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ABSTRACT 

We define a "compactification" of the representation ring of the linear 

group scheme over SpecZ, in the spirit of Arakelov geometry. We show 

that  it is a A-ring which is canonically isomorphic to a localized polyno- 

mial ring and that  it plays a universal role with respect to natural  opera- 

tions on the K0-theory of hermitian bundles defined by Gillet Soul@. As 

a byproduct ,  we prove that  the natural  pre-A-ring s t ructure  of the K0- 

theory of hermitian bundles is a A-ring structure.  This last result plays 

a key role in the proof of the main results of [18] and [12]. 
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1. I n t r o d u c t i o n  

In their paper [6, 6 ,  II], Gillet and Soul~ gave a definition of arithmetic 

Grothendieck groups, i.e. they showed how to associate Grothendieck groups 

to arithmetic varieties "compactified" in the sense of Arakelov geometry. ~ r -  

thermore, they gave a description of a pre-A-structure on these groups. As is the 

case for the traditional Grothendieck groups of vector bundles on schemes, this 

structure arises from the exterior power operations on vector bundles. Once this 

pre-A-structure is given, one is naturally lead to ask if it is a A-structure, i.e. if 

there exist universal polynomials computing products as well as compositions of 

A-operations (see subsection 2.1 for a brief introduction to A-rings). In the tra- 

ditional setting of the Grothendieck groups of vector bundles mentioned above, 

such polynomials exist and there are two main ways to prove their existence: 

the first one relies on the geometric splitting of vector bundles when lifted to 

their own projectivized total space (see [9, VII) and the second one relies on the 

existence of a universal ring for natural operations on Grothendieck groups of 

vector bundles (see [9, p. 393] and [19]), which is a A-ring. This last ring is in 

fact the representation ring of the linear group scheme over Z. Both methods 

extend to the Arakelovian setting and yield the existence of a A-structure on 

arithmetic Grothendieck groups. We refer to the (unpublished) text [15] for a 

proof using the first method. It is the purpose of the following paper to prove the 

existence of a universal ring for natural operations on arithmetic Grothendieck 

groups, which is a A-ring and thus give a proof of the existence of a A-structure 

taking the second route. It will appear that this ring is a "compactification', 

in the sense of Arakelov geometry, of the representation ring of the linear group 

scheme over Z. The existence of such a "compactification" was apparently al- 

ready known to J.-F. Burnol (private conversations) but we don't  know if his 

methods of proof coincide with ours. This second proof apparently also works 

for a much more general class of schemes (Meissner's result is only formulated 

for projective varieties and our result applies to all schemes X such that X xz  Q 

is smooth over Q) and differs in method from the proof of its algebraic analog 

(see 3.1) in that it doesn't rely on the theory of the Brauer homomorphisms for 

its main step. Furthermore, one might hope that the universal ring defined here 

could be used to define a A-structure on a yet to be defined higher arithmetic K- 

theory (see [20]) since its traditional counterpart has found such an application 

in the paper [13]. The hermitian representations that we use to construct our 

"compactifications" also appear in [5], in the context of the theory of heights. 

The main results of this paper are announced in [16]. The existence of a special 
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A-structure on a r i thmet ic  Grothendieck groups plays a crucial role in the proof  

of the ma in  results of [18] and [12] (see the end of the paper) .  

ACKNOWLEDGEMENT: We want  to thank  C. Soul~ for proposing to us the topic 

of these investigations and for his constant  suppor t ,  help and advice during our 

work. We also extend our thanks  to J.-B. Bost  and K. Ki innemann,  for their  

detailed comments  on this paper .  

2. Pre l iminar ies  

2.1. A-STRUCTURES. Here we gather  some general facts abou t  A-rings. The  

reader will find [1] a good reference. A p r e - A - r i n g  is a unital  commuta t ive  ring 

R with  opera t ions  Ak: R --+ R (k >_ 0), such tha t  

(i))~0 = 1, A 1 = Id; 
(ii) Ak(x + y) = ~ k  o Ai(x)Ak-~(y) 

for all k >_ 1 and for all x, y E R. Elements  x E R are called l ine e l e m e n t s  

if Ai(x) = 0 for all i > 1. Now let k , j  >_ 0 and x C R and suppose tha t  

x -- 11 + ' " + l ~ ,  where 11 . . . .  ,l~ are line elements,  and tha t  r > kj. The  

expression A k (AJ (x)) can then  be computed  via the rule (ii) and yields a polyno-  

mial  wi th  integer coefficients in the l~, which is symmet r i c  by construct ion.  By 

the fundamenta l  theorem on symmet r i c  functions, this polynomial  can be writ- 

ten as a polynomial  in the symmet r i c  functions Crl(/1,. . .  , lr) . . . .  , a k j ( / 1 , . . . , / r ) ,  

which turns  out to be independent  of r; we denote it by Pk,l. Similarly, let 

k >_ 0 and let x C R (resp. x '  C R) and suppose tha t  x = 11 + " .  + l~ (resp. 
! 

x'  = I i + . . .  + l~.,), where l l , . . . ,  l~ (resp. l l , . . . ,  l'~,) are line elements,  and tha t  

r > k, r '  > k. The  expression Ak(x + x ' )  can then be computed  via the rule 

(ii) and yields a po lynomia l  wi th  integer coefficients in the li and l~, which is 

symmet r i c  in the li, as well as symmet r i c  in the l~. By  the theorem on sym- 

metr ic  functions it can be wr i t ten  as a polynomial  in the symmet r i c  functions 

O'1( /1 , - .  l r ) ,  6 rk ( l l , .  , l r ) , 6 r l ( l l ,  ! ! �9 , . .  . , /~,),  ak(l~,, it can �9 . . ,  . . . . .  , . . ,  l~,). Again be 

proved tha t  this po lynomia l  is independent  of r; we denote it by Pk. 

A A-r ing  is a pre-A-ring satisfying the following addi t ional  conditions: 

(iii) Ak(xy) = Pk(Al(x) , . . . ,  Ak(x), Al(y) . . . .  , Ak(y)); 

(iv) Ak(Al(x)) --- Pk j (AI(x) , . . . ,  ALl(x)). 
An element x such t ha t  Ak(x) = 0 for all k > d is said to be  A-f in i te  of A- 

dimension d. A pre-A-ring with  the p roper ty  t ha t  all its e lements  are equal to 

differences of elements  of finite A-dimension is also said to be A-finite. In  a A- 

finite ring, the conditions (iii) and (iv) are by definition au tomat ica l ly  satisfied. 
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This also holds if R has a A-ring extension in which this is satisfied. 
Let At(x): R --+ 1 + R[[t]] be defined as At(x) = 1 + ~koo=l Ak(x) tk, where 

1 + R[[t]] is the multiplicative subgroup of the ring of formal power series R[[t]] 

consisting of power series with constant coefficient 1. The first condition states 

that At is a group homomorphism from R as an additive group into 1 + R[[t]] as 

a multiplicative group. A pre-A-ring structure on R gives rise to a collection of 

group homomorphisms, called A d a m s  opera t ions .  

Definition 2.1: The Adams operations ck: R --+ R are defined by the equations 

r  . -  -t .dAt(x)/dt 
At(x )  , 

k>l 

The Adams operations are additive. They are multiplicative and satisfy the 

identities ck o Ct = Ckl (k,l > 1), if the pre-A-structure is a A-structure. If 

R is a Q-algebra and we are provided with a collection of ring endomorphisms 

Ck: R --+ R, such that ck o r = Ckt we can define a A-structure via the formula 

ov k k t k  
exp E ( - 1 )  r . - -  (1) At :=  (k=l k )  

which inverts the formula given above for Ct. Given any commutative graded 
Oo R unitary Q-algebra R = ~[~i=o i, one can define Adams operations by the formula 

Ck(x) = ~ i~0  ki'xi, where xi is the component of degree i. Any Q-graded ring 

thus carries a canonical A-ring structure. See [9, V, Appendice]. 

