On abelian varieties with an infinite group of separable p^{∞}-torsion points

Damian RÖSSLER*

December 10, 2012

Abstract

THIS IS A NOTE WRITTEN FOR J.-F. VOLOCH.

We would like to present the proof of the following proposition.
If $n \in \mathbb{N}$, we write $[n]$ for the multiplication by n endomorphism on abelian variety. If h is a finite endomorphism of an abelian variety A over a field L, we write

$$
A(L)\left[h^{\ell}\right]:=\left\{x \in A(L) \mid h^{\circ \ell}(x)=0\right\}
$$

and

$$
A(L)\left[h^{\infty}\right]:=\left\{x \in A(L) \mid \exists n \in \mathbb{N}: h^{\circ n}(x)=0\right\}
$$

Here $h^{\circ n}(x):=h(h(h(\cdots(x) \cdots)))$, where there are n pairs of brackets. The notation $A(L)\left[n^{\ell}\right]$ (resp. $A(L)\left[n^{\infty}\right]$) will be a shorthand for $A(L)\left[[n]^{\ell}\right]$ (resp. $\left.A(L)\left[[n]^{\infty}\right]\right)$.

Let now K_{0} be the function field of a smooth and proper curve U over a finite field \mathbb{F} of characteristic $p>0$. Let B be an abelian variety over K_{0}. Suppose that for some $n>3$ prime to p, the group scheme $B[n]$ is constant and that the Néron model of B over U has a semiabelian connected component.

[^0]Proposition 0.1. There exists

- an abelian variety C over K_{0};
- an étale K_{0}-isogeny $\phi: B \rightarrow C$;
- an étale K_{0}-isogeny $f: C \rightarrow C$;
- a K_{0}-isogeny $g: C \rightarrow C$;
- a natural number $r \geq 0$
such that
(a) $g \circ f=\left[p^{r}\right]$ and $g \circ f=f \circ g$;
(b) $C\left(K_{0}^{\mathrm{sep}}\right)\left[p^{\infty}\right]=C\left(K_{0}^{\mathrm{sep}}\right)\left[f^{\infty}\right]=C\left(\bar{K}_{0}\right)\left[f^{\infty}\right]$;
(c) $C\left(K_{0}^{\text {sep }}\right)\left[g^{\infty}\right]=0$.

Proof. For $\ell \geq 0$, define inductively

$$
B_{0}:=B
$$

and

$$
B_{\ell+1}:=B_{\ell} /\left(B_{\ell}\left(K_{0}^{\mathrm{sep}}\right)[p]\right)
$$

For $\ell_{2} \geq \ell_{1}$, let $\phi_{\ell_{1}, \ell_{2}}: B_{\ell_{1}} \rightarrow B_{\ell_{2}}$ be the (étale !) morphism obtained by composing the natural morphisms $B_{\ell_{1}} \rightarrow B_{\ell_{1}+1} \rightarrow \cdots \rightarrow B_{\ell_{2}}$. We first claim that

$$
\begin{equation*}
\left(\operatorname{ker} \phi_{\ell_{1}, \ell_{2}}\right)\left(K_{0}^{\text {sep }}\right)=B_{\ell_{1}}\left(K_{0}^{\text {sep }}\right)\left[p^{\ell_{2}-\ell_{1}}\right] \tag{1}
\end{equation*}
$$

We prove the claim by induction on $\ell_{2}-\ell_{1}$. For $\ell_{2}-\ell_{1} \leq 1$, the claim is true by definition. Suppose that $\ell_{2}-\ell_{1} \geq 1$. Let $x \in B\left(K_{0}^{\text {sep }}\right)\left[p^{\ell_{2}-\ell_{1}}\right]$. Then $\left[p^{\ell_{2}-\ell_{1}-1}\right](x) \in B\left(K_{0}^{\mathrm{sep}}\right)[p]$ and thus

$$
\phi_{\ell_{1}, \ell_{1}+1}\left(\left[p^{\ell_{2}-\ell_{1}-1}\right](x)\right)=\left[p^{\ell_{2}-\ell_{1}-1}\right]\left(\phi_{\ell_{1}, \ell_{1}+1}(x)\right)=0 .
$$

