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Abstract

In [9, Sec. 4, Conj. 4.17] Fang, Lu and Yoshikawa conjecture that a certain spectral
string-theoretic invariant of Calabi-Yau threefolds (the BCOV torsion) is a birational in-
variant. We prove a weak form of this conjecture. The proof combines the arithmetic
Riemann-Roch theorem in Arakelov geometry with some inputs from motivic integra-
tion theory.
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1 Introduction

Let Y be a smooth projective variety of dimension 3 over C. We suppose that Y is a Calabi-
Yau variety (in the restricted sense); by definition, this means that H1(Y,OY ) = H2(Y,OY ) =

0 and that ωY := det(ΩY ) ' OY . In view of the symmetry of Hodge numbers and Serre
duality, this entails that the Hodge diamond of Y is a cross.
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In [9] (see also [24, Sec. 2]), H. Fang, Z. Lu and K.-I. Yoshikawa introduced the analytic
invariant τBCOV(Y (C)) ∈ R∗

+. See [9, p. 177] or Definition 2.3 below for the precise definition.
They conjectured the following (see [9, Sec. 4, Conj. 4.17] and [24, Sec. 2. Conj. 2.1]): if Y
and Y ′ are birational Calabi-Yau varieties of dimension 3 over C, then

τBCOV(Y (C)) = τBCOV(Y
′(C)).

H. Fang, Z. Lu and K.-I. Yoshikawa explain that the quantity τBCOV(Y (C)) is a variant of the
quantity F1(Y (C)) introduced by the string-theorists M. Bershadsky, S. Cecotti, H. Ooguri
and C.Vafa in [3] and [4]. The latter suggested (see [3, note added, p. 295] and [4]) that F1(Y )

has a spectral interpretation. This was made more precise by Fang, Lu and Yoshikawa in
their definition of the invariant τBCOV(Y (C)).
The conjecture of Fang, Lu and Yoshikawa can be traced back to string-theory: the main
invariants entering the formulation of mirror symmetry in dimension 3 should be insensitive
to birationnal equivalence. For Gromov-Witten invariants of any genus this is essentially
proven in [16, Theorem A and Corollary A.1, p. 155]. The mirror of Li and Ruan’s statement
in genus one is Fang, Lu and Yoshikawa’s conjecture.

This conjecture should also be viewed as a ”secondary” analog of the conjecture (which is
now a theorem of Batyrev and Kontsevich; see [2]) that the Hodge numbers of Y (C) and
Y ′(C) coincide.

The purpose of this note is to describe the proof of the following arithmetic result, which is
a step towards the conjecture of Fang, Lu and Yoshikawa.

If Z is a scheme, we shall write as usual Db(Z) := Db
c(Z) for the category derived from the

homotopy classes of bounded complexes of coherent sheaves on Z. If σ : L ↪→ C is a subfield
of C, we shall write Xσ for the base change X ×Spec L,σ Spec C of X to C via the embedding
σ.

Suppose now that X (resp. X ′) is a smooth projective variety of dimension 3 over a field L.
Suppose that L is embeddable in C as a field and that X (resp. X ′) is a Calabi-Yau variety
(in the restricted sense).

Fix an embedding σ : L ↪→ C and let T be any finite set of embeddings L ↪→ C.

Let (S) be the statement: there exists n ∈ N∗ and α ∈ L∗ such that for all τ ∈ T ,

τBCOV(Xτ (C))
τBCOV(X ′

τ (C))
= n

√
|τ(α)|.

Our main results now reads :
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Theorem 1.1. (a) If Xσ is birational to X ′
σ then (S) is verified.

(b) If Db(Xσ) and Db(X ′
σ) are equivalent as triangulated C-linear categories then (S) is verified.

In particular, if L = Q and Xσ is birational to X ′
σ then there exists n ∈ N∗ such that

(τBCOV(X(C))/τBCOV(X
′(C)))n ∈ Q.

Notice that a theorem of Bridgeland implies that the categories Db(Xσ) and Db(X ′
σ) are

equivalent as triangulated C-linear categories if Xσ is birational to X ′
σ (see [5]). Hence (b)

implies (a).

We shall nevertheless give two separate proofs of (a) and (b).

Here is an outline of our proofs of (a) and (b). We first express the quantity τBCOV in terms of
arithmetic Chern numbers; this is made possible by the arithmetic Riemann-Roch theorem
of Bismut-Gillet-Soulé [11]. To prove (a), we use Włodarczyk’s theorem on the weak factori-
sation of birational maps (proved in [23]; see also [1]) and some lemmas describing the effect
of blow-up on some global Arakelov-theoretic invariants. To prove (b), we make use of a
theorem of Orlov, which asserts that if Db(Xσ) and Db(X ′

σ) are equivalent as triangulated
C-linear categories then Xσ and X ′

σ are related by a Fourier-Mukai functor. We also use a
theorem of Caldararu, which describes the effect of a Fourier-Mukai functor on the singular
cohomology of Xσ(C) and X ′

σ(C).
Remark. It is likely that Theorem 1.1 is true without any restriction of finiteness on T . In
particular, the quantity α should not depend on T . The reason for restricting the statement
to finite T is a (probably unnecessary) hypothesis of finiteness included in the definition of
an arithmetic ring in Arakelov geometry.