2.2. ARITHMETIC GROTHENDIECK GROUPS. In this subsection, we recall the 

definition of the arithmetic Grothendieck group Ko(X) of a scheme X such that  

X xz Q is smooth over Q. We describe its canonical pre-A-ring structure. 

We shall denote the complex manifold associated to its complex points by 

x(c). 
The complex conjugation induces an anti-holomorphic automorphism F ~  of 

X(C). A h e r m i t i a n  b u n d l e  E = (E, h) on X is a geometric vector bundle 

E on X, together with a conjugation invariant hermitian metric h on Ec, the 

holomorphic vector bundle associated to E on X(C). A metric h on Ec is con- 

jugation invariant if (F*(h))(s,l) = h(s,l), for all C ~ sections s,l of Ec. We 

shall denote by AP'P(X) the set of real differential forms w of type (p,p) on 

X(C) that satisfy the equation F~w = (-1)Pw and by AP'P(X) the quotient 

(AP'V(M)/(imO + im0)). The direct sum ~[~p>_o(AP'P(M)/(imO + im0)) will be 

referred to as A(X). Finally, let ZP'P(X) be the kernel of the operator d = 0 + 
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in AP'P(X) and let Z ( X )  be the direct sum sum (]~p>_O ZP'B(X) �9 Let 

(2) C: 0 ~ E '  --+ E --+ E"  --+ 0 

be an exact sequence of vector bundles on X. Denote by g the sequence s 

together with F~-invariant hermitian metrics h', h and h" on E ' ,  E and E ' .  

To these data is associated a B o t t - C h e r n  secondary class ch(E) C A(X). It 

satisfies the equation 

(3) ddCch(g) = ch(E' G E" )  - ch(E) 

(recall that d c 1 0 -  ~ 0 0 )  where = ~ (  0), so that dd ~ = ch(E') ,  ch(E) and 

ch(E")  are the Chern character forms associated to the unique holomorphic her- 

mitian connections of E ' ,  E and E ' .  It vanishes if the map E '  -~ E is metric 

preserving and the map E --+ E"  admits a metric preserving holomorphic left 

inverse. More generally, if p is any power series in the Chern forms associated to 

the holomorphic hermitian connection of a hermitian holomorphic vector bundle, 

one can associate a Bott  Chern secondary class ~(g) to the same data as above, 

with similar properties. For a definition of the secondary classes, see [6, Th. 1.2.2, 

p. 167]. The following definition is taken from [6, II]. 

Definition 2.2: The a r i t h m e t i c  G r o t h e n d i e c k  g r o u p  K0(X) of X is the free 

abelian group generated by the hermitian bundles on X and A(X), quotiented 

by the relations: 

(a) E + ch(g) = E '  + E "  for exact sequences of hermitian bundles g as above; 

(b) if ~', ~/, ~/' are elements of -4(X) and ~/is the sum in A(X) of ~' and r/ ' ,  

then ~j -- ~ / +  ~l" in K0(X). 

Note that there is a natural exact sequence of groups 

(4) f t (X)  ~. Ko(X) --+ Ko(X) ~ 0 

where the second map sends elements of A(X) on 0 and hermitian vector bundles 

on the corresponding vector bundles. 

One can define a multiplication and A-operations o n / ( 0 ( X )  as follows. Let 

F(X) be the ~-vector space Z(X)  | f i (X)  with the grading giving degree p to 

the subspace Z p'v | )tp-l,p-1 when p > 0 and degree 0 to the subspace Z ~176 @ 0. 

Denote by * the bilinear pairing defined on F(X) by the formula 

(w, , )  * (w', , /)  := (w A w', w A ~1' + 'l A w' + (dd%l) A ~l'). 
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This pairing defines a commutative, unitary, R-graded ring structure on F(X).  

For a proof, see [6, 7.3.2, p. 233]. The space F(X) is thus endowed with a 

canonical A-ring structure. 

PROPOSITION-DEFINITION 2.3: Let -E, ~,-E', ~' be generators of Ko(X) .  Define 

a product by the equations 

E . E '  := E | E ' ,  V.~/= [(0, ~/), (0, V')], E .y  := ch(E) A ~/ 

where [.] is the projection on the second component in F(X).  Then this product 

is well-de,ned on ~[o(X) and turns it into a commutative unital ring, where the 

unit is represented by the trivial line bundle, endowed with the trivial metric. 

See [6, Th. 7.3.4, p. 235] for the proof. It follows from the definitions that 

A(X) is an ideal of F(X) closed under the Ak-operations for k > 1. 

Let now V be a finite dimensional complex vector space and let h be a hermitian 

metric on V; let v l , . . . ,  v,~ be a basis of V, which is orthonormal for h. The k-th 

exterior power Ak(V) of V is then also endowed with a natural metric, the unique 

one making the standard basis vii ]~ vi2/~ " ' "  /~ Vik (1 < il < i2 < "'" < ik ~ n) 
orthonormal. One can show that the k-th exterior power metric is independent 

of the basis chosen for its construction. The basis v l , . . . v ~  also determines a 

representation of s: GLn(C) -+ End(V) of GL,~(C) in V; if h' is any metric on 

V, with matrix H '  in the basis v l , . . . ,  v~, one can show from the definition that,  

in the standard basis consisting of the vii A vi2 A �9 �9 �9 A vik, the matrix H '  of the 

k-th exterior power metric of h' on Ak(V) is (Ak(s))(H'). From this, we see that 

the construction of the exterior power metric also carries over to vector bundles. 

For k _> 1, let us define 

Ak(E) = Ak(E, h) := (Ak(E), Ak(h)) 

which is the k-th exterior power of E endowed with the k-th exterior power 

metric Ak(h). We thus obtain operations A k (k > 1) acting on all the generators 

of Ko(X).  The operation A ~ will by convention send all the generators on the 

trivial line bundle. It is proved in [6, II] that these operations are well-defined 

on K0(X) and give it the structure of a pre-A-ring. 

3. Universal  relations 

In this section, we shall show that  there is a "compactification" in the sense of 

Arakelov geometry of the representation ring of the linear group scheme over 

SpecZ, the group R z ( G L .  x GLm),  which is a A-ring. The statement of the 
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main result is in Corollary 3.22, where the exact structure of that group is also 

given. In the last section, we shall prove that Rz(GLn x GLm) plays a universal 

role with respect to arithmetic K0-theory (Corollary 4.4) and we shall use this 

universality to prove that  the pre-A-ring structure defined above on the arithmetic 

Grothendieck group is a A-ring structure. 

