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Abstract

Let K be the function field of a smooth curve over an algebraically

closed field k. Let X be a scheme, which is smooth and projective over K.

Suppose that the cotangent bundle ΩX/K is ample. Let R := Zar(X(K) ∩X)

be the Zariski closure of the set of all K-rational points of X, endowed

with its reduced induced structure. We prove that for each irreducible

component R0 of R, there is a projective variety X0 over k and a finite

and surjective Ksep-morphism X0,Ksep → R0,Ksep , which is birational when

char(K) = 0.

Using our result, one can give the first examples of varieties, which are not

embeddable in abelian varieties and satisfy a positive characteristic analog

of the Bombieri-Lang conjecture.

1 Introduction

Recall that the Bombieri-Lang conjecture (see [17, middle of p. 108]) asserts

that the set of rational points of a variety of general type over a number field is

not dense. This conjecture can be proven in the situation where the variety is
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embeddable in an abelian variety (this is deep result of Faltings, see [5]) but it is

not known to be true in any other situation, as far as the authors know.

Over function fields, it seems reasonable to make the following conjecture, which

must have been part of the folklore for some time.

Conjecture 1.1 (”Bombieri-Lang” conjecture over function fields). Let K0 be the

function field of a smooth variety over an algebraically closed field k0. Let Z be a

variety of general type over K0. Suppose that Zar(Z(K0)) = Z. Then there exists

a variety Z0 over k0 and a rational, dominant, generically finite Ksep
0 -morphism

g : Z0,Ksep
0
→ ZKsep

0
.

One might speculate that the rational map g appearing in Conjecture 1.1 can

also be taken to be generically purely inseparable.

In his article [10, p. 781], Lang gave a loose formulation of Conjecture 1.1 for

char(k0) = 0. If Z is embeddable in an abelian variety and char(k0) = 0, Con-

jecture 1.1 can be proven (see [3] and [6]). It can also be proven in the situation

where char(k0) = 0, the variety is smooth and its cotangent bundle is ample.

This is a result of Noguchi, which was also proved independently by Martin-

Deschamps (see [17] and [14]). When Z is embeddable in an abelian variety and

char(k0) > 0, Conjecture 1.1 is a theorem of Hrushovski (see [9]). See also [18],

[22] and [1] for different proofs of Hrushovski’s theorem. When Z is of dimension

1 and char(k0) = 0, Conjecture 1.1 was first proven by Manin and Grauert and

several other proofs were given in the course of the 1970s (eg by Parshin and

Arakelov). See the articles [7], [13], [12] and [4, chap. I]. When Z is of dimension

1 and char(k0) > 0, Conjecture 1.1 was first proven by Samuel and other proofs

were given later by Szpiro and Voloch. See the articles [19], [20] and [21].

In the following paper, we shall prove Conjecture 1.1 in the situation where K0

has transcendence degree 1 over its prime field and Z is a subvariety of a larger

variety Z ′, where Z ′ is smooth and has ample cotangent bundle over over K0.

See Theorem 1.2 below. Theorem 1.2 can be used to give the first examples (to

the authors knowledge) of varieties of general type in positive characteristic that

satisfy Conjecture 1.1 and are not embeddable in abelian varieties. Theorem 1.2

also provides a strengthening of Noguchi’s result in the situation where K0 has

transcendence degree 1 over Q (because unlike Noguchi we do not assume that

Z = Z ′).

Here is a precise formulation of our result.
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Let K be the function field of a smooth curve U over an algebraically closed field

k. Let X be a scheme, which is smooth and projective over K.

We prove:

Theorem 1.2. Suppose that the cotangent bundle ΩX := ΩX/K is ample. Let

R := Zar(X(K) ∩X) be the Zariski closure of the set of all K-rational points of

X, endowed with its reduced induced structure. For each irreducible component

R0 of R, there is a projective variety X0 over k and a finite and surjective Ksep-

morphism h : X0,Ksep → R0,Ksep. If char(k) = 0, there exists a morphism h as

above, which is birational.

Remark. In Theorem 1.2, we assume that K is the function field of a curve (see

also the discussion above). This restriction, which can probably be removed at

the price of added technicality, comes from the fact that we need to consider a

smooth compactification of U in the proof and also from the fact that we need

to consider a Néron desingularisation of a scheme over U .

We now describe the strategy of the proof of Theorem 1.2, which can be viewed

as a refinement of the method of Grauert (see [11, chap. VI] for a nice overview

of this method), in which all the higher jet schemes are brought into the picture

(unlike Grauert, who considers only the first jet scheme).

