◦(Ri) < d ◦(P ) � d ◦(Qωi). If Ri �= 0 then μ′(Qωi) = μ′(Ri), which 
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belies the minimality of the degree of a limit key polynomial. If Ri = 0, then Qωi ∈ (P )
and the Qωi are not key polynomials for i > n0. �
Lemma 4.2. Let (K, μ) be an henselian field and L be a finite and simple extension of K. 
By definition, μ extends uniquely to L and this extension corresponds to a (pseudo-)val-
uation in K [x] denoted by μ′. Consider {Qi}i∈Λ the well ordered set of key polynomials 
associated with μ′ and n0 ∈ N∗ the smallest integer such that Λ � ωn0. Then there exists 
an index i0 ∈ Λ having a predecessor, such that:

[L : K] = d ◦(Qω(n0−1)+i0)dωn0 ,

and where:

dωn0 =
{

δωn0 if Λ = ωn0 and �{i � 1 | αω(n0−1)+i = 1} = +∞
1 if Λ < ωn0 or Λ = ωn0 and �{i � 1 | αω(n0−1)+i = 1} < +∞.

Proof. By assumption, L = K [x] /(P (x)) with P ∈ K [x] irreducible and monic.
Assume that Λ is an ordinal having an immediate predecessor. Let us denote it by 

ω(n0 − 1) + n, n ∈ N∗. By definition, since Λ < ωn0, dωn0 = 1. By construction of key 
polynomials, P = Qω(n0−1)+n. Thus, i0 = n and:

[L : K] = d ◦(P ) = d ◦(Qω(n0−1)+i0)dωn0 .

Assume now that Λ is a limit ordinal, denote it by ωn0.
If �{i � 1 | αω(n0−1)+i = 1} < +∞, then dωn0 = 1. Like in the proof of Proposition 3.19, 

there exists i0 ∈ N∗ minimal such that μ′
ω(n0−1)+i0

(P ) = μ′(P ). Thus, if we write the 
ω(n0 − 1) + i0-standard expansion of P , we note that Qω(n0−1)+i0 belongs to the center 
of the valuation μ′, which is the ideal (P ). Note that, by definition and by construction 
of the key polynomials and by choice of i0, we have d ◦(P ) � d ◦(Qω(n0−1)+i0). Since 
Qω(n0−1)+i0 ∈ (P ), we conclude that Qω(n0−1)+i0 = cP , c ∈ K∗ and so:

[L : K] = d ◦(P ) = d ◦(Qω(n0−1)+i0)dωn0 .

If �{i � 1 | αω(n0−1)+i = 1} = +∞, then dωn0 = δωn0 . In that case, P = Qωn0 . Take 
i0 ∈ N∗ sufficiently large such that αω(n0−1)+i = 1 and δω(n0−1)+i(P ) = δω(n0−1)+i+1(P )
for all i � i0. Recall that this common value is denoted by δωn0 . By Proposition 2.12 
of [12], since K is henselian, the Newton polygon Δω(n0−1)+i(P ) have a unique side of 
slope βω(n0−1)+i. This is equivalent to:

μ′(c0,ω(n0−1)+i) = μ′(csω(n0−1)+i,ω(n0−1)+i) + sω(n0−1)+iβω(n0−1)+i

� μ′(cj,ω(n0−1)+i) + jβω(n0−1)+i,
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with P =
sω(n0−1)+i∑

j=0
cj,ω(n0−1)+iQ

j
ω(n0−1)+i and 0 � j � sω(n0−1)+i. By Corollary 3.23 

of [3], βω(n0−1)+i determine always a side of Δω(n0−1)+i(P ) which only has one, so:

μ′
ω(n0−1)+i(P ) = μ′(c0,ω(n0−1)+i) = μ′(csω(n0−1)+i,ω(n0−1)+i) + sω(n0−1)+iβω(n0−1)+i.

We deduce, by definition of δω(n0−1)+i(P ), that:

δω(n0−1)+i(P ) = sω(n0−1)+i.

But, for i � i0, d ◦(Qω(n0−1)+i) = d ◦(Qω(n0−1)+i0) and δω(n0−1)+i(P ) = δωn0 . Thus:

δωn0 = sω(n0−1)+i = d ◦(P )
d ◦(Qω(n0−1)+i0)

. �
Corollary 4.3. With the assumptions of Lemma 4.2, we have:

n0∏
j=1

dωj = dL|K(μ′, μ).

