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Abstract

We show that on any abelian scheme over a complex quasi-projective smooth variety,

there is a Green current for the zero-section, which is axiomatically determined up to ∂ and

∂̄-exact differential forms. On an elliptic curve, this current specialises to a Siegel function.

We prove generalisations of classical properties of Siegel functions, like distribution relations

and reciprocity laws. Furthermore, as an application of a refined version of the arithmetic

Riemann-Roch theorem, we show that the above current, when restricted to a torsion section,

is the realisation in analytic Deligne cohomology of an element of the (Quillen) K1 group of the

base, the corresponding denominator being given by the denominator of a Bernoulli number.

This generalises the second Kronecker limit formula and the denominator 12 computed by

Kubert, Lang and Robert in the case of Siegel units. Finally, we prove an analog in Arakelov

theory of a Chern class formula of Bloch and Beauville, where the canonical current plays a

key role.
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1 Introduction

In this article, we show that on any abelian scheme over a complex quasi-projective smooth vari-

ety, there is a Green current g for the the cycle given by the zero-section of the abelian scheme,

which is uniquely determined, up to ∂ and ∂̄-exact forms, by three axioms — see Theorem 1.1.

We proceed to show that this Green current is naturally compatible with isogenies (ie it satisfies

distribution relations), up to ∂ and ∂̄-exact forms (see Theorem 1.2.1), and that it intervenes in

an Arakelov-theoretic generalization of a formula of Bloch and Beauville (see [2, p. 249] for the

latter), which is proven here without resorting to the Fourier-Mukai transform. See Theorem 1.2.2.

Furthermore, we show that if the basis of the abelian scheme is a point (ie if the abelian scheme

is an abelian variety), then g is a harmonic Green current (see Theorem 1.2.3). The current g is

also shown to be compatible with products (see Theorem 1.2.5).

Finally, we show that the restriction of g to the complement of the zero-section has a spectral

interpretation. Up to a sign, it is given there by the degree (g − 1) part of the analytic torsion

form of the Poincaré bundle of the abelian scheme. See Theorem 1.3.1 for this. In point 2 of the

same theorem, we show that the restriction of the higher analytic torsion form to torsion sections,

which never meet the zero-section, lies in the rational image of the Beilinson regulator from K1

to analytic Deligne cohomology and we give a multiplicative upper bound for the denominators

involved. To prove Theorem 1.3.1, we make heavy use of the arithmetic Riemann-Roch theorem

in higher degrees proven in [22] and to compute the denominators described in Theorem 1.3.2,

we apply the Adams-Riemann-Roch theorem in Arakelov geometry proven in [42].

If one specializes to elliptic schemes (i.e. abelian schemes of relative dimension 1) the results

proven in Theorems 1.1, 1.2 and 1.3 one recovers many results contained in the classical theory

of elliptic units. In particular, on elliptic schemes the current g is described by a Siegel function

and the spectral interpretation of g specializes to the second Kronecker limit formula. The reci-

procity law for elliptic units (ie the analytic description of the action of the Galois group on the

elliptic units) is also easily obtained and (variants) of the results of Kubert-Lang and Robert on

the fields of definition of elliptic units are recovered as a special case of the above denominator

computations. Details about elliptic schemes are given in section 5 where references to the clas-

sical literature are also given. The reader will notice that even in the case of elliptic schemes, our
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methods of proof are quite different from the classical ones.

The current g can also be used to describe the realisation in analytic Deligne cohomology of the

degree 0 part of the polylogarithm on abelian schemes introduced by J. Wildeshaus in [45] (see

also [25]). The fact that this should be the case was a conjecture of G. Kings. His conjecture is

proven in [26].

Here is a detailed description of the results.

Let (R,Σ) be an arithmetic ring. By definition, this means that R is an excellent regular ring,

which comes with a finite conjugation-invariant set Σ of embeddings into C (see [19, 3.1.2]). For

example R might be Z with its unique embedding into C, or C with the identity and complex

conjugation as embeddings.

Recall that an arithmetic variety over R is a scheme, which is flat and of finite type over R. In this

text, all arithmetic varieties over R will also be assumed to be regular, as well as quasi-projective

over R. For any arithmetic variety X over R, we write as usual

X(C) :=
∐
σ∈Σ

(X ×R,σ C)(C) =
∐
σ∈Σ

X(C)σ.

Let Dp,p(XR) (resp. Ap,p(XR)) be the R-vector space of currents (resp. differential forms) γ on

X(C) such that

• γ is a real current (resp. differential form) of type (p, p);

• F ∗∞γ = (−1)pγ,

where F∞ : X(C)→ X(C) is the real analytic involution given by complex conjugation. We then

define

D̃p,p(XR) := Dp,p(XR)/(im ∂ + im ∂̄)

(resp.

Ãp,p(XR) := Ap,p(XR)/(im ∂ + im ∂̄) ).

All these notations are standard in Arakelov geometry. See [44] for a compendium. It is shown in

[19, Th. 1.2.2 (ii)] that the natural map Ãp,p(XR)→ D̃p,p(XR) is an injection.

If Z a closed complex submanifold of X(C), we shall write more generally Dp,p
Z (XR) for the R-

vector space of currents γ on X(C) such that



On a canonical class of Green currents. . . 4

• γ is a real current of type (p, p);

• F ∗∞γ = (−1)pγ;

• the wave-front set of γ is included in the real conormal bundle of Z in X(C).

Similarly, we then define the R-vector spaces

D̃p,p
Z (XR) := Dp,p

Z (XR)/Dp,p
Z,0(XR)

where Dp,p
Z,0(XR) is the set of currents γ ∈ Dp,p

Z (XR) such that: there exists a complex current α

of type (p− 1, p) and a complex current β of type (p, p− 1) such that γ := ∂α+ ∂̄β and such that

the wave-front sets of α and β are included in the real conormal bundle of Z in X(C).

See [24] for the definition (and theory) of the wave-front set.

It is a consequence of [11, Cor. 4.7] that the natural morphism D̃p,p
Z (XR) → D̃p,p(XR) is an

injection.1 Thus the real vector space D̃p,p
Z (XR) can be identified with a subspace of the real

vector space D̃p,p(XR).

Furthermore, it is a consequence of [11, Th. 4.3] that for any R-morphism f : Y → X of

arithmetic varieties, there is a natural morphism of R-vector spaces

f ∗ : D̃p,p
Z (XR)→ D̃p,p

f(C)∗(Z)(YR),

provided f(C) is transverse to Z. This morphism extends the morphism Ãp,p(XR) → Ãp,p(YR),

which is obtained by pulling back differential forms.

Fix now S an arithmetic variety over R. Let π : A → S be an abelian scheme over S of relative

dimension g. We shall write as usual A∨ → S for the dual abelian scheme. Write ε (resp. ε∨) for

the zero-section of A → S (resp. A∨ → S) and also S0 (resp. S∨0 ) for the image of ε (resp. ε∨).

We denote by the symbol P the Poincaré bundle on A ×S A∨. We equip the Poincaré bundle

P with the unique metric hP such that the canonical rigidification of P along the zero-section

A∨ → A ×S A∨ is an isometry and such that the curvature form of hP is translation invariant

along the fibres of the map A(C)×S(C) A∨(C)→ A∨(C). We write P := (P , hP) for the resulting

hermitian line bundle. Write P0 be the restriction of P to A×S (A∨\S∨0 ).

The aim of this text is now to prove the following three theorems.
1many thanks to J.-I. Burgos for bringing this to our attention
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Theorem 1.1. There is a unique class of currents gA ∈ D̃g−1,g−1(A∨R) with the following three

properties:

(a) Any element of gA is a Green current for S∨0 (C).

(b) The identity (S∨0 , gA) = (−1)gp2,∗(ĉh(P))(g) holds in ĈH
g
(A∨)Q.

(c) The identity gA = [n]∗gA holds for all n > 2.

Here the morphism p2 is the second projection A ×S A∨ → A∨ and [n] : A∨ → A∨ is the

multiplication-by-n morphism. The symbol ĉh(·) refers to the arithmetic Chern character and

ĈH
•
(·) is the arithmetic Chow group. See [19, 1.2] for the notion of Green current.

Supplement. The proof of Theorem 1.1 given below shows that if S is assumed proper over

SpecR, then the condition (b) can be replaced by the following weaker condition :

(b)’ The identity of currents ddcg + δS∨0 (C) = (−1)gp2,∗(ch(P))(g) holds.

Here ddc := i
2π
∂∂̄ and δS∨0 (C) is the Dirac current associated to S∨0 (C) in A∨(C). Furthermore,

ch(P) is the Chern character form of the hermitian bundle P . See [20, Intro.] for this.

Remarks. (1) The condition (b) apparently makes the current gA dependent on the arithmetic

structure of A. We shall show in 1.2.4 below that this is not the case. In particular, in defining

gA, we could have assumed that R = C. The settting of arithmetic varieties is used in Theorem

1.1 because it is the natural one for property (b). Formula (15) gives a purely analytic expression

for gA. (2) It is tempting to try to refine Theorem 1.1 by using in property (b) the arithmetic Chow

groups defined by J.-I. Burgos (in [10]) rather than the arithmetic Chow groups of Gillet-Soulé.

One would then obtain a class of forms with certain logarithmic singularities, rather than a class

of currents. Such a refinement does not seem to be easily attainable though, because of the lack

of covariant functoriality of the spaces of forms mentioned in the last sentence.

The next theorem gives some properties of the class of currents gA.

Let L be a rigidified line bundle on A. Endow L with the unique hermitian metric hL, which is

compatible with the rigidification and whose curvature form is translation-invariant on the fibres

of A(C) → S(C). Let L := (L, hL) be the resulting hermitian line bundle. Let φL : A → A∨ be

the polarisation morphism induced by L.
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Theorem 1.2. 1. Let ι : A → B be an isogeny of abelian schemes over S. Then the identity

ι∨∗ (gB) = gA holds.

2. Suppose that L is ample relatively to S and symmetric. Then the equalities

(S∨0 , gA) = (−1)gp2,∗(ĉh(P)) =
1

g!
√

deg(φL)
φL,∗(ĉ1(L)g)

are verified in ĈH
∗
(A∨)Q.

3. If S → SpecR is the identity on SpecR then any element of gA is a harmonic Green current

for S∨0 (C), where A∨(C) is endowed with a conjugation invariant Kähler metric, whose

Kähler form is translation invariant.