Here is a how Grauert and his followers proceed in characteristic 0, in the situation

where the rational points are dense in the whole variety. One first shows that

the rational points of X lift to rational points of the first jet scheme. Next, one

shows that the ”non-constant” rational points concentrate on a closed subscheme

Σ (say), which is finite and generically inseparable over X. To establish this

last fact, one needs to consider a non-singular compactification of X/K over

a compactification of U and use the height machine over function fields. The

proof can now be completed quickly because generically inseparable morphisms

are birational in characteristic 0 and thus the projection of Σ onto X is an

isomorphism. In view of the definition of the first jet scheme, this means that

the Kodaira-Spencer class of X vanishes. Using the exponential map, one can

conclude from this that X descends to k (up to a separable extension of K).

If one tries to carry through the above proof in positive characteristic, the first

problem that one faces is that one cannot easily construct a non-singular com-

pactification of X, unless one assumes the existence of resolutions of singularities

in positive characteristic.
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Next, even if one supposes that this first problem can be solved, one is faced with

the basic problem that the projection Σ→ X might not be an isomorphism.

Finally, even if the projection Σ → X can be shown to be an isomorphism, ie

even if the Kodaira-Spencer class of X vanishes, one cannot conclude that X

descends to k. For example, any smooth proper curve over K, which descends to

Kp, has a vanishing Kodaira-Spencer class.

Here is how we deal with these issues. For the first problem, we replace the non-

singular compactification by a Néron desingularisation, which is not compact,

but suffices for our purposes. The second and third issues are dealt with simul-

taneously. We show that after a finite purely inseparable base-change the entire

tower of jet schemes becomes trivial, in the following sense: the base-change of

the first jet scheme has a section, the base-change of the second jet scheme has

a section over the image of the first section, the base-change of the third jet

scheme has a section over the image of the second section and so on. We show

that the trivialisation of the tower of jet schemes is a consequence of a gener-

alisation of a cohomological result of Szpiro and Lewin-Ménégaux (see before

Proposition 2.3 below). Our proof of this generalisation is not based on the same

principle as the result of Szpiro and Lewin-Ménégaux. Specializing all this to a

closed point u0 of U , we obtain a morphism of formal schemes between a constant

formal scheme and the completion at u0 of (a suitable model of) X. Applying

Grothendieck’s formal GAGA theorem and using the fact that the completion

of U at u0 is an excellent discrete valuation ring, we can construct the required

morphism X0,Ksep → XKsep .

The method that we just outlined also allows us to treat the situation where the

rational points are not Zariski dense. This was (apparently) not accessible before

even in characteristic 0.

Here is the structure of the text.

In subsection 2.1, we recall various facts about the geometry of torsors under

vector bundles (in particular, ample vector bundles). In subsection 2.2, we prove

an injectivity criterion for purely inseparable pull-back maps between first coho-

mology groups of vector bundles (Corollary 2.2) and we prove a basic vanishing

result (Proposition 2.3) for the group of global sections of a coherent sheaf, which

is twisted by a sufficiently high power of Frobenius pull-backs of an ample bun-

dle. In section 3, we prove Theorem 1.2. As explained above, our proof does
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not use the exponential map but uses formal schemes directly and thus differs

in nature from the proofs of Noguchi and Martin-Deschamps (see op. cit.) even

when char(k) = 0.

The reader is advised to first read the proof with the supplementary assumption

that U is proper over k and that X extends to a smooth and projective scheme

over U . Many technicalities of the proof disappear when that (unrealistic. . . )

supplementary assumption is made.

Notations. If S is a scheme of positive characteristic, we write FS for the

absolute Frobenius endomorphism of S. The acronym wrog stands for ”without

restriction of generality”. If Y is an integral scheme, we write κ(Y ) for the

function field of Y .

2 Preliminaries

2.1 The geometry of the compactifications of torsors un-

der vector bundles

In this subsection, we recall various results proven in [14].

Let S be a scheme, which is of finite type over a field k0.

If V a locally free sheaf over S, we shall write P(V ) for the S-scheme representing

the functor on S-schemes

T 7→ {iso. classes of surjective morphisms of OT -modules VT → Q, where Q is locally free of rank 1}.

