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Abstract

We present an analytic proof of Gillet’s Riemann-Roch theorem for the
Beilinson regulator in the case of compact fibrations, thereby extending
to higher K-theory the analytic approach to the Grothendieck-Riemann-
Roch theorem. Our proof depends essentially on Burgos-Wang’s descrip-
tion of the regulator and on the properties of Bismut-Köhler’s higher
analytic torsion forms. Moreover, our proof shows how to define analogs
of these analytic torsion forms for cubes of vector bundles.
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1 Introduction

Let X, B be projective smooth complex varieties and let f : X → B be a
smooth holomorphic map. A particular case of Gillet’s Riemann-Roch theorem
(see [11]) states that the diagram

Kk(X)
Td(Tf).ch−→

⊕
p≥0 H2p−k(X, p)

↓ f∗ ↓ f∗

Kk(B) ch−→
⊕

p≥0 H2p−k(B, p)

commutes, where f : X → B is the natural morphism, Td(Tf) is the Todd
class of the tangent bundle, Kk(·) denotes the k-th higher K-theory group
of vector bundles in the sense of Quillen, the groups H2p−k(·, p) are part of
the real Deligne-Beilinson cohomology of X and ch denotes the Chern char-
acter on higher K-theory (also called Beilinson’s regulator). In [9], Burgos-
Wang provide a description of a lift of the Chern character to the simpli-
cial level. In fact, they provide a functorial simplicial set SH

· (·), a functo-
rial complex of abelian groups

⊕
p≥0 D−

T (·, p)[2p− 1] and a canonical simplicial

map c̃h : SH
· (·) → K(

⊕
p≥0 D−

T (·, p)[2p − 1]), such that πk+1(SH
· (·)) = Kk(·),

πk+1(K(
⊕

p≥0 D−
T (·, p)[2p− 1])) = Hk+1(

⊕
p≥0 D−

T (·, p)[2p− 1]) =⊕
p≥0 H2p−k(X, p) and such that πk(c̃h) = ch. Here πk(·) is the functor taking

the k-th homotopy group of a simplicial set and K(·) is the Dold-Puppe functor
associating a simplicial abelian group to a homology-type complex of abelian
groups (see the next subsection). Now choose a representative in the cohomol-
ogy class of Td(Tf) (we shall do this via certain Weil connections later). By
abuse of language, we shall also denote this choice Td(Tf). Since by Gillet’s
Riemann-Roch theorem, the simplicial maps c̃h ◦ f∗ and f∗ ◦ Td(Tf).c̃h induce
the same maps on the level of homotopy groups, it is natural to ask for a simpli-
cial homotopy between these two maps. In fact, since c̃h is a map to a fibrant
simplicial set, we see that there must be such a simplicial homotopy (see [6, 4.3,
p. 245]). It is the purpose of this paper to describe one explicitly, simultane-
ously providing an alternative proof of Gillet’s Riemann-Roch theorem, which
is analytic and does not rely on the deformation to the normal cone technique.
The description of the homotopy is given in Theorem 3.6; it appears first as a
homotopy between the chain complex of cubes of acyclic hermitian bundles on
X and the complex

⊕
p≥0 D−

T (B, p). At the level of 0-cubes, this last homotopy
is given by the Bismut-Köhler’s analytic torsion. Our description of the homo-
topy thus gives an interpretation of the analytic torsion form as the first map
in a family of maps, the maps Πk, which define a homotopy of chain complexes
and thus provides a natural generalisation of the analytic torsion to cubes of
acyclic hermitian vector bundles.
Our initial impulse for the research related to this paper was the question of
the functoriality of a yet to be defined higher arithmetic K-theory (see [10]).
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The functoriality of the arithmetic K0-group of Gillet and Soulé (see [13, II])
involves the analytic torsion and the possibility of a higher theory naturally
leads to conjecture the existence of higher analogs of the analytic torsion. It is
our hope that the above family of maps are precisely these analogs.
Acknowledgments. Many thanks to Jean-Michel Bismut for an enlightening
conversation, which helped me a great deal in finding the right perspective on
the analytic aspects of the present work. I also owe a lot to J.-I. Burgos, whose
detailed comments were invaluable in the development of this paper. My thanks
also to the referee, for quick and efficient work.

2 The simplicial description of the Beilinson reg-
ulator

In this section, we recall Burgos-Wang’s description of a map of simplicial sets
which induces Beilinson’s regulator on the level of homotopy groups. We also
prove various results related to covariant functoriality, which will be needed in
the last section. The basic reference for this section is [9].

2.1 Exact k-cubes

For the material described in this subsection, see also [9, §3]. If A is an exact
(resp. abelian) category, we shall denote by SES(A) the exact (resp. abelian)
category of short exact sequences in A. For k ≥ 1, the category CkA of k-cubes
in A is the category SES◦k(A) = SES(SES(. . . k times)(A). By conven-
tion, we set C0(A) := A. Another way to describe CkA is the following. Let
{−1, 0, 1}k be the k-th cartesian power of the set {−1, 0, 1}, where we use the
convention {−1, 0, 1}0 = {0}. This set is naturally partially ordered by the rela-
tion ≤, defined by the law (i1, . . . ik) ≤ (j1, . . . jk) iff i1 ≤ j1, i2 ≤ j2, . . . ik ≤ jk

(i1, . . . ik, j1 . . . jk ∈ {−1, 0, 1}). We can view {−1, 0, 1}k as a category whose
objects are the elements (i1, . . . ik) and such that the set of morphisms from
(i1, . . . ik) to (j1, . . . jk) contains one element if (i1, . . . ik) ≤ (j1, . . . jk) and is
empty otherwise. The category of exact k-cubes is the category of functors
E : {−1, 0, 1}k → A such that for any set of indices i1, . . . îl, . . . ik (the sign (̂.)
means that the corresponding symbol has to be omitted) the sequence

Ei1,...il−1,−1,il+1,...ik
→ Ei1,...il−1,0,il+1,...ik

→ Ei1,...il−1,1,il+1,...ik

is a short exact sequence.
We shall denote by Sk the symmetric group on k letters. An element σ de-
fines defines a map {−1, 0, 1}k → {−1, 0, 1}k by the rule σ((i1, . . . ik)) :=
(iσ(1), iσ(2), . . . iσ(k)). This map is by construction order preserving and is thus
an equivalence of categories. We obtain an equivalence of categories Ck(A) →
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Ck(A) if we associate to each k-cube E the k-cube E ◦ σ. We shall also call this
equivalence σ.
Let l be an integer such that 1 ≤ l ≤ k and let i ∈ {−1, 0, 1}. There is a natural
embedding of ordered sets and thus of categories {−1, 0, 1}k−1 → {−1, 0, 1}k

given by the rule (i1, . . . ik−1) 7→ (i1, . . . il−1, i, il, . . . ik−1). Given an exact k-
cube E : {−1, 0, 1}k → A, we define ∂i

lE to be the (k− 1)-cube obtained as the
composition of E with the embedding {−1, 0, 1}k−1 → {−1, 0, 1}k. There is an
equality ∂i

l∂
j
mE = ∂j

m∂i
l+1E, for each l with 1 ≤ l ≤ k − 1.