4. The class gA is invariant under any change of arithmetic rings (R,Σ)→ (R′,Σ′).

5. Let B → S be another abelian scheme and let πA∨ : A∨ ×S B∨ → A∨ (resp. πB∨ :

A∨ ×S B∨ → B∨) be the natural projections. Then

gA×SB = π∗A∨(gA) ∗ π∗B∨(gB) (1)

6. The class of currents gA lies in D̃g−1,g−1
S∨0 (C) (A∨R).

7. Let T be a an arithmetic variety over R and let T → S be a morphism of schemes over

R. Let AT be the abelian scheme obtained by base-change and let BC : AT → A be the

corresponding morphism. Then BC(C) is tranverse to S∨0 (C) and BC∗gA = gAT .

Here ι∨ : B∨ → A∨ is the isogeny, which is dual to ι. For the notion of harmonic Green current,

see [8] and [29]. The pairing ∗ appearing in the equation (1) is the ∗-product of Green currents.

See [19, par. 2.2.11, p. 122] for the definition.

Recall that an S-isogeny between the abelian schemes A and B is a flat and finite S-morphism

A → B, which is compatible with the group-scheme structures. The symbol ĉ1(·) refers the first

arithmetic Chern class; see [20, Intro.] for this notion.

Theorem 1.2.1 generalizes to higher degrees the distribution relations of Siegel units. See sec-

tion 5 below for details. If the morphism S → SpecR is the identity on SpecR and R is the ring of
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integers of a number field, then it is shown in [29, Prop. 11.1 (ii)] that Theorem 1.2.3 implies The-

orem 1.2.2. Still in the situation where S → SpecR is the identity on SpecR, another construction

of a Green current for S∨0 (C) is described in A. Berthomieu’s thesis [3]. The current constructed

by Berthomieu is likely to be harmonic (it is not proven in [3], but according to the author [private

communication] it can easily be shown). The current constructed in [3] satisfies the identity in

Theorem 1.3.1 by construction.

The last theorem relates the current gA to the Bismut-Köhler analytic torsion form of the Poincaré

bundle (see [6, Def. 3.8, p. 668] for the definition).

Let λ be a (1, 1)-form on A(C) defining a Kähler fibration structure on the fibration A(C)→ S(C)

(see [6, par. 1] for this notion). With the form λ, one can canonically associate a hermitian metric

on the relative cotangent bundle ΩA/S and we shall write ΩA/S for the resulting hermitian vector

bundle. We suppose that λ is translation invariant on the fibres of the map A(C)→ S(C) as well

as conjugation invariant. We shall write

T (λ,P0
) ∈ Ã((A∨\S∨0 )R) :=

⊕
p>0

Ãp,p((A∨\S∨0 )R)

for the Bismut-Köhler higher analytic torsion form of P0 along the fibration

A(C)×S(C) (A∨(C)\S∨0 (C)) −→ A∨(C)\S∨0 (C).

For any regular arithmetic variety X over R, the (Beilinson) regulator map gives rise to a mor-

phism of groups

regan : K1(X) −→
⊕
p>0

H2p−1
D,an (XR,R(p)).

To define the space H2p−1
D,an (XR,R(p)) and the map regan, let us first write H∗D,an(X,R(·)) for the

analytic real Deligne cohomology of X(C). By definition,

Hq
D,an(X,R(p)) := Hq(X(C),R(p)D,an)

where R(p)D,an is the complex of sheaves of R-vector spaces

0→ R(p)→ OX(C)
d→ Ω1

X(C) → · · · → Ωp−1
X(C) → 0

on X(C) (for the ordinary topology). Here R(p) := (2iπ)pR ⊆ C. We now define

H2p−1
D,an (XR,R(p)) := {γ ∈ H2p−1

D,an (X,R(p)) | F ∗∞γ = (−1)pγ}.
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By construction, the regulator map K1(X)→ ⊕p>0H
2p−1
D,an (X,R(p)) (see [12] for a direct construc-

tion of the regulator and further references) factors through ⊕p>0H
2p−1
D,an (XR,R(p)) and thus gives

rise to a map K1(X)→ ⊕p>0H
2p−1
D,an (XR,R(p)). This is the definition of the map regan.

It is shown in [12, par 6.1] that there is a natural inclusion H2p−1
D,an (XR,R(p)) ↪→ Ãp−1,p−1(XR).

For the next theorem, define

N2g := 2 · denominator [(−1)g+1B2g/(2g)],

where B2g is the 2g-th Bernoulli number. Recall that the Bernoulli numbers are defined by the

identity of power series: ∑
t>1

Bt
ut

t!
=

u

exp(u)− 1
.

Theorem 1.3. 1. The class of differential forms Td(ε∗ΩA/S)·T (λ,P0
) lies in Ãg−1,g−1((A∨\S∨0 )R)

and the equality

gA|A∨(C)\S∨0 (C) = (−1)g+1 Td(ε∗ΩA/S) · T (λ,P0
)

holds. In particular T (λ,P0
)(g−1) does not depend on λ.

2. Suppose that λ is the first Chern form of a relatively ample rigidified line bundle, endowed

with its canonical metric. Let σ ∈ A∨(S) be an element of finite order n, such that σ∗S∨0 = ∅.
Then

g · n ·N2g · σ∗T (λ,P0
) ∈ image(regan(K1(S))).

A the end of section 4.2 (see the end of the proof of Lemma 4.5), we give a statement, which is

slightly stronger than Theorem 1.3.2 (but more difficult to formulate).

Theorem 1.3.1 can be viewed as a generalization to higher degrees of the second Kronecker limit

formula (see [31, chap. 20, par. 5, p. 276] for the latter). Theorem 1.3.2 generalizes to higher

degrees part of a classical statement on elliptic units and their fields of definition. See section 5

below.

Remark. It would be interesting to have an analogue of Theorem 1.3.2, where regan is replaced

by the analytic cycle class cycan (see (3) below). If S ' SpecR and R is the ring of integers in a

number field, then regan and cycan can be identified but this is not true in general. In particular, this
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suggests that the Bernoulli number 12 = N2/2, which appears in the denominators of elliptic units

(see the last section) should be understood as coming from the natural integral structure of the

group K1(·)Q and not from the natural integral structure of the corresponding motivic cohomology

group
⊕
pH

2p−1
M (·,Z(p))Q.

Some of the results of this article were announced in [37].

We shall provide many bibliographical references to ease the reading but the reader of this ar-

ticle is nevertheless assumed to have some familiarity with the language of Arakelov theory, as

expounded for instance in [44].

Acknowledgments. We thank J.-I. Burgos for patiently listening to our explanations on the con-

tents of this article and for his (very) useful comments over a number of years. We also thank C.

Soulé, G. Kings, as well as S. Bloch and A. Beilinson for their interest. J. Kramer made several

interesting remarks on the contents of this article and his input was very useful. Many thanks

also to K. Köhler for his explanations on the higher analytic torsion forms of abelian schemes.

Finally, we are grateful to J. Wildeshaus for his feedback and for answering many questions on

abelian polylogarithms.

Notations. Here are the main notational conventions. Some of them have already been intro-

duced above. Recall that we wrote π : A → S for the structure morphism of the abelian scheme

A over S. We also write π∨ : A∨ → S for the structure morphism of the abelian scheme A∨

over S. Write µ = µA : A ×S A → A for the addition morphism and p1 : A × A∨ → A,

p2 : A×A∨ → A∨ for the obvious projections. We shall also also write p1, p2 : A×A → A and

p∨1 , p
∨
2 : A∨ × A∨ → A∨ for more obvious projections. Recall that we wrote ε (resp. ε∨) for the

zero-section of A → S (resp. A∨ → S) and also that we wrote S0 (resp. S∨0 ) for the image of ε

(resp. ε∨). Write ωA := det(ΩA/S) for the determinant of the sheaf of differentials of A over S.

We let ddc := i
2π
∂∂̄.

2 Proof of Theorem 1.1

If M is a smooth complex quasi-projective variety, we shall write H∗D(M,R(·)) for the Deligne-

Beilinson cohomology of M . We recall its definition. Let M̄ be a smooth complex projective
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variety, which contains M as an open subscheme. We call M̄ a compactfication of M . Suppose

furthermore that M̄\M is the underlying set of a reduced divisor with normal crossings D. From

now on, we view M and M̄ as complex analytic spaces and we work in the category of complex

analytic spaces. Let j : M ↪→ M̄ be the given open embedding. There is a natural subcomplex

Ω•M̄(log D) of j∗Ω•M , called the complex of holomorphic differential forms on M with logarithmic

singularities along D. The objects of Ω•M̄(log D) are locally free sheaves. We redirect the reader

to [9, chap. 10] for the definition and further bibliographical references. Write F pΩ•M̄(log D) for

the subcomplex

Ωp
M̄

(log D) −→ Ωp+1
M̄

(log D) −→ · · ·

of Ω•M̄(log D). Write f 0
p : F pΩ•M̄(log D) → j∗Ω

•
M for the inclusion morphism. Abusing notation,

we shall identify Rj∗R(p) with the complex, which is the image by j∗ of the canonical flasque

resolution of R(p). Similarly, we shall write Rj∗Ω
•
M for the simple complex associated to the

image by j∗ of the canonical flasque resolution of Ω•M ( the latter being a double complex). Write

fp : F pΩ•M̄(log D) → Rj∗Ω
•
M for the morphism obtained by composing f 0

p with the canonical

morphism j∗Ω
•
M → Rj∗Ω

•
M . There is a natural morphism of complexes R(p)→ Ω•M (where R(p)

is viewed as a complex with one object sitting in degree 0) and by the functoriality of the flasque

resolution, we obtain a morphism rp : Rj∗R(p)→ Rj∗Ω
•
M . We now define the complex

R(p)D := simple
(
Rj∗R(p)⊕ F pΩ•M̄(log D)

up−→ Rj∗Ω
•
M

)
where up := rp − fp. By definition, Deligne-Beilinson cohomology is now defined by the formula

Hq
D(M,R(p)) := Hq(M,R(p)D).

Notice that by construction,Hq
D(M,R(p)) = Hq

D,an(M,R(p)) ifM is compact (so thatD is empty).

More generally, there is a natural "forgetful" morphism of R-vector spaces Hq
D(M,R(p)) →

Hq
D,an(M,R(p)) (what is forgotten is the logarithmic structure) ; see [10, before Prop. 1.3] for

this. It can be proven that Deligne-Beilinson cohomology does not depend on the choice of the

compactification M̄ . By its very definition, we have a canonical long exact sequence of R-vector

spaces

· · · → Hq−1(M,C)→ Hq
D(M,R(p))→ Hq(M,R(p))⊕ F pHq(M,C)→ · · · (2)
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where F pHq(M,C) is the p-th term of the Hodge filtration of the mixed Hodge structure on

Hq(M,C). Furthermore the R-vector space Hq
D(M,R(p)) has a natural structure of contravariant

functor from the category of smooth quasi-projective varieties over C to the category of R-vector

spaces (see [10, Prop. 1.3] for this). If we equip the singular cohomology spaces Hq(M,C) and

Hq
D(M,R(p)) with their natural contravariant structure, then the sequence (2) becomes an exact

sequence of functors.