Acknowledgments. We thank J.-L. Colliot-Thélène, C. Voisin and K.-I. Yoshikawa for inter-
esting mathematical discussions on matters related to this article. We are also very grateful
to the referee for the close attention he paid to the text.

2 The invariant τBCOV and arithmetic Chern numbers on Calabi-
Yau threefolds

We shall apply the arithmetic Riemann-Roch theorem to certain vector bundles on X . In
the following, we shall freely use the terminology of global Arakelov theory. For a concise
summary of the necessary vocabulary, see [21, Sec. 1].

Let f : X → S := Spec L be the structure morphism. We may enlarge the set T without
changing the conclusion of Theorem 1.1, so we may assume that T is conjugation-invariant.
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We view L as an arithmetic ring, endowed with the set of embeddings T into C. We endow
X(C) :=

∐
τ∈T Xτ (C) with a conjugation-invariant Kähler form ν. We suppose that the class

of ν in H2(X(C),C) is the first Chern class of some ample line bundle on X(C). Let Ω := ΩX

be the sheaf of differentials of X , endowed with the metric induced by ν. We write ω := ωX

for det(ΩX) and Ω
p
:= Ω

p

X for Λp(ΩX). Furthermore, we shall write Hq(X,Ω
p
) for the L-

vector space Rqf∗(Ωp), endowed with the L2-metric induced by ν.

Let E be the natural exact sequence of hermitian bundles

0 → f ∗f∗ω → ω → 0 → 0

We let η := c̃h(E) be the Bott-Chern secondary class associated to E , so that

f ∗f∗ω − ω = η

in K̂0(X), the arithmetic Grothendieck group of X . We shall write η0 for the degree 0 part of
η.

We apply the arithmetic Riemann-Roch theorem to f and to the formal linear combination
of hermitian bundles

−Ω
1
+ 2 · Ω2 − 3 · Ω3

.

See [11, (1), p. 473] for this theorem. We obtain the equality

ĉ1
(
R•f∗[ −Ω

1
+ 2 · Ω2 − 3 · Ω3

]
)− a(τ

( − Ω
1
+ 2 · Ω2 − 3 · Ω3 )

)

= f∗
(
T̂d(Ω

∨
) ĉh

(− Ω
1
+ 2 · Ω2 − 3 · Ω3))(1)

− a
([ ∫

X

R(Ω)∨Td(Ω∨) ch(−Ω1 + 2 · Ω2 − 3 · Ω3)
](1)) (1)

in ĈH
1
(L)Q, which is the first arithmetic Chow group of L, tensored with Q.

Recall that R(·) is the R-genus of Gillet-Soulé and that τ(·) is the Ray-Singer analytic torsion;
see [11, Introduction].

We shall first analyse the various terms appearing in this equation. Write ζQ(s) for the eval-
uation of the Riemann zeta function at s ∈ C\{1}.

Lemma 2.1. The equation

T̂d(Ω
∨
) ĉh

(− Ω
1
+ 2 · Ω2 − 3 · Ω3)

= − ĉtop(Ω
∨
)[ ζQ(0)rk(Ω) + ζQ(−1) ĉ1(ω) + terms of degree > 1 ]

= − ĉtop(Ω
∨
)[ ζQ(0)rk(Ω) + ζQ(−1) ĉ1(f

∗f∗ω)− a(ζQ(−1)η0) + terms of degree > 1 ]

holds in ĈH
•
(X)Q.
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Proof. The proof is similar to the proof of [18, Lemma 3.1] so we omit it. ¤
Using the projection formula together with Lemma 2.1, we obtain that
[
f∗(T̂d(Ω

∨
) ĉh(−Ω

1
+2·Ω2−3·Ω3

))
](1)

= −ζQ(−1) ĉ1(f∗ω)
∫

X

ctop(Ω∨)+a
(
ζQ(−1)

∫

X

ctop(Ω
∨
)η0

)

in ĈH
1
(L)Q (here the superscript (1) refers to part of degree 1 in ĈH

1
(L)Q). To understand

this computation, recall that f∗(x(l)) = f∗(x)(l−3) for all x ∈ CH•(X)Q.

We have the identity of cohomology classes

R(Ω)∨Td(Ω∨) ch(−Ω1 +2 ·Ω2 − 3 ·Ω3) = −R(Ω∨)ctop(Ω∨)[ ζQ(0)rk(Ω)+ terms of degree > 0 ]

and so [ ∫

X

R(Ω)∨ Td(Ω∨) ch
(− Ω1 + 2 · Ω2 − 3 · Ω3

)](1)
= 0

since R(Ω∨)(1) = 0 by assumption.

As to the left-hand side of equation (1), we have

R•f∗[ −Ω
1
+ 2 · Ω2 − 3 · Ω3

]

= −[ H0(X,Ω
1
)−H1(X,Ω

1
) +H2(X,Ω

1
)−H3(X,Ω

1
) ]

+ 2[ H0(X,Ω
2
)−H1(X,Ω

2
) +H2(X,Ω

2
)−H3(X,Ω

2
) ]

− 3[ H0(X,Ω
3
)−H1(X,Ω

3
) +H2(X,Ω

3
)−H3(X,Ω

3
) ]

= −[ −H1(X,Ω
1
) +H2(X,Ω

1
) ] + 2[ −H1(X,Ω

2
) +H2(X,Ω

2
) ]− 3[ H0(X,Ω

3
)−H3(X,Ω

3
) ].