We write ZCk(A) for the free abelian group generated by all the k-cubes.
Define a family of linear maps δk : ZCk(A) → ZCk−1(A) by the rule E 7→∑k

l=1(−1)l−1(∂0
l E−∂−1

l E−∂1
l E). The identity ∂i

l∂
j
m = ∂j

m∂i
l+1 (1 ≤ l ≤ k−1)

shows that the groups ZCk(A) together with the morphisms δk form a homology-
type complex indexed by k. A k-cube E is called degenerate, if for some l with
1 ≤ l ≤ k one of the two following conditions hold: ∂−1

l E = ∂0
l E and the natu-

ral map ∂−1
l E → ∂0

l E is the identity map or ∂0
l E = ∂1

l E and the natural map
∂0

l E → ∂1
l E is the identity map. Let us call Dk the free abelian group gener-

ated by all the degenerate k-cubes. The family of the Dk form a subcomplex of
ZC·(A) (see [9, (3.2)]).
If F : A → B is an exact functor between two abelian (resp. exact) categories,
then F naturally sends exact k-cubes on exact k-cubes and F induces a map of
complexes F : ZC·(A) → ZC·(B).
Let ∆◦Ab be the category of simplicial abelian groups and let C≤0 be the cate-
gory of homology-type chain complexes of abelian groups. There exists a pair of
functors N : ∆◦Ab → C≤0 and K : C≤0 → ∆◦Ab, which induces an equivalence
of the associated homotopy categories (see [18, 5.32]). We shall describe the
functor N explicitly. Let G· be a simplicial abelian group. We denote the face
maps by ∂·. For each k ≥ 0, the object of N (G·) which is of index k is Gk and
the differential map dk at k is the map

∑k
l=0(−1)l∂l.

Let now X be a smooth quasi-projective complex variety. We shall denote the
category of vector bundles on X by C(X) and the category of exact k-cubes
of vector bundles by Ck(X). We recall Burgos-Wang’s modification of Gillet-
Soulé’s construction of a geometric splitting of a short exact sequence of vector
bundles (see [9, (3.7)]). Let

F : 0 → E′ i→ E → E′′ → 0 (1)

be a short exact sequence of vector bundles on X. Let σ∞ (resp. σ0) be the
canonical section of the tautological bundle O(1) on P1

C which vanishes only
at ∞ (resp. at 0). We lift the sequence (1) to X × P1

C and we define a map
E′ → E(1)⊕E′(1) by the rule e′ 7→ i(e′)⊗σ0⊕e′⊗σ∞; we can form the quotient
sheaf

〈
F

〉
:= (E(1)⊕E′(1))/E′, which is again a vector bundle. By construction

there are functorial isomorphisms
〈
F

〉
|X×{0} ' E and

〈
F

〉
|X×{∞} ' E′ ⊕ E′′.

Moreover, this construction yields an exact functor
〈
(.)

〉
from the category of

short exact sequences on X to the category of vector bundles on X ×P1
C. We
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now extend the functor
〈
(.)

〉
to the category CkC(X). By convention the functor〈

(.)
〉

is the identity functor if k = 0. Let now k ≥ 1. We shall give a definition
which depends inductively on k. For k = 1, the functor

〈
(.)

〉
coincides with the

functor
〈
(.)

〉
defined above. Suppose it is defined and exact for k ≥ 1. Let F be

k + 1-cube. This cube gives rise to a family of short exact sequences of vector
bundles

0 → F−1,i1,...ik
→ F0,i1,...ik

→ F1,i1,...ik
→ 0

for i1, . . . ik ∈ {−1, 0, 1}. Applying the Burgos-Gillet-Soulé construction to each
member of this family, we obtain a family of vector bundles on X×(P1

C)1. Since
the Gillet-Soulé construction corresponds to an exact functor, this family cor-
responds to a k-cube; applying the functor

〈
(.)

〉
to this k-cube is the definition

of
〈
F

〉
.

Let now σ be an element of Sk. In the next proposition, we denote by the same
letter the automorphism of (P1

C)k which sends (p1, p2, . . . pk) on (pσ(1), pσ(2), . . . pσ(k)).

Proposition 2.1 Let E be a k-cube on X. Then there is a functorial isomor-
phism σ∗

〈
E

〉
'

〈
σ(E)

〉
.

Proof: Since Sk is generated by the permutations which swap successive ele-
ments in {1, . . . k} and since the isomorphism σ∗

〈
E

〉
'

〈
σ(E)

〉
is stable under

composition of permutations, we are reduced to the case k = 2 and to the
permutation which swaps 1 and 2. So consider the 2-cube F

0 0 0
↓ ↓ ↓

0 → E−1,−1
i−1→ E−1,0 → E−1,1 → 0

↓ j−1 ↓ j0 ↓ j1

0 → E0,−1
i0→ E0,0 → E0,1 → 0

↓ ↓ ↓
0 → E1,−1

i1→ E1,0 → E1,1 → 0
↓ ↓ ↓
0 0 0

By construction,
〈
F

〉
is then the cokernel of the map Q

E0,−1(1)2 ⊕ E−1,−1(1)2 ⊕ E−1,0(1)1 ⊕ E−1,−1(1)1 (2)

−→
E0,0(1)1(1)2 ⊕ E0,−1(1)1(1)2 ⊕ E−1,0(1)1(1)2 ⊕ E−1,−1(1)1(1)2 (3)

given by
a⊗ b⊕ c⊗ d⊕ e⊗ f ⊕ g ⊗ h (4)
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7→(
i0(a)⊗ σ1

0 ⊗ b + j0(e)⊗ f ⊗ σ2
0

)
⊕

(
a⊗ σ1

∞ ⊗ b + j−1(g)⊗ h⊗ σ2
0

)
⊕(

e⊗ f ⊗ σ2
∞ + i−1(c)⊗ σ1

0 ⊗ d
)
⊕

(
g ⊗ h⊗ σ∞2 + c⊗ σ1

∞ ⊗ d
)

where (1)1 (resp. (1)2) denotes the twist with the tautological bundle coming
from the first factor of (P1

C)2 (resp. the second one) and σ·0 (resp. σ·∞) is the
corresponding section at 0 (resp. at ∞). Let H be the direct sum in (2) and
H ′ the direct sum in (3). To obtain the bundle σ∗ < σ(F ) >, we have to swap
Ei,j and Ej,i as well as (1)1 and (1)2 in the expressions for H and H ′ and we
have to swap σ1

· and σ2
· as well as i· and j· in the expression for Q. One can

check directly that up to a permutation of the factors we are left again with the
original expressions for H, H ′ and Q once these swappings have been performed.
Thus σ∗ < σ(F ) >'< F > and since σ is its own inverse as a permutation we
have σ∗ < F >'< σ(F ) >. This concludes the proof. Q.E.D.

The following corollary, without the explicit determination of the isomorphisms,
can be found in [9, Prop. 3.9]. For 1 ≤ l ≤ k, let τkl be the permutation on k
letters defined by the following rules: τkl(i) := i + 1 if 1 ≤ i ≤ l− 1, τkl(l) := 1,
τkl(i) := i if l + 1 ≤ i ≤ k.

Corollary 2.2 Let E be a k-cube of vector bundles. There are isomorphisms

(a)
〈
E

〉
|X×P1

C
×...{0}...×P1

C
' τ∗kl

〈
E

〉
|X×{0}×...×P1

C
'

〈
∂0
1τkl(E)

〉
'

〈
∂0

l (E)
〉

(b)
〈
E

〉
|X×P1

C
×...{∞}...×P1

C
' τ∗kl

〈
E

〉
|X×{∞}×...×P1

C
'

〈
∂−1
1 τkl(E)

〉
⊕

〈
∂1
1τkl(E)

〉
'〈

∂−1
l (E)

〉
⊕

〈
∂1

l (E)
〉

where 0 and ∞ stand at the l-th place in the product.