By construction, P(V ) comes with a universal line bundle OP (1). Let now

E : 0→ OS → E → F → 0 (1)

be an exact sequence of locally free sheaves over S. Consider the S-group scheme

F := Spec(Sym(F )) representing the group functor on S-schemes sending T to

F∨T (T ). Let RE be the functor from S-schemes to sets given by

T 7→ {morphisms of OT -modules ET 7→ OT splitting ET}. (2)

There is an obvious (group functor-)action of F on RE .
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(1) The natural morphism P(F )→ P(E) is a closed immersion and there is an

isomorphism of line bundles O(P(F )) ' OP (1).

(2) The complement P(E)\P(F ) represents the functorRE . The isomorphism of

functors on S-schemes RE → P(E)\P(F ) can be described as follows. There

is a natural transformation of functors RE → P(E) sending a morphism

of OT -modules ET 7→ OT splitting ET to the same morphism ET → OT ,

viewed as a morphism from ET onto a locally free sheaf of rank 1 (the latter

being the trivial sheaf). This gives a morphism of schemes RE → P(E),

which is an open immersion onto P(E)\P(F ).

Thus

(3) the scheme RE with its F-action is an S-torsor under F.

Further, by (1):

(4) if E is ample then the scheme P(E)\P(F ) is affine

(point (4) will actually not be used in the text).

Let us now suppose until the end of this section that F is ample.

(5) if Z ↪→ RE is a subscheme, which is closed in P(E), then the induced map

Z → S is finite and has only a finite number of fibres that contain more

than one point; in particular, if S is irreducible, then Z is irreducible and

the morphism Z → S is generically radicial ;

(6) for all sufficiently large n ∈ N, the line bundle OP (n) is generated by its

global sections and in this case the induced k0-morphism

φn : P(E)→ P(Γ(OP (n)))

is generically finite;

(7) for n ∈ N as in (6), the positive-dimensional fibres of the morphism φn are

disjoint from P(F ).

From the fact that fibre dimension is upper semi-continuous (see [8, IV, 13.1.5])

and (7) we deduce that
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(8) the union Iφn of the positive dimensional fibres of φn is closed in P(E) and

is contained in RE .

We endow Iφn with its reduced-induced structure. From (5) we deduce that

(9) the morphism Iφn → S is finite and has only a finite number of fibres that

contain more than one point; in particular, if S is irreducible, then Iφn is

irreducible and the morphism Iφn → S is generically radicial.

We shall also need the

(10) Every torsor under F is isomorphic to a torsor RE for some exact sequence

E as in (1). The class in H1(S, F∨) ' Ext1(OS, F∨) corresponding to RE is

the image of 1 ∈ H0(S,OS) in H1(S, F∨) under the connecting map in the

long exact sequence

0→ H0(S, F∨)→ H0(S,E∨)→ H0(S,OS)→ H1(S, F∨)→ . . .

associated with the dual exact sequence E∨.

2.2 Torsors under vector bundles and purely inseparable

base-change

If W is a quasi-coherent OY -module on a integral scheme Y , we shall write

Γ(Y,W )g := {e ∈ Wκ(Y ) | ∃σ ∈ Γ(Y,W ) : σκ(Y ) = e}.

Lemma 2.1. Let Y be a normal and integral scheme. Let W be a vector bundle

over Y . Let T → Y be a torsor under W and let Z ↪→ T be a closed immersion,

where Z is an integral scheme. Suppose that the induced morphism f : Z → Y is

quasi-finite, separated, radicial and dominant. Suppose that Γ(Z,Ωf⊗f ∗W )g = 0.

Then f |Z is an open immersion.

Proof. Let π : T ×Y T → Y . We consider the scheme T ×Y (T ×Y T ). Via the

projection on the second factor T ×Y T , this scheme is naturally a torsor under

the vector bundle π∗W . This torsor has two sections:

- the section σ1 defined by the formula t1 × t2 7→ t1 × (t1 × t2);
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- the section σ2 defined by the formula t1 × t2 7→ t2 × (t1 × t2).

Since T×Y (T×Y T ) is a torsor under π∗W , there is a section s ∈ Γ(T×Y T, π∗W )

such that σ1 + s = σ2 and by construction s(t1 × t2) = 0 iff t1 = t2. In other

words, s vanishes precisely on the diagonal of T ×Y T .