Proof. Recall that we denote αωj = d ◦
Qω(j−1)+i0

(Qωj) with i0 a ωj-inessential index 

and j ∈ N∗. In [11], this number corresponds to the jump of order j denoted by s(j). 
By Proposition 3.4.4 of [8], we can always assume that δωj = αωj , for all j < n0. By 
Proposition 2.9 of [11] we have:

d ◦(Qω(n0−1)+i0) = [Γμ′
ω(n0−1)+i0

: Γμ][kμ′
ω(n0−1)+i0

: kμ]
n0−1∏
j=1

αωj .

We verify after that whether Λ = ω(n0 − 1) + i0 or if Λ = ωn0, we always have:

[Γμ′ : Γμ] = [Γμ′
ω(n0−1)+i0

: Γμ],

[kμ′ : kμ] = [kμ′
ω(n0−1)+i0

: kμ].

Thus, by applying Lemma 4.2, we obtain:

[L : K] =

⎛⎝[Γμ′ : Γμ][kμ′ : kμ]
n0−1∏
j=1

αωj

⎞⎠ dωn0 .

Since dωj = δωj = αωj , we concluded:

dL|K(μ′, μ) =

⎛⎝n0−1∏
j=1

αωj

⎞⎠ dωn0 =

⎛⎝n0−1∏
j=1

dωj

⎞⎠ dωn0 =
n0∏
j=1

dωj . �
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Corollary 4.4. With the assumptions of Lemma 4.2, we have:

δωn0 = αωn0 .

Proof. By Corollary 2.10 of [11], the defect is the total jump, applying Corollary 4.3 we 
get the following equality:

n0∏
j=1

αωj = dL|K(μ′, μ) =
n0∏
j=1

dωj .

Such δωj = αωj �= 0, for all j < n0, we deduce that:

δωn0 = αωn0 . �
Corollary 4.5. Let (K, μ) be a valued field and L be a finite and simple extension 
of K. Denote μ(1), ..., μ(g) the different extensions of μ on L, they correspond to a 
(pseudo-)valuation of K [x] denoted in the same fashion. Consider {Q(i)

l }l∈Λ(i) the set 
of key polynomials associated with μ(i) and n(i)

0 ∈ N∗ the smallest integer such that 
Λ(i) � ωn

(i)
0 , 1 � i � g. Then we have:

dL|K(μ(i), μ) =
n

(i)
0∏

j=1
d
(i)
ωj .

We deduce that:

[L : K] =
g∑

i=1
eifid

(i)
ω d

(i)
ω2...d

(i)
ωn

(i)
0
,

where ei =
[
Γμ(i) : Γμ

]
and fi =

[
kμ(i) : kμ

]
.

Proof. By Proposition 2.5, we know that:

[L : K] =
g∑

i=1
eifidi,

where di = dL|K(μ(i), μ), ei =
[
Γμ(i) : Γμ

]
and fi =

[
kμ(i) : kμ

]
. Applying Corollary 4.3

to the fields Lh(μ(i)) and Kh(μ(i)) we obtain the announced equalities. �
Corollary 4.6. Under the assumptions of Corollary 4.5, if we denote p = car(kμ), then, 
for 1 � i � g and 1 � j � n

(i)
0 , there exists e(i)

ωj ∈ N such that:

δ
(i)
ωj = pe

(i)
ωj .
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Proof. It is a direct consequence of Corollary 4.5 and Remark 2.4. �
Example 4.7. We study the Example 3.2 of [11]. Let k be an algebraic closed field of 
characteristic 0. Consider K = k(y) endowed with its y-adic valuation denoted by μ. 
The polynomial:

P = x4 + y2x3 + y3(y2 − 2)x2 − y5x + y6

is irreducible in K[x]. The valuation extends only on two valuations μ(1) and μ(2) over 
the field L = K[x]/(P ) given by the sequences of key polynomials {Q(1)

i }i∈Λ(1) and 
{Q(2)

i }i∈Λ(2) such that:

Q
(1)
1 = x β

(1)
1 = 3/2

Q
(1)
2 = x2 − y3 β

(1)
2 = 7/2

Q
(1)
i = Q

(1)
2 + (y2 − ui−3)x β

(1)
i = 3/2 + i ; i � 3

and:

Q
(2)
1 = x β

(2)
1 = 3/2

Q
(2)
2 = x2 − y3 β

(2)
2 = 9/2

Q
(2)
i = Q

(2)
2 + ui−2x β

(2)
i = 3/2 + (i + 1) ; i � 3

where u0 = 0, ul =
l∑

j=1
cjy

j+2, for all l � 1, c1 = c2 = 1 and cj = 4j−2 3...(2j − 3)
6...(2j)

for all j � 3. Following the notation of the Corollary 4.5, with Λ(1) = Λ(2) = ω, and 
α

(1)
i = α

(2)
i = 1 for all i � 2, we deduce that:

d(1)
ω = d(2)

ω = 1,

because p = 1 if car(k) = 0. Moreover, since a field of characteristic zero is defectless, 
we have:

dL|K(μ(1), μ) = 1 = d(1)
ω

and:

dL|K(μ(2), μ) = 1 = d(2)
ω .

Finally, since Γμ = Z, Γμ(1) = Γμ(2) = (1/2)Z, and kμ = kμ(1) = kμ(2) = k we deduce 
that:

e1 = e2 = 2 and f1 = f2 = 1.



J.-C. San Saturnino / Journal of Algebra 481 (2017) 91–119 109
We obtain again the result of Corollary 4.5, that is to say:

4 = [L : K] = e1f1d
(1)
ω + e2f2d

(2)
ω = 2 × 1 × 1 + 2 × 1 × 1.

Example 4.8. We study the example of W. Mahboub given in [7]. Let k be a field of 
characteristic p > 2. Denote by ν the z-adic valuation of k(z) and by μ the valuation 
of K = k(z, y) defined by the set of key polynomials {Qy,i}i�1 given in [7] extending ν. 
For e ∈ N∗, write:

f = xpe − y2 − z.

We want to find all the valuations of L = K[x]/(f) which extend μ. Consider the 
valuation μ′ of L defined by the set of key polynomials {Qi}i∈Λ:

Q1 = x β1 = 1 − 1
4p

Qi = xpe−1 −
i∑

j=0
hj βi = 1 − 1

22ipi
; i � 2

where h0 = 0 and hj =
Q2

y,2j+1

z22jpj−1 , for all j � 1. We deduced that, for all i � 1:

f = (Qi +
i∑

j=0
hj)p − y2 − z = Qp

i +
i∑

j=0
hp
j −Qy,2 = Qp

i + Qy,2i

z22i−2pi−p
.

But μ(hp
i ) = μ 

(
Qy,2i

z22i−2pi−p

)
, so:

ini(f) = Xp − inμ(hp
i ) = (X − inμ(hi))p.

Thus, for all i � 1, δi(f) = p and so δω = p. Moreover we are in the case where Λ = ω

and αi = 1, for all i � 3. We deduce by Corollary 4.5, that:

[kμ′ : kμ] = pe−1;

dL|K(μ′, μ) = dω = δω = p.

Since [L : K] = pe, by Corollary 4.5, we deduced that μ′ is the unique valuation extending 
μ on L.

Example 4.9. Let k be a field of characteristic p > 0. We denote K = k ((y, z)). Consider 
the valuation ν : K∗ → Z2

lex, trivial on k, defined by ν(z) = (1, 0) and ν(y) = (0, 1). 
Consider the polynomial P ∈ K [w] defined as follows:

P (w) = wp − zp
2−pw + ypzp

2
.
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Write L = K [w] /(P ). Let us find all the valuations ν(i) of L extending ν and all the 
corresponding sets of key polynomial {Q(i)

j }j∈Λ(i) .
Finding a valuation of L extending ν means finding a pseudo-valuation of K [w] of 

kernel P . Let μ be such a pseudo-valuation. The only possible values of w are:

μ(w) =

⎧⎪⎨⎪⎩
(p, p)
(p, 1)
(p, 0)

.