If X is an arithmetic variety, then we define

Hq
D(XR,R(p)) := {γ ∈ Hq

D(X(C),R(p)) | F ∗∞γ = (−1)pγ}.

Before beginning with the proof of Theorem 1.1, we shall prove the following key lemma.

Lemma 2.1. Let n > 2. The eigenvalues of the R-endomorphism [n]∗ of the Deligne-Beilinson

cohomology R-vector space H2p−1
D (A∨(C),R(p)) lie in the set {1, n, n2, . . . , n2p−1}.

Proof. The existence of the exact sequence of functors (2) shows that we have the following

exact sequence of R-vector spaces

H2p−2(A∨(C),C)→ H2p−1
D (A∨(C),R(p))→ H2p−1(A∨(C),R(p))⊕ F pH2p−1(A∨(C),C)

and that the differentials in this sequence are compatible with the natural contravariant action

of [n]. Hence it is sufficient to prove the conclusion of the lemma for the R-vector spaces

H2p−2(A∨(C),C), H2p−1(A∨(C),R(p)) and H2p−1(A∨(C),C). These spaces are more easily

tractable and can be approximated by the Leray spectral sequence

Ers
2 = Hr(S(C),Rsπ∨(C)∗(K))⇒ Hr+s(A∨(C), K)

where K is R or C. Now notice that since [n] is an S-morphism, this spectral sequence carries a

natural contravariant action of [n], which is compatible with the aforementionned action of [n] on

its abutment. Consider the index 2p−1. We know that [n]∗ acts on Rsπ∨(C)∗(K) by multiplication

by ns. This may be deduced from known results on abelian varieties using the proper base-

change theorem. Hence [n]∗ acts on Hr(S(C),Rsπ∨(C)∗(K)) by multiplication by ns as well.

Now the existence of the spectral sequence shows that H2p−1(A∨(C), K) has a natural filtration,

which consists of subquotients of the spaces Hr(S(C),Rsπ∨(C)∗(K)), where r + s = 2p − 1.
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Since s 6 2p− 1, this proves the assertion for the index 2p− 1. The index 2p− 2 can be treated

in an analogous fashion. �

Proof of uniqueness. Let gA and g0
A be elements of D̃g−1,g−1(A∨R) satisfying (a), (b) and (c). Let

κA := g0
A − gA ∈ D̃g−1,g−1(A∨) be the error term.

Recall the fundamental exact sequence

CHg,g−1(A∨) cycan−−−→ Ãg−1,g−1(A∨R)
a→ ĈH

g
(A∨)→ CHg(A∨)→ 0 (3)

(see [19, th. 3.3.5] for this). Here CHg,g−1(·) is Gillet-Soulé’s version of one of Bloch’s higher

Chow groups. The group ĈH
g
(A∨) is the g-th arithmetic Chow group and CHg(A∨) is the g-th

ordinary Chow group. By construction, there are maps

CHg,g−1(A∨) cyc−→ H2g−1
D (A∨R,R(g))

forgetful−−−−−→ H2g−1
D,an (A∨R,R(g))→Ãg−1,g−1(A∨R)

whose composition is cycan. Here cyc is the cycle class map into Deligne-Beilinson cohomol-

ogy; the second map from the left is the forgetful map and the third one is the natural inclusion

mentioned before Theorem 1.3.

Now let n > 2. Let

V := image
(
H2g−1
D (A∨R,R(g))

forgetful−−−−−→ H2g−1
D,an (A∨R,R(g))

)
(4)

be the image of the forgetful map from H2g−1
D (A∨R,R(g)) to H2g−1

D,an (A∨R,R(g)). By (b), we know

that κA ∈ V . Furthermore V is invariant under [n]∗. In fact, by Lemma 2.1, [n]∗ restrict to an

injective morphism V → V , which is thus an isomorphism, since V is finite dimensional. Now

the projection formula shows that the equation [n]∗[n]∗ = n2g is valid in H2g−1
D,an (A∨R,R(g)) and

we conclude that that V is also invariant under [n]∗. The same equation [n]∗[n]∗ = n2g now

shows that the eigenvalues of [n]∗ on V lie in the set {n2g, n2g−1, . . . , n}. In particular, [n]∗ has

no non-vanishing fixed point in V . Since [n]∗κA = κA by (c), this proves that κA = 0.

Proof of existence. As very often, the proof of existence is inspired by the proof of uniqueness.

Let g ∈ D̃g−1,g−1(A∨R) be a class of Green currents for S∨0 satisfying (b). To see that there is such

a g, pick any Green current g′ for S∨0 (C), such that F ∗∞g
′ = (−1)g−1g′. This exists by [19, th.1.3.5].

Now a basic property of the Fourier-Mukai transformation for abelian schemes (see [32, Lemme

1.2.5]) implies that (−1)gp2,∗(ch(P))(g) = S∨0 in CHg(A∨)Q. Hence, looking at the sequence (3),
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we see that there exists α ∈ Ãg−1,g−1(A∨R) such that (a⊗Q)(α) = (S∨0 , g
′)− (−1)gp2,∗(ĉh(P))(g).

If we define g := g′ − α, we obtain the required class of Green currents. Now fix n > 2 and let

c := g− [n]∗g. We shall prove below (see (6)) that

[n]∗p2∗(ĉh(P))(g) = p2∗(ĉh(P))(g).

This implies that c lies in the space V defined in (4) above. Now recall that we proved that [n]∗

sends V on V and that 1 is not a root of the characteristic polynomial of [n]∗ as an endomorphism

of V . Hence the linear equation in x

x− [n]∗x = c

has a unique solution in V . Call this solution c0. By construction the current g0 := g+ c0 satisfies

the equation g0 − [n]∗g0 = 0. Now let m > 2 be another natural number. We have seen above

that g0 − [m]∗g0 lies in V . On the other hand

[n]∗(g0 − [m]∗g0) = [n]∗g0 − [m]∗[n]∗g0 = g0 − [m]∗g0

hence g0 − [m]∗g0 is a fixed point of [n]∗ in V . This implies that g0 − [m]∗g0 = 0. This proves that

g0 satisfies (a), (b) and (c).

3 Proof of Theorem 1.2

3.1 Proof of 1.2.1

By the definition of the dual isogeny, there is a diagram

A×S B∨
ι× Id

> B ×S B∨ > B∨

A×S A∨
Id× ι∨

∨
> A∨
ι∨
∨

such that

(Id× ι∨)∗PA ' (ι× Id)∗PB

and such that the outer square is cartesian. Here PA := P and PB is the Poincaré bundle of B
over S.
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First notice that the arithmetic Riemann-Roch theorem [22] implies that

ĉh((ι× Id)∗(OA×SB∨)) = deg ι

in ĈH
•
(B ×S B∨)Q.

Now we compute

ι∨,∗pA2∗(ĉh(PA)) = pB2∗(ĉh(PB)ĉh((ι× Id)∗(OA×SB∨))) = (deg ι) · pB2∗(ĉh(PB)). (5)

Here we used the projection formula for arithmetic Chow theory (see [19, Th. 4.4.3, 7.]) and the

fact that the push-forward map in arithmetic Chow theory commutes with base-change. We may

now compute

ι∨∗ ι
∨,∗pA2∗(ĉh(PA)) = (deg ι) · pA2∗(ĉh(PA)) = (deg ι) · ι∨∗ pB2∗(ĉh(PB))).

In other words, we have

pA2∗(ĉh(PA)) = ι∨∗ p
B
2∗(ĉh(PB))). (6)

Furthermore, since ι∨ restricts to an isomorphism between the zero-sections, the class of cur-

rents ι∨∗ (gB) consists of Green currents for S∨0,A. All this shows that gA − ι∨∗ (gB) lies inside the

space V defined in 4. Recall that V is the image of the forgetful map H2g−1
D (A∨R,R(g))

forgetful−−−−−→
H2g−1
D,an (A∨R,R(g)). To conclude, notice that for any n > 2, we have

[n]∗(gA − ι∨∗ (gB)) = gA − ι∨∗ (gB)

since [n] commutes with ι∨. It was shown just before the proof of existence in the proof of

Theorem 1.1 that [n]∗ leaves V invariant and has no non-vanishing fixed points in V . Thus

gA − ι∨∗ (gB) = 0.

3.2 Proof of 1.2.2

We shall prove the equivalent identities

(−1)g

g!
√

deg(φL)
φL,∗(ĉ1(L)g) = p2,∗(ĉh(P))(g) (7)
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and

p2,∗(ĉh(P))(k) = 0 (8)

if k 6= g.

For the equality (8), notice that in view of (5) and the fact that [n]∨ = [n], we have

[n]∗(p2,∗(ĉh(P))) = n2g · p2,∗(ĉh(P)) (9)

for any n > 2. On the other hand, since (Id× [n])∗P̄ = P̄⊗n, we have also

[n]∗(p2,∗(ĉh(P))) =
∑
k>0

nk+g · p2,∗(ĉh(P))(k) (10)

and comparing equations (9) and (10) as polynomials in n proves equation (8).

We now proceed to the proof of equation (7). Notice that the line bundle µ∗L ⊗ p∗1L∨ ⊗ p∗2L∨ on

A×S A carries a natural rigidification on the zero section A (Id,ε)−−−→ A×S A and that the same line

bundle is algebraically equivalent to 0 on each geometric fibre of the morphism p2 : A×SA → A.

Hence there is a unique morphism φL : A → A∨, the polarisation morphism induced by L, such

that there is an isomorphism of rigidified line bundles

(Id× φL)∗P ' µ∗L ⊗ p∗1L∨ ⊗ p∗2L∨. (11)

Furthermore, if we endow the line bundles on both sides of (11) with their natural metrics, this

isomorphism becomes an isometry, because both line bundles carry metrics that are compatible

with the rigidification and the curvature forms of both sides are translation invariant (in fact 0) on

the fibres of the map p2(C).

