On abelian varieties with an infinite group of separable p^{∞} -torsion points

Damian RÖSSLER*

December 10, 2012

Abstract

THIS IS A NOTE WRITTEN FOR J.-F. VOLOCH.

We would like to present the proof of the following proposition.

If $n \in \mathbb{N}$, we write [n] for the multiplication by n endomorphism on an abelian variety. If h is a finite endomorphism of an abelian variety A over a field L, we write

$$A(L)[h^{\ell}] := \{ x \in A(L) \mid h^{\circ \ell}(x) = 0 \}$$

and

$$A(L)[h^{\infty}] := \{x \in A(L) \mid \exists n \in \mathbb{N} : h^{\circ n}(x) = 0\}.$$

Here $h^{\circ n}(x) := h(h(h(\cdots(x)\cdots)))$, where there are *n* pairs of brackets. The notation $A(L)[n^{\ell}]$ (resp. $A(L)[n^{\infty}]$) will be a shorthand for $A(L)[[n]^{\ell}]$ (resp. $A(L)[[n]^{\infty}]$).

Let now K_0 be the function field of a smooth and proper curve U over a finite field \mathbb{F} of characteristic p > 0. Let B be an abelian variety over K_0 . Suppose that for some n > 3 prime to p, the group scheme B[n] is constant and that the Néron model of B over U has a semiabelian connected component.

^{*}Institut de Mathématiques, Equipe Emile Picard, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse cedex 9, FRANCE, E-mail: rossler@math.univ-toulouse.fr

Proposition 0.1. There exists

- an abelian variety C over K_0 ;
- an étale K_0 -isogeny $\phi: B \to C$;
- an étale K_0 -isogeny $f: C \to C$;
- $a K_0$ -isogeny $g: C \to C;$
- a natural number $r \ge 0$

such that

Proof. For $\ell \geq 0$, define inductively

 $B_0 := B$

and

$$B_{\ell+1} := B_{\ell} / (B_{\ell}(K_0^{\text{sep}})[p]).$$

For $\ell_2 \geq \ell_1$, let $\phi_{\ell_1,\ell_2} : B_{\ell_1} \to B_{\ell_2}$ be the (étale !) morphism obtained by composing the natural morphisms $B_{\ell_1} \to B_{\ell_1+1} \to \cdots \to B_{\ell_2}$. We first <u>claim</u> that

$$(\ker \phi_{\ell_1,\ell_2})(K_0^{\text{sep}}) = B_{\ell_1}(K_0^{\text{sep}})[p^{\ell_2-\ell_1}]$$
(1)

We prove the claim by induction on $\ell_2 - \ell_1$. For $\ell_2 - \ell_1 \leq 1$, the claim is true by definition. Suppose that $\ell_2 - \ell_1 \geq 1$. Let $x \in B(K_0^{\text{sep}})[p^{\ell_2 - \ell_1}]$. Then $[p^{\ell_2 - \ell_1 - 1}](x) \in B(K_0^{\text{sep}})[p]$ and thus

$$\phi_{\ell_1,\ell_1+1}([p^{\ell_2-\ell_1-1}](x)) = [p^{\ell_2-\ell_1-1}](\phi_{\ell_1,\ell_1+1}(x)) = 0.$$

Applying the inductive assumption to $\phi_{\ell_1,\ell_1+1}(x)$, we see that $\phi_{\ell_1+1,\ell_2}(\phi_{\ell_1,\ell_1+1}(x)) = \phi_{\ell_1,\ell_2}(x) = 0$. This proves that $(\ker \phi_{\ell_1,\ell_2})(K_0^{\text{sep}}) \supseteq B_{\ell_1}(K_0^{\text{sep}})[p^{\ell_2-\ell_1}]$. To prove the opposite inclusion, let $x \in (\ker \phi_{\ell_1,\ell_2})(K_0^{\text{sep}})$. We compute

$$\phi_{\ell_1,\ell_2}(x) = \phi_{\ell_1+1,\ell_2}(\phi_{\ell_1,\ell_1+1}(x)) = 0,$$

which implies (by the inductive hypothesis) that

$$[p^{\ell_2-\ell_1-1}](\phi_{\ell_1,\ell_1+1}(x)) = \phi_{\ell_1,\ell_1+1}([p^{\ell_2-\ell_1-1}](x)) = 0,$$

which in turn implies that $[p]([p^{\ell_2-\ell_1-1}](x)) = [p^{\ell_2-\ell_1}](x) = 0$. This proves that $(\ker \phi_{\ell_1,\ell_2})(K_0^{\text{sep}}) \subseteq B_{\ell_1}(K_0^{\text{sep}})[p^{\ell_2-\ell_1}]$ and completes the proof of the claim.

Now we know that by the reasoning made in the last page of my article Infinitely p-divisible points on abelian varieties defined over function fields of characteristic p > 0 (see my homepage), that there are only finitely many isomorphism classes of abelian varieties over K_0 in the sequence $\{B_\ell\}_{\ell \in \mathbb{N}}$. Let C be an abelian variety over K_0 , which appears at least twice in the sequence $\{B_\ell\}_{\ell \in \mathbb{N}}$. Let $n_2 > n_1$ be such that $C \simeq B_{n_1} \simeq B_{n_2}$. Then by construction (under the identification $C = B_{n_1}$)

$$\phi_{n_1,n_2}^{o\ell} = \phi_{n_1,n_1+\ell \cdot (n_2-n_1)} \tag{2}$$

for any $\ell \geq 1$ and thus

$$C(K_0^{\text{sep}})[p^{\infty}] = C(K_0^{\text{sep}})[\phi_{n_1,n_2}^{\infty}]$$
(3)

Now define $f := \phi_{n_1,n_2}$ and $r := n_2 - n_1$. Define g as the only K_0 -isogeny such that $g \circ f = [p^r]$.

Notice then that the identity $g \circ f = [p^r]$ implies the identity $f \circ g = [p^r]$. To see this last fact directly, recall first that there are natural injection of rings

$$\operatorname{End}_{K_0}(C) \hookrightarrow \operatorname{End}_{\bar{K}_0}(C_{\bar{K}_0}) \hookrightarrow \operatorname{End}_{\mathbb{Z}_t}(T_t(C(\bar{K}_0))) \hookrightarrow \operatorname{End}_{\mathbb{Q}_t}(T_t(C(\bar{K}_0)) \otimes \mathbb{Q}_t)$$

where $T_t(C(\bar{K}_0))$ is the classical Tate module of $C_{\bar{K}_0}$ and t > 0 is some prime number $\neq p$. Now if M and N are two square matrices of the same size with coefficients in a field of characteristic 0, such that $M \cdot N = p^r$, then $p^{-r}N$ is the inverse matrix of M and thus $N \cdot M = p^r$. This fact combined with the existence of the above injections implies that $f \circ g = [p^r]$ if $g \circ f = [p^r]$.

We have already proven (a). Point (b) is contained in equation (3).

We now prove (c). Suppose that for some $\ell \geq 0$ and some $x \in C(K_0^{\text{sep}})$, we have $g^{\circ l}(x) = 0$. Let $y \in (f^{\circ \ell})^{-1}(x) \subseteq C(K_0^{\text{sep}})$. Then $g^{\circ l}(f^{\circ l}(y)) = [p^{r\ell}](y) = 0$. Hence $f^{\circ l}(y) = 0 = x$ by (1) and (2). \Box