Corrigé de l'examen partiel du 8 mars 2012

Exercice

Soit *G* un groupe.

1. Pour $a \in G$ et n un entier, on a les équivalences suivantes :

$$a^n = e \Leftrightarrow e = (a^n)^{-1} \Leftrightarrow e = a^{-n} \Leftrightarrow e = (a^{-1})^n$$
.

On en déduit immédiatement que $ord(a) = ord(a^{-1})$.

2. Soient a et b dans G, et n > 0 un entier tel que $(ab)^n = e$. On remarque que

$$(ba)^n = b(ab)^{n-1}a.$$

On en déduit que

$$(ba)^n b = b(ab)^{n-1} ab = b(ab)^n = be = b$$
,

ce qui implique que

$$(ba)^n = (ba)^n bb^{-1} = bb^{-1} = e.$$

Comme les rôles de a et de b sont interchangeables, ce qui précède montre aussi que si m > 0 est un entier tel que $(ba)^m = e$, alors $(ab)^m = e$. On a donc bien l'égalité ord(ab) = ord(ba).

3. Soient $a, b, c \in G$. On a alors, par une double application de la question précédente :

$$ord(abc) = ord(cab) = ord(bca)$$
.

4. Posons a = (123), b = (23) et c = (13). On a alors

$$abc = (1 \ 3 \ 2)$$
 et $bca = c = (1 \ 3)$.

En particuler, on a donc

$$ord(abc) = 3$$
 et $ord(bac) = 2$.

5. L'application $\varphi: k \mapsto a^k$ a pour image le sous-groupe $\langle a \rangle$ et pour noyau $m\mathbb{Z}$, où m = ord(a). L'isomorphisme canonique $\mathbb{Z}/\ker(\varphi) \simeq \operatorname{Im}(\varphi)$ s'interprète donc comme un isomorphisme de la forme

$$\mathbb{Z}/m\mathbb{Z} \simeq \langle a \rangle$$

Problème

Partie I

Soit G un groupe fini tel que, pour tout $x \in G$, on ait

$$x^2 = e$$
.

a) Montrons que G est commutatif. On commence par remarquer que, pour tout $x \in G$, on a

$$x^{-1} = x$$
.

Pour $x, y \in G$, on a donc

$$yx = (yx)^{-1} = x^{-1}y^{-1} = xy$$
.

b) Soit $x \in G \setminus \{e\}$. On note $H = \langle x \rangle$ le sous-groupe de G engendré par x. Comme G est commutatif, tout sous-groupe de G est distingué. Il existe une unique structure de groupes sur G/H de sorte que la projection canonique $G \to G/H$ soit un morphisme de groupes. D'autre part, on sait que

$$|G| = |H||G/H|.$$

Comme $H = \{e, x\}$, on a |H| = 2, de sorte que

$$|G| = 2|G/H|.$$

En particulier, l'existence d'un tel élément x implique que G est d'ordre pair. Considérons à présent un élément y du groupe quotient G/H. On peut choisir un élément $x \in G$ de sorte que $y = \overline{x}$, ce qui donne les identifications suivantes :

$$y^2 = \overline{x}^2 = \overline{x^2} = \overline{e} = e$$

(puisque la projection canonique $G \to G/H$, $x \mapsto \overline{x}$ est un morphisme de groupes).

c) Soit m le plus grand entier positif ou nul tel que 2^m divise |G|.

Montrons par récurrence sur m que $|G|=2^m$. Si m=0, alors |G| est impair. Dans ce cas, on doit avoir $G=\{e\}$, car sinon, la question précédente nous dit que |G| est pair, ce qui est absurde. On voit donc bien que $|G|=1=2^0$. Si m>0, on a |G|>1, et donc il existe $x\in G$ tel que $x\neq e$. En posant $H=\langle x\rangle$, on a alors $|G/H|=\frac{|G|}{2}$, et donc le plus grand entier positif ou nul k tel que k0 divise k1. Il en résulte qu'on peut appliquer l'hypothèse de récurrence à k2, ce qui nous donne l'égalité k3. On en déduit que

$$|G| = 2|G/H| = 2 \cdot 2^{m-1} = 2^m$$
.

Partie II

a) Soit $n \ge 2$ un entier et $\sigma \in S_n$. Il est clair que tout cycle de longueur k est d'ordre k. Réciproquement, supposons que σ soit d'ordre n. On peut écrire σ comme un produit de cycles dont les supports sont disjoints deux à deux

$$\sigma = \tau_1 \cdots \tau_k$$
, $k \geqslant 1$,

de sorte que $\tau_i \tau_j = \tau_i \tau_i$ pour tous $1 \le i, j \le k$. On en déduit que

$$ord(\sigma) = \max_{1 \leq i \leq k} ord(\tau_i)$$
.