Applying the inductive assumption to $\phi_{\ell_{1}, \ell_{1}+1}(x)$, we see that $\phi_{\ell_{1}+1, \ell_{2}}\left(\phi_{\ell_{1}, \ell_{1}+1}(x)\right)=$ $\phi_{\ell_{1}, \ell_{2}}(x)=0$. This proves that $\left(\operatorname{ker} \phi_{\ell_{1}, \ell_{2}}\right)\left(K_{0}^{\text {sep }}\right) \supseteq B_{\ell_{1}}\left(K_{0}^{\text {sep }}\right)\left[p^{\ell_{2}-\ell_{1}}\right]$. To prove the opposite inclusion, let $x \in\left(\operatorname{ker} \phi_{\ell_{1}, \ell_{2}}\right)\left(K_{0}^{\text {sep }}\right)$. We compute

$$
\phi_{\ell_{1}, \ell_{2}}(x)=\phi_{\ell_{1}+1, \ell_{2}}\left(\phi_{\ell_{1}, \ell_{1}+1}(x)\right)=0
$$

which implies (by the inductive hypothesis) that

$$
\left[p^{\ell_{2}-\ell_{1}-1}\right]\left(\phi_{\ell_{1}, \ell_{1}+1}(x)\right)=\phi_{\ell_{1}, \ell_{1}+1}\left(\left[p^{\ell_{2}-\ell_{1}-1}\right](x)\right)=0
$$

which in turn implies that $[p]\left(\left[p^{\ell_{2}-\ell_{1}-1}\right](x)\right)=\left[p^{\ell_{2}-\ell_{1}}\right](x)=0$. This proves that $\left(\operatorname{ker} \phi_{\ell_{1}, \ell_{2}}\right)\left(K_{0}^{\text {sep }}\right) \subseteq B_{\ell_{1}}\left(K_{0}^{\text {sep }}\right)\left[p^{\ell_{2}-\ell_{1}}\right]$ and completes the proof of the claim.
Now we know that by the reasoning made in the last page of my article Infinitely p-divisible points on abelian varieties defined over function fields of characteristic $p>0$ (see my homepage), that there are only finitely many isomorphism classes of abelian varieties over K_{0} in the sequence $\left\{B_{\ell}\right\}_{\ell \in \mathbb{N}}$. Let C be an abelian variety over K_{0}, which appears at least twice in the sequence $\left\{B_{\ell}\right\}_{\ell \in \mathbb{N}}$. Let $n_{2}>n_{1}$ be such that $C \simeq B_{n_{1}} \simeq B_{n_{2}}$. Then by construction (under the identification $C=B_{n_{1}}$)

$$
\begin{equation*}
\phi_{n_{1}, n_{2}}^{\circ \ell}=\phi_{n_{1}, n_{1}+\ell \cdot\left(n_{2}-n_{1}\right)} \tag{2}
\end{equation*}
$$

for any $\ell \geq 1$ and thus

$$
\begin{equation*}
C\left(K_{0}^{\mathrm{sep}}\right)\left[p^{\infty}\right]=C\left(K_{0}^{\mathrm{sep}}\right)\left[\phi_{n_{1}, n_{2}}^{\infty}\right] \tag{3}
\end{equation*}
$$

Now define $f:=\phi_{n_{1}, n_{2}}$ and $r:=n_{2}-n_{1}$. Define g as the only K_{0}-isogeny such that $g \circ f=\left[p^{r}\right]$.

Notice then that the identity $g \circ f=\left[p^{r}\right]$ implies the identity $f \circ g=\left[p^{r}\right]$. To see this last fact directly, recall first that there are natural injection of rings

$$
\operatorname{End}_{K_{0}}(C) \hookrightarrow \operatorname{End}_{\bar{K}_{0}}\left(C_{\bar{K}_{0}}\right) \hookrightarrow \operatorname{End}_{\mathbb{Z}_{t}}\left(T_{t}\left(C\left(\bar{K}_{0}\right)\right)\right) \hookrightarrow \operatorname{End}_{\mathbb{Q}_{t}}\left(T_{t}\left(C\left(\bar{K}_{0}\right)\right) \otimes \mathbb{Q}_{t}\right)
$$

where $T_{t}\left(C\left(\bar{K}_{0}\right)\right)$ is the classical Tate module of $C_{\bar{K}_{0}}$ and $t>0$ is some prime number $\neq p$. Now if M and N are two square matrices of the same size with coefficients in a field of characteristic 0 , such that $M \cdot N=p^{r}$, then $p^{-r} N$ is the inverse matrix of M and thus $N \cdot M=p^{r}$. This fact combined with the existence of the above injections implies that $f \circ g=\left[p^{r}\right]$ if $g \circ f=\left[p^{r}\right]$.
We have already proven (a). Point (b) is contained in equation (3).
We now prove (c). Suppose that for some $\ell \geq 0$ and some $x \in C\left(K_{0}^{\text {sep }}\right)$, we have $g^{\circ l}(x)=0$. Let $y \in\left(f^{\circ \ell}\right)^{-1}(x) \subseteq C\left(K_{0}^{\text {sep }}\right)$. Then $g^{\circ l}\left(f^{\circ l}(y)\right)=\left[p^{r \ell}\right](y)=0$. Hence $f^{\circ l}(y)=0=x$ by (1) and (2).

[^0]: *Institut de Mathématiques, Equipe Emile Picard, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse cedex 9, FRANCE, E-mail: rossler@math.univ-toulouse.fr

