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Abstract

We give a new proof of the Mordell-Lang conjecture in positive characteristic, in the

situation where the variety under scrutiny is a smooth subvariety of an abelian variety. Our

proof is based on the theory of semistable sheaves in positive characteristic, in particular

on Langer’s theorem that the Harder-Narasimhan filtration of sheaves becomes strongly

semistable after a finite number of iterations of Frobenius pull-backs.

1 Introduction

Let B be an abelian variety over an algebraically closed field F of characteristic p > 0. Let

Y be an irreducible reduced closed subscheme of B. Let Λ ⊆ B(F ) be a subgroup. Suppose

that Λ⊗Z Z(p) is a finitely generated Z(p)-module (here, as is customary, we write Z(p) for the

localization of Z at the prime p).

The Mordell-Lang conjecture for Y and B is the following statement.

Theorem 1.1 (Mordell-Lang conjecture for abelian varieties; Hrushovski [3]). Suppose that

Y ∩Λ is Zariski dense in Y . Then there is a projective variety Y ′ over a finite subfield Fpr ⊆ F

and a finite and surjective morphism h : Y ′F → Y/Stab(Y ).
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Here Stab(Y ) = StabB(Y ) is the translation stabilizer of Y . This is the closed subgroup scheme

of B, which is characterized uniquely by the fact that for any scheme S and any morphism

b : S → B, translation by b on the product B ×F S maps the subscheme Y × S to itself if and

only if b factors through StabB(Y ). Its existence is proven in [2, exp. VIII, Ex. 6.5 (e)].

Theorem 1.1 was first proven by Hrushovski in [3] using model-theoretic methods and other

proofs were given in [8], [12] and [1].

Remark. The formulation of the Mordell-Lang conjecture given in [3] (see also [8, Intro.])

is more involved than the formulation given here but the two formulations are equivalent (we

leave the verification of this equivalence as an exercise for the reader).

In the following article, we shall give a new proof of Theorem 1.1, under the the supplementary

assumption that Y is smooth over F and that F has transcendence degree 1 over Fp.
Our method of proof is based on the theory of semistable sheaves in positive characteristic,

in particular on Langer’s theorem that the Harder-Narasimhan filtration of sheaves becomes

strongly semistable after a finite number of iterations of Frobenius pull-backs (see Theorem 2.1

below).

Our method allows us to give an upper-bound for the generic degree of the morphism h in

Theorem 1.1 in terms of the Frobenius-stabilised slopes of the cotangent bundle of Y (see

Lemma 1.2 and Corollary 1.4 below). The possibility of obtaining such an upper-bound was

the main motivation for looking for the partial proof of Theorem 1.1 given here.

To describe our results precisely, we now switch notation. Let k0 be an algebraically closed

field of characteristic p > 0 and let U be a smooth curve over k0. Let A be an abelian scheme

over U and let X ↪→ A be a closed subscheme. We let K0 be the function field of U and let

A := AK0 (resp. X := XK0) be the generic fibre of A (resp. X ).

For all n > 0, we define

Critn(X ,A) := [pn]∗(J
n(A/U)) ∩ Jn(X/U).

Here Jn(•/U) refers to the n-th jet scheme of • over U . See [8, par. 2] for this and some

more explanations. The scheme Jn(A/U) is naturally a commutative group scheme over U and

[pn] refers to the multiplication-by-pn-morphism. The notation [pn]∗(J
n(A/U)) refers to the

scheme-theoretic image of Jn(A/U) by [pn].

There are natural morphisms ΛAn,n−1 : Jn(A/U) → Jn−1(A/U) and these lead to a projective
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system of U -schemes

· · · → Crit2(X ,A)→ Crit1(X ,A)→ X .

whose connecting morphisms are finite. See [8, par. 3.1] for all this. We let Excn(A,X ) ↪→ X be

the scheme-theoretic image of Critn(A,X ) in X . We let Critn(A,X) (resp. Excn(A,X) ↪→ X)

be the generic fibre of Critn(A,X ) (resp. Excn(A,X ) ↪→ X ).