3.1. G-MODULES. In this subsection, we collect some general facts about rep- 

resentation theory (cf. [19]). Let A be a commutative unital ring and G an 

affine group scheme over A. Let E be an A-module. For any A-algebra A ~, 

let G(A ~) refer to the group of sections of GA, over A/. This group is also 

called the group of points of G over A ~. Let AutA, (E) refer to the group of 

all A ~ automorphisms of E @A A ~ as an A~-module. A G - m o d u l e  structure on 

E is a collection of group morphisms dA,: G ( X )  ~ AutA,(E), varying functo- 

rially with A'. A map of G-modules is a map of A-modules f :  E -+ E ~ such 

that  (dA, (P)) ( ( f  | Id)(v)) = ( f  | Id)((dA,(P))(v))  for all A-algebras A', all 

v E E @A A ~ and all P E G(At). Furthermore, the G-modules form an abelian 

category. We denote the associated Grothendieck group by RA(G). If E = A ~n, 

a G-module structure on E is equivalent to a map of group schemes from G to 

GLn,  the n-dimensional linear group scheme over A. If G is the n-dimensional 

torus T '~ over A, it can be shown (see [3, Expose I, 4.7.3]) that a Tn-module 

structure on an A-module is equivalent to a Zn-grading on this module. There 

is a natural ring morphism i*: RA(GL,~) -+ RA(Tn), which is the pull-back map 

arising from the immersion i: T n -+ GLn. The following is a particular case of 

a theorem of Serre (see [19, p. 49, Th. 4 and p. 52, 3.8]). If R is a ring and S a 

subset of R, we shall write Rs  for the localization of R at the multiplicative set 

generated by S. 

THEOREM 3.1 (Serre): Let i denote the natural map T '~ x T m -+ GLn x G L  m. 

I rA  is a field, then the induced map i*: RA(GLn x GLm) -+ R A ( T  ~ x T m) is in- 

jective and the ring RA(GLn x GLm) is isomorphic to the (localized) polynomial 

ring 

g[Al(Idn x 1 ) , . . . ,  ,~n (Id n x 1), &l(1 x Idm) , . . . ,  )~m(1 X Idm)lo~n(Idn xl), ;~(lxld~ ). 

Moreover, i rA  is a principal ideal domain with fraction field F then RA(GLn) - 

RF(GLn) ,  where the isomorphism is induced by the functor (.) @A F. 

Recall that the Weyl group of T '~+m in GLn x GLm is a finite group W 

(see [3]), given by the quotient of the normalizer of T n+m in GLn • GLm by 

W n+m. This group acts on T '~+'~ by automorphisms and is isomorphic to the 
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symmetric group on n + m elements; given a permutation cr and a zn+m-graded 

A-module V = ~r~Zn+m V~', the image a*V of V under a is the graded module 

~rcz ,+.~  V~(O, where r  denotes the vector/*with components permuted by o. 

3.2. HERMITIAN G-MODULES. In the following, D is Z or Q. Let G be a 

closed group subscheme of (GLn x GLm)D, with the property that the associated 

closed holomorphic group G(C) C_ (GLn x GLm) (C) is connected for the ordinary 

topology and invariant under the operation of taking the matrix adjoint. This 

hypothesis on G will hold until the end of the paper. We shall construct a 

Grothendieck group of G-modules with metrics. This construction will turn out 

to yield the universal ring we seek, when applied to G -- GLn • GLm. 

3.2.1. First definitions and results. For any finitely generated projective G- 

module V over D, we let Vc be V| C endowed with the induced G(C)-module 

structure. Denote the corresponding group map G(C) --~ Autc(Vc) by r. 

Definition 3.2: An admissible hermitian metric on V is a conjugation invariant 

hermitian metric h on Vc such for all M E G(C), r(M*) is the adjoint with re- 

spect to h of the endomorphism r(M).  The pair V :-- (V, h) is called a h e r m i t l a n  

G-module .  

Recall that the conjugation Vc --+ Vc is an R-linear map given by the formula 

v |  ~ v@~. A metric h on V is conjugation invariant if h(~, if) is the conjugate 

of the complex number h(x, y), for all x, y EVc. 

LEMMA 3.3: The representation r is determined uniquely by its restriction to 

G(C) n Un • Urn. The metric h is admissible if and only if for every M E 

G(C) ~ U~ x U,~, the automorphism r(M) is unitary with respect to h. 

Here Ui denotes the group of unitary i • i matrices. 

Proof of Lemma 3.3: Recall that  the underlying complex vector space of the 

(holomorphic) Lie algebra of G L . ( C )  x GLm(C) is the complex vector space 

M~ x Mm, where Mi is the space of complex i • i matrices. The matrix ad- 

junction (.)*, viewed as a map from GLn(C) • GLm(C) to itself, is a C ~ map 

and its differential at the origin is the matrix adjunction viewed as a map from 

Mn • Mm to itself. Thus, the Lie algebra TG(C) of G(C) is invariant under 

matrix adjunction. Let now Mo C TG(C).  The elements A := �89 +M~) and 
1 B := ~ ( M 0 - M ~ )  lie in TG(C) and by construction M0 = - i . A + B .  Recall now 

that the (real) Lie algebra of U. •  consists of the matrices M E M .  x Mm 

such that M* = - M ;  by construction again A and B lie in T(Un x Urn) and 

as the representation r is holomorphic we can write r(Mo) = - i . r (A)  + r(B). 
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This settles the first statement in the lemma. To see that  the second one is true 

suppose that for every M E G(C) A Un • Urn, the automorphism r ( M )  is unitary 

with respect to h and let Mo, A, B be as before. Consider the string of equations 

r(exp(Mo)*) = exp(dr(M~) ) = exp(i.dr(A*) + dr(B*)) 

= exp(i.dr(A)* + dr(B)*) = exp(dr(Mo)*) = exp(dr(Mo))* 

= r (exp(Mo))* 

These equations show that the admissibility condition is satisfied for all the 

elements in a small neighborhood of the identity in T G ( C ) .  Using the fact 

that  matrix adjunction reverses the order of products and the fact that any 

neighborhood of the identity generates TG(C),  we see that it is satisfied for all 

the elements of TG(C) .  This proves one direction of the equivalence; the other 

direction follows immediately from the definitions, so we are done. | 

COROLLARY 3.4: There exists an admissible metric on every finitely generated 

G-module. 

Proof  of Corollary 3.4: The group G(C) n Un x Um is compact and one can 

thus obtain a G(C) N Un x Um-invariant metric on a representation of G(C) by 

integration. Using the second statement in the lemma, the result follows. | 

Next, we define a Grothendieck group of hermitian G-modules. 

Definition 3.5: Let RD(G) be the free group generated by all the hermitian 

G-modules, with the relations (V, h) = (V t, h ~) + (V", h") for exact sequences 

(5) 0 ~ V'--+V--+V" -+ 0 

of G-modules such that in the induced sequence 

(6) O-+ V~-+ Vc-+ V~'--+ O 

the first map preserves the metric and the second map induces an isometry from 

V/ rE"  h"). the orthogonal complement of ( c, hr) in (Vc, h) onto ~ c ,  

A sequence as above will be said to be o r t h o g o n a l .  

If G is the trivial group scheme SpecD, then one might wonder if the groups 

K0(D) and RD(G) are isomorphic. The answer is affirmative; for the proof, 

compare [6, Th. 6.2. (i)]GS3 and [7]. We shall from now on identify fr0(D) with 

RD(G) in that  case. 
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LEMMA 3.6: The orthogonal complement (V~) • of V~ in Vc is invariant under 

conjugation and is a sub-G(C)-module. In particular, in the sequence (6), the 

map Vc ~ V~ ~ has a left inverse which preserves the metric of V~ ~ and is a 

morphism of G( C)-modules. 