We shall now give a more concrete expression for p2∗(ĉh(µ∗L)ĉh(p∗1L
∨
)ĉh(p∗2L

∨
)). We first make

the calculation

p2∗(ĉh(µ∗L)ĉh(p∗1L
∨
)ĉh(p∗1L)) = p2∗(ĉh(µ∗L)) = p2∗(α

∗p∗1ĉh(L)) = p2∗(p
∗
1ĉh(L))

where α : A×SA → A×SA is the p2-automorphism α := (µ, p2). Now notice that for any n > 2,

p2∗(([n]× Id)∗([n]× Id)∗p∗1ĉh(L)) = n2gp2∗(p
∗
1ĉh(L))

= p2∗(([n]× Id)∗p∗1ĉh(L)) = p2∗(
∑
l>1

n2l(p1ĉh(L))(l)).
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Here we used the isometric isomorphism [n]∗L ' L⊗n
2

(recall that L is symmetric). We deduce

that

p2∗(p
∗
1ĉh(L)) = p2∗(p

∗
1ĉh(L)(g)) =

√
deg(φL)

Thus, using the projection formula, we see that

p2∗(ĉh(p∗1L)ĉh(µ∗L)ĉh(p∗1L
∨
)p∗2ĉh(L∨)) =

√
deg(φL) ĉh(L∨)

which implies that

p2∗(ĉh(p∗1L)ĉh(P)) =
1√

deg(φL)
φL,∗ĉh(L∨).

Now notice that in the proof of equation (7), we may assume without restriction of generality that

L is relatively generated by its sections, which is to say that the natural morphism π∗π∗L → L is

surjective. Indeed, for any n > 2, we have

1

g!
√

deg(φL⊗n)
φL⊗n,∗(ĉ1(L⊗n)g) =

1

g!
√

deg(φL)
φL,∗([n]∗ĉ1(L)g)

and for any k > 0,

[n]∗ĉ1(L)k = n−2k[n]∗[n]∗ĉ1(L)k = n2g−2kĉ1(L)k. (12)

Hence
1

g!
√

deg(φL⊗n)
φL⊗n,∗(ĉ1(L⊗n)g) =

1

g!
√

deg(φL)
φL,∗(ĉ1(L)g).

We may thus harmlessly replace L by L⊗n, where n is some large positive integer. In particular,

we may assume (and we do) that the morphism π∗π∗L → L is surjective, since L is relatively

ample. Now let E := π∗π∗L ⊗ L∨ and let

P •0 : · · · → Λr(E)→ Λr−1(E)→ · · · → E → O → 0

be the associated Koszul resolution. Let

P •1 : 0→ P → p∗1E∨ ⊗ P → · · · → p∗1Λr−1(E)∨ ⊗ P → p∗1Λr(E)∨ ⊗ P → · · ·

be the complex P ⊗ p∗1(P •0 )∨. All the bundles appearing in the complex P •1 have natural hermitian

metrics and we let ηP̄1
be the corresponding Bott-Chern class. Notice the equalities

ηP̄1
= ĉh(Λ−1(E∨))ĉh(P) = ĉ top(E)T̂d

−1
(E)ĉh(P)
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in ĈH
•
(A ×S A∨) (see [5, last paragraph]). Here Λ−1(E∨) is the formal Z-linear combination∑

r>0(−1)rΛr(E∨). Since rk(E) may be assumed arbitrarily large (since we may replace L by

some of its tensor powers), we see that we may assume that ηP̄1
= 0 in ĈH

•
(A ×S A∨)Q. Thus

we may compute

p2∗(ĉh(P)) = p2∗(ĉh[−p∗1Λ−1(E∨) +O]ĉh(P))

= −
rk(E)∑
r=1

(−1)rp2∗[ĉh(Λr(π∗π∗(L)∨))ĉh(p∗1L
⊗r

)ĉh(P)]

= −
rk(E)∑
r=1

(−1)rp2∗[ĉh(p∗1L
⊗r

)ĉh(P)]ĉh(Λr(π∗π∗(L))∨)

= −
rk(E)∑
r=1

(−1)r
1√

deg(φL⊗r)
φL⊗r,∗(ĉh(L∨,⊗r))ĉh(Λr(π∗π∗(L))∨)

= − 1√
deg(φL)

φL,∗

[ rk(E)∑
r=1

(−1)rr−g
(
[r]∗(ĉh(L∨,⊗r))ĉh(Λr(π∗π∗(L))∨)

)]

= − 1√
deg(φL)

φL,∗

[ rk(E)∑
r=1

(−1)rr−g
(
[
∑
s>0

r2g−2sĉh(L∨,⊗r)(s)]ĉh(Λr(π∗π∗(L))∨)
)]

= − 1√
deg(φL)

φL,∗

[ rk(E)∑
r=1

∑
s>0

(−1)rrg−sĉh(L∨)(s)ĉh(Λr(π∗π∗(L))∨)
]
.

Now notice that the expression

[n]∗p2∗(ĉh(P)) = p2∗((Id× [n])∗ĉh(P))

= p2∗((Id× [n])∗(Id× [n])∗
∑
k>0

n−kĉh(P)(k)) = p2∗(
∑
k>0

n2g−kĉh(P)(k))

is a Laurent polynomial in n > 2. The equation (12) shows that the expression

[n]∗

(
− 1√

deg(φL)
φL,∗

[ rk(E)∑
r=1

∑
s>0

(−1)rrg−sĉh(L∨)(s)ĉh(Λr(π∗π∗(L))∨)
])

is also a Laurent polynomial in n > 2. We may thus identify the coefficients of these polynomials.

We obtain the following : if g + k is even, then

p2∗(ĉh(P))(k) = − 1√
deg(φL)

φL,∗

[
ĉh(L∨)((g+k)/2)[

rk(E)∑
r=1

(−1)rrg−(g+k)/2ĉh(Λr(π∗π∗(L))∨)]
]
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and

p2∗(ĉh(P))(k) = 0

if g+ k is odd. Note that we have already proven the stronger fact that p2∗(ĉh(P))(k) = 0 if k 6= g.

Thus

p2∗(ĉh(P))(g) = − 1√
deg(φL)

φL,∗

[
ĉh(L∨)g[

rk(E)∑
r=1

(−1)rĉh(Λr(π∗π∗(L))∨)]
]
.

Using furthermore that the left-hand side expression in the last equality is of pure degree g in

ĈH
•
(A∨)Q, we deduce that

p2∗(ĉh(P))(g) = − 1√
deg(φL)

φL,∗

[
ĉh(L∨)g[

rk(E)∑
r=1

(−1)r
(

rk(E)

r

)
]
]
.

Now notice that by the binomial formula
∑rk(E)
r=1 (−1)r

(
rk(E)
r

)
= (1− 1)rk(E) − 1 = −1. This proves

equation (7).

3.3 Proof of 1.2.3

Let Z be an analytic cycle of pure codimension c on A(C). In view of the assumption on S,

A(C) is a finite disjoint union of abelian varieties and so we may (and do) choose a translation

invariant Kähler form on A(C). A current g on A(C) of type (c− 1, c− 1) is said to be a harmonic

Green current for Z (with respect to the Kähler form), if it satisfies the following properties : g

is a Green current for Z, the differential form ddcg + δZ is harmonic and
∫
A(C) g ∧ κ = 0 for any

harmonic form κ on A(C). Notice now that a differential form on A(C) is harmonic if and only if

it is translation invariant (see for instance [15, p. 648]). Hence the concept of harmonic Green

current is independent of the choice of the translation invariant Kähler form.

The property (a) in Theorem 1.1 shows that gA is a Green current for S∨0 (C) and the property 2

in Theorem 1.2 shows that ddcg+δS∨0 (C) is harmonic. Let now κ be a harmonic form of type (1, 1)

onA(C). We know that κ is d-closed and that [n]∗κ = n2 ·κ for any n > 2. We may thus compute∫
A(C)

gA ∧ κ =
∫
A(C)

[n]∗(gA ∧ κ) = n−2
∫
A(C)

[n]∗(gA ∧ [n]∗κ) = n−2
∫
A(C)

gA ∧ κ

and hence
∫
A(C) gA ∧ κ = 0. Thus gA is harmonic.
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3.4 Proof of 1.2.4

In the next section, we shall give an expression for gA, which depends only on AC (see the

formula (15)). This implies the assertion.

3.5 Proof of 1.2.5

The proof of 1.2.5 is postponed to the end of the proof of Theorem 1.3.1. See the paragraph

before subsection 4.2.

3.6 Proof of 1.2.6

This is a direct consequence of Theorem 1.1.1 and [11, Cor. 4.7 (i)] (thanks to J.-I. Burgos for

providing this proof).

3.7 Proof of 1.2.7

We leave the proof that BC(C) is transverse to S∨0 (C) to the reader. The equation BC∗gA = gAT

follows from formula (15) for gA, which will be proved in the next section, together with [11, Th.

9.11 (ii)] and the fact that the higher analytic torsion forms of Bismut-Köhler are compatible with

base-change.

4 Proof of Theorem 1.3

4.1 Proof of 1.3.1

This is the most difficult point to prove. We shall construct a class of currents g0
A which naturally

restricts to the degree (g−1, g−1) part of the analytic torsion and we shall prove that g0
A satisfies

the axioms defining gA. The arithmetic Riemann-Roch theorem in higher degrees plays a crucial

role here.
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4.1.1 Definition of g0
A

Let

V : 0→ OA → V0 → · · · → Vr → Vr+1 → · · ·

be a resolution of OA by π∗-acyclic vector bundles. Dualising, we get a resolution

V ∨ : · · · → V ∨r+1 → V ∨r → · · · → V ∨0 → OA → 0

of OA on the left. The first hypercohomology spectral sequence of the complex V ∨ ⊗ P for the

functor p2,∗ provides an exact sequence

H : · · · → Rgp2∗(V
∨
r ⊗ P)→ Rgp2∗(V

∨
r−1 ⊗ P)→ · · · → Rgp2∗(V

∨
0 ⊗ P)→ ε∨∗(ω

∨
A/S)→ 0.

Now endow the vector bundles Vr with conjugation-invariant hermitian metrics. The line bundle

ωA/S is endowed with its L2-metric. This metric does not depend on the choice of λ. This follows

from the explicit formula for the L2-metric on Hodge cohomology given in [38, Lemma 2.7]. The

arithmetic Riemann-Roch [22] in higher degrees applied to P and p2 is the identity

(−1)g ĉh(
∑
r>0

(−1)rRgp2∗(V
∨
r ⊗ P))−

∑
r>0

(−1)rT (λ, V
∨
r ⊗ P) +

∫
p2

Td(Tp2) ch(P)ηV̄ ∨

= p2,∗(T̂d(Tp2)ĉh(P))−
∫
p2

ch(P)R(Tp2) Td(Tp2)

in ĈH
•
(A∨)Q. Here ηV̄ ∨ is the Bott-Chern secondary class of V ∨, where OA has index 0. We

have identified λ with p∗1λ.