But if μ(w) = (p, 1), then μ(wp) = μ(ypzp2) = (p2, p) > μ(zp2−pw) = (p2, 1). The 
monomial wp is not of minimal value in P . The two only possible values of w are:

μ(w) =
{

(p, p)
(p, 0)

.

1) Assume that μ(w) = (p, p).
We are in the case of Example 5.3.2 of [8]. In that case, we prove that the key 

polynomials are:

Q
(1)
1 = w,

Q
(1)
j = w − zpuj ,

where uj =
i∑

i=1
yp

i and μ(Q(1)
j ) = (p, pj), for all j � 2. Moreover the polynomial P is 

a limit key polynomial. Finally, the polynomial inj(P ) is irreducible for all j � 1, the 
valuation extends uniquely since μ(w) = (p, p).

Thus, a first way to extend ν over L consists in considering the valuation ν(1) defined 
by the key polynomials Q(1)

j , j � 1 and Q(1)
ω = P .

Write u =
∑
i�1

yp
i the limit of the sequence (uj)j in k [[y, z]]. Note that u is solution 

of the equation X − Xp = yp. The other solutions of the equation are the u − l with 
l ∈ {1, ..., p − 1}. By writing αl = zp(u − l), for l ∈ {0, ..., p − 1}, it is easy to prove that:

p−1∏
l=0

(w − αl) = wp − zp
2−pw + ypzp

2
.

Thus, the roots of P are α0, ..., αp−1, and if we write Q(1)
∞ = w − α0 = w − zpu, then:

P (w) = Q(1)
∞ (w)

p−1∏
(w − αl).
l=1
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Finally, since inj(P ) = −zp
2−p(X − yp

i

zp), for all j � 1 and Λ(1) = ω, we deduce:

dL|K(ν(1), ν) = d(1)
ω = δ(1)

ω = 1.

2) Assume that μ(w) = (p, 0).
Denote Q(2)

1 = w. Then:

in1(P ) = X
(
Xp−1 − zp

2−p
)
.

Write Q(2)
2 =

(
Q

(2)
1

)p−1
− zp

2−p. Then:

P = Q
(2)
1 Q

(2)
2 + ypzp

2
.

The only choice for the valuation of Q(2)
2 is:

μ(Q(2)
2 ) = (p2 − p, p) > (p, 0) = μ(Q(2)

1 ).

In this case, the polynomial in2(P ) is given by:

in2(P ) = inμ(Q(2)
1 )
(
X + inμ(ypzp2)

inμ(Q(2)
1 )

)
.

Note that μ(u) = μ(yp) = (0, p); then μ(α0) = μ(zpu) = (p, p). By writing 

h =
p−1∑
m=1

αp−m
0 wm−1, we note that h ∈ K[w] represents inμ(ypzp2

)
inμ(Q(2)

1 )
because μ(h) =

μ(wp−2α0) = (p2 − p, p). Then denote by:

Q
(2)
3 = Q

(2)
2 + h.

But, (w − α0)h = α0(wp−1 − αp−1
0 ). So:

(w − α0)Q(2)
3 = wp − zp

2−pw + α0z
p2−p − αp

0.

Since, α0z
p2−p − αp

0 = uzp
2 − upzp

2 = (u − up)zp2 = ypzp
2 we deduce that:

Q(1)
∞ Q

(2)
3 = (w − α0)Q(2)

3 = P.

The sequence of key polynomials stops. The second way to extend ν on L consists in 
considering the valuation ν(2) defined with the key polynomials Q(2)

1 , Q(2)
2 and Q(2)

3 .
Finally, since Λ(2) = 3 < ω, we deduce that:

dL|K(ν(2), ν) = d(2)
ω = 1.
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Then we obtain:

p = [L : K] = d ◦(P ) = d ◦(Q(1)
1 )d(1)

ω + d ◦(Q(2)
3 )d(2)

ω = 1 + (p− 1).

Example 4.10. We study an example proposed by S.D. Cutkosky in [1]. Let k be a field 
of characteristic p > 0. Denote K = k(u, v) and L = K[y]/(f) where:

f = yp
2+1 + yp

2 − yvp + u− vp.