Proof of Lemma 3.6: We first prove conjugation invariance. We have to check 

that ~ is orthogonal to Vc, if x is orthogonal to Vc. Let y EVc; we compute 

h(x, y) = 0 = h(~, ~) = h(~, ~). Since conjugation induces an (R-linear) auto- 

morphism Vc --+ Vc, this implies that h(~, y) = 0 for all y EVc and thus proves 

our first claim. To prove the second claim, let r: G(C) -~ Autc(Vc) be the map 

arising from the G(C)-module structure. The fact that V~ is a sub-G(C)-module 

is expressed by the relation r (M)x  E V~ for all x E V~ and for all M E G(C). For 

(Vc) • to be a sub-G(C)-module, the equation h(x, r (M)y)  = 0 has to hold for 

all x E V~ and all y E (V~) • Now using the admissibility of h, we can compute 

h(x, r (M)y)  = h(r(M*)x,  y) and h(r(M*)x,  y) vanishes by hypothesis. Thus we 

are done. I 

Remark: The last lemma entails that the properties of G(C) that are given at 

the beginning of the paragraph (connectedness and invariance under the opera- 

tion of taking the matrix adjoint) imply that G(C) is a reductive holomorphic 

group. 

The two last lemmata immediately imply the following facts. 

Let W be a sub-G-module of the projective G-module V. Let h be an admissible 

metric on V and h ~ its restriction to W.  Suppose that V / W  is projective as well. 

When V / W  is endowed with the quotient metric, it is a hermitian G-module. 

Let (V, h ), (W, h ~) be hermitian G-modules; the tensor product metric on the 

G-module V | V ~ is admissible; the exterior power metric Ak(h) is admissible on 

the G-module Ak(V). 

From these facts, one deduces 

PROPOSITION 3.7: The tensor product endows the group RD(G) with a com- 

mutative unital ring structure. 

We shall show that exterior powers are well-defined on RD(G). 

PROPOSITION 3.8: The equality 

r 

A (V) = '') 
i=0  
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holds in RD(G). 

Proof of Proposition 3.8: Let V',  V, V"  be as in Definition 3.5. The Proposition 

will follow from the next lemma. 

LEMMA 3.9: For i > O, let Ar(v)  be the D-submodule of A~(V) generated by 
! ! 

the dements  x~ A . . .  A x~ A Yi+i A . . .  A y~, where x~ , . . .  ,x  i are dements  of V'. 

For i = O, let A~ (V) be A~(V). Then A~ (V) is actually a sub-G-module and there 

is a natural isometric isomorphism of G-modules 

; ( V ' )  | ; - ~ ( V " )  ~- A~ ( V ) / A M  (V ). 

For i = 0, the statement is obvious. For i > 0, the map is Proof of Lemma 3.9: 

given by 

I! ! ! I! o Xl! . ( 7 )  A " " A | x '[  A " " A xr_  X l  A . " A x ,  A x l  A " " A 

' V' V ' .  where x~ , . . ,  x i E and x~ , . . ,  x" , , r-~ are inverse images of elements of 

It  is known (see [14, Prop. 9.3, p. 592]) that  this map is well-defined and 

an isomorphism of G-modules. Let b l , . ' . . ,  b,~' . . . .  E V~ and b~, , b~,, E V~' be 

orthonormal bases. Considering V~' as included in Vc by the map given in Lemma 
I I t  I I  y41  3.6, we can consider the union b~,...b~, E V~,bi , . . .bn, ,  E aS an orthogonal 

base of Vc. To prove that  the map (7) is an isometry amounts to showing that  

the elements 

' b" b" b ~  A . . .  A bj~ A kl A . . .  A k~-i 

where 1 < Ji < "'" < J~ _< n' ,  1 < kl < " "  < k~-i <_ n ' ,  are orthonormal and in 

the orthogonal complement of A[+i(Vc ). They are clearly of norm 1. Consider 

now that  the vector space A~'+i (Vc) is generated by elements of the type 

b' A . . -  A b'. A b" b" .71 Ji+p kl A �9 .. A k r _ i _ p  

for p >_ 1. These elements are all orthogonal to the elements b~ A . . .  A b(3~ A 

b~ A - . .  A b" mentioned above, since they are both  distinct members of the k~-~ 
I /  I I  canonical orthonormM basis of A~(Vc), arising from b~, . . . ,  b~,, b l , . . . ,  bn,,, so we 

are done. II 

Now we can compute 

P 

= Z = ; ( v ' )  | 
i = 0  i = 0  

and we are done. | 
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THEOREM 3.10: The exterior powers are well-detined on/~D(G) and endow it 

with the structure of a pre-A-ring. 

Proof of Theorem 3.10: Let 27 be the set of all isometric isomorphism classes 

of hermitian G-modules. Define a map At: I --+ 1 + RD(C)+[[t]] by the formula 

At(V) i -  = 1+~i=1  A (V). Extend this map by linearity to obtain a homomorphism 

Z[Z] --+ 1 + RD(C)+[[t]]. Proposition 3.8 shows that the kernel of At contains the 

elements V -  V r - V "  as above. Thus At and therefore all the A k are well-defined 

on RD(G) and the fact that At is a homomorphism corresponds to the second 

part of the statement of the theorem. | 

There is a natural embedding of K0(D) in/'~D(G), which associates to every 

hermitian D-module the corresponding G-module endowed with the trivial struc- 

ture. We shall denote by PiAc(D) C_ h'0(D) the isometric isomorphism classes of 

hermitian projective D-modules of rank 1. 

3.2.2. Tori. In this subsubsection, we shall determine the structure of/~D (Tn) �9 

See [19] for the corresponding algebraic statements. 

LEMMA 3.11 : A (conjugation invariant) metric h on a hermitian T'*-module V is 

admissible if and only if the pieces of the Zn-grading of V are pairwise orthogonal. 

Proof of Lemma 3.11: Each Tn-module structure on V induces a map Sn(C) 

Autc(Vc), where S~ is the set of diagonal matrices in GL,~(C)). The natural 
grading of Vc is connected to f in the following way. Let S be a diagonal matrix 

with diagonal elements Xll ,  X22, . . . ,  Xn,~; the piece Vc(al,...,a,) is an eigenspace 
a l  a 2  a n  of f ( S )  with eigenvalue X n X22 ...  X,~ n. Now suppose that V is endowed with 

an admissible metric. The admissibility property 3.2 implies that the images 

of elements of S'~(C) by f are normal (i.e. commute with their adjoints) for 

the hermitian metric of Vc. For two distinct non-zero pieces of the grading 
! ! ( a l , . . . ,  an) and (al, a2 , . . . ,  a~) there clearly exists an element S e Sn(C), such 

that Vc(a~ ..... ~,), Vc(~,a~ ..... ~,) lie in distinct eigenspaces of f (S ) .  Since f ( S )  is 

normal, its distinct eigenspaces are orthogonal. This implies that the pieces of 

the Z~-grading of V are pairwise orthogonal. 

To prove the converse, choose an orthonormal base on each piece of the grading 

and join all these bases to obtain an orthonormal base of Vc, thus defining a 

hermitian metric on V. Let S be a diagonal matrix as above. If we identify f ( S )  

with its matrix in this basis, f ( S )  is diagonal and the elements on the diagonal 
a l  a 2  a n .  are the polynomials Xl l  X~2 . . .  Xa~, thus we deduce f (S*) = f(S)*.  Since the 
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adjoint of f ( S )  for the metric h can be identified with the matrix f(S)*, this 

concludes the proof. | 

We can determine the structure of ]~D(T n) exactly. In the next Proposition, 

the elements (e'~)~ez ~ are the basis elements of the group algebra K0(D)[zn]. 

PROPOSITION 3.12: There is an isomorphism RD(T n) ~ Ko(D)[Zn], with a 

defined by the formula a(W) := ~ffzEp ~ Vr~e m, where the V ~  are considered 

equipped with the induced metric. 