Notice first that

[
∫
p2

ch(P)R(Tp2) Td(Tp2)](g−1) = [
∫
p2

ch(P)R(Tπ) Td(Tπ)](g−1)

= [π∨,∗(ε∗(R(Tπ) Td(Tπ)))
∫
p2

ch(P)](g−1) = 0

where we used (7).

Write T (H) for the homogenous secondary class in the sense of Bismut-Burgos-Litcanu (see

[11, sec. 6]) of the resolution H. By its very definition, −T (H)(g−1) is a class of Green currents

for S∨0 (C) and it is shown in [11, Th. 10.28] that

[ĉh(
∑
r>0

(−1)rRgp2∗(V
∨
r ⊗ P))](g) = (S∨0 ,−T (H)(g−1)) (13)
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in ĈH
g
(A∨)Q and equation (7) shows that

[p2,∗(T̂d(Tp2)ĉh(P))](g) = [p2,∗(T̂d(Tπ)ĉh(P))](g)

= [p2,∗(ĉh(P))π∨,∗(ε∗(T̂d(Tπ)))](g) = p2,∗(ĉh(P))(g)

hence we are led to the equality

p2,∗(ĉh(P))(g) = (−1)g(S∨0 ,−T (H)(g−1))−
∑
r>0

(−1)rT (λ, V
∨
r ⊗ P)(g−1)

+ [
∫
p2

Td(Tp2) ch(P)ηV̄ ∨ ](g−1). (14)

This motivates the definition:

g0
A := −T (H)(g−1) + (−1)g+1

∑
r>0

(−1)rT (λ, V
∨
r ⊗ P)(g−1) + (−1)g[

∫
p2

Td(Tp2) ch(P)ηV̄ ∨ ](g−1)

(15)

Lemma 4.1. The class of currents g0
A does not depend on the resolution V , nor on the metrics

on the bundles Vr, nor on the translation invariant Kähler form λ.

Proof. We first prove that the class of currents g0
A does not depend on V and that it does not

depend on the hermitian metrics or on the bundles Vr.

Suppose that there is a second resolution V ′ dominating V :

0 0 0 0

V ′ : 0 > OA
∨

> V ′0

∨
> · · · > V ′r

∨
> V ′r+1

∨
> · · ·

V : 0 > OA

Id
∨

> V0

∨
> · · · > Vr

∨
> Vr+1

∨
> · · ·

Q : 0
∨

> Q0

∨
> · · · > Qr

∨
> Qr+1

∨
> · · ·

0
∨

0
∨

0
∨
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By assumption the complex Q is exact and we assume that its objects are π∗-acyclic. We endow

everything with hermitian metrics. We shall write H′ for the exact sequence

H′ : · · · → Rgp2∗(V
′,∨
r ⊗ P)→ Rgp2∗(V

′,∨
r−1 ⊗ P)→ · · · → Rgp2∗(V

′,∨
0 ⊗ P)→ ε∨∗(ω

∨
A/S)→ 0.

In order to emphasize the dependence of g0
A on the resolution V together with the collection of

hermitian metrics on the Vr, we shall write g0
V

:= g0
A,V instead of g0

A. Recall that η
V
∨ is the Bott-

Chern secondary class of the sequence V ∨, with OA sitting at the index 0. We shall accordingly

write η
V
′,∨ for the Bott-Chern secondary class of the sequence V

′,∨, with OA sitting at the index

0.

By definition, we have

(−1)g(g0
V
− g0

V
′) = (−1)g+1T (H)(g−1) −

∑
r>0

(−1)rT (λ, V
∨
r ⊗ P)(g−1) + [

∫
p2

Td(Tp2) ch(P)ηV̄ ∨ ](g−1)

− (−1)g+1T (H′)(g−1) +
∑
r>0

(−1)rT (λ, V
′,∨
r ⊗ P)(g−1) − [

∫
p2

Td(Tp2) ch(P)ηV̄ ′,∨ ](g−1).

Let now

Cr : 0→ Q∨r ⊗ P → V ∨r ⊗ P → V
′,∨
r ⊗ P → 0

be the natural exact sequence. All the bundles appearing on Cr are endowed with natural hermi-

tian metrics. By the symmetry formula [4, Th. 2.7, p. 271], we may compute

T (H)− T (H′) = c̃h(Rgπ∗(Q
∨ ⊗ P))−

∑
r>0

(−1)rc̃h(Rgπ∗(Cr)).

On the other hand, the anomaly formula [6, Th. 3.10, p. 670] tells us that∑
r>0

(−1)rT (λ, V
∨
r ⊗ P)−

∑
r>0

(−1)rT (λ, V
′,∨
r ⊗ P)

=
∑
r>0

(−1)rT (λ,Q
∨
r ⊗ P) + (−1)g

∑
r>0

(−1)rc̃h(Rgπ∗(Cr))−
∫
p2

∑
r>0

(−1)r Td(Tp2)c̃h(Cr)

and ∑
r>0

(−1)rT (λ,Q
∨
r ⊗ P) =

∫
p2

Td(Tp2)c̃h(Q
∨ ⊗ P)− (−1)g c̃h(Rgπ∗(Q

∨ ⊗ P)).

Furthermore the symmetry formula [4, Th. 2.7, p. 271] again implies that∫
p2

Td(Tp2)ηV̄ ′,∨ ch(P)−
∫
p2

Td(Tp2)ηV̄ ∨ ch(P)

= −
∫
p2

Td(Tp2)c̃h(Q
∨ ⊗ P) +

∫
p2

∑
r>0

(−1)r Td(Tp2)c̃h(Cr).
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Putting everything together, we see that

(−1)g(g0
V
− g0

V
′) =

[
− (−1)g c̃h(Rgπ∗(Q

∨ ⊗ P)) + (−1)g
∑
r>0

(−1)rc̃h(Rgπ∗(Cr))

− (−1)g
∑
r>0

(−1)rc̃h(Rgπ∗(Cr)) +
∫
p2

∑
r>0

(−1)r Td(Tp2)c̃h(Cr)

−
∫
p2

Td(Tp2)c̃h(Q
∨ ⊗ P) + (−1)g c̃h(Rgπ∗(Q

∨ ⊗ P))

+
∫
p2

Td(Tp2)c̃h(Q
∨ ⊗ P)−

∫
p2

∑
r>0

(−1)r Td(Tp2)c̃h(Cr)
](g−1)

= 0.

Homological algebra tells us that there always exists a resolution dominating simultaneously two

other ones. Furthermore, we might assume that this resolution satisfies the above conditions of

π∗-acyclicity (see [30, chap XX, par. 3, proof of Th. 3.5, p. 773]). Hence we have proven that g0
V

does not depend on V and that it does not depend on the hermitian metrics on the bundles Vr.

We shall now prove that g0
A does not depend on the choice of λ. So let λ′ be another Kähler

fibration, which is translation invariant on the fibres. To emphasize the dependence of g0
A on λ,

let us write g0
A := g0,λ. Write Hλ (resp. Hλ′) for the sequence H together with the hermitian

metrics induced by λ (resp. λ′).

We compute as before

(−1)g(g0,λ − g0,λ′)

= (−1)g+1T (Hλ
)(g−1) −

∑
r>0

(−1)rT (λ, V
∨
r ⊗ P)(g−1) + [

∫
p2

Td(Tp2, λ) ch(P)ηV̄ ∨ ](g−1)

− (−1)g+1T (Hλ′
)(g−1) +

∑
r>0

(−1)rT (λ′, V
∨
r ⊗ P)(g−1) − [

∫
p2

Td(Tp2, λ
′) ch(P)ηV̄ ∨ ](g−1).

We compute

T (Hλ′
)− T (Hλ

) = −
∑
r>0

(−1)rc̃h(Rgπ∗(V
∨
r ⊗ P), λ′, λ)

and by the anomaly formula [6, Th. 3.10, p. 670]

∑
r>0

(−1)rT (λ′, V
∨
r ⊗ P)−

∑
r>0

(−1)rT (λ, V
∨
r ⊗ P)

= (−1)g
∑
r>0

(−1)rc̃h(Rgπ∗(V
∨
r ⊗ P), λ′, λ)−

∫
p2

∑
r>0

(−1)rT̃d(λ′, λ) ch(V
∨
r ⊗ P).
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Now notice that by the Leibniz formula (see [42, 6.2, (7)] for details)∫
p2

(
Td(Tp2, λ)− Td(Tp2, λ

′)
)

ch(P)ηV̄ ∨ = −
∫
p2

ddc(T̃d(λ′, λ)) ch(P)ηV̄ ∨

= −
∫
p2

T̃d(λ′, λ)ddc(ch(P)ηV̄ ∨) =
∑
r>0

(−1)r
∫
p2

T̃d(λ′, λ) ch(V
∨
r ⊗ P)−

∫
p2

T̃d(λ′, λ) ch(P).

Now, by the projection formula, since λ and λ′ are translation invariant, we have∫
p2

T̃d(λ′, λ) ch(P) = ε∨,∗(T̃d(λ′, λ))
∫
p2

ch(P)

and by the formula (7) we have [ε∨,∗(T̃d(λ′, λ))
∫
p2

ch(P)](g−1) = 0. Assembling everything, we

get that g0,λ − g0,λ′ = 0. �

4.1.2 End of proof of 1.3.1

We keep the notation of the last subsection. By construction, the class of currents g0
A has the

property that

g0
A|A∨(C)\S∨0 (C) = (−1)g+1T (λ,P0

)(g−1) (16)

in Ãg−1,g−1(A∨\S∨0 ) and contemplating equation (13), we see that the elements of g0
A are Green

currents for S∨0 . Looking at the equation (14) we see that g0
A satisfies (a) and (b) in Theorem 1.1.

Now we want to prove that

g0
A = [n]∗g

0
A (17)

for all n > 2.

Fix n > 2. We claim that to prove equation (17), we may assume that ker [n]A is a constant

diagonalisable subgroup-scheme of A. Indeed, both sides of equation (17) depend on A∨C only.

In proving equation (17), we thus may (and do) replace R by its fraction field Frac(R). We

may also assume without restriction of generality that S is connected, hence integral (since S

is regular by assumption). Now let S ′ be the normalisation of S in the composite of the field

extensions of the function field κ(S) of S, which are defined by the residue fields of the n-torsion

points in the generic fibre Aκ(S) of A. Then b : S ′ → S is finite (see [23, II, 6.3.10]) and étale

(see [39, Cor. 20.8, p. 147]). Since [n]A is étale, the group scheme of n-torsion points on AS′
is then a constant group scheme. If we again replace S ′ by a finite étale cover, we may assume
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that Γ(S ′,OS′) contains the n-th roots of 1 and the group scheme of n-torsion points on AS′ then

become diagonalisable (and constant).