These equalities follow from the fact that the Hodge diamond of a Calabi-Yau threefold is a
cross. Applying the first arithmetic Chern class to the last expression, we get

ĉ1(R
•f∗[ −Ω

1
+ 2 · Ω2 − 3 · Ω3

])

= ĉ1(H
1(X,Ω

1
)−H2(X,Ω

1
)− 2 ·H1(X,Ω

2
) + 2 ·H2(X,Ω

2
)− 3 ·H0(X,Ω

3
) + 3 ·H3(X,Ω

3
))

= ĉ1(−H1(X,Ω
1
)−H1(X,Ω

2
)− 3 ·H0(X,Ω

3
)− 3 ·H0(X,O))

We used the fact that Serre duality is compatible with L2-metrics (see [12, p. 27, after eq. 9])
in the last equality.

Putting everything together, we get

− ĉ1(H
1(X,Ω

1
))− ĉ1(H

1(X,Ω
2
))− 3 ĉ1(H

0(X,O))− 3 ĉ1(H
0(X,Ω

3
))− a

(
τ(−Ω

1
+ 2 · Ω2 − 3 · Ω3

)
)

= −ζQ(−1) ĉ1(f∗ω)
∫

X

ctop(Ω∨) + a
(
ζQ(−1)

∫

X

ctop(Ω
∨
)η0

)
(2)
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Now notice that by definition,

ĉ1(H
0(X,O)) = −a(log Vol(X(C), ν))

where
Vol(X(C, ν)) :=

1

3!(2π)3

∫

X(C)
ν3.

Notice also that f∗ω = H0(X,Ω
3
) (again by definition). Taking into account the fact that

ζQ(−1) = −1/12, we see that the equality (2) can be rewritten as

− ĉ1(H
1(X,Ω

2
))− (

1

12
χ(X) + 3) ĉ1(H

0(X,Ω
3
)) = a

(
− 1

12

∫

X

ctop(Ω
∨
)η0 − 3 log Vol(X(C), ν)

)

+ ĉ1(H
1(X,Ω

1
))

+ a
(
τ(−Ω

1
+ 2 · Ω2 − 3 · Ω3

)
)

(3)

in ĈH
1
(L). Here χ(X) :=

∫
X
ctop(Ω∨). Note that χ(X) =

∑
p,q(−1)p+q dimL(H

q(X,Ωp)) by the
generalized Gauss-Bonnet theorem.

The L2-metric on H2(X(C),C) is induced from a Riemannian metric on the space H2(X(C),R).
This is a consequence of the formula [18, before Lemma 2.7]. Let VolL2(H2(X(C),Z)) be
the volume of a fundamental domain of the lattice H2(X(C),Z)free in H2(X(C),R) for that
metric. Here H2(X(C),Z)free is the largest direct summand of H2(X(C),Z) which is a free
Z-module.

Lemma 2.2. The equality

ĉ1(H
1(X,Ω

1
)) = a(−

⊕
τ∈T

log(VolL2(H2(Xτ (C),Z))))

holds in ĈH
1
(L)Q.

Proof. Let τ ∈ T and let e1, . . . , er be a basis of H2(Xτ (C),Z)free. By definition, we have

VolL2(H2(Xτ (C),Z)) = |e1 ∧ · · · ∧ er|2

where | · | refers to the natural norm on Λr(H2(X(C),C)). Since H2(Xτ (C),C) ' H1,1(X(C))
by hypothesis, we may conclude from the Lefschetz theorem on (1, 1)-classes that the ele-
ments ei are classes of algebraic cycles ei on Xτ . Let τ 0 : K ↪→ C be a field of definition for
the ei, where τ 0 extends τ . We may assume that K is finite over L (see [8, proof of Prop.
1.5]). Write ei

K for the model of ei in XK and write cldR for the cycle class map with values
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in de Rham cohomology. Let τ : K ↪→ C be another embedding of K extending τ . Since by
construction

H2(XK,τ (C),C) ' H2
dR(XK/K)⊗τ C

we see that the elements cldR(ei
K) ⊗τ 1 form a basis of H2(XK,τ (C),C). Furthermore, since

cldR(ei
K)⊗τ 1 = cldR(ei

K ⊗τ C), we see that the elements cldR(eiK)⊗τ 1 even form a basis of
H2(XK,τ (C),Z)free. Furthermore, there is a natural identification

H2(XK,τ (C),Z)free ' H2(Xτ (C),Z)free

which is an isometry for the L2-metrics.

Now let f : Spec K → Spec L be the natural map. We view Spec K as an arithmetic variety
over Spec L. By the above, we have the equalities

ĉ1(H
1(XK ,Ω

1
)) = a

(−
⊕

τ |τ, τ∈T
log |cl(e1K)⊗τ 1 ∧ · · · ∧ cl(er

K)⊗τ 1|2
)

= a
(−

⊕

τ |τ, τ∈T
log VolL2(Xτ (C),Z)

)

and thus

[K : L] ĉ1(H
1(X,Ω

1
)) = f∗f ∗ ĉ1(H1(X,Ω

1
)) = f∗ ĉ1(H1(XK ,Ω

1
))

= [K : L] a
(−

⊕
τ∈T

log VolL2(Xτ (C),Z)
)

and we can conclude. ¤
The previous calculations motivate the following definition :

Definition 2.3 (BCOV torsion).