Now fix once a for all an ample line bundle M on XK̄0
.

Lemma-Definition 1.2. Suppose that X is smooth and connected over K0 and that Stab(XK̄0
) =

0. Then µ̄min(ΩXK̄0
) > 0 and

DB(X) := p
sup{n∈N | H0(X,Fn,∗

X Ω∨
X/K0

⊗ΩX/K0
)6=0} 6

µ̄max(ΩXK̄0
)

µ̄min(ΩXK̄0
)

Here µ̄min(·) = µ̄min,M(·) (resp. µ̄max(·) = µ̄max,M(·)) refers to the Frobenius-stabilised minimal

(resp. maximal slope) with respect to M. See section 2 below for the definition.

Theorem 1.3. Suppose that X is smooth over U with geometrically connected fibres and suppose

that Stab(X) = 0. Consider the statements:

(a) For any n > 0 there is a Q = Q(n) ∈ Γ0 such that Excn(A,X+Q) ↪→ X is an isomorphism.

(b) For any closed point u0 ∈ U , there is an n0 = n0(u0) such that pn0 6 DB(X) and a finite

and surjective morphism of Ôu0-schemes

ι = ιu0 : X p−n0

u0
×k0 Ôu0 → XÔu0

of degree equal to pdim(X)n0.

Then (a) implies (b).

Here Uu0 is the spectrum of the local ring of U at u0 and Ûu0 is its completion. The notation

X+Q refers to the pushforward by the addition-by-Q morphism of the subscheme X of A. The

scheme Xu0 is the k0-scheme, which is the fibre of X at u0. The symbol X p−r

u0
refers to the scheme

obtained from Xu0 by composing the structure map of Xu0 with the n-th power Frob−1,◦n
k0

of
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the inverse of the absolute Frobenius morphism Frobk0 of Spec k0 (recall that Frobk0 is an

automorphism because k0 is perfect).

Notice that the morphism ι must be flat by ”miracle flatness” (see [7, Th. 23.1]), since both

source and target of ι are regular schemes. By the degree of ι, we mean as usual

deg(ι) := rk(ι∗(OX p−n0
u0

×k0
Ôu0

)),

noting that ι∗(OX p−n0
u0

×k0
Ôu0

) is a locally free sheaf, since ι is flat.

Let now Γ be a subgroup of A(K̄0). Suppose that

Γ = Divp(Γ0) := {γ ∈ A(K̄0) | ∃n ∈ N∗ : (n, p) = 1 & n · γ ∈ Γ0}

where Γ0 is a finitely generated subgroup of A(K0). In particular, Γ⊗Z(p) is a finitely generated

Z(p)-module.

Corollary 1.4. Suppose that XK̄0
∩ Γ is dense in XK̄0

. Suppose also that X is smooth over

K0.

Then there exists a smooth projective variety X ′ over k0 and a finite and surjective Ksep
0 -

morphism

h : X ′Ksep
0
→ (X/Stab(X))Ksep

0

such that

deg(h) 6 DB(X/Stab(X))dim(X/Stab(X)).

In particular, (X/Stab(X))Ksep
0

has a model over k0 if Ω(X/Stab(X))K̄0
is strongly semistable.

Remark. It seems likely that there are ”many” varieties with strongly semistable ample

cotangent bundle. Indeed, recall that the cotangent bundle ΩS of a smooth and projective

variety S over C is semistable with respect to det(ΩS), if det(ΩS) is ample. This is a consequence

of the main result of [11]. On the other hand, there is speculation (see for example [9] and

the references therein) that in many situations the reduction modulo a prime number p of a

semistable sheaf is strongly semistable for ”most” prime numbers p.