Now, by the projection formula the pull-back morphism b∗ : Ãg−1,g−1(A∨R) → Ãg−1,g−1(A∨S′,R) is

injective. Furthermore, since an étale finite morphism is a local isomorphism in the category

of complex manifolds, we have b∗([n]∗g
0
A) = [n]∗(b

∗g0
A). For the same reason, we also have

b∗g0
A = g0

AS′ .

Lemma 4.2. There is an isometric isomorphism

[n]∗OA '
⊕

M∈A∨[n](S)

M

where the left-hand side is endowed with its L2-metric and the direct summands on the right-hand

side are endowed with the metric induced by the Poincaré bundle.

Proof. Let us denote by FA : Db(A) → Db(A∨) the Fourier-Mukai transformation. If X is

a scheme, the category Db(X) is a full subcategory of the category D(X) derived from the

category of sheaves in OX-modules. Its objects are the complexes with a finite number of non-

zero homology sheaves, all of which are coherent. The functor FA is given by the formula

K• 7→ Rp2,∗(p
∗
1K
• ⊗ P).

It can be proven that in our situation, there is a natural isomorphism of functors

FA∨ ◦ FA(·) '
(
([−1]∗(·))⊗ ω∨A

)
[−g]

(here we have identified A with (A∨)∨) and

FA ◦ [n]∗(·) ' [n]∗ ◦ FA(·).

See [32] for this. Now we compute

FA∨ ◦ FA([n]∗(OA)) ' [n]∗(OA)⊗ ω∨A[−g] ' FA∨ ◦ [n]∗(FA(OA))

' FA∨([n]∗
(
ε∨∗ (ε

∨,∗(ω∨A))[−g]
)
) ' πA,∗(PA|A×Sker [n]A∨

)⊗ ω∨A[−g]

and we thus obtain a canonical isomorphism

[n]∗OA '
⊕

M∈A∨[n](S)

M. (18)
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Now we make a different computation. Let G be a finite group such that GS ' ker [n]A. Let

L := Γ(S,OS). If χ : G → L∗ is a character of G we let ([n]∗OA)χ be the locally free subbundle

of [n]∗OA which is the largest subbundle S of [n]∗O such that the action of G on S is given by

multiplication by χ. Since GL is a diagonalisable group scheme over L, this gives a direct sum

decomposition

[n]∗OA = ⊕χ([n]∗OA)χ. (19)

Now we use the equivariant form of Bismut’s relative curvature formula (see [7]). Let a ∈ G be

any non-zero element. Since the fixed point scheme of a on A is empty, we get

cha([n]∗(OA)) = 0. (20)

Here cha(·) is the equivariant Chern character form associated to the action of a. See [7] for

details. The non-equivariant relative curvature formula gives

ch([n]∗(OA)) = rk([n]∗OA). (21)

From the equations (20) and (21) and the fact that rk([n]∗OA) = #G, we deduce (by finite

Fourier theory) that all the ([n]∗OA)χ are of rank 1 and that c1(([n]∗OA)χ) = 0, where ([n]∗OA)χ

is endowed with the metric induced by [n]∗OA.

A completely similar computation using the relative geometric fixed point formula (see [1]) shows

that each line bundle ([n]∗OA)χ is actually a torsion line bundle. Notice also that since G acts by

isometries on OA, the direct sum decomposition (19) is an orthogonal direct sum.

Now notice that since [n] is finite and flat there is an isometric equivariant isomorphism

ε∗([n]∗OA) ' OGA

where OGA is endowed with the G-action induced by the action of G on itself.

This shows that there exist isometric rigidifications ε∗(([n]∗OA)χ) ' OS.

Summing up the discussion of the previous paragraphs, we see that there exists an isometric

isomorphism of vector bundles

[n]∗OA = ⊕χ([n]∗OA)χ (22)

where the direct sum is orthogonal and where each ([n]∗OA)χ is a torsion line bundle, which is

isometrically rigidified and which carries a hermitian metric, whose curvature form vanishes.
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Now consider the isomorphism of vector bundles

⊕
χ

([n]∗OA)χ '
⊕

M∈A∨[n](S)

M (23)

induced by the isomorphisms (18) and (22).

We shall need the

Claim. LetM and L be torsion line bundles onA. If there is a non-zero morphism of line bundles

(without rigidification) L →M then L andM are isomorphic.

This follows from the fact that the Picard functor of A/S is representable by a scheme, which is

separated over S, together with the fact that a non-trivial torsion bundle on an abelian variety has

no global sections. Details are left to the reader.

The claim shows that the isomorphism (23) send each ([n]∗OA)χ into exactly oneM∈ A∨[n](S)

and that this morphism is an isomorphism of line bundles. After possibly rescaling the isomor-

phism ([n]∗OA)χ 'M by an element of Γ(S,O∗S), we obtain an isomorphism ([n]∗OA)χ 'M of

rigidified line bundles. Since both ([n]∗OA)χ andM are endowed with the unique metrics, whose

curvature form is translation invariant on the fibres of A(C)/S(C) and which are compatible with

the given rigidifications, this implies that this is an isometric isomorphism. This completes the

proof of the lemma. �

As at the beginning of the proof of assertion 1 in Theorem 1.2, we have a diagram

A×S A∨
[n]× Id

> A×S A∨ > A∨

A×S A∨
Id× [n]

∨
> A∨
[n]
∨

such that

(Id× [n])∗P ' ([n]× Id)∗P

and such that the outer square is cartesian. Write q := p2 ◦ ([n] × Id). To clarify further compu-
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tations, write R•p2,∗(V
∨ ⊗ P) for H. We now compute

(−1)g[n]∗g0
A = [n]∗

[
(−1)g+1T (R•p2,∗(V

∨ ⊗ P))−
∑
r>0

(−1)rT (λ, V
∨
r ⊗ P) +

∫
p2

Td(Tp2) ch(P)ηV̄ ∨
]

= (−1)g+1T (R•q∗(V
∨ ⊗ (Id× [n])∗P))−

∑
r>0

(−1)rT (λ, V
∨
r ⊗ (Id× [n])∗P)

+
∫
q

Td(Tq) ch((Id× [n])∗P)ηV̄ ∨

= (−1)g+1T (R•q∗(V
∨ ⊗ ([n]× Id)∗P))−

∑
r>0

(−1)rT (λ, V
∨
r ⊗ ([n]× Id)∗P)

+
∫
q

Td(Tq) ch(([n]× Id)∗P)ηV̄ ∨

In view of Lemma 4.1, we may replace V by [n]∗V A and λ by [n]∗λA in the string of equalities

(24) without changing its truth-value. Thus

(−1)g[n]∗g0
A = (−1)g+1T (R•q∗(([n]× Id)∗(V ∨ ⊗ P)))−

∑
r>0

(−1)rT ([n]∗λ, ([n]× Id)∗(V
∨
r ⊗ P))

+
∫
q

Td(Tq)([n]× Id)∗(ch(P)ηV̄ ∨)

(∗)
= (−1)g+1T (R•p2,∗(([n]× Id)∗(O)⊗ V ∨ ⊗ P))−

∑
r>0

(−1)rT (([n]× Id)∗(O)⊗ V ∨r ⊗ P)

+
∫
p2

Td(Tp2)([n]× Id)∗(1) ch(P)ηV̄ ∨

(∗∗)
=

∑
τ∈A∨(S)

[
(−1)g+1T (R•p2,∗((Id× (τ ◦ π))∗(P)⊗ V ∨ ⊗ P))

−
∑
r>0

(−1)rT ((Id× (τ ◦ π))∗(P)⊗ V ∨r ⊗ P)

+
∫
p2

Td(Tp2) ch((Id× (τ ◦ π))∗(P)⊗ P)ηV̄ ∨
]

=
∑

τ∈A∨(S)

[
(−1)g+1τ∗(T (R•p2,∗(V

∨ ⊗ P)))− τ∗[
∑
r>0

(−1)rT (V
∨
r ⊗ P)]

+ τ∗[
∫
p2

Td(Tp2)(P)ηV̄ ∨ ]
]

= (−1)g
∑

τ∈A∨(S)

τ∗g
0
A.

The equality (*) is justified by the following

Proposition 4.3. The equality

T ([n]∗λ, ([n]× Id)∗(V
∨
r ⊗ P)) = T (([n]× Id)∗(O)⊗ V ∨r ⊗ P)
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is verified for any r.

Proof. (of Proposition 4.3). This is a direct consequence of [35, Intro., Th. 0.1]. �

For the equality (**), we used Lemma 4.2. We may now compute

[n]∗[n]∗g0
A = n2gg0

A = [n]∗(
∑

τ∈A∨(S)

τ∗g
0
A) = n2g[n]∗g

0
A

i.e.

g0
A = [n]∗g

0
A.

We have thus proven that g0
A satisfies the conditions (a), (b), (c) in Theorem 1.1. Thus g0

A = gA

and looking at equation (16), we see that we have almost concluded the proof of Theorem 1.3.1.

To finish, we quote [27], where it is shown that T (λ,P0
) = Td−1(ε∗Ω)γ for some real differential

form γ of type (g − 1, g − 1) on A∨\S∨0 . From the above, we see that γ = (−1)g+1gA and we are

done.

Proof of Theorem 1.2.5.

We revert to the hypotheses of the introduction and of Theorem 1.2.5 (in particular, we do not

suppose anymore that for some n > 2, the group scheme ker [n] is the constant group scheme).

To verify the equation gA×SB = π∗A∨(gA)∗π∗B∨(gB), it is sufficient to check that the class of currents

π∗A∨(gA) ∗ π∗B∨(gB) satisfies the axioms (a), (b), (c) in Theorem 1.1.

The fact that the elements of π∗A∨(gA)∗π∗B∨(gB) are Green currents for the unit section ofA∨×SB∨

follows immediately from the definitions. This settles (a).