Proof of Proposition 3.12: We shall describe an inverse that is a homomorphism 

of rings. For rT~ E Z ~, define a map f~:  K0(D) ~+ RD(T n) which sends hermitian 

D-modules V to T'~-modules with their fit-component equal to V and all the 

others 0. This map is well-defined by definition and the family of all f ~  defines 

a map f :  K0(D)[Z ~] ~-+ /~D(Wn), which is seen to be a two-sided inverse of a. 
| 

PROPOSITION 3.13: All elements of RD(T n) are sums of line elements. 

Proof of Proposition 3.13: Let V be a hermitian T~-module. Since the pieces 

of the grading are orthogonal by Lemma 3.11, we can write V = ~ z ~  V,~ in 

RD(T~),  where the V~  = (V,~, h~)  are considered endowed with the induced 

metrics and with the grading that is non-zero on the fft-th piece of the grading 

only. It will therefore be sufficient to show that any such V,~ can be written as 

sums of hermitian 1-dimensional Z'~-graded modules in RD (Tn); to prove this, 

remember that the structure theorem for finitely generated projective modules 

over a Dedekind domain (see [14, Par. 2, p. 532]) shows that there exists a 

fractional ideal J in the quotient field of D and an exact sequence of D-modules 

O-~ J--+ V~--~ V~ / J -+ O 

where V,n/J is projective as well. Endow J with the metric induced by h and 

with the grading induced by V~. Endow V,n/J with the quotient grading and 

metric. One can then apply induction on the dimension to obtain the last claim 

and complete the proof. | 

3.2.3. Linear group schemes over Q. In this subsubsection, we shall prove a 

structure theorem f o r / ~ ( G L n  x GLm). The proof will also show that the pre- 

A-ring structure of this ring is a A-ring structure. We let I: 

RQ(GLn • GLm) -~ Ko(Q)[A1 (Ida • 1 ) , . . . ,A~( Id ,  • 1),AI(1 x Idm), 

. . . ,  A'~(1 x Id,,)]X~(Id~•215 ) 
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denote the standard isomorphism. We shall use the same letter for the standard 

isomorphism I: R~(T  n+m) -~ go(Q)[Z~+m]. 
First notice that from Lemmas 3.3 and 3.6 and the fact that the group U,~ • U,~ 

is a maximal compact subgroup of (GLn • GLm)(C) we can deduce the following 

facts. 
Let S be a simple hermitian (GLn • GLm)Q-module. Then its metric is unique 

up to multiplication by a constant (real, positive)factor. 

Let V be a hermitian (GLn • GLm)Q-module, Then there are simple 

(GLn • GLm)Q-modules with admissible metrics V 1 , . . . ,  Vr, such that 

V = VI  + . . . +  V~ 

in • GL ) 

PROPOSITION 3.14: There is an exact sequence 

Pi/"c(Q) |  x GLm) ~r -~Q(GLn x GLm) ~r RQ(GL,, x GLm) -4 0 

where r is the map forgetting the metric. The map r is detined by 

r  | b) = (a - 1).n(I(b)), 

where n is the ring morphism sending Ai(Idn • 1) to Ai(~,~ • 1) and A~(t • Ida )  

to ~i(1 x I--dm). 

Proof  of  Proposition 3.14: We have to show that r is well-defined. We only 
have to check that it is additive in the first factor, i.e. that (ab - 1) -- 
(a - 1) + (b - 1). Since the image of the inclusion Pi~(Q) C / ~ ( G L , ,  • GLm) lies 

in K0(Q) c ~??~(GLn • GLm), this equation has only to be checked in K0(Q). 

Now, in view of the isomorphism K0(Q) r~k Z and the sequence (4), we have 
(a - 1) E A(SpecQ), (b - 1) E a(A(SpecQ)) and by the definition of the product 

in .~ we have (a - 1).(b - 1) = 0 and thus (ab - 1) -- (a - 1) + (b - 1). 
Next we have to show that ~b is surjective onto ker r Since ~ is a field, the 

Jordan-Hhlder theorem implies that RQ(GL,~ • GLm) is a free abelian group 

with generators the simple (GLn • GLm)Q-modules. Let 

(8) nl V1 + . . . + nrVr  

be in ker r Suppose, without loss of generality, that n l , . . . ,  nro _> 0, n ro+l , . . . ,  n~ 
_< 0 and write Vi -- Vii §  +Vis~ (1 < i < r) where the V i i , . . .  are simple, as 
in 3.2.3. Under this decomposition, the expression (8) becomes 

(9) n lVl l  + nlV12 + . - .  + -]n~o+llYro+l,1 . . . . .  [nr JVrsr 
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and the remark preceding (8) shows that the same simple modules (with multi- 

plicities) must appear in the positive part of (9) as in its negative part. Therefore 

ker r is generated by expressions (S, h) - (S, h'), where S is simple. The image 

of r is generated by expressions (S, h) - (S,t .h) (t > 0), so that we shall have 
proved surjectivity if we can show that all the metrics of a simple module are 
proportional. This is the content of 3.2.3. 

Finally, to prove surjectivity on the right, it will be sufficient to show that for 
every (GLn • GLm)c-module,  there exists an admissible metric. This follows 

from the structure theorem 3.1 for the case A = C, Lemma 3.3, the Jordan-  

Hhlder Theorem and Lemma 3.6. I 

On SpecZ all the line bundles are isomorphic in Z. Thus every element of 
h 

Pic(Z) can be represented by a hermitian bundle of the type (Z, h). Moreover, 
A 

it is easy to see that there is an isomorphism Pic(Z) ~ R~ sending (Z, h) on 
~ .  Similarly, there is an isomorphism Pi'm(Q) _~ R ~ / Q  +. 

LEMMA 3.15: There are isomorphisms ~[o (Z) -~ Z G ] ~  and ~[o (Q) ~ Z OR~/Q+  
given by V ~ rank(V) @ det(V). 

Proof of Lemma 3.15: See [6, Prop. 2.5, p. 177 and Th. 7.2.1, p. 225]. I 

LEMMA 3.16: There is a conmmtative diagram with exact rows 

(10) 

> Pi-~(Q) | P ~ ( T  '~+m) r > RQ(T n+m) > P ~ ( T  n+m) ~" 0 

Pi%(Q) | Rq(GL,t x GL.~) r ~(GL. x GLm) + Rq(GL~ x GL.~) + 0 

where i is the natural map T n+'~ ~ GLn x GLm and r is defined by 

r | b) = (a - 1).~(I(b)); 

here, # sends r.Z E Z[Z n+m] ~ P ~ ( T  n+m) on Z ~ endowed with the standard 

metric and with trivial grading except at Z. 

Proof of Lemma 3.16: Only the exactness of the first row requires proof. Under 

the isomorphisms given in Proposition 3.12 and Lemma 3.15, it becomes 

vi~c(Q) | z [ z  n+m] --+ (z @ PTc(Q))[z '~+m] -~ z [ z  n+m] ~ o 
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where the first map is given by a | r.2' ~ (0 @ at).2, and the second one by 

(r @ a).2. ~-~ r J .  From this description, the surjectivity of the second map and the 

exactness in the middle follows. We must prove the injectivity of the first map. To 

prove this, notice that r is a direct sum of morphisms r : Pie(Q)| Z --+ Pie(Q), 
sending a | r on a r, for all 2' E Z'*. One checks that a double-sided inverse to r 

is given by the map sending a on a | 1. Taking the direct sum over Z n of these 

inverses yields an inverse of r and ends the proof. I 

In the next corollary we shall denote by W the Weyl group associated to the 

immersion of W n+m in GLn x GLm. If S is a set on which W acts, we shall write 

S W for the elements of S which are fixed under each element of W. 