τBCOV(X(C)) := exp
[ − 1

12

∫

X(C)
ctop(Ω

∨
X(C))η

0 − 3 log Vol(X(C), ν)

− log(VolL2(H2(X(C),Z)))− τ(Ω
1

X(C)) + 2τ(Ω
2

X(C))− 3τ(Ω
3

X(C))
]

It is proven in [9, Sec. 4.4] that τBCOV(X) does not depend on the choice of ν.

The following equation summarizes the calculations made in this section:

a(log(τBCOV(X(C)))) = − ĉ1(H
1(X,Ω

2
))− (

1

12
χ(X) + 3) ĉ1(H

0(X,Ω
3
)) in ĈH

1
(L)Q (4)
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3 Proof of Theorem 1.1

With the equation (4) in hand, we see that the conclusion of Theorem 1.1 is equivalent to the
equation

− ĉ1(H
1(X,Ω

2
))−(

1

12
χ(X)+3) ĉ1(H

0(X,Ω
3
)) = − ĉ1(H

1(X ′,Ω
2
))−(

1

12
χ(X ′)+3) ĉ1(H

0(X ′,Ω
3
))

(5)

Lemma 3.1. Let L′ be a finite field extension of L. We view Spec L′ as an arithmetic variety over L.
With this convention, the assertion that the equation

− ĉ1(H
1(XL′ ,Ω

2
))−(

1

12
χ(XL′)+3) ĉ1(H

0(XL′ ,Ω
3
)) = − ĉ1(H

1(X ′
L′ ,Ω

2
))−(

1

12
χ(X ′

L′)+3) ĉ1(H
0(X ′

L′ ,Ω
3
))

is satisfied in ĈH
1
(L′)Q is equivalent to the assertion that the equation (5) is satisfied in ĈH

1
(L)Q.

Proof. Let f : Spec L′ → Spec L be the natural morphism. Using the projection formula, we
compute

[L′ : L] ĉ1(H1(X,Ω
2
)) = f∗f ∗ ĉ1(H1(X,Ω

2
)) = f∗ ĉ1(H1(XL′ ,Ω

2
))

and similarly

[L′ : L] ĉ1(H0(X,Ω
3
)) = f∗f ∗ ĉ1(H0(X,Ω

3
)) = f∗ ĉ1(H0(XL′ ,Ω

3
))

If we combine these formulae with the analogous formulae for X ′, we may conclude. ¤
Now notice that the group ĈH

1
(L′)Q (where L′ is viewed as an arithmetic variety over L) is

naturally isomorphic to the homonymous group ĈH
1
(L′)Q := ĈH

1
(L′, T ′)Q, which is the first

arithmetic Grothendieck group of the arithmetic ring L′, endowed with the set

T ′ := {τ ′ : L′ ↪→ C|τ ′|L ∈ T}

of embeddings into C. Furthermore, this isomorphism is compatible with the formation of
arithmetic Chern classes (the proof of this fact is left to the reader). Thus Lemma 3.1 implies
that the truth value of Theorem 1.1 remains unchanged if we replace L by a finite extension
field L′ and T by the set T ′ := {τ ′ : L′ ↪→ C|τ ′|L ∈ T}.

Before we begin with the proof, notice that by the formula [18, before Lemma 2.7], the L2-
metric on H1(X,Ω

2
) is given by the formula

〈λ, κ〉L2 =
i

(2π)3

∫

X(C)
λ ∧ κ (6)
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and the L2-metric on H0(X,Ω
3
) is given by the formula

〈λ, κ〉L2 =
−i

(2π)3

∫

X(C)
λ ∧ κ (7)

In particular, these metrics do not depend on the choice of the Kähler form ν.

3.1 Proof of Theorem 1.1 (a)

We now assume that there is a birational transformation from Xσ to X ′
σ. Recall that σ : L → C

is a fixed embedding of L into C (see before Theorem 1.1).

Lemma 3.2. There is a birational transformation from XL to X ′
L

.

Proof. This can be proven using a ”spreading out” argument. We leave the details to the
reader. ¤
Notice that the birational transformation provided by the last Lemma has a model over
a finite extension of L. Hence, by the discussion following Lemma 3.1, we may assume
without loss of generality that there is a birational transformation from X to X ′ defined over
L.

Lemma 3.3.
ĉ1(H

0(X,Ω
3
)) = ĉ1(H

0(X ′,Ω
3
))

Proof. Let φ be a birational transformation from X to X ′. It is shown in [14, Proof of Th. 8.19,
chap. II] that there is an open set U ⊆ X and a morphism f : U → X ′, with the following
properties : f induces φ and codimension(U) 6 2. It is also shown in [14, Proof of Th. 8.19,
chap. II] that the maps

H0(X ′,Ω3)
f∗−→ H0(U,Ω3)

restriction to U←− H0(X,Ω3)

are bijective. Thus, using the formula (7), we compute that

ĉ1(H
0(X ′,Ω

3
)) = −a

(
log |

∫

X′(C)
λ ∧ λ |) = −a

(
log |

∫

X(C)
f ∗(λ) ∧ f ∗(λ) |) = ĉ1(H

0(X,Ω
3
))