To verify (b), we consider the commutative diagram

A× B ×A∨ × B∨

A×A∨ <
qAA∨ A×A∨ × B∨

pAA∨B∨

<
A∨ × B × B∨

rBB∨
>

pA∨BB∨

>
B × B∨

A∨ × B∨

pA∨B∨

∨ rA∨B∨<qA∨B∨ >

where the morphisms are the obvious ones. Notice that in this diagram, the square is cartesian.
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We compute

(−1)gA×BpA∨B∨,∗(ĉh(PA×B))gA×B

= (−1)(gA+gB)pA∨B∨,∗(ĉh(PA×B))(gA+gB)=(−1)(gA+gB)pA∨B∨,∗(ĉh(PA×B))

= (−1)(gA+gB)pA∨B∨,∗(ĉh(p∗AA∨B∨q
∗
AA∨PA) · ĉh(p∗A∨BB∨r

∗
BB∨PB))

= (−1)(gA+gB)rA∨B∨,∗(pA∨BB∨,∗(ĉh(p∗AA∨B∨q
∗
AA∨PA) · ĉh(p∗A∨BB∨r

∗
BB∨PB)))

= (−1)(gA+gB)rA∨B∨,∗(pA∨BB∨,∗(ĉh(p∗AA∨B∨q
∗
AA∨PA)) · ĉh(r∗BB∨PB))

= (−1)(gA+gB)rA∨B∨,∗(r
∗
A∨B∨(qA∨B∨,∗(ĉh(q∗AA∨PA))) · ĉh(r∗BB∨PB))

= (−1)(gA+gB)rA∨B∨,∗(ĉh(r∗BB∨PB)) · qA∨B∨,∗(ĉh(q∗AA∨PA))

= (−1)gAπ∗A∨(ĉh(PA)) · (−1)gBπ∗B∨(ĉh(PB)) = π∗A∨((S∨,A0 , gA)) · π∗B∨((S∨,B0 , gB))

= (S∨,A×B0 , π∗A∨(gB) ∗ π∗B∨(gB))

Here we have used the projection formula repeatedly, as well as the fact that direct images in

arithmetic Chow theory are compatible with base-change. We also used Theorem 1.2.2. (in the

second equation before last) and the definition of the intersection product in arithmetic Chow

theory (in the last equation). This settles (b).

To verify (c) we revert to the hypothesis made at the beginning of this subsection. In particular,

we suppose that for some n > 2, the scheme ker [n] is the constant group scheme in A. As

explained at the beginning of this subsection, this does not restrict generality. First notice that by

the definition of the symbols [n]∗ and [n]∗, we have

[n]∗[n]∗gA =
∑

τ∈A∨[n](S)

τ ∗(gA)

and thus by Theorem 1.1(c),

[n]∗gA =
∑

τ∈A∨[n](S)

τ ∗(gA) (24)

Of course, similar equations hold for gB. Notice also that equation (24) implies that [n]∗gA = gA,

as can be see by applying [n]∗ to both sides of equation (24) (see the calculation made after

Proposition 4.3). Thus the equation (24) is actually equivalent to the equation [n]∗gA = gA.
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Now we may compute

[n]∗A∨×B∨(π∗A∨(gA) ∗ π∗B∨(gB)) = π∗A∨([n]∗A∨(gA)) ∗ π∗B∨([n]∗B∨(gB))

= π∗A∨(
∑

τ∈A∨[n](S)

τ ∗(gA)) ∗ π∗B∨(
∑

τ∈B∨[n](S)

τ ∗(gB))

=
∑

τ∈A∨[n](S)×B∨[n](S)

τ ∗
(
π∗A∨(gA) ∗ π∗B∨(gB)

)

which settles (c). Here we used in the first line the fact that the ∗-product is naturally compatible

with finite étale pull-back.

4.2 Proof of 1.3.2

We shall apply the Adams-Riemann-Roch theorem in Arakelov geometry proven in [42, Th. 3.6].

LetM be the rigidified hermitian line bundle on A corresponding to σ. By assumption, there is

an isomorphismM⊗n ' OA of rigidified hermitian line bundles. Let k, l be two positive integers

such that k = l (mod n). Let Ω := ΩA/S. The theorem [42, Th. 3.6] implies that the identity

ψk(R•π∗M)− ψk(T (λ,M)) = θk(ε∗Ω)−1R•π∗(M
⊗k

)− ch(θk(ε∗Ω)−1)T (λ,M⊗k
) (25)

holds in K̂0(S)[ 1
k
] and that the identity

ψl(R•π∗M)− ψl(T (λ,M)) = θl(ε∗Ω)−1R•π∗(M
⊗l

)− ch(θl(ε∗Ω)−1)T (λ,M⊗l
) (26)

holds in K̂0(S)[1
l
]. Here the symbols ψ∗(·) refer to the Adams operations acting on arithmetic K0-

theory; see [42, sec. 2 and before Th. 3.6] for the exact definition. For the definition of the symbol

θ∗(·), see [42, sec. 2]. In the following computations, we shall need the following properties of

these symbols. Define φt(·) to be the additive operator, which sends a differential form η of type

(r, r) to the differential form tr · η. It is proven in [42, Prop. 4.2] that θk(ε∗Ω) is a unit in K̂0(S)[ 1
k
]

and we have

ch(θk(ε∗Ω)) = krk(Ω) Td(ε∗Ω
∨
)φk(Td

−1
(ε∗Ω

∨
)) (27)

(and similarly for l instead of k). See [42, Lemma 6.11] for this. Secondly, if η ∈ Ã(SR), then we

have

ψk(η) = k · φk(η)
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in K̂0(S). In view of the fact that θk(ε∗Ω) is a unit in K̂0(S)[ 1
k
], we get the equation

ch(θk(ε∗Ω))ψk(R•π∗M)− ch(θk(ε∗Ω))ψk(T (λ,M)) = R•π∗(M
⊗k

)− T (λ,M⊗k
)

in K̂0(S)[ 1
k
] from equation (25). Similarly, we get

ch(θl(ε∗Ω))ψl(R•π∗M)− ch(θl(ε∗Ω))ψl(T (λ,M)) = R•π∗(M
⊗l

)− T (λ,M⊗l
)

in K̂0(S)[1
l
]. Since k = l (mod n), we obtain the equation

ch(θk(ε∗Ω))ψk(R•π∗M)− ch(θk(ε∗Ω))ψk(T (λ,M))

= ch(θl(ε∗Ω))ψl(R•π∗M)− ch(θl(ε∗Ω))ψl(T (λ,M))

in K̂0(S)[ 1
kl

]. In view of equation (27) and of the fact that Rrπ∗M = 0 for all r > 0, this translates

to the equation

kg Td(ε∗Ω
∨
)φk(Td

−1
(ε∗Ω

∨
))ψk(T (λ,M)) = lg Td(ε∗Ω

∨
)φl(Td

−1
(ε∗Ω

∨
))ψl(T (λ,M))

in K̂0(S)[ 1
kl

]. Recall that in [27] it is shown that T (λ,M) = Td−1(ε∗Ω)γ, where γ is a real

differential form of type (g − 1, g − 1) on S. So we may rewrite

kg+1 Td(ε∗Ω
∨
)φk(Td

−1
(ε∗Ω

∨
))φk(Td−1(ε∗Ω))φk(γ)

= lg+1 Td(ε∗Ω
∨
)φl(Td

−1
(ε∗Ω

∨
))φl(Td−1(ε∗Ω))φl(γ) (28)

Furthermore

Lemma 4.4. We have Td−1(ε∗Ω
∨ ⊕ ε∗Ω) = 1.

Proof. We may (and do) assume that R = C. Consider the relative Hodge extension

0→ R0π∗(Ω)→ H1
dR(A/S)→ R1π∗(OA)→ 0 (29)

where H1
dR(A/S) := R1π∗(Ω

•
A/S) is the first relative de Rham cohomology sheaf. The sequence

(29) is the expression of the filtration on R1π∗(Ω
•
A/S), which comes from the relative Hodge to

de Rham spectral sequence. This spectral sequence is the first hypercohomology spectral se-

quence of the relative de Rham complex Ω•A/S and it degenerates by [13, Prop. 5.3]. The relative
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form of the GAGA theorem shows that there is an isomorphism of holomorphic vector bundles

H1
dR(A/S)(C) ' (R1π(C)∗C)⊗C OS(C) (see [14, p. 31]) and via this isomorphism we endow

H1
dR(A/S)(C) with the fibrewise Hodge metric, whose formula is given in [38, before Lemma

2.7]. Since the metric on H1
dR(A/S)(C) is locally constant by construction, the curvature matrix

of the hermitian vector bundleH1
dR(A/S)(C) ' (R1π(C)∗C)⊗C OS(C) vanishes. Now the formula

in [38, Lemma 2.7] shows that in the sequence (29), the L2-metric on the first term corresponds

to the induced metric and the L2-metric on the end term corresponds to the quotient metric. We

now view the sequence (29) as a sequence of hermitian vector bundles with the metrics de-

scribed above. Using [36, Th. 3.4.1], we see that the secondary class T̃d of the sequence (29)

is ddc-closed. Thus

Td(R1π∗(OA, L2)⊕ R0π∗(Ω, L
2)) = Td((H1

dR(A/S),Hodge metric)) = 1.

Now notice that by relative Lefschetz duality for Hodge cohomology (see [13, Lemme 6.2]) and

Grothendieck duality, there is an isomorphism ofOS-modules φλ : R1π∗(OA)
∼−→ R0π∗(Ω)∨, which

is dependent on λ. To describe it, let S = SpecC. Under the Hodge-de Rham splitting of the

sequence (29), the morphism φλ is given by the formula

ω 7→ ω ∧ λg−1 7→
∫
A

(ω ∧ λg−1) ∧ (·)

(notice that this formula does actually not depend on the splitting). Now comparing the last

formula with the formula for the Hodge metric in [38, before Lemma 2.7], we see that, up to a

constant factor, φλ induces an isometry between R1π∗(OA, L2) and the dual of the hermitian

vector bundle R0π∗(Ω, L
2). To complete the proof, notice that since the volume of the fibres of

π(C) is locally constant (by the assumption on λ), the natural isomorphism of vector bundles

R0π∗(Ω, L
2) ' ε∗Ω is an isometry up to a locally constant factor. Hence the Chern forms of

R0π∗(Ω, L
2) and ε∗Ω are the same. This completes the proof. �

Together with Lemma 4.4, we see that (28) gives the identity

k2g Td(Ω
∨
)γ = l2g Td(Ω

∨
)γ

or in other words

(k2g − l2g)T (λ,M) = 0 (30)
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in K̂0(S)[ 1
kl

].

We shall now show that equation (30) implies the identity

2g · n ·N2g · T (λ,M) = 0 (31)

in K̂0(S). For this consider the following combinatorial lemma.