Proof: For l = 1, the isomorphisms in (a) and (b) follow from the properties
of the Burgos-Wang construction at the last step of the recursion that appears
in the definition of the functor

〈
(.)

〉
. For l > 0, they follow from the case l = 1

and the last proposition. Q.E.D.

We now adress the question of the covariant functoriality of the Burgos-Wang
construction. Until the end of the paragraph, let f : X → B be a proper and
flat morphism of smooth quasi-projective complex varieties and let E be a k-
cube all of whose vector bundle components are f -acyclic (recall that a vector
bundle V on X is f -acyclic if the relative cohomology sheaves Rif∗V vanish for
i > 0). We shall also call such a k-cube acyclic. Define f̃k to be the morphism
X × (P1

C)k → B × (P1
C)k naturally induced by f .

Proposition 2.3 The bundle
〈
E

〉
is f̃k-acyclic and there is a functorial iso-

morphism f̃k,∗
〈
E

〉
'

〈
f∗E

〉
. Moreover the isomorphisms in 2.2 are natural

under f∗.
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Proof: In view of the recursive definition of the functor
〈
(.)

〉
, we can without

loss of generality restrict ourselves to the case k = 1. So let us suppose that E
is an f -acyclic vector bundle and consider the exact sequence of vector bundles

E : 0 → E′ → E(1)⊕ E′(1) →
〈
E

〉
→ 0

defining
〈
E

〉
. Using the theorem on cohomology and flat base change, we see

that E and E′ considered on X × (P1
C)k are f̃k-acyclic. Using the projection

formula and the properties of the long exact cohomology sequence, we see that
E′, E(1) ⊕ E′(1) are f̃k-acyclic as well. Thus, applying the projection formula
to the long cohomology sequence of E , we obtain the sequence

0 → fk,∗E
′ → fk,∗E(1)⊕ fk,∗E

′(1) → fk,∗
〈
E

〉
→ 0.

The proof of the second statement follows from the first statement, the fact that
f∗ commutes with τ∗kl, the functor τkl(.) on k-cubes and the explicit description
of the isomorphisms given in 2.2. Q.E.D.

2.2 Hermitian k-cubes

Let now CH(X) be the abelian category whose elements are vector bundles
on X endowed with hermitian metrics and whose morphisms are the vector
bundle morphisms. Notice that CH(X) and C(X) are equivalent categories, an
equivalence being described by the functor CH(X) → C(X) forgetting the metric
and a functor C(X) → CH(X) given by a choice of a hermitian metric for each
vector bundle. We shall call this category the category of hermitian exact k-
cubes and we shall write CH

k (X) for Ck(CH(X)). Let E be a hermitian k-cube.
Associated to E is a set of short exact sequences

0 → Ei1,...il−1,−1,il+1,...ik
→ Ei1,...il−1,0,il+1,...ik

→ Ei1,...il−1,1,il+1,...ik
→ 0 (5)

(1 ≤ l ≤ k). The three vector bundles appearing in this sequence carry a
hermitian structure by definition. The following definition is [9, Def. 3.5].

Definition 2.4 (Burgos-Wang) The hermitian k-cube E is called an emi k-
cube, if for all l the vector bundle Ei1,...il−1,1,il+1,...ik

in the sequence (5) carries
the metric induced by Ei1,...il−1,0,il+1,...ik

.

From the definitions, one can see that if E is an emi k-cube then ∂i
lE is also

an emi k-cube, for i ∈ {−1, 0, 1} and 0 ≤ l ≤ k. Notice that if we endow
the tautological bundle O(1) with the Fubini-Study metric, the construction of
the vector bundle

〈
E

〉
endows it with a natural hermitian structure. We shall

denote by
〈
E

〉
the bundle

〈
E

〉
endowed with this hermitian structure. Notice

that by construction there is an isometric isomorphism σ∗
〈
E

〉
'

〈
σ(E)

〉
. For

the proof of the following proposition, see [9, Prop. 3.9].
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Proposition 2.5 (Burgos-Wang) If E is an emi k-cube, the isomorphisms
(a) and (b) in 2.2 are isometries, if all the bundles are endowed with their
natural metrics. Moreover, in that case, the direct sum in (b) is orthogonal.

We denote by λ1
l (E) the hermitian cube obtained if one sets the metric induced

by Ei1,...il−1,0,il+1,...ik
on Ei1,...il−1,1,il+1,...ik

, for all (i1, . . . , îl, . . . ik). We denote
by λ2

l (E) the hermitian k-cube such that ∂−1
l (λ2

l (E)) = ∂1
l E, ∂0

l (λ2
l (E)) =

∂1
l (λ1

l (E)) and ∂1
l (λ2

l (E)) = 0. Let now λk : ZCH
k (X) → ZCH

k (X) be given by
the formula

λk(E) :=
∑

(r1,...rk)∈{1,2}k

λrk

k ◦ λ
rk−1
k−1 ◦ . . . λr1

1 (E)

for each k ≥ 0. For the proof of following proposition, see [9, (3.5)].

Proposition 2.6 (Burgos-Wang) The maps λk induce a map of complexes
λ : ZCH

· (X) → ZCH
· (X). Moreover, for each k, the image of λk consists of

emi cubes.

Let now f : X → B be a smooth proper map of smooth quasi-projective vari-
eties. Let V be a an f -acyclic vector bundle V on X, endowed with a hermitian
metric h. Let ω be the Kähler form of some Kähler metric on X. By definition,
elements U,W ∈ f∗V |p of a fiber of f∗V at a point p ∈ B correspond to sections
of V |f−1p. Let d = dim(X)− dim(B); we define a pairing < ., . > on f∗V |p by
the formula

< U, W >:=
1

(2π)d

∫
f−1p

h(U,W )ωd/d!.

This pairing defines a hermitian metric on f∗V , which shall be denoted by
the symbol f∗h (see also [5, p. 666]). We shall say that the metric f∗h is
obtained by integration along the fibers and we shall write f∗V for the hermitian
bundle (f∗V, f∗h). This definition gives an exact functor from the exact category
CH

f−ac(X) of the f -acyclic hermitian vector bundles on X to the abelian category
of the hermitian vector bundles on B.

2.3 Computation of the Deligne-Beilinson cohomology

In this subsection, we recall the definition of the real Deligne-Beilinson cohomol-
ogy of a compact complex manifold and recall Burgos-Wang’s description of it
(this description is suggested in [10]). We suppose for the time of this subsection
that X is a projective complex manifold. Let p ≥ 0. We shall denote by R(p)
the subgroup (2iπ)p.R ⊂ C. The i-th real Deligne-Beilinson cohomology group
of X is the i-th hypercohomology group of the complex of abelian sheaves

R(p)D : 0 → R(p) → Ω0
X

d→ Ω1
X→ . . .Ωp−1

X → 0.

