Analyse : devoir à remettre le mardi 23 mars 2010

Les quatre parties sont indépendantes.

- 1. Soit f la fonction définie par $f(x) = \sqrt{5+x}$. Soit (u_n) la suite définie par $u_0 = 2$ et pour tout $n \ge 0$ par $u_{n+1} = f(u_n)$ et (v_n) définie par $v_0 = 3$ et $v_{n+1} = f(v_n)$.
 - (a) Montrer que f est croissante sur son domaine de définition.
 - (b) Montrer que (u_n) est croissante, (v_n) est décroissante, et $u_n \leq v_n$ pour tout n.
 - (c) Démontrer que pour tout x et tout y tels que $2 \le x \le y \le 3$, on a :

$$f(y) - f(x) \le 0, 2 \times (y - x).$$

- (d) Montrer que (u_n) et (v_n) sont adjacentes. Soit l leur limite commune.
- (e) On approxime l par u_n et on majore l'erreur commise $|u_n l|$ par $v_n u_n$. Calculer la valeur approchée de l donnée par u_3 et majorer l'erreur commise (on gardera le nombre de décimales nécessaires en fonction de cette erreur).
- 2. On rappelle qu'une suite géométrique de raison q est définie par $u_n = u_0 q^n$.
 - (a) Déterminer la (ou les) suite(s) géométrique(s) de premier terme u_0 et de raison q vérifiant

$$u_0 + u_2 = \frac{13}{27}, \quad u_0 \times u_4 = \frac{16}{729}$$

(on déterminera u_0 et q).

- (b) Calculer $\lim_{n\to+\infty} \sum_{i=0}^n u_i$.
- 3. Soit f la fonction définie par

$$f(x) = \frac{x}{x^2 + \sin x}.$$

- (a) Démontrer que pour x > 1 on a $0 \le f(x) \le \frac{x}{x^2-1}$. En déduire la limite de f quand $x \to +\infty$.
- (b) Déterminer la limite de f quand x tend vers 0. Quelle valeur faut-il donner à f(0) pour prolonger f par continuité?
- 4. On considère la fonction $g: x \mapsto 2\sqrt{x} x$ définie sur l'intervalle I = [0, 1].
 - (a) Démontrer que g est strictement croissante sur I (on pourra étudier le signe de sa fonction dérivée).
 - (b) Quelle est l'image J=g(I) de l'intervalle I par g?
 - (c) Démontrer l'existence de la fonction réciproque $g^{-1}: J \to I$. Déterminer cette fonction.