L'un des cycles τ_i doit donc être d'ordre n, et donc doit avoir pour support $\{1, \ldots, n\}$. Cela implique que k = 1, et donc que σ est un cycle d'ordre n.

b) Soit *E* un ensemble fini de cardinal *n*. On se donne une bijection

$$\alpha: E \to E$$

telle que $\alpha^n = id_E$ et telle que $\alpha^i \neq id_E$ pour 0 < i < n. Choisissons une bijection

$$\{1,\ldots,n\}\to E$$

 $i\mapsto x_i$.

Il existe alors une unique permutation $\sigma \in S_n$ telle que, pour tout $i, 1 \le i \le n$, on ait

$$\alpha(x_i) = x_{\sigma(i)}$$
.

L'hypothèse faite sur α et la question précédente nous permettent d'affirmer que σ est nécessairement un cycle d'ordre n. Soit $(x,y) \in E^2$. Il existe alors un unique couple (i,j) avec $1 \le i,j \le n$, tel que $x = x_i$ et $y = x_j$. Comme σ est un cycle de support $\{1,\ldots,n\}$, il existe un entier $k \ge 1$ tel que $\sigma^k(i) = j$, ce qui signifie précisément que $\alpha^k(x) = y$.

Partie III

a) Soit n un entier positif ou nul, et soit E un ensemble de cardinal 2n + 1. On suppose donnée bijection $\sigma : E \to E$ telle que $\sigma \circ \sigma = id_E$. Montrons que, pour tout $x \in E$ tel que $\sigma(x) \neq x$, si on pose $F = E \setminus \{x, \sigma(x)\}$, l'application

$$F \to F$$
$$y \mapsto \sigma(y)$$

est bien définie. Il s'agit de prouver que, si $y \notin \{x, \sigma(x)\}$, alors $\sigma(y) \notin \{x, \sigma(x)\}$. Cela résulte du fait que si $\sigma(y) = x$, alors $y = \sigma(\sigma(y)) = \sigma(x)$, et que si $\sigma(y) = \sigma(x)$, alors $y = \sigma(\sigma(y)) = \sigma(\sigma(x)) = x$. Cette application est clairement injective, et comme F est un ensemble fini, elle doit aussi être bijective.

Montrons par récurrence sur n, qu'il existe $x \in E$ tel que $\sigma(x) = x$. Si n = 0, alors E n'a qu'un élément, et alors il n'y a rien à vérifier. Supposons que n > 0. Dans ce cas, ou bien $\sigma = id_E$, et alors l'assertion est triviale, ou bien $\sigma \neq id_E$. Dans le second cas, on peut donc trouver un élément $x \in E$ tel que $x \neq \sigma(x)$. Si on pose $F = E \setminus \{x, \sigma(x)\}$, on a |F| = |E| - 2 = 2n + 1 - 2 = 2(n - 1) + 1, et l'application

$$F \to F$$
$$y \mapsto \sigma(y)$$

est bijective. L'hypothèse de récurrence s'applique donc ici, ce qui nous fournit l'existence d'un élément $y \in F$ tel que $\sigma(y) = y$.

b) Soit G un groupe fini non trivial d'ordre pair. Posons $E = G \setminus \{e\}$. Comme l'entier |E| est impair, la question précédente appliquée à la bijection

$$E \to E$$
 $r \mapsto r^{-1}$

implique qu'il existe $x \in E$ tel que $x = x^{-1}$, se qui s'écrit encore $x^2 = e$.

Partie IV

Soit p un nombre premier impair. On considère un groupe fini G d'ordre p+1. On suppose donné un automorphisme

$$\alpha:G\to G$$

tel que $\alpha^p = id_G$ et $\alpha \neq id_G$.

- a) Soit $\operatorname{Aut}(G)$ le groupe des automorphismes de G; il est clair que α est un élément d'ordre fini de $\operatorname{Aut}(G)$ et que $\operatorname{ord}(\alpha)$ divise p. Comme p est un nombre premier, on doit donc avoir $\operatorname{ord}(\alpha) = p$, ce qui signifie précisément que $\alpha^i \neq id_G$ pour 0 < i < p.
- b) On pose $E = G \setminus \{e\}$. Le fait que $\alpha(e) = e$ (puisque α est un morphisme de groupes) et que l'application α soit injective implique aussitôt que l'application

$$E \to E$$
$$x \mapsto \alpha(x)$$

est bien définie et injective. Comme E est un ensemble fini, cette dernière application doit aussi être bijective. c) Il résulte alors de la question II b) que, pour tous $x,y\in E$, il existe un entier k tel que $\alpha^k(x)=y$. D'autre part, en vertu de la question III b), il existe un élément $x_0\in E$ tel que $x_0^2=e$. Soit $x\in G$. Si $x\neq e$, il existe donc un entier k tel que $\alpha^k(x_0)=x$. Comme α (et donc aussi α^k) est un morphisme de groupes, on obtient l'équation

$$x^2 = \alpha^k(x_0)^2 = \alpha^k(x_0^2) = \alpha^k(e) = e$$
.

Par conséquent, la question I c) implique que

$$p + 1 = |G| = 2^m$$

pour un certain entier positif m, de sorte que

$$p = 2^m - 1$$
.