Here λ ∈ H0(X ′,Ω3) is any non-zero element. ¤
We recall the following theorem of Manin (and others).
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Theorem 3.4. Let Y be a smooth projective variety overC. Let Z ↪→ Y be a smooth closed subvariety
of codimension c of Y . Let ψ : Ỹ := BlZ(Y ) → Y be the blow-up of Y along Z. Let e : E ↪→ Ỹ

be the immersion of the exceptional divisor and let π : E → Z be the natural morphism. Let OE(1)

be the tautological vector bundle on E. For any k ∈ N, there is a natural isomorphism of Q-vector
spaces

Hk(Y (C),Q)⊕
c−2⊕

l>0

Hk−2l(Z(C),Q)(−l − 1)
∼→ Hk(Ỹ (C),Q)

which respects the corresponding Hodge structures. This isomorphism is given by the formula

(η, κ0, . . . , κc−2)

7−→ (ψ∗η, e∗[π∗(κ0) + π∗(κ1) · c1(OE(1)) + π∗(κ2) · c1(OE(1))
2 + · · ·

· · ·+ π∗(κc−2) · c1(OE(1))
c−2]).

Proof. See [19]. ¤

Lemma 3.5. Let C be a non-singular curve of genus g over L. Then

ĉ1(H
0(Jac(C),Ω

g
)) = ĉ1(H

0(C,Ω
1
)) + (g − 1) log(2π)

in ĈH
1
(L), for any Kähler metrics on C(C) and Jac(C)(C).

Proof. See [22, Exp. I, Lemme 3.2.1]. ¤

Proposition 3.6. Let Y be a smooth projective threefold over L. Let Z ↪→ Y be a smooth closed
subcurve of genus g of Y . Let φ : Ỹ := BlZ(Y ) → Y be the blow-up of Y along Z. Then

ĉ1(H
1(Ỹ ,Ω

2
)) = ĉ1(H

1(Y,Ω
2
)) + ĉ1(H

0(Z,Ω
1
)) + 2g log(2π)

for any Kähler metrics on Y , Z and Ỹ .

Proof. Let e : E ↪→ Ỹ be the immersion of the exceptional divisor. Let π : E → Z be the
natural morphism. By Theorem 3.4, the map

H1(Y,Ω2)⊕H0(Z,Ω) −→ H1(Ỹ ,Ω2)

given by the formula
(η, κ) 7−→ φ∗(η) + e∗(π∗(κ))
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is an isomorphism. We compute
i

(2π)3

∫

Ỹ (C)

(
φ∗(η1) + e∗(π∗(κ1))

) ∧ (
φ∗(η2) + e∗(π∗(κ2))

)

=
i

(2π)3

∫

Ỹ (C)
φ∗(η1) ∧ φ∗(η2) +

i

(2π)3

∫

Ỹ (C)
e∗π∗(z∗(η1) ∧ κ2)

+
i

(2π)3

∫

Ỹ (C)
e∗π∗(z∗(η2) ∧ κ1) +

i

(2π)3

∫

Ỹ (C)
e∗(π∗(κ1)) ∧ e∗(π∗(κ2))

=
i

(2π)3

∫

Ỹ (C)
φ∗(η1) ∧ φ∗(η2) +

i

(2π)3

∫

Ỹ (C)
e∗(π∗(κ1)) ∧ e∗(π∗(κ2)).

Now using the self-intersection formula (see for instance [10, VI, 1., 1.4.2]), we may compute
i

(2π)3

∫

Ỹ (C)
e∗(π∗(κ1)) ∧ e∗(π∗(κ2)) =

i

(2π)3

∫

E(C)
e∗(π∗(κ1) ∧ e∗e∗(π∗(κ2)))

=
i

(2π)3

∫

E(C)
e∗(c1(OE(−1)) ∧ π∗(κ1) ∧ π∗(κ2))

= − i

(2π)3

∫

Z(C)
κ1 ∧ κ2 =

1

(2π)2
· −i

2π

∫

Z(C)
κ1 ∧ κ2.

These formulae imply the conclusion of the proposition. ¤
Lemma 3.7. Let A and B be abelian varieties over L and let φ : Aσ → Bσ be an isogeny (over C)).
Then there is an isogeny A → B (over L).

Proof. By spreading out. Left to the reader. ¤
Lemma 3.8. Let A and B be two abelian varieties over L and suppose that there exists an isogeny
φ : A → B (over L). Suppose that L contains a square root of deg(φ). Then

ĉ1(H
0(A,Ω

g
)) = ĉ1(H

0(B,Ω
g
))

in ĈH
1
(L), for any choice of Kähler metrics on A(C) and B(C).