Now let ∆Z : Z ↪→ Z×Y Z be the diagonal immersion. Let ∆
(1)
Z : Z(1) ↪→ Z×Y Z

be the first infinitesimal neighborhood of ∆Z . By the definition of the differentials,

we have an exact sequence of sheaves

0→ Ωf → OZ(1) → OZ → 0

which gives rise to an exact sequence

0→ Γ(Z, π∗W |Z ⊗ Ωf )→ Γ(Z(1), π∗W |Z(2))→ Γ(Z, π∗W |Z)

Now by construction, the image of the section s ∈ Γ(T×Y T, π∗W ) in Γ(Z, π∗W |Z)

vanishes. Hence the image of the section s ∈ Γ(T×Y T, π∗W ) in Γ(Z(1), π∗W |Z(2))

is the image of a section s0 ∈ Γ(Z, π∗W |Z⊗Ωf ). By assumption, we have s0,κ(Z) =

0 and thus by the construction of s the immersion Z ↪→ Z(1) is generically an

isomorphism. Hence Ωf,κ(Y ) = 0 and f is birational. Zariski’s main theorem now

implies that f is an open immersion.

Corollary 2.2. Let Y be a normal and integral scheme. Let W be a vector

bundle over Y . If Γ(Y,ΩFY ⊗ F ∗Y (W ))g = 0 then the natural map of abelian

groups H1(Y,W )→ H1(S, F ∗YW ) is injective.

Proof. Consider an element in the kernel of the map H1(Y,W )→ H1(S, F ∗YW ).

Let T → Y be a torsor under W corresponding to this element. By assumption,

there is a Y -morphism Y → F ∗Y T and from this we may construct a closed integral

subscheme Z ↪→ T together with a factorisation Y
φ→ Z

f→ Y , where the arrow

f is the natural projection and f ◦ φ = FY . Now using [15, Th. 26.5, p. 202], we

see that we have an exact sequence

0→ φ∗Ωf,κ(Y ) → ΩFY ,κ(Y ) → Ωφ,κ(Y ) → 0.

Now from the existence of this sequence and from the fact that Γ(Y,ΩFY ⊗ F ∗Y (W ))g = 0,

we may conclude that Γ(Z,Ωf ⊗ f ∗W )g = 0. Thus, by Lemma 2.1, the torsor

T → Y must be trivial.

8



Note that if Y is projective over an algebraically closed field, then a weaker form

of Corollary 2.2 (which is not sufficient for our purposes) is contained in [20, exp.

2, Prop. 1]. The proof given there depends on the existence of the Cartier

isomorphism.

Let now S be an integral scheme, which is projective over a field k0 of character-

istic p.

Proposition 2.3. Suppose that dim(S) > 0. Let V be an ample vector bundle of

rank r over S. Let V0 be a coherent sheaf over S. Then we have H0(S, F n,∗
S (V ∨)⊗ V0)g = 0

for all sufficiently large n > 0.

Proof. We may suppose without restriction of generality that k0 is algebraically

closed.

The proof is by induction on the dimension d > 1 of S.

Suppose that d > 1. Consider a pencil of hypersurfaces in S and let b : S̃ → S the

total space of the pencil, so that we are given a birational morphism m : S̃ → P1
k0

.

Let η ∈ P1
k0

be the generic point. Let n0 be sufficiently large, so that

H0(S̃η, F
n,∗
S̃η

((b∗V ∨)η)⊗ (b∗V0)η)g = 0

for all n > n0. This is possible by the induction hypothesis and because (b∗V ∨)η

is ample. The fact that (b∗V ∨)η is ample is a consequence of the fact that the

restriction of V to any closed fibre of m is ample and of the fact that ampleness on

the fibre ofm is a constructible property. Now if we hadH0(S, F n,∗
S (V ∨)⊗V0)g 6= 0

for some n > n0 then the pull-back b∗(F n,∗
S (V ∨)⊗ V0) would have a section that

would not vanish at the generic point of S̃η, which is a contradiction.

Thus we are reduced to prove the statement for d = 1. We may replace wrog

S by its normalisation. Since S is now a non-singular curve, we know that V is

cohomologically p-ample (see [16, Rem. 6), p. 91]). Also, V0 is now the direct

sum of a torsion sheaf and of a locally free sheaf so we may assume wrog that V0

is locally free. Now using Serre duality, we may compute

H0(S, F n,∗
S (V ∨)⊗ V0) = H1(S, F n,∗

S (V )⊗ V ∨0 ⊗ ΩS/k0)
∨

and the vector space H1(S, F n,∗
S (V ) ⊗ V ∨0 ⊗ ΩS/k0) vanishes for n >> 0 because

V is cohomologically p-ample.
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Corollary 2.4. Suppose that V is an ample bundle on S and that S is normal.