Notations and conventions. If Y is a scheme of characteristic p, we write FY : Y → Y for

the absolute Frobenius endomorphism of Y . The short-hand wrog refers to ”without restriction

of generality”.
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2 The geometry of vector bundles in positive character-

istic

Let L be an ample line bundle on a smooth and projective variety Y over an algebraically closed

field l0. If V is torsion free coherent sheaf on Y , we shall write

µ(V ) = µL(V ) = degL(V )/rk(V )

for the slope of V (with respect to L). Here rk(V ) is the rank of V , which is the dimension the

stalk of V at the generic point of Y . Furthermore,

degL(V ) :=

∫
X

c1(V ) · c1(L)dim(Y )−1.

Here c1(·) refers to the first Chern class with values in an arbitrary Weil cohomology theory and

the integral sign
∫
X

is a short-hand for the push-forward morphism to Spec l0 in that theory.

Recall that V is called semistable (with respect to L) if for every coherent subsheaf W of V ,

we have µ(W ) 6 µ(V ). The torsion free sheaf V is called strongly semistable if char(l0) > 0

and F ∗,nX V is semistable for all n > 0.

In general, there exists a filtration

0 = V0 ⊆ V1 ⊆ · · · ⊆ Vr−1 ⊆ Vr = V

of V by subsheaves, such that the quotients Vi/Vi−1 are all semistable and such that the slopes

µ(Vi/Vi−1) are strictly decreasing for i > 1. This filtration is unique and is called the Harder-

Narasimhan (HN) filtration of V . We shall write

µmin(V ) := inf{µ(Vi/Vi−1)}i>1

and

µmax(V ) := sup{µ(Vi/Vi−1)}i>1

An important consequence of the definitions is the following fact: if V and W are two torsion

free sheaves on Y and µmin(V ) > µmax(W ), then HomY (V,W ) = 0.

For more on the theory of semistable sheaves, see the monograph [4].

The following theorem will be a key input in our proof of Theorem 1.3. For the proof see [5, Th.

2.7].
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Theorem 2.1 (Langer). If V is torsion free coherent sheaf on Y and char(l0) > 0, then there

exists n0 > 0 such that F ◦n,∗X V has a strongly semistable HN filtration for all n > n0.

If V is a torsion free sheaf on Y and char(l0) > 0, we now define

µ̄min(V ) := lim
r→∞

µmin(F ◦r,∗Y V )/char(l0)r

and

µ̄max(V ) := lim
r→∞

µmax(F ◦r,∗Y V )/char(l0)r.

Note that Theorem 2.1 implies that the sequences µmin(F ◦r,∗Y V )/char(l0)r (resp. µmax(F ◦r,∗Y V )/char(l0)r)

become constant when r is sufficiently large, so the above definitions of µ̄min and µ̄max make

sense.

Lemma 2.2. Let V be a torsion free sheaf on Y . Suppose that V is globally generated and of

degree 0 with respect to L. Then there exists an isomorphism V ' O⊕rk(V )
Y .

Proof. Let φ : O⊕lY → V be a surjection, where l is chosen as small as possible. Suppose

that ker φ 6= 0 (otherwise the Lemma is proven). Let V0 = ker φ. Then µ(V0) = 0 and

furthermore, since O⊕lY is semistable, every semistable subsheaf of V0 has slope 6 0 and thus

V0 is also semistable. Now for any i ∈ {1, . . . , l}, let πi : V0 → OY be the projection on the

i-th coordinate. Choose i0 ∈ {1, . . . , l} so that πi0 is non-vanishing. Then πi0 is surjective

in codimension 2, because otherwise, the degree of the image of πi0 would be < 0, which

would contradict the semistability of V0. Now replace V0 be a non-zero semistable subsheaf of

kerπi0 and repeat the above reasoning, unless πi0 is an isomorphism outside a closed subset of

codimension at least 2. Continuing in the same way, we end up with a semistable torsion free

sheaf M0 ⊆ ker φ ⊆ O⊕l of rank 1, endowed with an arrow M0 → OY , which is an isomorphism

outside a closed subset of codimension at least 2. We thus obtain a complex

OY |Y \Y0 → O⊕lY |Y \Y0 → V |Y \Y0 ,

where Y0 is a closed subscheme of Y , which is of codimension at least 2. Since Y is normal,

the arrow OY |Y \Y0 → O⊕lY |Y \Y0 extends uniquely to all of Y . We thus obtain a surjection