Proof. Let α1, . . . , αg be a basis of the L-vector space H0(B,Ω). Using the formula [18, before
Lemma 2.7], we see that for any embedding τ ∈ T , we have

〈α1 ∧ α2 ∧ · · · ∧ αg, α1 ∧ α2 ∧ · · · ∧ αg〉L2

=

∫

B(C)
((α1 ∧ α2 ∧ · · · ∧ αg)⊗τ 1) ∧ ((α1 ∧ α2 ∧ · · · ∧ αg)⊗τ 1)

= deg(φ)−1

∫

A(C)
((φ∗(α1) ∧ φ∗(α2) ∧ · · · ∧ φ∗(αg))⊗τ 1)

∧ ((φ∗(α1) ∧ φ∗(α2) ∧ · · · ∧ φ∗(αg))⊗τ 1)
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and thus the mapping H0(B,Ωg) → H0(A,Ωg) given by the formula η 7→ (
√

deg(φ)) · φ∗ is
an isometry of hermitian vector bundles. ¤
Let now φ : X 99K X ′ be a birational transformation. Let X ′′ be another smooth projective
variety over L, together with morphisms f : X ′′ → X and g : X ′′ → X ′ such that φ ◦ f and g

coincide as birational transformations. The variety X ′′ can be obtained as a desingularisation
of the Zariski closure of the graph of φ in X ×X ′.

Denote by PHS(Q) the category of (pure) polarisable Q-Hodge structures.

Using weak factorisation of birational maps (see [1]), Theorem 3.4 and Proposition 3.6 we
conclude that after possibly replacing L by one of its finite extensions, there are curves
C1, . . . , Cr′ defined over L and numbers s′l ∈ {0, 1} so that

H3(Xσ(C),Q) +
r′∑

l=1

(−1)s
′
lH1(C ′

l,σ,Q)(−1) = H3(X ′′
σ(C),Q)

in K0(PHS(Q)) and so that

ĉ1(H
1(X,Ω

2
)) +

r′∑

l=1

(−1)s
′
l ĉ1(H

0(C ′
l ,Ω

1
)) + 2

r′∑

l=1

(−1)s
′
lgenus(C ′

l) log(2π) = ĉ1(H
1(X ′′,Ω

2
)).

Symmetrically, there are curves C ′′
1 , . . . , C

′′
r′′ over L and numbers s′′l ∈ {0, 1} so that

H3(X ′
σ(C),Q) +

r′′∑

l=1

(−1)s
′′
l H1(C ′′

l,σ,Q)(−1) = H3(X ′′
σ(C),Q)

in K0(PHS(Q)) and so that

ĉ1(H
1(X ′,Ω

2
)) +

r′′∑

l=1

(−1)s
′′
l ĉ1(H

0(C ′′
l ,Ω

1
)) + 2

r′′∑

l=1

(−1)s
′′
l genus(C ′′

l ) log(2π) = ĉ1(H
1(X ′′,Ω

2
)).

Now by a theorem of Kontsevich (proved using motivic integration; see [17]) there is an
isomorphism of Q-Hodge structures H3(Xσ(C),Q) ' H3(X ′

σ(C),Q). Thus

2
r′∑

l=1

(−1)s
′
lgenus(C ′

l) log(2π) = 2
r′′∑

l=1

(−1)s
′′
l genus(C ′′

l ) log(2π).

Furthermore, since the category of polarisable Q-Hodge structures is semi-simple (see for
instance [7, Lemme 4.2.3]), there exists an isomorphism of Q-Hodge structures
⊕

l:s′l=1

H1(Jac(C ′
l)σ,Q)⊕

⊕

l:s′′l =0

H1(Jac(C ′′
l )σ,Q) →

⊕

l:s′l=0

H1(Jac(C ′
l)σ,Q)⊕

⊕

l:s′′l =1

H1(Jac(C ′′
l )σ,Q)
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and thus an L-isogeny γ of abelian varieties
∏

l:s′l=1

Jac(C ′
l)

∏ ∏

l:s′′l =0

Jac(C ′′
l ) →

∏

l:s′l=0

Jac(C ′
l)

∏ ∏

l:s′′l =1

Jac(C ′′
l )

Here we used Lemma 3.7. Extend L further so that γ is defined over L and so that L contains
a square root of deg(γ). Then, by Lemma 3.8, we have

r′∑

l

(−1)s
′
l ĉ1(H

0(Jac(C ′
l),Ω

genus(C′
l)) =

r′′∑

l

(−1)s
′′
l ĉ1(H

0(Jac(C ′′
l ),Ω

genus(C′′
l )).

in ĈH
1
(L)Q. Using Lemma 3.5, we deduce that

r′∑

l

(−1)s
′
l ĉ1(H

0(C ′
l ,Ω

1
)) =

r′′∑

l

(−1)s
′′
l ĉ1(H

0(C ′′
l ,Ω

1
))

so that
ĉ1(H

1(X,Ω
2
)) = ĉ1(H

1(X ′,Ω
2
)).

Furthermore, by Lemma 3.3, we have

ĉ1(H
0(X,Ω

3
)) = ĉ1(H

0(X ′,Ω
3
))

and again by a theorem of Kontsevich (see [17]) we have χ(X) = χ(X ′). This implies that

− ĉ1(H
1(X,Ω

2
))−(

1

12
χ(X)+3) ĉ1(H

0(X,Ω
3
)) = − ĉ1(H

1(X ′,Ω
2
))−(

1

12
χ(X ′)+3) ĉ1(H

0(X ′,Ω
3
))

in ĈH
1
(L)Q. Thus the equation (5) is verified and the theorem is proved.

3.2 Proof of Theorem 1.1 (b)

We now assume that the categories Db(Xσ) and Db(X ′
σ) are equivalent as triangulated C-

linear categories.