8



where Ωj
X is the sheaf of holomorphic differential forms of degree j on X (see

Deligne-Beilinson cohomology in [17]).
For p, q ≥ 0, a multiplicative structure is defined by the map of complexes

∪ : R(p)D ⊗R(q)D → R(p + q)D

which for elements x ∈ (R(p)D)n and y ∈ (R(q)D)m is defined by the rules
x ∪ y = x ∧ y if n = 0, x ∪ y = x ∧ dy if n > 0 and m = q, 0 otherwise.
Let now Ai,j(X) denote the differential forms of type i, j on X and let An(X)
denote the differential forms of degree n. Let An

R(X) denote the real differen-
tial forms of degree n. The subgroup (2iπ)p.An

R(X) ⊆ An(X) will be written
An

R(X)(p). The set of all differential forms is denoted by A(X). The i, j-
component of x ∈ A(X) will be written xi,j . For k ≥ 0, define also an operator
F k,k : A(X) → A(X) by the rule F k,k(x) :=

∑
l≥k,l′≥k xl,l′ and an opera-

tor F k : A(X) → A(X) by the rule F k(x) :=
∑

l≥k,l′≥0 xl,l′ . The operator
πp : A(X) → AR(X)(p) is defined as 1

2 (x + (−1)px).
Let D∗(X, p) be the cohomological complex whose group at n ≥ 0 is

An−1
R (X)(p− 1) ∩

⊕
p′+q′=n−1,p′<p,q′<p Ap′,q′(X) if n ≤ 2p− 1,

An
R(X)(p) ∩

⊕
p′+q′=n,p′≥p,q′≥p Ap′,q′(X) if n ≥ 2p

and whose differential dD is given by the formula dx if n ≥ 2p, the formula
−πp−1F

deg(x)−p+1,deg(x)−p+1dx if n < 2p − 1 and the formula −2∂∂x if n =
2p− 1. Notice that in view of the local definition of D∗(X, p), there is a natural
complex of (fine) sheaves D∗(X, p), such that Γ(D∗(X, p)) = D∗(X, p). Notice
also that the complex D∗(X, p) is naturally defined on any complex manifold,
although we only consider the quasi-projective case in this paragraph. For the
proof of the following proposition, see [8, Th. 2.6].

Proposition 2.7 (Burgos-Wang) Define a map of complexes of sheaves ρ :
R(p)D → D(X, p) by the rule ρ(ω) = πp−1(ω). Then this map is a quasi-
isomorphism. Moreover, the multiplicative structure

• : D(X, p)⊗D(X, q) → D(X, p + q)

given for x ∈ Dn(X, p) and y ∈ Dm(X, q) by

x•y =


(−1)n2πp(F pdx) ∧ y + x ∧ 2πq(F qy) if n < 2p and m < 2q,
πp+q−1(Fn+m−p−q,n+m−p−q(x ∧ y)) if n < 2p, m ≥ 2q and l < 2r,
F r,r(2πp(F p(dx)) ∧ y) + 2πr∂((x ∧ dy)r−1,l−r) if n < 2p, m ≥ 2q, l ≥ 2r,
x ∧ y if n ≥ 2p and m ≥ 2q

where l = n + m, r = p + q, gives the product in Deligne-Beilinson cohomology
under this quasi-isomorphism. Moreover if n = 2p, dDx = 0, s ≥ 0 and z ∈
D(X, s), then x • y = y • x, x • (y • z) = (x • y) • z.
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Let now f : X → B be a smooth map of projective complex smooth varieties.

Proposition 2.8 Let d = dim(X) − dim(B). The map f∗ : D(X, p)[2p] →
D(B, p − d)[2(p − d)] given by 1

(2iπ)d

∫
X/B

is a map of complexes. The map
f∗ : D(B, p)[2p] → D(X, p)[2p] given by the pull-back of differential forms is a
map of complexes. Moreover, if x ∈ D(X, p)[2p] and y ∈ D(B, q)[2q], then the
projection formula f∗(x • f∗(y)) = f∗(x) • y holds.

Proof: The fact that f∗ gives a map of complexes with degree shift follows
from the fact that the fiber integral commutes with ∂, ∂, with the conjugation
operator (.) and because∫

X/B

F deg(x)−p+1,deg(x)−p+1x = F deg(x)−p−d+1,deg(x)−p−d+1

∫
X/B

x =

F
deg(

∫
X/B

x)−(p−d)+1,deg(
∫

X/B
x)−(p−d)+1

∫
X/B

x (6)

if deg(x) < 2p− 1. The fact that the degree shift is 0 follows from the fact that
the fiber integral reduces the total degree of a differential form by 2d.
The second statement follows readily from the definitions. To prove the projec-
tion formula, notice first that∫

X/B

F deg(x)−p+1x = F deg(x)−p−d+1

∫
X/B

x = F
deg(

∫
X/B

x)−(p−d)+1
∫

X/B

x

if deg(x) < 2p. From this, (6), the commutation relations mentioned at the
beginning of the proof and the projection formula for the fiber integral, the
projection formula follows. Q.E.D.

2.4 Secondary classes for hermitian k-cubes

In this subsection, we shall recall Burgos-Wang’s definition of secondary classes
for hermitian k-cubes, which generalize the secondary classes of Gillet-Soulé (see
[4, I, Par. f)]). Let Sk be the symmetric group on k letters. Let u1, . . . uk be
elements of

⊕
p≥0 D2p−1(X, p). We shall write D−

T (X, p)[l] for the homology-
type complex whose k-th object is Dl−k(X, p) if k ≥ 0 (and is 0 otherwise).
Define an element of

⊕
p≥0 D−

T (X, p)[2p] by the formula

Ck(u1, . . . uk) = (1/2)k−1
∑

σ∈Sk

(−1)sgn(σ)uσ(1) • (uσ(2) • (. . . uσ(k) . . .)

The following lemma is a slight generalisation of an unpublished result of Burgos
thesis (see [7, Prop. 2.5, p. 121]).
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Lemma 2.9 The following identity holds

dDCk(u1, . . . uk) = (−1/2)k.
k∑

j=1

(−1)j−1dD(uj) • Ck−1(u1, . . . ûj , . . . uk) =

(−1/2)k.
k∑

j=1

(−1)j−1dD(uj) ∧ Ck−1(u1, . . . ûj , . . . uk)

Proof: We first prove the second equality. Let first v ∈ D2q(X, q) and u ∈
D2p−k(X, p). We compute

v•u = πp+q−1F
2q+(2p−k)−(p+q),2q+(2p−k)−(p+q)v∧u = πp+q−1F

p+q−k,p+q−kv∧u =

πp+q−1

∑
l≥p+q−k,l′≥p+q−k

(v ∧ u)l,l′ = πp+q−1

p+q−1∑
l=p+q−k

p+q−1∑
l′=p+q−k

(v ∧ u)l,l′

Since the total degree of v ∧ u is 2p − k − 1 + 2q and since 2p − k − 1 + 2q ≥
(p + q − k) + (p + q − 1) = 2p + 2q − k − 1, the last expression equals

πp+q−1v ∧ u = v ∧ u

and thus v • u = v ∧ u. This settles the second equality. To prove the first one,
we compute

dDCk(u1, . . . uk) = (1/2)k−1
∑

σ∈Sk

(−1)sgn(σ)dD(uσ(1) • (uσ(2) • (. . . uσ(k) . . .)) =

(1/2)k−1
∑

σ∈Sk

(−1)sgn(σ)
k∑

i=1

(−1)i−1uσ(1) • (uσ(2) • (. . . (dDuσ(i) . . . uσ(k) . . .)) =

(1/2)k−1
k∑

i=1

k∑
j=1

∑
σ∈Sk,σ(i)=j

(−1)sgn(σ)(−1)i−1uσ(1)•(uσ(2)•(. . . (dDuσ(i) . . . uσ(k) . . .)) =

(1/2)k−1
k∑

i=1

k∑
j=1

dDuσ(i)•
∑

σ∈Sk,σ(i)=j

(−1)sgn(σ)(−1)i−1uσ(1)•(uσ(2)•(. . . (ûσ(i) . . . uσ(k) . . .)) =

(1/2)
k∑

i=1

(−1)i−1
k∑

j=1

dDuj(−1)i−j • Ck−1(u1, . . . ûj , . . . uk)

which is the first equality. From the second to the third line of the last string of
equalities, we used the distributivity of the operator dD, which is a consequence
of the fact that the • product arises as a map of complexes of abelian groups (see
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the beginning of 2.7) and from the third to the fourth we used the commutativity
statement at the end of 2.7. Q.E.D.