O⊕lY /OY ' O
⊕l−1
Y → V . This contradicts the minimality of l and proves the lemma.
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Corollary 2.3. Let V be a torsion free sheaf. Suppose that V is globally generated. Then

V ' V0 ⊕OlY for some l > 0 and for some torsion sheaf V0 such that µ(V0) > 0.

Corollary 2.4. Let V be a vector bundle over Y . Suppose that

- for any surjective finite morphism φ : Y0 → Y , we have H0(Y0, φ
∗V ) = 0;

- V ∨ is globally generated.

Then for any surjective finite morphism φ : Y0 → Y , such that Y0 is smooth over l0, we have

µmin(φ∗V ∨) > 0. In particular, if char(l0) > 0 then µ̄min(V ∨) > 0.

Proof. The bundle V ∨ is globally generated so µmin(φ∗V ∨) > 0. Now to obtain a contradiction,

suppose that φ∗V ∨ has a non-zero semistable quotient Q of degree 0. Then we have φ∗V ∨ '
Q0 ⊕O⊕lY0

for some l > 0 by Corollary 2.3. This implies that φ∗V has a non-vanishing section,

which contradicts the assumptions.

The following elementary lemma is crucial to this article. The assumption that Y is smooth

over l0 is not used in the next lemma.

Lemma 2.5. Let

0→ V → W → N → 0

be an exact sequence of vector bundles on Y .

Suppose that W ' OlY for some l > 0.

Then for any dominant proper morphism φ : Y0 → Y , where Y0 is integral, the morphism

φ∗ : H0(Y, V )→ H0(Y0, φ
∗V )

is an isomorphism.

Proof. We have a commutative diagram

0 > H0(Y, V ) > H0(Y,W ) > H0(Y,N)

0 > H0(Y0, φ
∗V )

φ∗
∨

> H0(Y0, φ
∗W )

φ∗
∨

> H0(Y0, φ
∗N)

φ∗
∨

In this diagram, all three vertical arrows are injective by construction. Furthermore, the middle

vertical arrow is an isomorphism, also by construction. The five lemma now implies that the

left vertical arrow is surjective.
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In the following lemma, the smoothness assumption on Y is not used either. The proof of the

following lemma is extracted from [6, p. 49, before Prop. 3], where the argument is attributed

to Moret-Bailly.

Lemma 2.6 (Moret-Bailly). Suppose given a vector bundle V on Y with the following prop-

erty: if φ : Y0 → Y is a surjective and finite morphism and Y0 is irreducible, then we have

H0(Y0, φ
∗V ) = 0.

Let f : T → Y be a torsor under V and let Z ↪→ T be a closed immersion. Suppose that

f |Z : Z → Y is finite and surjective and that Z is irreducible.

Then f |Z is generically purely inseparable.

Proof. Let f : T ×Y T → Y . We consider the scheme T ×Y (T ×Y T ). Via the projection on

the second factor T ×Y T , this scheme is naturally a torsor under the vector bundle f ∗V . This

torsor has two sections:

- the section σ1 defined by the formula t1 × t2 7→ t1 × (t1 × t2);

- the section σ2 defined by the formula t1 × t2 7→ t2 × (t1 × t2).

Since T ×Y (T ×Y T ) is a torsor under f ∗V , there is a section s ∈ H0(T ×Y T, f ∗V ) such that

σ1 + s = σ2 and by construction s(t1 × t2) = 0 iff t1 = t2. In other words, s vanishes precisely

on the the diagonal of T ×Y T .