We define a valuation ν over K such that ν(u) = p with:

Rν =
⋃
i�0

Ai,

where Ai = k [ui, vi](ui,vi), and:

{
u0 = u

v0 = v
;

⎧⎪⎨⎪⎩
upi+j = upi

vjpi+j

vpi+j = vpi

, 1 � j < p ;

⎧⎨⎩
up(i+1) = vpi

vp(i+1) = upi

vppi
− γp(i+1)

; γp(i+1) ∈ k∗.

Then we have ν(vpi) =
1
pi

and ν(upi) =
1

pi−1 . Note that, for i � 0:

vp(i−1) − γp(i+1)v
p
pi = vppivp(i+1),

where we write v−p = u. Then:

ν(vp(i−1) − γp(i+1)v
p
pi) = 1

pi−1 − 1
pi+1 .

We want to extend ν on L. There exists a first valuation denoted by ν∗, given by the 
sequence of key polynomials {Ql}l∈Λ:

Q1 = y, β1 = ν∗(Q1) = 1
p
;

Ql = Ql−1 − γ
1
p

p+2l−3

l−2∏
j=0

vp(2j+1), βl = ν∗(Ql) =
l−1∑
j=0

1
p2j+1 .

Note that lim
l→+∞

βl = p

p2 − 1 , so there exists a first limit key polynomial which is:

Qω = yp − v, βω = ν∗(Qω) = 1.

We continue to define the set of key polynomials, for i � 1, by:
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Qω+i = Qω+i−1 + γ
1
p

p+2i−2

i−1∏
j=0

vp(2j), βω+i = ν∗(Qω+i) =
i∑

j=0

1
p2j .

Note that lim
i→+∞

βω+i = 1 + 1
p2 − 1 , so there exists a second limit key polynomial which 

is:

Qω2 = yp
2

+ u− vp = Qp
ω + u, βω2 = ν∗(Qω2) = p + 1

p
.

We end the set of key polynomials with, for n � 1:

Qω2+n = Qω2+n−1 + (−1)nuyn, βω2+n = ν∗(Qω2+n) = p + n + 1
p

.

The last and third limit key polynomial is Qω3 = f and βω3 = +∞. Note that for all 
n � 0, we have:

f = (y + 1)Qω2+n + (−1)n+1uyn+1.

So, in K [[y]], f = (y + 1)Q∞, where Q∞ = yp
2 + u − vp − uy

∑
n�1

(−1)nyn. Note that for 

l � 1, we have:

yp − v = Qp
l − vp(2(l−1))

l−2∏
j=0

vpp(2j+1),

so that:

inl(yp − v) = Xp − inν

⎛⎝vp(2(l−1))

l−2∏
j=0

vpp(2j+1)

⎞⎠ =

⎛⎝X − inν

⎛⎝l−2∏
j=0

vp(2j+1)

⎞⎠⎞⎠p

.

We deduce that for all l � 1, we have:

αl = 1,

dω = δω = δl(yp − v) = p = αω.

In the same way, for i � 1:

yp
2
+ u− vp = Qp

ω + u = Qp
ω+i − vp(2i−1)

i−2∏
j=0

vpp(2j),

inω+i(yp
2
+ u− vp) = Xp − inν

⎛⎝vp(2i−1)

i−2∏
j=0

vpp(2j)

⎞⎠ =

⎛⎝X − inν

⎛⎝i−1∏
j=0

vp(2j)

⎞⎠⎞⎠p

.
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We deduce that for all i � 1:

αω+i = 1,

dω2 = δω2 = δω2+i(yp
2
+ u− vp) = p = αω2.

Finally, for all n � 0:

inω2+n(f) = X + inν

(
(−1)n+1uyn+1) .

We deduce that for all n � 1:

αω2+n = 1,

dω3 = δω3 = δω3+n(f) = 1.

By Corollary 4.3:

dL|K(ν∗, ν) = dωdω2dω3 = p× p× 1 = p2.

Note that [L : K] = p2 + 1, so there exists a second valuation ν(2) of L who extends ν
and which is defectless. By the equality f = (y + 1)Q∞ in K [[y]], the valuation satisfies
ν(2)(y) = 0 and so this is the trivial valuation.

5. Key polynomials and defectless fields

Consider K ↪→ K(x) a simple transcendental field extension. Let μ′ be a valuation of 
K(x), write μ := μ′

| K . We denote by G the value group of μ′ and by G1 the smallest 
isolated non-zero subgroup of G. We assume that μ is of rank 1, μ′(x) > 0.