COROLLARY 3.17: The pre-A-structure o f  the ring RQ(GLn x GLm) is a A- 
structure. There is natural action o f  tile Weyl  group W oil fi, Q(T n+m) and there 

are isomorphisms 

f?Q(GL, x GLm) i* ~ ( ~ ( T " + m ) )  W 

K0(Q)[/~l(X-dn x 1) , . . . ,An(I ' (~n x 1),A1(1 x Mm), 

. . . ,  Am(1 x Idm)]X~(~xl),~m(lx~m). 

Proo f  o f  Corollary 3.17: The commutativity of the first square in (10) and the 

injectivity of r show that r is injective too. Since the first and last vertical 

maps are injective, we can apply the 5-1emma and conclude that the middle ver- 
tical map is injective. This proves that ~ ( G L n  x GLm) is a A-ring, by the 

discussion before the definition of the arithmetic Grothendieck group. There 
is a natural action on Pic(Q) | RQ(T n+m) of the elements w of W, defined 

by the equation w* (a @ b) = a | w* (b). Note that an element w of W only 
modifies the Z'~+m-index of the pieces of the Z'~+m-gradings of the hermitian 

Tn+m-modules; therefore they remain pairwise orthogonal after the action of 

w, which means that w sends hermitian Tn+m-modules into hermitian T n+m- 

modules; therefore there is also a natural action of W on ~ ( T ~ + m ) .  Moreover, 

this action is compatible with the action of W on Pic @z RQ(T'~+'~); to show 

this, notice that the image of Pi~'~(Q) in RQ(T n+m) is invariant under W, since it 

consists of modules with trivial grading except at 0, whose grading is invariant 

under permutation of the components of the index vectors in Z n+m. We can 

thus compute w*(r | b)) = w*((a  - 1).#(I(b))) = (a - 1) .#(I(w*(b))) ,  which 

is the compatibility. Since the isomorphisms Pi~-~(Q) | RQ(GL~ • GLm) i~ 

(Pi~'c(Q) | RQ(Tn+m))  w and RQ(GLn x GLm) ~ (RQ(Tn+m))  w hold, we 

deduce that the isomorphism (fiLQ(W'*+m)) W i~/3,Q(GL, ~ • GLm) holds, which 
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ends the proof. | 

3.2.3. Linear group schemes over Z. In this subsubsection, we shall prove a 

structure theorem for Rz(GLn • GLm); as in the previous section the proof will 

show tha t /~z (GL~ • GLm) is a A-ring. Let now G satisfy the properties stated 

at the beginning of section 3.2, with D taken to be Z. We denote by Rt(G)  the 

Grothendieck group of the finitely generated torsion G-modules. 

PROPOSITION 3.18: Let E be a GQ-module and Lo a finitely generated Z-module 

in E.  There exists a finitely generated G-module L in E,  containing Lo. 

Proof  of  Proposition 3.18: See [19, p. 40, Prop. 2]. | 

We shall define a map from Rt(G)  into/~z(G) by taking projective resolutions 

of torsion G-modules. For any torsion G-module T, let 0 -4 E -4 P f-4 T -4 0 

be a resolution of T by finitely generated projective G-modules. Such a resolu- 

tion always exists by [19, Prop. 4, p. 42]; since such a resolution determines an 

isomorphism Ec ~- Pc, we can choose any admissible metric on Ec and induce 

it on Pc, to obtain hermitian G-modules E and P.  We define j ( T )  = P - E. 

PROPOSITION 3.19: The map j is a well-defined group homomorphism. The 

sequence 

n (G) -4  Q(G) -4 o, 

where the second map arises from the functor | is exact. 

Proof  of  Proposition 3.19: We shall first prove that j is well-defined. Let g 

be the morphism E --4 P.  Consider another orthogonal projective resolution 

0 -4 E '  ~ P '  ~ T --4 0. Let Q be the kernel of the morphism P • P '  f+--f' T. 

The projection Q -4 P is clearly surjective and its kernel by construction arises as 

the image of the morphism E t o~?' p G P ' .  Thus we get an orthogonal resolution 

0 -4 E '  --4 Q --4 P -4 0, where Q is considered endowed with the metric induced 

by the inclusion Q c_ P �9 P~. Applying precisely the same reasoning to the 

projection Q -4 pt ,  we get an orthogonal resolution 0 -4 E -4 Q -4 P '  -4 0. 

Thus in Rz(G)  we can compute P + E '  = Q = P '  + E,  which implies that  

E - P = E~ - P ' .  This proves our first claim. We shall now prove that  j is a 

group homomorphism. Let 

0 -4  T ~ -4  T 2~ T" -4  0 
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be an exact sequence of torsion G-modules, where T is the same as before. We 

get another orthogonal resolution 

0 -+ E" -+ P ~ T" -+ 0 

of T", if we define f "  = ~ o f, ~,i = ker f,l, where kerf" is endowed with the 

metric induced by P. The snake lemma applied to the commutative diagram 

$ 
0 > E  ~ P  > T  7 0  

I k,F 
0 > E" ~ P > T" > 0 

yields an isomorphism T' ~_ E"/E such that the resolution 

0 --+ E --+ E'-+T' --+ 0 

is orthogonal. Now we can compute 

j ( T ' )  - j ( T )  + j ( T " )  = -E" - -E - ( P  - E )  + -P - -E" = 0 

which yields our last claim. To prove the exactness, we shall construct a map 

r  -+ R z ( G ) / I m ( j )  inverting the m a p / ~ z ( G ) / I m ( j )  -+ ~3LQ(G). Let V 

be a hermitian GQ-module and use Proposition 3.18 to choose a lattice (i.e. a 

finitely generated Z-module that  generates E as a Q-vector space) K in V that  

is a G-module  and induce the metric from V on K to obtain a hermitian G-  

module K.  Define r  = K.  To prove that  it is well-defined, consider that  

if K '  is another such lattice, then K ' / ( K '  n K )  is a torsion Z-module and by 

symmetry  K / ( K '  N K )  is too. Therefore, the sequences 

0 --+ K' n K -+ K' -+ K'/(K' N K) -+ 0 

and 

0 -+ K' n K --+ K -+ K/(K' N K) --+ 0 

show that K' = K(modulolm(j)). Finally, if 

(11) 0 --+ V' --+ V -~/V"-+0 

is an orthogonal sequence of hermitian GQ-modules, we choose lattices K' C_ V', 

K" _c V" as above, define K :-- f - l (K")  and we endow them with the induced 

metrics. We get an orthogonal sequence 

O-+ KP-+  K - +  K ' - +  O 
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where the maps are induced from the sequence (11), so that r = 

r + r  This proves that r is a group homomorphism and ends the 

whole proof. | 

In the next lemma, we consider the sequence of the previous Proposition, with 

G the torus of rank n + ra over Z. 

LEMMA 3.20: The sequence of groups 

0 --+ Rt(T n+m) J-+ Rz(T n+m) -+ ~ ( T  n+m) --+ 0 

is exact. 