Consider now the closed immersion Z ×Y Z ↪→ T ×Y T . Suppose for contradiction that f |Z is

not generically purely inseparable. Then there is an irreducible component C of Z×Y Z, which

is not contained in the diagonal and such that f |C : C → Y is dominant and hence surjective.

Indeed, if f |Z is not generically purely inseparable, then there is by constructibility an open

subset U ⊆ Y , such that for any closed point u ∈ U , there is a point P (u) ∈ Zu×uZu such that

P (u) is not contained in the diagonal of Zu ×u Zu. Hence there is an irreducible component

of Z ×Y Z, which does not coincide with the diagonal and furthermore there is one, which

dominates U for otherwise not every P (u) would be contained in an irreducible component of

Z ×Y Z.

Now consider f |∗CV . By construction the section s|C ∈ H0(C, f |∗CV ) does not vanish. This

contradicts the assumption on V .

We now quote a result proved in [10, exp. 2, Prop. 1].
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Proposition 2.7 (Szpiro, Lewin-Ménégaux). Suppose that char(l0) > 0. If H0(Y, F ∗Y (V ) ⊗
ΩY/l0) = 0 then the natural map of abelian groups

H1(Y, V )→ H1(Y, F ∗Y V )

is injective.

Corollary 2.8. Suppose that char(l0) > 0. Let V be a vector bundle over Y . Suppose that

- for any surjective finite morphism φ : Y0 → Y , we have H0(Y0, φ
∗V ) = 0;

- V ∨ is globally generated.

Then there is an n0 ∈ N such that H0(S, F n,∗
Y (V )⊗ ΩY/l0) = 0 for all n > n0.

Furthermore, let T → Y be a torsor under F n0,∗
Y (V ). Let φ : Y ′ → Y be a proper surjective

morphism and suppose that Y ′ is irreducible. Then the map

H1(Y, F n0,∗
Y (V ))→ H1(Y ′, φ∗(F n0,∗

Y (V )))

is injective.

Proof. (of Corollary 2.8). The existence of n0 is a consequence of Corollary 2.4 and Theorem

2.1.

For the second assertion, by Lemma 2.6, we may assume wrog that φ is generically purely

inseparable. Let H be the function field of Y and let H ′|H be the (purely inseparable) function

field extension given by φ. Let `0 > 0 be sufficiently large so that the extension H ′|H factors

through the extension Hp−`0 |H. We may suppose wrog that Y ′ is a normal scheme, since we

may replace Y ′ by its normalization without restriction of generality. On the other hand the

morphism F `0
Y : Y → Y gives a presentation of Y as its own normalization in Hp−`

. Thus there is

a natural factorization Y → Y ′
φ→ Y , where the composition of the two arrows is given by F `0

Y .

Now by Proposition 2.7 there is a natural injection H1(Y, F n0,∗
Y (V )) ↪→ H1(Y, F `0,∗

Y (F n0,∗
Y (V ))).

Hence the torsor T is not trivialized by F `0
Y and thus cannot be trivialized by φ.

3 Proof of Lemma 1.2, Theorem 1.3 and Corollary 1.4

First notice the important fact that we have H0(X,Ω∨X) = 0. The follows from the fact that

Stab(X) = 0.
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Proof of Lemma 1.2. Notice that

H0(X,F ◦n,∗X Ω∨X/K0
⊗ ΩX/K0) ' HomX(F ◦n,∗X ΩX/K0 ,ΩX/K0)

and furthermore, for any r > 0, there is a natural inclusion

HomX(F ◦n,∗X ΩX/K0 ,ΩX/K0) ⊆ HomX(F
◦(n+r),∗
X ΩX/K0 , F

◦r,∗
X ΩX/K0)

given by pulling back morphisms of vector bundles by F ◦r,∗X . Now choose r sufficiently large so

that F ◦r,∗X ΩX/K0 has a Harder-Narasimhan filtration with strongly semistable quotients. This

is possible by Theorem 2.1. Then we have

µmin(F
◦(n+r),∗
X ΩX/K0) = pn · µmin(F ◦r,∗X ΩX/K0)

and thus HomX(F
◦(n+r),∗
X ΩX/K0 , F

◦r,∗
X ΩX/K0) = 0 if

pn · µmin(F ◦r,∗X ΩX/K0) > µmax(F ◦r,∗X ΩX/K0).