Let now E be a hermitian k-cube on a complex projective smooth variety X.
Consider the canonical coordinate system of P1

C defined by the map C → P1
C

which sends z on [z, 1]. The function log |z| defines an L1 function on P1
C, which

we consider as a current. We shall denote by log |z1|, . . . log |zk| the correspond-
ing currents on (P1

C)k. In the next definition, we shall consider that the log |zi|
are formally elements of D1((P1

C)k, 1). They satisfy the equation of currents

dD log |zi| = −2∂∂ log |zi| = −4iπ.(δP1
C
×P1

C
×...{∞}×...P1

C
− δP1

C
×P1

C
×...{0}×...P1

C
)

(7)
where δ. takes the Dirac current associated to a closed submanifold and∞ (resp.
0) stands at the i-th place. The following definition is taken from [9, Def. 6.12].

Definition 2.10 (Burgos-Wang) The Bott-Chern secondary class c̃h(E) of
E is the element of

⊕
p≥0 D2p−k(X, p) given by

(−1)k

2k!(2iπ)k

∑
(r1,...rk)∈{1,2}k

∫
X×(P1

C
)k/X

ch(
〈
λrk

k ◦ λ
rk−1
k−1 ◦ . . . λr1

1 (E)
〉
)•Ck(log |z1|, log |z2|, . . . log |zk|).

In this definition, ch(·) is the representative of the Chern character class as-
sociated by the Chern-Weil formulae to the unique connection of a hermitian
bundle (without the 2iπ factor), which is of type (1, 0) and is compatible with
the hermitian structure (see [14, Lemma, p. 73]). For the proof of the following
proposition, see [9, §6].

Proposition 2.11 (Burgos-Wang) The equation

dD c̃h(E) =
k∑

l=1

(−1)l−1
(
c̃h(∂0

l (E))− c̃h(∂−1
l (E))− c̃h(∂1

l (E))
)

holds.

In the next corollary, we write Z̃CH
· (X) for ZCH

· (X)/D·(CH(X)).

Corollary 2.12 (Burgos-Wang) The secondary class c̃h induces a map of
complexes Z̃CH

· (X) →
⊕

p≥0 D−
T (X, p)[2p].

2.5 The description of the regulator

We recall Waldhausen’s construction of a simplicial set whose homotopy groups
are canonically isomorphic to the higher K-theory groups of Quillen. Let A be
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a small exact category with a fixed 0 object. Let Mn be the category whose
objects are the elements (i, j) of the Cartesian product {0, 1, . . . n}×{0, 1 . . . n}
such that i ≤ j and whose sets of morphisms Mor((i, j), (k, l)) contain one
element if i ≤ k and j ≤ l and are empty otherwise. Let πi be the functor from
the category of simplicial sets to category of abelian groups which takes the i-th
homotopy group of the geometric realisation of a simplicial set. In [19, p. 182]
a simplicial set S·(A) is defined, whose set of n-simplices is the set of functors
τ : Mn → A such that for all i with 0 ≤ i ≤ n, τ(i, i) = 0 and for i, j, k with
1 ≤ i ≤ j ≤ k ≤ n, the sequence τ(i, j) → τ(i, k) → τ(j, k) is a short exact
sequence. Call ∂m its face maps and sm its degeneracy maps (0 ≤ m ≤ n).
For all i ≥ 0, there is a canonical isomorphism πi+1(S·(A)) ' Ki(A). Notice
that the set of k-simplices carries in a natural way the structure of an exact
category. The face and degeneracy maps are exact functors for these categorical
structures. We shall define inductively an exact functor Cub from the category
of k-simplices to the category of k − 1-cubes (see [9, (4.4)]). If k = 1 and if
τ : Mk → A is a 1-simplex, we define Cub(τ) := τ(0, 1). Suppose now the
functor Cub is defined for k − 1 (k > 1) and let E be a k-simplex; there is a
natural exact sequence of k − 1-simplices

0 → sk−1sk−2 . . . s2(τ(0, 1)) → ∂1τ → ∂1τ/(sk−1sk−2 . . . s2(τ(0, 1))) → 0

Applying the functor Cub to this sequence, we obtain an exact sequence of
k − 1-cubes, i.e. a k-cube. Using the exactness properties of the face and
degeneracy maps, we see that this also gives an exact functor from the category
of k-simplices to the category of k− 1-cubes and so we are done. We shall write
ZS·(A) for the free simplicial abelian group generated by S·(A). Recall that
the k-th object of the homology-type complex N (ZS·(A)) coincides with the set
ZSk(A) (see the first subsection). Extending the functor Cub by linearity, we
obtain a map ZSk(A) → ZCk−1(A). For the proof of the following proposition,
see [9, Cor. 4.8].

Proposition 2.13 (Burgos-Wang) The map Cub induces a mapping of com-
plexes N (ZS·(A)) → (ZC·(A)/D·(A))[−1].

Let again X be a smooth projective complex variety. We specialize the above
discussion to CH(X). We shall write SH

· (X) for S·(CH(X)). Let Hi be the func-
tor on the category of homology-type complexes which takes the i-th homology
group of a complex. For the proof of the following theorem, see [9, §5].

Theorem 2.14 (Burgos-Wang) Let Hu be the Hurewicz map SH
· (X) → ZSH

· (X).
Let zch be the composition of maps of homology-type complexes

N (ZSH
· (X)) Cub→ Z̃CH

· (X)[−1] c̃h→
⊕
p≥0

D−
T (X, p)[2p− 1].

Then the composition Hi(zch) ◦ πi(Hu) is Beilinson’s regulator on Ki(X).
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3 Analytic torsion for hermitian k-cubes

Before giving the main statement of this section, we recall some properties of
Bismut-Koehler’s analytic torsion form.