Proposition 5.1. If K is defectless, then there exists a 1-complete set of key polynomials 
{Qi}i∈Λ such that Λ is either a finite set or N∗. In particular, there is no limit key 
polynomial for valuations of rank 1 over defectless fields.

Proof. Let us apply the process of [3]. If there exists i0 ∈ N, such that βi0 /∈ G1, we write 
Λ = {1, ..., i0 − 1} and, by definition, {Qi}i∈Λ is 1-completed. Otherwise, for all i ∈ N, 
βi ∈ G1 and we write Λ = N∗. If �{i � 1 | αi > 1} = +∞, by Proposition 3.19, the set 
{Qi}i∈Λ is 1-completed. If �{i � 1 | αi > 1} < +∞, denote by Qω the monic polynomial 
of smallest degree such that, for all i � 1:

μ′
i(Qω) < μ′(Qω).

Since K is defectless, the extension K ↪→ L = K[x]/(Qω) is defectless. Consider μ′ as 
the composition of a valuation μ(1) of value group G1 centered on K[x]/(Qω) and a 
valuation θ of value group G/G1 centered on K[x](Qω). The set of key polynomials for 
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μ(1) is the same as the set of key polynomials for μ′ except that μ(1)(Qω) = ∞. Thus, 
dL|K(μ(1), μ) = 1. By Corollary 4.5, we deduce that:

δω = dL|K(μ(1), μ) = 1.

By Proposition 3.20, we conclude that the sequence {βi}i�1 is unbounded in G1 and so, 
by Proposition 3.18, the set {Qi}i∈Λ is a 1-completed set of key polynomials. �
Corollary 5.2. If car(kμ) = 0, there exists a 1-completed set of key polynomials {Qi}i∈Λ
such that Λ is finite or equal to N∗. In particular, there is no limit key polynomial for 
valuations of rank 1 whose residual field is of characteristic zero.

Proof. Apply Proposition 2.10 and Proposition 5.1. �
6. Local uniformization of quasi-excellent local domain without defect

We extend here the results of the section 8 of [9] for a valuation satisfying some 
inductive assumption about defect. More precisely, in [9], in order to obtain a theorem of 
monomialization, the valuation needs to have a complete set of key polynomials without 
limit key polynomial: This is the case if the valuation is defectless. As a corollary, we 
find the local uniformization in characteristic zero.

Let (R, m, k) be a local complete regular equicharacteristic ring of dimension n with 
m = (u1, ..., un). Let ν be a valuation of K = Frac(R), centered on R, of value group Γ
and Γ1 the smallest non-zero isolated subgroup of Γ. Define:

H = {f ∈ R | ν(f) /∈ Γ1}.

H is a prime ideal of R (see the proof of Theorem 6.4). Moreover assume that:

n = e(R, ν) = emb.dim (R/H) ,

that is to say:

H ⊂ m2.

Denote r = r(R, u, ν) = dimQ

(
n∑

i=1
Qν(ui)

)
.

The valuation ν is unique if ht(H) = 1; it is the composition of the valuation μ : L∗ →
Γ1 of rank 1 centered on R/H, where L = Frac(R/H), with the valuation θ : K∗ →
Γ/Γ1, centered on RH , such that kθ � κ(H).

By abuse of notation, for f ∈ R, we denote μ(f) instead of μ(f mod H). By the 
Cohen’s theorem, we can assume that R is of the following form:

R = k [[u1, ..., un]] .
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For j ∈ {r+1, ..., n}, we denote by {Qj,i}i∈Λj
the set of key polynomials of the extension 

k ((u1, ..., uj−1)) ↪→ k ((u1, ..., uj−1)) (uj), Qj,i = {Qj,i′ |i′ ∈ Λj , i
′ < i}, Γ(j) the value 

group of ν|k((u1,...,uj)) and νj,i the i-truncation of ν for this extension.
For the definition of local framed sequences, see Definition 7.1 and sections 4.1 and 4.2 

of [9].