Let n0 ∈ N be such that H0(S, F n,∗
S (V ∨)⊗ΩFS)g = 0 for all n > n0. Let S ′ be an

irreducible scheme and let φ : S ′ → S be a finite surjective morphism, which is

generically inseparable. Then the map

H1(S, F n0,∗
S (V ∨))→ H1(S ′, φ∗(F n0,∗

S (V ∨)))

is injective.

Proof. (of Corollary 2.4). Let H be the function field of S and let H ′|H be the

(purely inseparable) function field extension given by φ. Let `0 be sufficiently

large so that there is a factorisation Hp−`0 |H ′|H. We may suppose that S ′ is a

normal scheme, since we may replace S ′ by its normalization without restriction

of generality. On the other hand the morphism F `0
S : S → S gives a presentation

of S as its own normalization in Hp−`0 . Thus there is a natural factorization

S → S ′
φ→ S, where the morphism S → S is given by F `0

S . Using Corollary 2.2, we

see that there is a natural injection H1(S, F n0,∗
S (V ∨)) ↪→ H1(S, F `0,∗

S (F n0,∗
S (V ∨)))

and thus an injection H1(S, F n0,∗
S (V ∨))→ H1(S ′, φ∗(F n0,∗

S (V ∨))).

3 Proof of Theorem 1.2

In this section, we assume that the hypotheses and the notation of Theorem 1.2

are in force.

The jet scheme construction described in [18, sec. 2] provides a covariant functor

Y 7→ J i(Y/U)

from the category of quasi-projective schemes Y over U to the category of schemes

over U .

The construction also provides an infinite tower of U -morphisms

· · · → J2(Y/U)
Λ2,Y→ J1(Y/U)

Λ1,Y→ X .

If Y is smooth over U , then the scheme J i(Y/U), viewed as a J i−1(Y/U)-scheme

via Λi,Y , is a torsor under the vector bundle TY ⊗ Symi(ΩU/k), where TY :=

(Ω1
Y/U)∨. Here the bundle TY (resp. Symi(ΩU/k)) is implicitly pulled back from

Y (resp. U) to the scheme J i−1(Y/U).
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The functor J i(·/U) preserves closed immersions and smooth morphisms. In

particular, for any i ∈ N, there is a natural map

λi,Y : Y(U) = MorU(U,Y)→ MorU(J i(U/U), J i(Y/U)) = MorU(U, J i(Y/U)),

(3)

and these maps are compatible with the morphisms Λi,Y .

We refer to [18, sec. 2] for more details on jet schemes.

We now suppose wrog that X/K extends to a (not necessarily proper) smooth

scheme π : X → U . We shall write J i(X/K) for J i(X/U)K .

We shall divide the proof into steps. The main part of the proof will take place

over K and will not make use of the model X/U of X/K.

By a compactification T̄ of an S-scheme T , we shall mean a proper scheme T̄ → S,

which comes with an open immersion T ↪→ T̄ with dense image.

Let Ū → Spec k be a smooth compactification of U .

Recall that we suppose that the cotangent bundle of X over K is ample.

Step I. Compactifications.

First choose any projective compactification X̄0 of X viewed as a scheme over Ū .

By applying Néron desingularization to X̄0 (see [2, chap. 3, th. 2])), we obtain

another projective compactification X̄00 of X over Ū , with the property that the

injection X̄ sm
00 (Ū) ↪→ X̄00(Ū) = X(K) is a bijection. Here X sm

00 ⊂ X00 is the

largest open subset X sm
00 of X00, such that X sm

00 → Ū is smooth. Since X(K) 6= ∅,
this shows that there exists a model of X over Ū (ie the model X̄ sm

00 ), which is

smooth and surjective onto Ū .

Thus, we may (and do) suppose that U = Ū and that X is surjective (and

smooth) over U . We let X̄ be any compactification of X over U .

We now choose specific compactifications J̄ i(X/U) over U for the jet schemes

J i(X/U).

For i = 0, we let J̄0(X/U) = X̄ and we define them inductively for i > 0.

So suppose that the compactification J̄ i(X/U) has already been constructed.