3.1 The higher analytic torsion

The higher analytic torsion can be viewed as a sort of relative version of the
Bott-Chern secondary classes and was defined in [5, Def. 3.8, p. 668]. Let
f : M → S be a proper smooth holomorphic map of complex manifolds. We
suppose that M can be endowed with a Kähler metric and we let ω be the Kähler
form of a Kähler metric on M . The pair f, ω is a special case of Kähler fibration
(see [5, (a), p. 649]). Furthermore, we let ξ be an f -acyclic holomorphic bundle
on M and we denote by hξ a hermitian metric on ξ. The higher analytic torsion
T (f, ω, hξ) is an element of

⊕
p≥0 D2p−1(S, p), which depends on f , ω, ξ and hξ

and satisfies the equality

(−1/2).dDT (f, ω, hξ) = ch(f∗ξ, f∗hξ)−
∫

M/S

Td(Tf, hTf )ch(ξ, hξ). (8)

In this formula, ch(·) (resp. Td(·)) is the representative of the Chern character
(resp. Todd) class associated by the Chern-Weil formulae to the unique connec-
tion of a hermitian bundle, which is of type (1, 0) and is compatible with the
hermitian structure.
Warning. The definition of the analytic torsion form we use here coincides
with Bismut-Köhler’s only up to a rescaling. In [5, Rem. 3.3, p. 667], one de-
fines an operator φ which acts on differential forms. If we denote by T ′(f, ω, hξ)
Bismut-Köhler’s torsion, then the equality φ(T ′(f, ω, hξ)) = T (f, ω, hξ) holds.
The equality (8) refines the Grothendieck-Riemann-Roch theorem with values
in ∂∂-cohomology on the level of differential forms. We shall sometimes write
T (ω, hξ) or T (hξ) for T (f, ω, hξ), when there is no ambiguity about the under-
lying map or Kähler form. Consider now the following setting. Let Z be a
compact Kählerian complex manifold and let Z ′ be a closed submanifold of Z.
Choose a Kähler metric on Z and endow Z ′ with the restricted metric. Let ω
be the Kähler form of the product metric on M×Z and let fZ : M×Z → S×Z
be the induced map. Similarly, let ω′ be the Kähler form of the product metric
on M ×Z ′ and let fZ′ : M ×Z ′ → S ×Z ′ be the induced map. Call j (resp. i)
the natural embedding M ×Z ′ → M ×Z (resp. S ×Z ′ → S ×Z). Let ξ̃ be an
fZ-acyclic bundle on M × Z, which is equipped with a hermitian metric hξ̃.

Lemma 3.1 The equality i∗(T (fZ , ω, hξ̃)) = T (fZ′ , ω′, j∗hξ̃) holds.

For the proof (which follows readily from the definition of the torsion) see [5, p.
683] and also [12, p. 47]. Suppose now that ξ′ and ξ′′ are two vector bundles on
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M which are f -acyclic and that hξ′ is a hermitian metric on ξ′, hξ′′ a hermitian
metric on ξ′′. Let ξ := ξ′ ⊕ ξ′′ be the direct sum and let hξ be the hermitian
metric arising as the orthogonal direct sum of hξ′ and hξ′′ .

Lemma 3.2 The equality T (ω, hξ) = T (ω, hξ′) + T (ω, hξ′′) holds.

For the proof (which again is not difficult), see [5, Th. 3.10, p. 670].

3.2 Simplicial refinement of Gillet’s Riemann-Roch theo-
rem

Let f : X → B be a smooth map of smooth projective complex varieties.
Fix a Kähler metric on X. By [16, 2.7, p.117] the embedding of categories
Cf−ac(X) → C(X) induces an isomorphism on the level of K-theory. In view of
this fact, we shall identify the category C(X) with the category Cf−ac(X) until
the end of the paper and work everywhere with acyclic bundles. Consider now
the diagram of simplicial complexes

SH
· (X) Hu→ ZSH

· (X) Cub→ K(Z̃CH
· (X)[−1])

K(c̃h)→ K(⊕p≥0D
−
T (X, p)[2p− 1])

↓ f∗ ↓ f∗ ↓ K(f∗) ↓ K(f∗)

SH
· (B) Hu→ ZSH

· (B) Cub→ K(Z̃CH
· (B)[−1])

K(c̃h)→ K(⊕p≥0D
−
T (B, p)[2p− 1])

By construction, the first square and the second square on the left of the diagram
commute. The third square however does not commute; we shall see that it
commutes up to a natural simplicial homotopy, once a correction factor Td(Tf).
has been inserted on the left side of its top row. The description of this homotopy
will be the content of 3.6. The next lemmata and propositions are prolegomena
to 3.6.
Let Y be some smooth quasi-projective complex variety. Let V := (V, h) and
W := (V, h′) be two hermitian bundles on Y × (P1

C)k with same underlying
bundle. Let p1 : Y × (P1

C)k+1 → Y × (P1
C)k be the map defined by the rule

(y, p1, . . . pk+1) 7→ (y, p2, p3, . . . pk+1). We shall write H{V ⇒ W} for the bundle
p∗1V endowed with the metric

g :=
|w1|2h + |w2|2h′

|w1|2 + |w2|2
. (9)

where w1, w2 are homogeneous coordinates for the first P1
C factor in Y ×

(P1
C)k+1. The hermitian bundles f̃k(

〈
λrk

k ◦ λ
rk−1
k−1 . . . λr1

1 (E)
〉
) and

〈
λrk

k ◦ λ
rk−1
k−1 . . . λr1

1 (f∗(E))
〉

(1 ≤ l ≤ k, rl = 1, 2) are canonically isomorphic as bundles, but carry in
general different metrics. In the following, we shall write H

r1,...rk

1,2,...k instead of
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H{f̃k(
〈
λrk

k ◦ λ
rk−1
k−1 . . . λr1

1 (E)
〉
) ⇒

〈
λrk

k ◦ λ
rk−1
k−1 . . . λr1

1 (f∗(E))
〉
}. Now we define

Π′
k(E) :=

(−1)k

2(k + 1)!(2iπ)k+1

∑
(r1,...rk)∈{1,2}k

∫
(P1

C
)k+1

ch(H
r1,...rk

1,2,...k )•Ck+1(log |z1|, . . . log |zk+1|).

By linear extension, we obtain a map Π′
k : ZCH

k (X) →
⊕

p≥0 D2p−k−1(B, p).

Lemma 3.3 The map Π′
k vanishes on degenerate k-cubes.

Proof: The proof will be deduced from the following fact: if E is a degenerate
hermitian k-cube on a quasi-projective smooth variety Y , then for some l with
1 ≤ l ≤ k,

〈
E

〉
is invariant under the automorphism of Y × (P1

C)k given by
zl 7→ 1

zl
. To see this, suppose first that E is an exact sequence

0 → E
′ Id.→ E

′ → 0 → 0

where E
′
is a hermitian k−1-cube. The definition of

〈
·
〉

then tells us that
〈
E

〉
is isomorphic to the cokernel of the map

〈
E
′〉 → 〈

E
′〉

(1)⊕
〈
E
′〉

(1) given by e 7→
e⊗σ0⊕e⊗σ∞, where

〈
E
′〉

is twisted with the tautological bundle coming from
the first P1

C factor of Y × (P1
C)k. Since the automorphism z1 7→ 1/z1 exchanges

σ0 and σ∞, this cokernel is naturally invariant under that automorphism and
we are done in that case. The general case follows directly from this one, under
use of the isometry mentioned before 2.5.
Returning to the hypotheses of the lemma, suppose that E is degenerate for the
index l; by construction λrk

k ◦ λ
rk−1
k−1 ◦ . . . λr1

1 (E) and λrk

k ◦ λ
rk−1
k−1 ◦ . . . λr1

1 (f∗E)
are then also degenerate for the index l and thus we see that ch(H

r1,...rk

1,2,...k ) is
invariant under zl 7→ 1/zl. Since Ck+1(log |z1|, . . . log |zk+1|) changes sign under
that automorphism,

∫
(P1

C
)k+1 ch(H

r1,...rk

1,2,...k )•Ck+1(log |z1|, . . . log |zk+1|) vanishes.
This completes the proof. Q.E.D.