Theorem 6.1. Assume that Rn−1 = k [[u1, ..., un−1]]. Then:

1. One of this two following alternatives holds:
(a) H ∩ Rn−1 �= (0) and there exists a local framed sequence (Rn−1, u) → (R′, u′)

such that:

e(R′, ν) < e(Rn−1, ν);

(b) H ∩ Rn−1 = (0) and for all f ∈ Rn−1, there exists a local framed sequence 
(Rn−1, u) → (R′, u′) such that f is a monomial in u′ times a unit of R′.

2. The local framed sequence (Rn−1, u) → (R′, u′) of (1) can be chosen defined over T .

Furthermore assume that k ((u1, ..., un−1)) ↪→ k ((u1, ..., un)) /H is defectless. Then as-
sumptions 1. and 2. are true with R instead of Rn−1.

Proof. The proof is the same as those of Theorem 5.1 and Theorem 7.2 of [9]. With the 
assumptions of Theorem 6.1, we can use the Proposition 5.2 of [9]. Then H is generated 
by a irreducible monic polynomial in un. Since k ((u1, ..., un−1)) ↪→ k ((u1, ..., un)) /H is 
defectless, by Proposition 5.1, the set of key polynomials {Qj,i}i∈Λj

has not limit key 
polynomial. To conclude it is sufficient to apply Theorem 7.2 of [9]. �

As a consequence, we obtain the local uniformization of a valuation of rank 1 centered 
on a local quasi-excellent equicharacteristic domain, satisfying some assumptions of lack 
of defect. The proof uses the notion of implicit prime ideal, for more details see [5] or 
section 4.3 of [9].

Definition 6.2. For a local noetherian ring (R, m), with m = (u) = (u1, ..., un) and 
f1, ..., fs ∈ m, we call the monomial property for R and f1, ..., fs the three following 
assertions:

1. R is regular;
2. For 1 � j � s, fj is a monomial in u times a unit of R;
3. For 1 � j � s, f1 divides fj in R.

Definition 6.3. Let (S, m, k) be a local domain of quotient field L and μ a valuation of L
of rank 1 and of value group Γ1, centered on S.
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Denote by u = (u1, ..., un) a minimal set of generators of m and by H the implicit 
prime ideal of Ŝ.

Denote u = (y, x) with x = (x1, ..., xl), l = emb.dim 
(
Ŝ/H
)

and such that the images 

of x1, ..., xl in Ŝ/H induce a minimal set of generators of (mŜ)/H.
Let f1, ..., fs ∈ m such that μ(f1) = min1�j�s{μ(fj)}.

1. We say that S and f1, ..., fs have the quotient local uniformization property of 
dimension l if there exists a local framed sequence:

(S, u, k) =
(
S(0), u(0), k(0)) ρ0 (

S(1), u(1), k(1)) ρ1
. . .

ρi−1 (
S(i), u(i), k(i)) ,

such that Ŝ(i)/H
(i) and f1, ..., fs have the monomial property, where H

(i) is the 

implicit prime ideal of Ŝ(i) and fj are the images of fj mod H
(i), 1 � j � s.

2. We say that S and f1, ..., fs have the local uniformization property of dimension l
if there exists a local framed sequence:

(S, u, k) =
(
S(0), u(0), k(0)) ρ0 (

S(1), u(1), k(1)) ρ1
. . .

ρi−1 (
S(i), u(i), k(i)) ,

such that S(i) and f1, ..., fs have the monomial property.

Theorem 6.4. Let (S, m, k) be a local noetherian equicharacteristic domain of quotient 
field L and μ be a valuation of L of rank 1 with value group Γ1, centered on S.

Denote by u = (u1, ..., un) a minimal set of generators of m and by H the implicit 
prime ideal of Ŝ.

Denote u = (y, x) with x = (x1, ..., xl), l = emb.dim 
(
Ŝ/H
)

and such that the images 

of x1, ..., xl in Ŝ/H induce a minimal set of generators of (mŜ)/H.
Assume that the quotient local uniformization property of dimension l − 1 holds for 

all local domain, and that k ((x1, ..., xl−1)) ↪→ k ((x1, ..., xl−1)) [xl]/H is defectless.
Let f1, ..., fs ∈ m be such that μ(f1) = min1�j�s{μ(fj)}. Then S and f1, ..., fs have 

the quotient local uniformization property of dimension l.