As said above, the J i(X/U)-scheme J i+1(X/U) is a torsor under F∨i , where

Fi := (TX ⊗ Symi+1(ΩU/k))
∨ (viewed as a vector bundle over J i(X/U)). We
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shall denote this torsor by Ti. Let

0→ OJi(X/U) → Ei → Fi → 0 (4)

be an extension (unique up to non-unique isomorphism) associated with the

class of Ti in H1(J i(X/U), F∨i ). It was explained in (2) subsection 2.1 that the

J i(X/U)-scheme J i+1(X/U) can be realized as the complement P(Ei)\P(Fi). We

now define the compactification J̄ i+1(X/U) to be some J̄ i(X/U)-compactification

of P(Ei), such that the diagram

P(Ei) ⊂ > J̄ i+1(X/U)

J i(X/U)
∨

⊂ > J̄ i(X/U)
∨

is cartesian. This is possible because we may extend Ei to a coherent sheaf Ēi

on J̄ i(X/U) and define J̄ i+1(X/U) := P(Ēi).

We call Λ̄i+1 : J̄ i+1(X/U)→ J̄ i(X/U) the corresponding morphism.

The following diagram summarizes the resulting geometric configuration:

J i+1(X/U) ⊂ > P(Ei) ⊂ > J̄ i+1(X/U)

J i(X/U)

Λi+1∨
= J i(X/U)

∨
⊂ > J̄ i(X/U)

Λ̄i+1∨

Here the hooked horizontal arrows are open immersions and the square on the

right is cartesian.

Recall the following key properties. The scheme U is proper over k and the

schemes J̄ i(X/U) are proper over U . The morphisms J̄ i+1(X/U) → J̄ i(X/U)

are proper. The schemes J i(X/U) and P(Ei) are smooth and surjective onto U .

By the valuative criterion of properness, there is a natural map X (U)→ J̄ i(X/U)(U)

extending the map λi : X (U)→ J i(X/U)(U). By unicity, this map is none other

than the map λi composed with the open immersion J i(X/U) ↪→ J̄ i(X/U).

Abusing notation, we shall therefore also denote it by λi.

Define J̄ i(X/K) := J̄ i(X/U)K ' P(Ei)K .

Step II. The schemes Zi ↪→ J i(X/K).

We shall inductively construct closed integral subschemes Zi ↪→ J i(X/K) with

the following properties. They are sent onto each other by the morphisms Λi.
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The morphisms Zi+1 → Zi are finite, surjective and generically radicial and Zi is

proper over U (in particular, Zi is closed in J̄ i(X/K)). Furthermore the image

of X (U) = X(K) by λi,K in J i(X/K) meets Zi in a dense set.

The schemes Zi are defined via the following inductive procedure.

Define Z0 as the reduced closed subscheme of X associated with an arbitrary

irreducible component of the closed set Zar(X(K)).

To define Zi+1 from Zi notice that by the Step I, we have an identification

J̄ i+1(X/U)Zi = P(Ei,Zi).

Notice also that Fi,Zi is ample (over K) since Zi → X is finite. Thus by (6) in

subsection 2.1, we are given a K-morphism

φni : P(Ei,Zi)→ PniK ,

for some ni ∈ N and φni . Call Iφni the union of the positive dimensional fibres of

φni .

Write Hi ⊆ PniK for a hyperplane such that φ−1
ni

(Hi) = P(Fi,Zi). This exists by (1)

in subsection 2.1.

Let P̄(Ei,Zi) be the Zariski closure of P(Ei,Zi) in J̄ i+1(X/U) and let P̄(Fi,Zi) be

the Zariski closure of P(Fi,Zi) in J̄ i+1(X/U).

Now call Σi ⊆ X (U) = X(K) the set of sections σ ∈ X (U) such that λi,K(σ) ∈
Zi(K).

Lemma 3.1. Let σ ∈ Σi . We have

λi+1(σ) ∈ P̄(Ei,Zi)(U)

and

λi+1(σ)(U) ∩ P̄(Fi,Zi) = ∅. (5)

Proof. The first equation follows from the definitions. The second equation

follows from the fact that λi+1(σ)(U) ⊆ J i+1(X/U) = P(Ei)\P(Fi) and from the

fact that we have a set-theoretic identity P̄(Fi,Zi) ∩ P(Ei) ⊆ P(Fi), since P(Fi) is

a closed subset of P(Ei).

Now choose a proper birational U-morphism bi : P̄′(Ei,Zi) → P̄(Ei,Zi), which is

an isomorphism over K and such that there exists a proper U -morphism

φ̃i : P̄′(Ei,Zi)→ PniU ,
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with the property that φni ◦ bi,K = φ̃i,K . Furthermore, we suppose that P̄′(Ei,Zi)
is integral and normal.