In the next proposition and its proof, we write∫
(P1

C
)k

ch(f̃k(
〈
λ(E)

〉
)) • Ck+1(log |z1|, log |z2|, . . . log |zk+1|)

for∑
(r1,...rk)∈{1,2}k

∫
(P1

C
)k

ch(f̃k(
〈
λrk

k ◦ λ
rk−1
k−1 ◦ . . . λr1

1 (E)
〉
))•Ck+1(log |z1|, log |z2|, . . . log |zk+1|)

Proposition 3.4 The equality

dD ◦Π′
k(E) + Π′

k−1 ◦ δ(E) = c̃h(f∗(E))−
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(−1)k

2k!(2iπ)k

∫
(P1

C
)k

ch(f̃k(
〈
λ(E)

〉
)) • Ck+1(log |z1|, log |z2|, . . . log |zk+1|)

holds.

Proof: We compute
dD ◦Π′

k(E) =

(−1)k

2(k + 1)!(2iπ)k+1

∑
(r1,...rk)∈{1,2}k

∫
(P1

C
)k+1

ch(H
r1,...rk

1,2,...k )•dDCk+1(log |z1|, . . . log |zk+1|) =

(−1)k

2(k + 1)!(2iπ)k+1

∑
(r1,...rk)∈{1,2}k

∫
(P1

C
)k+1

ch(H
r1,...rk

1,2,...k ) •
(
(−1/2)(k + 1).

k+1∑
j=1

(−1)j−1(−4iπ).(δzj=∞ − δzj=0) • Ck(log |z1|, . . . ̂log |zj |, . . . log |zk+1|)
)

=

(−1)k

2(k + 1)!(2iπ)k+1

∑
(r1,...rk∈{1,2}k

∫
(P1

C
)k+1

ch(H
r1,...rk

1,2,...k ) •
(
(−1/2)(k + 1). (10)

k+1∑
j=2

(−1)j−1(−4iπ).(δzj=∞ − δzj=0) • Ck(log |z1|, . . . ̂log |zj |, . . . log |zk+1|)
)

+

(−1)k

2k!(2iπ)k

∫
(P1

C
)k

ch(f̃k(
〈
λ(E)

〉
)) • Ck(log |z1|, log |z2|, . . . log |zk|)

−
(−1)k

2k!(2iπ)k

∫
(P1

C
)k

ch(
〈
λ(f∗E)

〉
)) • Ck(log |z1|, log |z2|, . . . log |zk|).

Now we compute the expression (10):

(−1)k

2(k + 1)!(2iπ)k+1

∑
(r1,...rk∈{1,2}k

∫
(P1

C
)k+1

ch(H
r1,...rk

1,2,...k ) •
(
(−1/2)(k + 1).

k+1∑
j=2

(−1)j−1(−4iπ).(δzj=∞ − δzj=0) • Ck(log |z1|, . . . ̂log |zj |, . . . log |zk+1|)
)

=

(−1)k

2(k + 1)!(2iπ)k+1

∑
(r1,...rk)∈{1,2}k

∫
(P1

C
)k

(
(−1/2)(k + 1).
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k+1∑
j=2

(−1)j−1(−4iπ).
(
−ch(H{f̃k−1,∗(

〈
∂0

j−1(λ
rk

k ◦ . . . λr1
1 (E))

〉
) ⇒

〈
∂0

j−1(λ
rk

k ◦ . . . λr1
1 (f∗(E)))

〉
})+

ch(H{f̃k−1,∗(
〈
∂−1

j−1λ
rk

k ◦ . . . λr1
1 (E)

〉
⊕

〈
∂1

j−1λ
rk

k ◦ . . . λr1
1 (E)

〉
)

⇒
〈
∂−1

j−1λ
rk

k ◦ . . . λr1
1 (f∗(E))

〉
⊕

〈
∂1

j−1λ
rk

k ◦ . . . λr1
1 (f∗(E))

〉
})

)
•Ck(log |z1|, . . . log |zk|)

)
=

(−1)k−1

2k!(2iπ)k

∑
(r1,...rk−1)∈{1,2}k−1

∫
(P1

C
)k

( k∑
j=1

(−1)j−1
(
− ch(H{f̃k−1,∗(

〈
λ

rk−1
k−1 ◦ . . . λr1

1 (∂0
j (E))

〉
)

⇒
〈
λ

rk−1
k−1 ◦ . . . λr1

1 (∂0
j (f∗(E)))

〉
})+ch(H{f̃k−1,∗(

〈
λ

rk−1
k−1 ◦ . . . λr1

1 (∂−1
j (E))

〉
⊕

〈
λ

rk−1
k−1 ◦ . . . λr1

1 (∂1
j (E))

〉
)

⇒
〈
λ

rk−1
k−1 ◦ . . . λr1

1 (∂−1
j (f∗(E)))

〉
⊕

〈
λ

rk−1
k−1 ◦ . . . λr1

1 (∂1
j (f∗(E)))

〉
})

)
•Ck(log |z1|, . . . log |zk|)

)
=

−Π′
k−1 ◦ δk(E).

For the first equality, we used the first statement of 2.8; for the second equality,
we used 2.9 and (7); for the third and fourth equality, we use the definition of
the metric g in (9) and the second statement in 2.3; for the fifth equality, we
use 2.6, the additivity of ch and the additivity of H; for the sixth one, we use
the definition of δ. Q.E.D.

Consider now the map f̃k : X × (P1
C)k → (P1

C)k. We equip X × (P1
C)k with

the product metric. For a hermitian k-cube E, define

Π′′
k(E) :=

(−1)k

2(k + 1)!(2iπ)k

∑
(r1,...rk)∈{1,2}k

∫
(P1

C
)k

Ck+1(T (
〈
λrk

k λ
rk−1
k−1 . . . λr1

1 (E)
〉
), log |z1|, log |z2|, . . . log |zk|)

where T (
〈
λrk

k λ
rk−1
k−1 . . . λr1

1 E
〉
) is the higher analytic torsion of the hermitian

bundle
〈
λrk

k λ
rk−1
k−1 . . . λr1

1 E
〉

relative to the just defined Kähler fibration.

Lemma 3.5 The map Π′′
k vanishes on degenerate k-cubes.

Proof: Suppose that E is degenerate for the index l. Then λrk

k λ
rk−1
k−1 . . . λr1

1 E
is degenerate for the index l and the fact mentioned at the beginning of the
proof of 3.3 shows that

〈
λrk

k λ
rk−1
k−1 . . . λr1

1 E
〉

is invariant under the automorphism
A : zl 7→ 1/zl of X × (P1

C)k. Thus the equation A∗T (
〈
λrk

k λ
rk−1
k−1 . . . λr1

1 (E)
〉
) =

T (
〈
λrk

k λ
rk−1
k−1 . . . λr1

1 (E)
〉
) holds, because A leaves the Fubini-Study Kähler form

invariant. Thus A∗Ck+1(T (
〈
λrk

k λ
rk−1
k−1 . . . λr1

1 (E
〉
)), log |z1|, log |z2|, . . . log |zk|) =

−Ck+1(T (
〈
λrk

k λ
rk−1
k−1 . . . λr1

1 (E
〉
)), log |z1|, log |z2|, . . . log |zk|) and we are done.