Proof of Lemma 3.20: Only the injectivity of j requires proof. The category 

of finitely generated torsion Z-modules has a natural decomposition as a di- 

rect sum over the set of all primes p of the categories of p-primary torsion Z- 

modules. The Grothendieck group of p-primary torsion Z-modules coincides with 

the Grothendieck group of p-torsion Z-modules (modules over Fp), because every 

p-primary Z-module has a canonical filtration by p-torsion Z-modules. More- 

over, the category of finitely generated torsion T~+m-modules is canonically the 

direct sum over Z n+'~ of the (repeated) category of finitely generated torsion 

Z-modules. Using this fact and Proposition 3.12, we see that the sequence of 

Lemma 3.20 can be written 

(12) 0 --+ (~Ko(FB))[Z n+m] ~ K0(Z)[Z n+m] -~ Ko(Q)[Z n+m] -+ 0. 
p 

Since we can form projective two-term resolutions for each piece of the grading 
of a Tn+m-module separately, this is a direct sum over Z '~+m whose elements are 
the unique sequence 

(13) 0 --+ ( ~  go(Fp) -~ Ko(Z) J+ Ko(Q) -+ 0, 

which is the sequence (12) for n + m -- 0. Under the isomorphism of Lemma 
3.15, this sequence translates to 

0 Oz4ze  4 z, C/Q+ 
P 

The map I is then the quotient map Z@~ -+ Z$~/Q +, since the functor | 

commutes with the operation of taking the rank and taking the determinant. To 

determine the map j, we note that for any finitely generated p-torsion Z-module 
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J there exists a free Z-module W so that J ~- W / p W  (see [14, XV, Par. 2]). 

Therefore, we can write down the resolution 

0 --+ (W, p2.h) --+ (W,h) --+ J --+ 0 

where the first map is multiplication by p and h is any metric; from this resolution 

we can compute 

(rk @ det ) (J )  = (rk @ det)((W, h.p 2) - (W, h)) 

= 0 G det(W, h).p rk(W) det(W, h) -1 = 0 @ prk(W). 

%1 a~2 �9 Since all the Therefore j is given by the formula apl (~ ap2 (~ . . .  +--> Pl .P2 " "" 
positive rational numbers can be written uniquely as products of integer powers 

of primes, we deduce that j is injective, which completes the proof. | 

PROPOSITION 3.21: The diagram 

_ > R t ( T  n+m) 

T 
Rt(GLn x GLm) 

m) , % ( T  - 0 

> Rz(GL~ x GL.~)-----+~(GL~ x GLm) > 0 

is commutative and the first vertical map is injective. 

Proof of Proposition 3.21: The commutativity follows from the definitions. As 

to the second statement, notice that by construction i* is a direct sum over all 

primes p of the maps R~p (GLn x GLm) L+ R~p (T'~+m), under the isomorphisms 

R t ( T  n+m) ~ (~pRFp(W n+m) and Rt(GLn x GLm) ~ (~pR~p(GLn x GLm) 

described at the beginning of the last proof. We are therefore reduced to proving 

the injectivity of the maps Ry~(GL,~ x GLm) K> R ~  (T'~+m). Since F v is a field, 

this is a consequence of Theorem 3.1. | 

In the next corollary, W refers to the Weyl group associated to the immersion 

Tn x Tm -+ GL~ x GLm. 

COROLLARY 3.22: The pre-A-structure of the ring Rz(GLn x GLm) is a 

A-structure. There is a natural action of W on Rz(Tn x Tin) and there are 

isomorphisms 

Rz(GLn  • GLm) ~ -~z(T,~ • Tin) w 

• 1 ) , . . . ,  • 1), A (1 • 

. . . ,  A~(1 • Idm)]~,,,(~,,•215 
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Proof of Corollary 3.22: Consider again the diagram of Proposition 3.21. First, 

the injectivity of the first vertical map and of the first upper horizontal map yields 

the injectivity of the first lower horizontal map of the last diagram. Therefore, 

it follows from the 5-1emma that  the middle vertical map is injective; this entails 

that the pre-A-structure Rz(GLn x GLm) is a )~-structure. Secondly, it follows 

from the description of the action of the Weyl group given at the end of subsection 

3.1 and the remark following (12) that the action of the Weyl group W on the 

groups of the first row is compatible with the maps in the sequence. Now, since W 
consists of automorphisms of W n+m z , its action on the fibers of T~ +m on SpecZ is 

well-defined. It corresponds in each case to the Weyl group of T~ +'~ in the fiber 

(GL~ x GLm)?~. The correspondance is a consequence of the fact that in both 

cases the Weyl group is the entire symmetric group on n + m  elements, exchanging 

the components of the indices of the Z '~+m grading. Therefore, the isomorphism 

Rt(Tn+m) w = i*(Rt(GLn x GL,~)) holds. From this and Corollary 3.17, we 

deduce that the isomorphism Rz(GLn x GLm) ~ Rz(T'~+'~) W also holds. This 

concludes the proof. | 

OPEN QUESTION: IS the last corollary true for a ring of integers in a number field 

in place of Z? To prove it, one might have to extend on the left the sequence 

appearing in Proposition 3.19. This would probably require the definition of 

higher K-groups for the category of hermitian G-modules, since the sequence of 

Proposition 3.19 is a hermitian analog of the right end of Quillen's localization 

sequence for the torsion G-modules viewed as a (Serre) subcategory of the finitely 
generated G-modules. 

4. A universa l  ac t ion  

In this subsection, we show that Rz(GLn x GLm) is a universal object with 

respect to natural operations on hermitian vector bundles. This is made precise 
by the next theorem. 

THEOREM 4.1: Let X be a scheme such that X • Q is smooth over Q and -E 

(resp. E ' )  be a hermitian vector bundle of rank n (resp. m) on X .  Then there 

exists a (unique) pre-A-ring morphism r~,~,: Rz(GLn • GLm) ~-~ h'o(X) such 

that r-~.-~, (Idn x 1) = E and rN.N, (1 x I--d.~) = E' .  

Proof of Theorem 4.1: Let hE and hE, denote the metrics of E and E' .  The 

local frames of the vector bundles E and E ' give rise to principal bundles GL(E)  

and GL(E ' ) ,  called their frame bundles. By definition, GL(E)  carries a group 
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scheme action of GL,,  and G L ( E ' )  carries a group scheme action of GLm, so 

that the fibre product G L ( E )  •  G L ( E  ~) carries an action of GL,~ x GLm. For a 

finitely generated projective GLn • GLm-module V, we can form the geometric 

vector bundle V ( G L ( E )  Xx G L ( E ' ) )  associated to V over G L ( E )  •  G L ( E ' )  

(cf. [9, VI, p. 396]). This construction yields an exact functor from the category 

of finitely generated projective GLn x GLm-modules to the category of geometric 

vector bundles over X. 

The metrics on the bundle E and E '  gives rise to C ~ principal bundles U(Ec)  

and U(E~) over X(C), the bundles of local orthonormal frames, with groups 

U(n) and U(m), the unitary groups of dimensions n and m (cf. [10, 7.4, p. 

68]). Endow V with an admissible metric h and let f :  U(n) x U(m) -+ Autc(Vc) 

be the representation induced on the product of unitary groups. Write 

f(U(Er x U(E~)) for the associated vector bundle. Again, this construction 

yields an exact functor from the category of complex linear representations of 

U(n) x i(rn) to the category of C ~ vector bundles over X(C) (cf. [10, II, 12., 

5.]). 
Let N x M E U(n) x U(m) be a product of unitary matrices. Using the ad- 

missibility of h we compute f ( (N x U)*) = f ( (N • M) -1) = ( f (N x M))  -1 -- 

( f (N x i ) ) * ,  where ( f ( i  x i ) ) *  is the adjoint of f (N  x M) for h. Thus 

f sends U(u) x U(rn) into the unitary subgroup of Autc(Vc) determined by 

h. Let r = dim(Vc) and let us choose an arbitrary orthonormal basis of Vc 

to identify f with a morphism f : U(n) x U(m) -+ U(r). We can choose 

a trivialising cover of X(C) for Ec x E~ whose transition functions have im- 

age in U(n) • U(m). Now, by construction, the bundle f(U(Ec) x U(E~)) ~" 
V ( G L ( E )  Xx G L ( E ' ) ) c  is (canonically isometrically isomorphic to) a bundle 

given by transition functions whose image lies in U(r). It is thus canonically 

endowed with a metric, which we shall call V(hE (~ hiE). Finally, we define 

r-~,~,(V,h) := (V(GL(E)  Xx GL(E')),V(hE @ h~E)). The proof now follows 

from the next two lemmata: 

LEMMA 4.2: The metric V(hE �9 h~E) is conjugation invariant. 