Let P̄′(Fi,Zi) be the Zariski closure of b−1
i,K(P(Fi,Zi)) in P̄′(Ei,Zi). Let H̄i ⊆ PniU be

the Zariski closure of Hi.

By the valuative criterion of properness, there is a natural map

λ̄′i+1 : X (U)→ P̄′(Ei,Zi)(U),

such that bi ◦ λ̄′i+1 = λi+1.

Now let P̄′′(Ei,Zi) be the normalisation of φ̃i(P̄′(Ei,Zi)) in P̄′(Ei,Zi). By construc-

tion, we have a factorisation

P̄′(Ei,Zi)
ρi→ P̄′′(Ei,Zi)

ν̄i→ PniU

of φ̃i and the morphism ρi is birational.

Lemma 3.2. There exists a constant βi+1 > 0, which is independent of σ, such

that for all σ ∈ Σi, we have

length(ρi(λ̄
′
i+1(σ))(U) ∩ ν̄∗i (Hi)) 6 βi+1. (6)

Here ∩ refers to the scheme-theoretic intersection.

Proof. Notice that ν̄∗i (H̄i) has a finite number of irreducible components. Among

those, the only horizontal (over U) irreducible component is ρi(P̄′(Fi,Zi)). Fur-

thermore, we have λ̄′i+1(σ) ∩ P̄′(Fi,Zi) = ∅ (by equation (5)). Thus ρi(λ̄
′
i+1(σ))

meets only the horizontal irreducible components of ν̄∗i (H̄i). Finally, the inter-

section multiplicity of λ̄′i+1(σ) with a fixed horizontal component of ν̄∗i (H̄i) can

be bounded independently of σ.

Now we have

Lemma 3.3. There exist a scheme Mi, which is quasi-projective over k and a

U-morphism µi : Mi ×k U → P̄′′(Ei,Zi), with the following properties:

• for all P ∈Mi(k), we have

deg(µi(P × IdU)∗(ν̄∗i (O(Hi))) 6 βi+1;

14



• for any U-morphism κ : U → P̄′′(Ei,Zi) such that

deg(µi(P × IdU)∗(ν̄∗i (O(Hi))) 6 βi+1

there is a P ∈Mi(k) such that κ = µi(P × IdU).

Proof. Notice that the morphism ν̄i is finite and thus the divisor ν̄∗i (Hi) is ample.

The existence of Mi is now a consequence of the theory of Hilbert schemes.

Corollary 3.4. For almost all the sections σ ∈ Σi, we have λi+1,K(σ)(SpecK) ∈
Iφni .

Proof. Let Mi be as in Lemma 3.3. In view of (6) and the assumptions, we

know that Mi has positive dimension. Let C ↪→Mi be a smooth curve inside Mi

such that C(k) contains infinitely many k-points corresponding to elements of Σi.

We have by construction a K-morphism CK → P̄′′(Ei,Zi)K . Let U ′′i ⊆ P′′(Ei,Zi)K
be the largest open set such that ρi|U ′′i is finite (and thus an isomorphism, by

Zariski’s main theorem). To obtain a contradiction to the conclusion of the

Corollary, suppose that the image of CK intersects U ′′i . Restricting the size of C,

we may then suppose that the image of CK → P̄′′(Ei,Zi)K lies inside U ′′i and thus

we obtain a morphism lC : CK → P(Ei,Zi) ⊆ J i+1(X/K).

Now consider that we also have by functoriality a morphism

J i+1(CK/K)→ J i+1(X/K)

arising from the morphism CK → X coming from the composition of lC with

the projection P(Ei,Zi) → X. The morphism J i+1(CK/K) → J i+1(X/K) can

be composed with the natural section CK → J i+1(CK/K) to obtain a second

K-morphism

l′C : CK → J i+1(X/K).

By construction, the morphisms lC and l′C coincide on a dense set of K-points

and thus lC = l′C .

Now consider a smooth compactification C̄ of C over k. By the valuative criterion

of properness, there is a unique K-morphism C̄K → X extending the morphism

CK → X described in the last paragraph. Following the steps of the construction

given above, we again obtain a K-morphism

l′C̄ : C̄K → J i+1(X/K),
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which extends l′C . On the other hand, l′
C̄

(C̄K) ⊆ P(Ei,Zi)\P(Fi,Zi) by construction

and the image φni(l
′
C̄

(C̄K)) is closed in PniK . Furthermore, by the definition of Hi,

φni(l
′
C̄(C̄K)) ∩Hi = ∅.