Furthermore, by Corollary 2.4 and Lemma 2.5, we have µmin(F ◦r,∗X ΩX/K0) > 0. Hence we will

have

sup{pn | n ∈ N & H0(X,F n,∗
X Ω∨X/K0

⊗ ΩX/K0) 6= 0} 6
µmax(F ◦r,∗X ΩX/K0)

µmin(F ◦r,∗X ΩX/K0)
=
µ̄max(ΩX/K0)

µ̄min(ΩX/K0)
.

Proof of Theorem 1.3. Let Q ∈ A(U). Consider the infinite commutative diagram of

X -schemes

. . . > Crit2(X+Q,A) > Crit1(X+Q,A) > X

. . . > J2(X/U)
∨

∩

> J1(X/U)
∨

∩

> X

=
∨

For any n > 0, we shall write

. . . > Crit2(X+Q,A)(pn) > Crit1(X+Q,A)(pn) > X

. . . > J2(X/U)(pn)
∨

∩

> J1(X/U)(pn)
∨

∩

> X

=
∨

for the diagram obtained by pulling back the original diagram by F n,∗
X . Let

n0 := sup{n ∈ N∗ | H0(X,F n,∗
X Ω∨X/K0

⊗ ΩX/K0) 6= 0}.
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Suppose that (a) in Theorem 1.3 is satisfied. We shall study diagram (3) in the case where

n = n0. Now fix any m > 1 and choose some Q ∈ A(U) such that Excm(A,X+Q) ↪→ X is an

isomorphism. This is possible by assumption. By construction, the morphism

Critm(X+Q,A)(pn0 ) → X

is then surjective. Choose an irreducible component Critm(X+Q,A)
(pn0 )
0 ↪→ Critm(X+Q,A)(pn0 ),

which dominates X . Endow Critm(X+Q,A)
(pn0 )
0 with its induced reduced scheme structure

and for any l < m, let Critl(X+Q,A)
(pn0 )
0 ↪→ Critl(X+Q,A)(pn0 ) be the irreducible component

obtained by direct image from Critm(X+Q,A)
(pn0 )
0 .

Now notice that by Corollary 2.8 and Lemma 2.5 the F n0,∗
X Ω∨X/K0

-torsor J1(X/K0)(pn0 ) → X

must be trivial. Let σ : X → J1(X/K0)(pn0 ) be a section. The datum of the composed

morphism Crit1(X+Q, A)
(pn0 )
0 → X

σ→ J1(X/K0)(pn0 ) is equivalent to the datum of a section

of the pull-back of Ω∨X/k0
to Crit1(X+Q, A)

(pn0 )
0 , which must vanish by Lemma 2.5. Hence the

morphism Crit1(X+Q, A)
(pn0 )
0 → X is an isomorphism and thus by Zariski’s main theorem,

the morphism Crit1(X+Q,A)
(pn0 )
0 → X is an isomorphism. We now repeat this reasoning for

Crit2(X+Q,A)
(pn0 )
0 → Crit1(X+Q,A)

(pn0 )
0 ' X and we conclude that

Crit2(X+Q,A)
(pn0 )
0 → Crit1(X+Q,A)

(pn0 )
0

is an isomorphism. Continuing this way, we see that in the whole tower

Critm(X+Q,A)
(pn0 )
0 → Critm−1(X+Q,A)

(pn0 )
0 → · · · → Crit1(X+Q,A)

(pn0 )
0 → Crit1(X+Q,A)

(pn0 )
0 → X

the connecting morphisms are all isomorphisms. Using König’s lemma, we may even choose

the irreducible components Critm(X+Q,A)
(pn0 )
0 in such a way as to obtain an infinite chain

· · · → Critm(X+Q,A)
(pn0 )
0 → Critm−1(X+Q,A)

(pn0 )
0 → · · · → Crit1(X+Q,A)

(pn0 )
0 → Crit1(X+Q,A)

(pn0 )
0 → X
(1)

where all the connecting morphisms are isomorphisms.