As a matter of notation, if X1 × X2 × · · · × Xt is a cartesian product of varieties and
1 6 i1 < i2 < · · · < ij 6 t, we shall write

πX1X2...Xt
Xi1

Xi2
...Xij

: X1 ×X2 × · · · ×Xt −→ Xi1 ×Xi2 × · · · ×Xij

for the natural projection.

We shall make use of the following theorems.
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Theorem 3.9 (Orlov). There exists an object M (resp. M ′) in Db(Xσ × X ′
σ) with the following

properties.

(a) The object
R•πXσX′

σXσ

XσXσ,∗ (π
XσX′

σXσ ,∗
XσX′

σ
(M)⊗π

XσX′
σXσ ,∗

X′
σXσ

(M ′))

is isomorphic in Db(Xσ ×Xσ) to the structure sheaf of the diagonal in Xσ ×Xσ.

(b) The object
R•πX′

σXσX′
σ

X′
σX

′
σ,∗ (π

X′
σXσX′

σ ,∗
X′

σXσ
(M ′)⊗π

X′
σXσX′

σ,∗
XσX′

σ
(M))

is isomorphic in Db(X ′
σ ×X ′

σ) to the structure sheaf of the diagonal in X ′
σ ×X ′

σ.

Proof. See [20]. ¤
The last theorem is actually valid more generally if Xσ (resp. X ′

σ) is replaced by any smooth
quasi-projective scheme over C and if one assumes that Db(Xσ) and Db(X ′

σ) are equivalent
as triangulated C-linear categories.

Write π : Xσ × X ′
σ → Xσ for the first projection and π′ : Xσ × X ′

σ → X ′
σ for the second

projection.

Theorem 3.10 (Căldăraru). Let M and M ′ be objects satisfying the conditions (a) and (b) in Theo-
rem 3.9, then the map

ΦH
M : H•(Xσ(C),Q) −→ H•(X ′

σ(C),C)

given by the formula

ΦH
M(β) := π′

∗(π
∗(β) ·

√
Td(Xσ ×X ′

σ) · ch(M)))

is an isomorphism and for any k ∈ N we have

ΦH
M(⊕p−q=kH

p,q(Xσ(C))) = ⊕p−q=kH
p,q(X ′

σ(C)).

Proof. See [6] or [15, par. 5.2]. ¤
Theorem 3.10 is actually valid more generally if Xσ (resp. X ′

σ) is replaced by any smooth
projective scheme over C.

Corollary 3.11. Let the notations and hypotheses of Theorem 3.10 hold. Then we have

ΦH
M(Hp,q(Xσ(C))) = Hp,q(X ′

σ(C)).

for any p, q ∈ N such that p+ q = 3.
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Proof. Using the fact that Xσ(C) is a Calabi-Yau variety, we see that there are identifications

⊕p−q=3H
p,q(Xσ(C)) = H3,0(Xσ(C)), ⊕p−q=1H

p,q(Xσ(C)) = H2,1(Xσ(C))

and
⊕p−q=−1H

p,q(Xσ(C)) = H1,2(Xσ(C)), ⊕p−q=−3H
p,q(Xσ(C)) = H0,3(Xσ(C)).

Similar identities hold for X ′
σ(C) in place of Xσ(C). This implies the conclusion of the Corol-

lary. ¤

Theorem 3.12 (Căldăraru). Let the notations and hypotheses of Theorem 3.10 hold. Then we have
∫

X(C)
β ∧ λ =

∫

X′(C)
ΦH

M(β) ∧ ΦH
M(λ)

for all β, λ ∈ H3(Xσ(C),C).

Proof. In the presence of Corollary 3.11, this is a special case of the formula given in [15,
Prop. 5.44, p. 133]. ¤

Lemma 3.13. There exists a finite field extension K of L and an object M0 (resp. M ′
0) of Db(XK ×X ′

K)

(resp. Db(X ′
K ×XK)) such that

(a)K The object
R•π

XKX′
KXK

XKXK ,∗ (π
XKX′

KXK ,∗
XKX′

K
(M)⊗π

XKX′
KXK ,∗

X′
KXK

(M ′))

is isomorphic in Db(XK ×XK) to the structure sheaf of the diagonal in XK ×XK .

(b)K The object
R•π

X′
KXKX′

K

X′
KX′

K ,∗ (π
X′

KXKX′
K ,∗

X′
KXK

(M ′)⊗π
X′

KXKX′
K ,∗

XKX′
K

(M))

is isomorphic in Db(X ′
K ×X ′

K) to the structure sheaf of the diagonal in X ′
K ×X ′

K .

Proof. Let ∆ : Xσ ↪→ Xσ × Xσ ( resp. ∆′ : X ′
σ ↪→ X ′

σ × X ′
σ) be the diagonal morphism.

Let U be a bounded complex of locally free sheaves on Xσ × X ′
σ representing M and let U ′

be a bounded complex of locally sheaves on X ′
σ × Xσ representing M ′. Let L1 be a finitely

generated extension of L (as a field), such that U (resp. U ′) has a model over XL1 ×L1 X
′
L1

(resp. X ′
L1

×L1 XL1). Let S be an affine variety over L, which is smooth and irreducible and
whose function field is isomorphic to L1 as an L-algebra. After possibly replacing S by one
of its open affine subsets, we may find bounded complexes of locally free sheaves Ũ (resp.
Ũ ′) on XS ×S X ′

S (resp. X ′
S ×S XS), which are models of U and U ′.