Q.E.D.
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Theorem 3.6 The diagram

Z̃CH
· (X) c̃h→ ⊕p≥0D

−
T (X, p)[2p]

↓ f∗ ↓ f∗ ◦ Td(Tf) • (·)

Z̃CH
· (B) c̃h→ ⊕p≥0D

−
T (B, p)[2p]

commutes up to homotopy of chain complexes. A homotopy between c̃h ◦ f∗ and
f∗ ◦ Td(Tf) • c̃h is given by the formula

Πk(E) := Π′
k(E) + Π′′

k(E) =

(−1)k+1

2(k + 1)!(2iπ)k+1

∑
(r1,...rk∈{1,2}k

∫
(P1

C
)k+1

ch(H
r1,...rk

1,2,...k )•Ck+1(log |z1|, . . . log |zk+1|)+

(−1)k

2(k + 1)!(2iπ)k

∑
(r1,...rk)∈{1,2}k

∫
(P1

C
)k

Ck+1(T (
〈
λrk

k λ
rk−1
k−1 . . . λr1

1 E
〉
), log |z1|, log |z2|, . . . log |zk|)

Proof: We compute
dDΠ′′

k(E) = (11)

(−1)k

2(k + 1)!
1

(2iπ)k

∫
(P1

C
)k

dDCk+1(T (
〈
λ(E)

〉
), log |z1|, log |z2|, . . . log |zk|) =

(−1)k

2(k + 1)!
1

(2iπ)k

∫
(P1

C
)k

(−1/2).(k + 1).
( k+1∑

j=2

(−1)j−1dD(log |zj−1|)•

Ck(T (
〈
λ(E)

〉
), log |z1|, . . . ̂log |zj−1|, . . . log |zk|)+dD(T (

〈
λ(E)

〉
))•Ck(log |z1|, . . . log |zk|)

)
=

(−1)k

2(k + 1)!
1

(2iπ)k
.(−1/2).(k + 1).

∫
(P1

C
)k

( k+1∑
j=2

(−1)j−1dD(log |zj−1|)∧

Ck(T (
〈
λ(E)

〉
), log |z1|, . . . ̂log |zj−1|, . . . log |zk|)+dD(T (

〈
λ(E)

〉
))•Ck(log |z1|, . . . log |zk|)

)
=

(−1/2).(k + 1).
(−1)k

2(k + 1)!
1

(2iπ)k

∫
(P1

C
)k

( k+1∑
j=2

(−1)j−1.− 4iπ.(δzj−1=∞ − δzj−1=0)

∧Ck(T (
〈
λ(E)

〉
), log |z1|, . . . ̂log |zj−1|, . . . log |zk|)+

−2
(
ch(f̃k∗(

〈
λ(E)

〉
)−

∫
X×(P1

C
)k/(P1

C
)k

Td(T f̃k)•ch(
〈
λ(E)

〉
)
)
•Ck(log |z1|, . . . log |zk|)

)
=
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(−1)k

2(k + 1)!
.(k+1).

1
(2iπ)k−1

∫
(P1

C
)k−1

k+1∑
j=2

(−1)j−1(−1)(Ck(T (
〈
∂0

j−1λ(E)
〉
), log |z1|, . . . log |zk−1|)−

Ck(T (
〈
∂−1

j−1λ(E)
〉
), log |z1|, . . . log |zk−1|)−Ck(T (

〈
∂1

j−1λ(E)
〉
), log |z1|, . . . log |zk−1|))+

(−1)k

2(k + 1)!
(−1/2).(k + 1)

1
(2iπ)k

∫
(P1

C
)k

−2
(
ch(f̃k∗(

〈
λ(E)

〉
)−∫

X×(P1
C

)k/(P1
C

)k

Td(T f̃k) • ch(
〈
λ(E)

〉
)
)
• Ck(log |z1|, . . . log |zk|) =

−Π′′
k−1(δk(λ(E)))+

(−1)k

2k!
1

(2iπ)k

( ∫
(P1

C
)k

ch(f̃k∗(
〈
λ(E)

〉
))•Ck(log |z1|, . . . log |zk|)−∫

(P1
C

)k

∫
X×(P1

C
)k/(P1

C
)k

Td(T f̃k) • ch(
〈
λ(E)

〉
) • Ck(log |z1|, . . . log |zk|)

)
=

−Π′′
k(δk(λ(E)))+

(−1)k

2k!
1

(2iπ)k

( ∫
(P1

C
)k

ch(f̃k∗(
〈
λ(E)

〉
))•Ck(log |z1|, . . . log |zk|)

−
∫

X

(
Td(Tf) •

∫
X×(P1

C
)k/X

ch(
〈
λ(E)

〉
) • Ck(log |z1|, . . . log |zk|)

))
=

−Π′′
k−1(δk(λ(E)))+

(−1)k

2k!
1

(2iπ)k

∫
(P1

C
)k

ch(f̃k∗(
〈
λ(E)

〉
))∧Ck(log |z1|, . . . log |zk|)

−
∫

X

Td(Tf) • c̃h(λ(E))) (12)

For the first equality, we use the first statement of 2.8; for the second and third
one, we use 2.9; for the fourth one, we use the equality (7) and the equation
for the analytic torsion (8); for the fifth one, we use 3.2, 3.1 and 2.5; for the
sixth one, we use the definition of δ; for the seventh one, we use the projection
formula in 2.8; for the seventh one, we use the definition of the secondary classes
2.10. If we combine the equality between (11) and (12) with the equality in 3.4
and use 3.3 and 3.5 we get the result. Q.E.D.

If we apply the functor K to the homotopy of chain complexes defined in the last
theorem and compose it with Cub, we get a simplicial homotopy between the
maps K(c̃h) ◦K(Cub) ◦Hu ◦ f∗ and f∗ ◦K(Td(Tf) • (·)) ◦K(c̃h) ◦K(Cub) ◦Hu.
Thus after application of the functor πi to both maps, we get Gillet’s Riemann-
Roch theorem.
Let u1, . . . uk ∈

⊕
p≥0 D2p−1(X, p). Applying the definition of the • product,

we obtain the following expression for Ck:

Ck(u1, . . . uk) :=
k∑

i=1

∑
σ∈Sk

(−1)i−1(−1)sgn(σ)uσ(1)∧∂uσ(2)∧. . . ∂uσ(i)∧∂uσ(i+1)∧. . . ∂uσ(k)
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(compare with [7, p. 120]). Using this equality, one can make the expression
for Πk completly explicit. The map Πk might be considered as a generalisation
of the Bismut-Köhler analytic torsion form to cubes of vector bundles. Notice
also that if B is a point, then Πk(E) is a real number, which is equal to the
Ray-Singer analytic torsion if k = 1 and is 0 if k is even.
Remark. If one tries to generalize the last theorem to quasi-projective varieties
smooth over smooth quasi-projective bases which are not necesserally compact,
one runs into serious analytic difficulties related to logarithmic singularities. If
the variety X is non-compact, the complex computing the Deligne-Beilinson
cohomology which was described in subsection 2.3 has to be restricted so as to
contain only differential forms with logarithmic singularities along the boundary
of some good compactification. Since Πk has to lie in the corresponding complex
with logarithmic singularities on B, one is lead to the question of the type of the
singularities of the higher analytic torsion forms, if one compactifies X and B
simultaneously. In his article [2] (see also [3]), Bismut investigates this question
for the Ray-Singer torsion (the degree zero part of the analytic torsion form), in
the case of the at most quadratic degeneration of f along the boundary of the
compactification. Unfortunately, for degree reasons, the use of the full analytic
torsion form is unavoidable in the definition of Π′′

k and one would need a result
analogous to the main result of [2] for the full torsion form to be in a position to
tackle the proof of the analog of our theorem in a relative context. Finally, notice
that one could probably obtain the analog of the just discussed generalisation
in the context of analytic Deligne cohomology, where logarithmic singularities
do not play a role.
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