Now choose a closed point u0 ∈ U . View u0 as a closed subscheme of U . For any i > 0, let

ui be the i-th infinitesimal neighborhood of u0 ' Spec k0 in U (so that there is no ambiguity

of notation for u0). Notice that ui has a natural structure of k0-scheme. Recall that by the
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definition of the jet scheme (see [8, sec. 2]), the scheme Jm(X/U)u0 represents the functor on

k0-schemes

T 7→ Morum(T ×k0 um,Xum).

Thus the infinite chain (1) gives rise to morphisms

X (p−n0 )
u0

×k0 um → Xum (2)

compatible with each other under base-change. In particular, base-change to u0 gives F n0
Xu0

.

View the Ûu0-schemes X (p−n0 )
u0 ×k Ûu0 and XÛu0

as formal schemes over Ûu0 in the next sentence.

The family of morphisms (2) provides us with a morphism of formal schemes

X (p−n0 )
u0

×k Ûu0 → XÛu0

and since both schemes are projective over Ûu0 , Grothendieck’s GAGA theorem shows that this

morphism of formal schemes comes from a unique morphism of schemes

ι : X (p−n0 )
u0

×k Ûu0 → XÛu0
.

By construction the morphism ι specializes to F n0
Xu0

at the closed point u0 of Ûu0 . Thus

deg(ι) = pdim(X)n0 .

Finally, pn0 6 DB(X) by Lemma 1.2.

Proof of Corollary 1.4. We may replace X by X/Stab(X) without restriction of generality

in the statement of Corollary 1.4. Thus we may (and do) assume that Stab(X) = 0. Notice

that by construction, for any n > 1, the natural homomorphism of groups

Γ0/p
nΓ0 → Γ/pnΓ

is a surjection. Furthermore, Γ0/p
nΓ0 is finite since Γ0 is finitely generated. Hence, using the

assumptions of Corollary 1.4, we see that for any n > 1, there exists Q = Q(n) ∈ Γ0, such that

X+Q(n)∩pnΓ is dense in X+Q. This implies that Excn(A,X+Q(n)) ↪→ X is an isomorphism (see

[8, par. 3.2] for more details or this). Now applying Theorem 1.3 (b), we obtain a surjective

and finite morphism of Ôu0-schemes

X p−n0

u0
×k0 Ôu0 → XÔu0
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for some closed point u0 in U (in fact any will do) and some n0 > 0 such that pn0 6 DB(X).

Let K̂0 be the fraction field of XÔu0
.

Since k0 is an excellent field, we know that the field extension K̂0|K0 is separable. On the other

hand the just constructed finite and surjective morphism Xu0 ×k0 K̂0 → XK̂0
is defined over a

finitely generated (as a field over K) subfield K ′0 of K̂. The field extension K ′0|K is then still

separable (because the extension K̂0|K0 is separable), so that by the theorem on separating

transcendence bases, there exists a variety U ′/K0, which is smooth over K0 and whose function

field is K ′0. Furthermore, possibly replacing U ′ by one of its open subschemas, we may assume

that the morphism Xu0 ×k K ′0 → XK′0
extends to a finite and surjective morphism

α : Xu0 ×k0 U
′ → XU ′ .

Let P ∈ U ′(Ksep
0 ) be a Ksep

0 -point over K (the set U ′(Ksep
0 ) is not empty because U ′ is smooth

over K0). The morphism αP is the morphism h advertised in Theorem 1.3 (b). The inequality

deg(h) 6 DB(X)dim(X) is verified by construction.
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