Lemma 4.5. Let G be an abelian group, written additively. Let c > 1 and let α ∈ G. Suppose that

for all k, l > 0 such that k = l (mod n), we have

(lc − kc) · α = 0

in G[ 1
kl

]. Then

order(α) | 2 · n · c · [
∏

p prime, p-n, (p−1)|c
p]

Proof. Rephrasing the hypotheses of the lemma, we find that for any k, l > 0 such that k =

l (mod n), there exist integers a, b > 0 (depending on the couple (k, l)) such that:

kalb(lc − kc) · g = 0. (32)

For any (k, l) as above, we will denote by γ the integer such that l = k + γn. In what follows, p

will be a prime dividing order(α) and we will write δp (or in short δ if no confusion can occur) the

positive valuation vp(order(α)).

We deduce from equation (32) that:

pδ | kalb(lc − kc).

From now on, k and l will be chosen such that k, l 6= 0 (mod p), this implying in particular that

the classes of k and l in Z/pδZ are invertible. We thus get:

pδ | (lc − kc)

or equivalently:

(l/k)c = 1 (mod pδ)
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in (Z/pδZ)∗. We will denote by C ⊂ (Z/pδZ)∗ the set of the classes (l/k) with l and k as above.

The restriction of the map ϕ : x 7→ xc to C is then identically equal to 1. In what follows, in order

to bound δ, we determine the set C. We must distinguish between two cases.

Case 1. The prime p doesn’t divide n.

Taking k = n, we have (l/k) = (k+γn)/k = 1 +γ for all the integers γ satisfying (1 +γ)∧p = 1.

We deduce from this that necessarily:

C = (Z/pδZ)∗.

We now need the following well-known group isomorphisms, which we recall for the sake of the

exposition (the group laws are multiplicative on the left-hand side and additive on the right-hand

side):

• If p 6= 2, (Z/pδZ)∗ ' Z/pδ−1(p− 1)Z.

• If p = 2, (Z/2Z)∗ ' {0}, (Z/4Z)∗ ' Z/2Z and for δ > 3, (Z/2δZ)∗ ' (Z/2Z)× (Z/2δ−2Z),

the projection on the first factor being the obvious reduction map to (Z/4Z)∗ ' Z/2Z.

Let’s then discuss the two subcases p 6= 2 and p = 2 separately.

If p 6= 2, the restriction of ϕ to C = (Z/pδZ)∗ ' Z/pδ−1(p − 1)Z is equal to 1 identically. On the

righten side, ϕ is the multiplication by c the class of c in Z/pδ−1(p − 1)Z. One must then have

c = 0, and thus:

(p− 1)pδ−1 | c,

i.e. the two conditions p− 1 | c and δp 6 1 + vp(c).

If p = 2, using the same argument as above, the discussion falls into three different subsubcases:

• δ2 = 1, no condition.

• δ2 = 2, we find that 2 | c.

• δ2 > 3, we get that 2 | c and 2δ2−2 | c, i.e. δ2 6 2 + v2(c).

Summing up those three subsubcases, we finally conclude that if c is odd then δ2 = 1 and if c is

even then δ2 6 2 + v2(c).
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Let’s now come to the:

Case 2. The prime p divide n.

Let’s define β := vp(n) > 1 and n′ := n/pβ and let’s suppose in addition that δ > β.

We compute in (Z/pβZ)∗

l/k = (k + γn)/k = 1 + γn/k = 1 + (γn′/k)pβ = 1

and thus the set C is contained in the kernel K of the reduction morphism:

(Z/pδZ)∗ −→ (Z/pβZ)∗.

The integer n′ being prime to p, its class in (Z/pδZ) is invertible and one can take k = n′. We

find that for any integer γ:

l/k = 1 + γn/n′ = 1 + γpβ

in (Z/pδZ)∗, this implying the set equality:

C = K.

We are thus left to determine K. Again, we will distinguish between two subcases:

If p 6= 2 we have:

#K = #(Z/pδZ)∗/#(Z/pβZ)∗ = pδ−1(p− 1)/pβ−1(p− 1) = pδ−β

from which we deduce first that K ' Z/pδ−βZ and then immediately that pδ−β | c, i.e.

δ 6 β + vp(c) = vp(n) + vp(c).

If p = 2, the discussion now falls into five different subsubcases.

• β = 1 and δ2 = 1, no condition.

• β = 1 and δ2 = 2, we find that 2 | c, i.e. c is even.

• β = 1 and δ2 > 3, then we get 2 | c and 2δ2−2 | c, i.e. δ2 6 2 + v2(c) with c being necessary

even.

To summarize those three first cases let’s write that when β = 1, if c odd then δ2 = 1 and if

c is even then δ2 6 2 + v2(c).
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• β = 2 and δ2 = 2, no condition.

• In all other cases, the kernel K is contained in (Z/2δ2−2Z) and as a consequence is cyclic.

We thus get:

#K = #(Z/2δ2Z)∗/#(Z/2βZ)∗ = 2δ2−1/2β−1 = 2δ2−β

and so 2δ2−β | c, from which we deduce:

δ2 6 β + v2(c) = v2(n) + v2(c).

In conclusion of the subcase p = 2, we find that:

δ2 6 v2(n) + v2(c) + w2,

with w2 = 1 if v2(n) = 1 and c is even, and w2 = 0 otherwise.

Putting everything together, we have finally proven that:

order(α) | F2 ×
∏

p prime, p 6=2, p doesn’t divide n, (p−1)|c
p1+vp(c) ×

∏
p prime, p6=2, p|n

pvp(n)+vp(c)

where the F2 factor is given by the following rules:

• if n and c are odd then F2 = 2,

• if n is odd and c is even then F2 = 22+v2(c),

• if n is even then F2 = 2v2(n)+v2(c)+w2 ; with w2 = 1 if v2(n) = 1 and c is even, and w2 = 0

otherwise.

The lemma’s statement is then a direct consequence of this (more precise) assertion. �

In view of Lemma 4.5, the set of identities (30) implies that the order of T (λ,M) in K̂0(S) divides

2 · n · 2g · [∏p prime, p-n, (p−1)|2g p].

Now use the notations of the last lemma. It is shown in [40, Appendix B] that the equality

2 · denominator[(−1)
c+2
2 Bc/c] = 2 ·

∏
p prime, (p−1)|c

pordp(c)+1 (33)

holds if c is even. This proves the identity (31) .
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To conclude the proof of Theorem 1.3.2, recall that there is an exact sequence

K1(A∨) −2regan−−−−→ ⊕p>0Ã
p,p(A∨R)

a→ K̂0(A∨)→ K0(A∨)→ 0

(see [21, Th. 6.2 (i)] for this).

5 The case of elliptic schemes

In this last section, we shall consider elliptic schemes and compare the conclusions of Theorems

1.1, 1.2 and 1.3 with classical results on elliptic units.

So suppose that A is of relative dimension 1, i.e. that A is an elliptic scheme over S. Suppose

also that the structural morphism S → SpecR is the identity on SpecR. Let σ ∈ Σ be an

embedding of R into C. There exists an isomorphism of complex Lie groups

A(C)σ := (A×R,σ C)(C) = C/(Z + Z · τσ) (34)

where τσ ∈ C lies in the upper half plane.

Proposition 5.1. (a) The restriction of gA∨ toA(C)σ = C/(Z+Z ·τσ)\{0} is given by the function

φ(z) = φA,σ(z) := −2log|e−z·η(z)/2sigma(z)∆(τσ)
1
12 |

(b) Endow C/(Z + Z · τσ) with its Haar measure of total measure 1. The function φ then defines

an L1-function on C/(Z + Z · τσ) and the restriction of gA∨ to A(C)σ is the current [φ] associated

with φ.

Here ∆(•) is the discriminant modular form, sigma(z) is the Weierstrass sigma-function asso-

ciated with the lattice [1, τσ] and η is the quasi-period map associated with the lattice [1, τσ],

extended R-linearly to all of C (see [43, I, Prop. 5.2] for the latter).

Proof. The formula (a) follows from Theorem 1.3.1 and the formula for the Ray-Singer analytic

torsion of a flat line bundle on an elliptic curve given in [41, Th. 4.1].

For statement (b), notice that there exists a Green form η of log type along 0 (see [19, Th. 1.3.5,

p.106]). In this situation η is a real-valued C∞ function on A(C)σ\{0}, which is locally and hence
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globally L1 on A(C)σ (because A(C)σ is compact). By definition the current [η] associated with

η is a Green current for 0 and by [19, Lemma 1.2.4], there exists a C∞ real-valued function f

on A(C)σ, such that gA∨ |A(C)σ = [η] + [f ] = [η + f ]. Now by construction the restriction of gA∨

to A(C)σ\{0} is given by the current associated with the restriction to A(C)σ\{0} of the locally

L1-function η+ f . Since η+ f and φ are both C∞ on A(C)σ\{0}, they must actually coincide on

A(C)σ\{0}. This proves (b). �

The distribution relations for gA∨ (i.e. Theorem 1.1.3) imply that the function φ(z) has the property

that ∑
w∈C/(Z+Z·τσ), n·w=z

φA,σ(w) = φA,σ(z).

for any n > 2 and z ∈ C/(Z + Z · τσ)\{0}. This also follows from the more precise distribution

relations given in [28, Th. 4.1, p. 43].

Now suppose that R is a Dedekind ring. We suppose given z ∈ A(S), whose image is disjoint

from the unit section and such that n·z = 0. Let zσ ∈ C/(Z+Z·τσ) be the element corresponding

to z. We compute from the definition that N2 = 24. Theorem 1.3.2 now implies that there exists

u ∈ R∗, which does not depend on σ ∈ Σ, such that

log|σ(u)| = 24 · n · φA,σ(zσ) (35)

In particular the real number

exp(24 · n · φA,σ(zσ))

is an algebraic unit. If R is the ring of integers of a number field, n has at least two distinct

prime factors and Σ = {σ, σ̄} then (35) is also a consequence of [28, Th. 2.2, p. 37]. Notice

that (35) overlaps with part of the reciprocity law for elliptic units, if AFrac(R) is assumed to have

complex multiplication by the ring of integers of an imaginary quadratic field (see [31, chap. 19,

par. 3, Th. 3]). Special instances of elliptic units were first (implicitly) constructed by Eisenstein

in his analytic proof of cubic and quartic reciprocity laws (cf. [18] and [16], [17]). For a thorough

historical discussion of Eisenstein’s contribution and additional references, see [33, §8].

Remark. Our proof of the fact that the real number exp(24 · n · φA,σ(zσ)) is an algebraic unit

shows that 24 naturally comes from a Bernoulli number via von Staudt’s theorem. Indeed, von

Staudt’s theorem is the main tool in the proof of (33). The proof of the fact that the number
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exp(24 · n · φA,σ(zσ)) (in fact even the number exp(12 ·n ·φA,σ(zσ))) is an algebraic unit, which is

given in [28, Th. 2.2, p. 37], does not seem to establish such a link.
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