Proof. By Theorem 2.1 of [5], μ extends uniquely in a valuation μ̂ centered on Ŝ/H.
By the Cohen’s structure theorem, we know that there exists a complete regular local 

ring of characteristic zero R and a surjective morphism ϕ:

ϕ : R � Ŝ/H.

Denote H = kerϕ. Since H is a prime ideal (Theorem 2.1 of [5]), H is a prime ideal 
of R. Choose R such that dim(R) = l. Denote K the quotient field of R. K is of the form 
k ((x1, ..., xl)). Let θ be a valuation of K, centered on RH , such that kθ = κ(H). If we 
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see μ̂ as a valuation centered on R/H by the morphism ϕ, we can consider the valuation 
ν = μ̂ ◦ θ centered on R and of value group Γ. Then, Γ1 is the non-zero smallest isolated 
subgroup of Γ and:

H = {f ∈ R | ν(f) /∈ Γ1}.

Denote T = ϕ−1(σ(S)). This is a local subring R of maximal ideal ϕ−1(σ(m)) = m ∩ T . 
Then, T contains x1, ..., xl and:

T/(m ∩ T ) � k.

Since k ((x1, ..., xl−1)) ↪→ k ((x1, ..., xl−1)) [xl]/H, we can apply Theorem 6.1. We end 
the proof in the same way as the proof of Theorem 8.1 of [9]. �
Theorem 6.5. Let (S, m, k) be an equicharacteristic quasi-excellent local domain of quo-
tient field L and μ be a valuation of L of rank 1 and of value group Γ1, centered on S.

Let u = (u1, ..., un) be a minimal set of generators of m and H the implicit prime 
ideal of Ŝ.

Denote u = (y, x) with x = (x1, ..., xl), l = emb.dim 
(
Ŝ/H
)

and such that the images 

of x1, ..., xl in Ŝ/H induce a minimal set of generators of (mŜ)/H.
Assume that the local uniformization property of dimension l − 1 is true for all local 

domain and k ((x1, ..., xl−1)) ↪→ k ((x1, ..., xl−1)) [xl]/H is defectless.
Let f1, ..., fs ∈ m, such that μ(f1) = min1�j�s{μ(fj)}. Then S and f1, ..., fs have the 

local uniformization property of dimension l.
In other words, μ admits an embedded local uniformization in the sense of Prop-

erty 2.11 of [9].

Proof. With the notations of Theorem 6.4, we see that there exists a surjective mor-
phism:

ψ : Ŝ � Ŝ/H � R/H.

Since k ((x1, ..., xl−1)) ↪→ k ((x1, ..., xl−1)) [xl]/H is defectless, by Theorem 6.4, after an 
auxiliary local framed sequence, we can assume that Ŝ/H is regular, so that R/H �
k [[x1, ..., xl]]. The end of the proof is the same as the proof of Theorem 8.3 of [9]. �
Corollary 6.6. Let (S, m, k) be a quasi-excellent local domain of quotient field L and μ be 
a valuation of L of rank 1 centered on S, such that car (kμ) = 0.

Then μ admits an embedded local uniformization in the sense of Property 2.11 of [9].

Proof. Let u = (u1, ..., un) be a minimal set of generators of m, and H be the implicit 
prime ideal of Ŝ. Denote u = (y, x) with x = (x1, ..., xl), l = emb.dim 

(
Ŝ/H
)

and 
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such that the images of x1, ..., xl in Ŝ/H induce a minimal set of generators of (mŜ)/H. 
By Theorem 2.1 of [5], μ extends uniquely in a valuation μ̂ centered on Ŝ/H. Since 
car (kμ) = 0, then car(k μ̂) = 0. We saw that there exists a surjective morphism:

ψ : Ŝ � Ŝ/H � R/H,

where H = kerψ. The quotient field of R is of the form k ((x1, ..., xl)). By Proposi-
tion 2.10, we deduce that the valued fields 

(
k ((x1, ..., xj−1)) , μ̂|k((x1,...,xj−1))

)
are de-

fectless. In order to conclude, it is sufficient to apply recursively on j ∈ {1, ..., n} the 
Theorem 6.5 for 

(
k ((x1, ..., xj−1)) , μ̂|k((x1,...,xj−1))

)
. �
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