Proof of Lemma 4.2: The construction of the bundle 

(V(GL(E) Xx GL(E ' ) ) ,  V(hE �9 h'E)) 

is clearly local on X, so we may assume that X is an affine scheme where E and 

E '  are free. Since it is of finite type over Z, we have 

X ~ SpecZ[X1, X2,.. . ,  Xi]/(fz,. . . ,  fj). 
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By definition, the manifold X(C) is then given by the zero set in C i of the 

polynomials f l , . . . ,  f j  and the total space of Ec  x E~ is then X(C) x ~ + m .  

For every element v x w �9 X(C) x C ~+'~, we have F*(v  x w) = v x w, where 

the overbar (.) refers to complex conjugation of the coefficients. Let H: X(C) --+ 

GL~(C) x GLm(C) be the function giving the matrix of the metric of Ec • E~ 

in the standard basis of C n+m. The total space of V ( G L ( E )  Z z  G L ( E ' ) ) c  -~ 

Vc(GL(Ec)  xx(c)  GL(E~))  is then X(C) x Vc and its metric is given by the 

formula h((.), r (H)( . ) ) ,  where r is the associated complex representation as in 

3.2. Now notice that 

(a) H(~) = H(v),  where H(v) is the complex conjugate of the matrix H(v). 

(b) r(M)(x)  = r(M)(~)  for all M �9 GLn(C) z GLm(C) and all x �9 Vc, where 

is the conjugate of x for the natural conjugation on Vc. 

To prove (a), note that  by the conjugation invariance of the metric, we have 

= = for  a l l  o v e r  T o  p r o v e  ( b ) ,  l e t  u s  

choose a basis of V, to obtain an integral basis of Vc by base change. For the time 

of the next paragraph, identify r with a map GLn (C) x GLm (C) ~ GLd (C), where 

d is the dimension of V. The matrix coefficients of r are then rational functions 

with integer coefficients in the components of the elements of GL,~ (C) x GL,~ (C). 

Thus we see that r(M) = r (M),  where r(M) is the complex conjugate of r(M) 

in GLd(C). This proves the claim. 

Using the conjugation invariance requirement for h, (a) and (b), we can now 

compute 

h(x, r(H(v))y) = h(~, r(H(v))y) = h(~, r(H(v))~) = h(~, r (g(~))~) ,  

which proves that  the metric on V ( G L ( E )  • x G L ( E ' ) ) c  is conjugation invariant 

and ends the proof. | 

LEMMA 4.3: The map r~,~, is well-defined as a map from Rz(GLn • GLm) and 

is a pre-A-ring morphism. 

Proof of Lemma 4.3: Consider 

0 ~ V ~ -+  V -+  V "  --+ 0, 

an exact sequence of GLn • GL,~-modules, endowed with admissible metrics h ~, 

h and h", which is orthogonal. To prove well-definedness, we have to prove that  

the sequence 

(14) 0 -+ V ' (GL(E)  Xx GL(E ' ) )  -4 V ( G L ( E )  x •  G L ( E ' ) )  

V"(GL(E)  Xx GL(E~)) ~ 0 
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has a vanishing secondary class. Let f ' ,  f and f "  be the representations of 

U(n) x U(m) induced by V', V and V". Until the end of the paragraph, consider 

V~, Vc and V~' as representation spaces of U(n) x U(m). Let (V~)*, (Vc)* and 

(V~')* be the dual representations. The fact that the map V' --~ V preserves the 

metrics is expressed by the commutativity of the diagram 

(v'c)* . (Yc)* 

T T 
v~ , vc 

where the two vertical arrows are the anti-linear isomorphisms of representations 

induced by the metrics and the upper horizontal arrow is the dual of the lower 

horizontal one. By functoriality, this diagram yields the commutative diagram 

of vector bundles 

(f '(U(Ec) • u(&)))*, 

T 
/ '(U(Ec) • U(E~)) 

(f(U(Ec) x U(E~)))* 

T 
, y ( u ( ~ c )  • U(E~)) 

which in turn implies that the map 

(V'(GL(E) Xx GL(E')))c -+ (V(GL(E) Xx GL(E')))c 

preserves the hermitian metrics. By the same token, the left inverse V~' --+ Vc 

appearing in Lemma 3.6 yields a metric preserving holomorphic map 

(V"(GL(E) Xx GL(E')))c -+ (V(GL(E) •  GL(E')))c, 

which splits the sequence (14) orthogonally. By the remark preceding the defi- 

nition of the arithmetic Grothendieck group, this shows that the secondary class 

of (14) vanishes. The map r~,~, is a pre-A-ring morphism by construction, so we 

are done. | 

COROLLARY 4.4: Let X be a scheme such that X Xz Q is smooth over Q. Then 

Ro(X) is a ~-ring. 

Proof of Corollary 4.4: We want to prove (iii) and (iv) in subsection 2.1. Assume 

- -  E /" x = E and y = Then Theorem 4.1 tells us that the image of r~,~, contains 

x and y. By Corollary 3.22, all the pairs of elements of/~z(GLn x GLm) satisfy 
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(iii) and (iv). This implies tha t  they hold for x and y since rE,~, is a pre-A-ring 
morphism. Now notice tha t  if (iii) holds for x = x t and y = y' (resp. x -- x" 

and y = y"),  then it holds for x -- x'  + x' and y = y' + y"; this follows from the 

construction of the polynomials Pk and Pk,l (see subsection 2.1) and the unicity 

s ta tement  in the fundamental  theorem on symmetric  functions; similarly, if (iv) 

holds for x = x ~ (resp. x = x"),  then it holds for x = x'+x".  We are thus reduced 

to the cases (a) x -- (0, 7/), y = (0, 7/'), where ~/, 7/' �9 A(X),  and (b) x = (0, 7/), 

y = E ,  where ~? �9 .4(X). The case (a) is settled by the remark following 2.3. To 

prove (b), we compute 

Ak(E.7/) -- Ak((0, [(ch(E), 0) * (0, ~/)])) 

= (0, [Ak((ch(E), 0) * (0, ~/))]) 

= (0, [Pk (A1 ((ch(E), 0 ) ) , . . . ,  Ak((ch(E), 0)), AI((0, ~/)) , . . . ,  Ak((0, ~/)))]) 

= (0, [Pk ((ch(A1 (E)),  0 ) , . . . ,  (ch(Ak (E)),  0), AI((0, 71)),..., Ak((0, 7/)))]) 

= 

where we used the equality Ak((ch(E), 0)) -- (ch(Ak(E)),0) on the fourth line. 

This is the content of [6, Lemma 7.3.3, p. 235, II]. This concludes the proof. 
| 

The next corollary follows from the previous one and the discussion at the end 

of subsection 2.1. 

COROLLARY 4.5: The Adams operations Ck (k >_ 1) are ring endomorphisms of 
Ko(X) and satisfy the equation Ck o r ~_ Ckl (k, 1 > 1). 

The fact tha t  the Adams operations are ring endomorphisms is essential to 

the proof of the ari thmetic Adams-Riemann-Roch  theorem stated in [17] and 

proved in [18]. Theorem 4.1 also plays a key role in the proof of the main result 

of [12] (which is announced in [11]), where it is used to prove the invertibility of 
the Todd element in a Lefschetz fixed point formula. 
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