The conditions (a) and (b) in Theorem 3.9 are equivalent to the conditions :
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• There are isomorphisms of coherent sheaves

R0π
XσX′

σXσ

XσXσ ,∗ (π
XσX′

σXσ,∗
XσX′

σ
(M)⊗π

XσX′
σXσ,∗

X′
σXσ

(M ′)) ' ∆∗(OXσ)

and
Riπ

XσX′
σXσ

XσXσ,∗ (π
XσX′

σXσ ,∗
XσX′

σ
(M)⊗π

XσX′
σXσ ,∗

X′
σXσ

(M ′)) ' 0

for all i 6= 0;

• there are isomorphisms of coherent sheaves

R0π
X′

σXσX′
σ

X′
σX

′
σ ,∗ (π

X′
σXσX′

σ,∗
X′

σXσ
(M ′)⊗π

X′
σXσX′

σ ,∗
XσX′

σ
(M)) ' ∆∗(OX′

σ
)

and
Riπ

X′
σXσX′

σ

X′
σX

′
σ,∗ (π

X′
σXσX′

σ ,∗
X′

σXσ
(M ′)⊗π

X′
σXσX′

σ,∗
XσX′

σ
(M)) ' 0

for all i 6= 0.

Thus, after possibly a further reduction of the size of S, we may assume that

• there are isomorphisms of coherent sheaves

R0π
XSX

′
SXS

XSXS ,∗ (π
XSX

′
SXS ,∗

XSX
′
S

(Ũ)⊗π
XSX

′
SXS ,∗

X′
SXS

(Ũ ′)) ' ∆∗OXS

and
Riπ

XSX
′
SXS

XSXS ,∗ (π
XSX

′
SXS ,∗

XSX
′
S

(Ũ)⊗π
XSX

′
SXS ,∗

X′
SXS

(Ũ ′)) ' 0

for all i 6= 0;

• there are isomorphisms of coherent sheaves

R0π
X′

SXSX
′
S

X′
SX

′
S ,∗ (π

X′
SXSX

′
S ,∗

X′
SXS

(Ũ ′)⊗π
X′

SXSX
′
S ,∗

XSX
′
S

(Ũ)) ' ∆∗OX′
S

and
Riπ

X′
SXSX

′
S

X′
SX

′
S ,∗ (π

X′
SXSX

′
S ,∗

X′
SXS

(Ũ ′)⊗π
X′

SXSX
′
S ,∗

XSX
′
S

(Ũ)) ' 0

for all i 6= 0.

To see this, use the fact that the elements of the complexes Ũ and Ũ ′ are locally free and
apply the theorem on cohomology and base-change (see [13, chap. III, 7.7.4]).

Now pick a closed point s ∈ S. The field K := κ(s) has all the properties we are looking for.
¤
Now replace L by a finite extension K satisfying the conclusion of Lemma 3.13. Replace
T by the set TK of embeddings of K into C lying above embeddings in T . Recall that by
Lemma 3.1, this does not restrict generality.
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Proposition 3.14. There are isometries of hermitian vector bundles

H1(X,Ω
2
) ' H1(X ′,Ω

2
)

and
H0(X,Ω

3
) ' H0(X ′,Ω

3
)

over the arithmetic variety Spec L.

Proof. Let M0,M
′
0 be as provided by Lemma 3.13. Set Mσ := M0 ⊗σ C and M ′

σ := M ′
0 ⊗σ C.

Since C is flat as an L-algebra via σ, we see that Mσ and M ′
σ satisfy properties (a) and (b) in

Theorem 3.9.

Furthermore, there are comparison isomorphisms

H3(Xσ(C),C) ' (
⊕
p+q=3

Hq(X,Ωp))⊗σ C

and
H3(X ′

σ(C),C) ' (
⊕
p+q=3

Hq(X,Ωp))⊗σ C,

compatible with pull-backs, push-forwards and formation of Chern classes. We may thus
conclude from Theorem 3.12 that the morphism

⊕
p+q=3H

q(X,Ωp) → ⊕
p+q=3H

q(X,Ωp)

given by the formula in Hodge cohomology

Φ
HHdg

M (β) := π′
∗(π

∗(β) ·
√
Td(X ×X ′) · ch(M0))

is an isomorphism. Now by Theorem 3.12 and Corollary 3.11, for any τ ∈ T the maps

Φ
HHdg

M ⊗τ C|H1(Xτ ,Ω2) : H
1(Xτ ,Ω

2) → H1(X ′
τ ,Ω

2)

and
Φ

HHdg

M ⊗τ C|H0(Xτ ,Ω3) : H
0(Xτ ,Ω

3) → H0(X ′
τ ,Ω

3)

are isometries for the L2-metrics. This implies the result. ¤
We can now conclude the proof Theorem 1.1. Indeed, by Proposition 3.14, we have

ĉ1(H
1(X,Ω

2
)) = ĉ1(H

1(X ′,Ω
2
))

and
ĉ1(H

0(X,Ω
3
)) = ĉ1(H

0(X ′,Ω
3
))

in ĈH
1
(L)Q. We conclude using equation (4).
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