Thus φni(l
′
C̄

(C̄K)) is the underling set of an integral scheme, which is affine and

proper over K and thus consists of a point. We conclude that l′C(CK) ⊆ Iφni ,

which contradicts the assumption that l′C(CK) meets the (open) locus of the finite

fibres of φni .

Since λi,K(Σi) is dense in Zi by assumption, we deduce from (9) in subsection

2.1 and from Corollary 3.4 that the base-change Iφni ,Zi has a single irreducible

component of positive dimension, which is finite and generically radicial over Zi.

Furthermore, from (7) in subsection 2.1, we know that Iφni is proper over Spec K.

We have shown that Zi+1 := Ired
φni ,Zi

has all the required properties.

Step III. Purely inseparable trivialization.

Let Z̃0 → Z0 be the normalisation of Z0. For every i > 0, write Z̃i → Z̃0 for the

Z̃0-scheme obtained by base-change. Similarly, write J̃ i(X/K) for the pull-back

of J i(X/K) to Z̃0. We denote by F̃0 the pull-back to Z̃0 of the vector bundle

F0 ' TX ⊗ ΩK/k.

Suppose that char(k) = 0.

The scheme J̃1(X/K) is by construction a torsor under F̃0. Furthermore, the mor-

phism Z̃red
1 → Z̃0 is an isomorphism by Zariski’s main theorem and it trivializes

the torsor J̃1(X/K) by construction.

Repeating this reasoning for Z̃red
2 over Z̃red

1 ' Z̃0, Z̃red
3 over Z̃red

2 and so forth, we

see that the natural morphisms Z̃red
i+1 → Z̃red

i are isomorphisms for all i > 0.

Now suppose until the end of Step III that char(k) > 0.

Write Fm0,∗
X Z̃i for the base-change of Z̃i → Z̃0 by Fm0

Z̃0
. Let

πi,m0 : (Fm0,∗
Z̃0

Z̃i)
red → Z̃0

be the natural morphism.

Similarly, write Fm0,∗
Z̃0

J̃ i(X/k) for the base-change of J̃ i(X/k) by Fm0

Z̃0
.

We now choose m0 large enough so that

H0(Z̃0, F
m,∗
Z̃0

(F̃0)⊗ ΩF
Z̃0

)g = 0
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for all m > m0. The existence of m0 is predicted by Proposition 2.3.

The scheme Fm0,∗
Z̃0

J̃1(X/k) is by construction a torsor under Fm0,∗
Z̃0

(F̃0). Further-

more, the morphism π1,m0 trivializes this torsor by construction, since there is a

Z̃0-morphism (Fm0,∗
Z̃0

Z̃1)red → Fm0,∗
Z̃0

J̃1(X/k). By the assumption on m0 and be-

cause π1,m0 is finite and generically radicial, the Fm0,∗
Z̃0

(F̃0)-torsor Fm0,∗
Z̃0

J̃1(X/k)

is actually trivial (use Corollary 2.4). Let

t : Z̃0 → Fm0,∗
Z̃0

J̃1(X/K)

be a section. The scheme t∗(Z̃0) is proper over K and thus property (5) in subsec-

tion 2.1 implies that t∗(Z̃0) = (Fm0,∗
Z̃0

Z̃1)red and thus the morphism (Fm0,∗
Z̃0

Z̃1)red →
Z̃0 is an isomorphism.

Repeating this reasoning for (Fm0,∗
Z̃0

Z̃2)red over (Fm0,∗
Z̃0

Z̃1)red ' Z̃0, (Fm0,∗
Z̃0

Z̃3)red

over (Fm0,∗
Z̃0

Z̃2)red and so forth, we see that the natural morphisms (Fm0,∗
Z̃0

Z̃i+1)red →
(Fm0,∗

Z̃0
Z̃i)

red are isomorphisms from all i > 0.

Step IV. Formalization and utilization of Grothendieck’s GAGA.

In this final step, the argument will be written up under the assumption that

char(k) > 0. The argument goes through verbatim when char(k) = 0, if one sets

m0 = 0 in the text below.

We now choose an affine open subset U0 ⊆ U and a normal integral scheme Z̃0,

which is of finite type over U0 and comes with a finite U0-morphism Z̃0 → XU0

extending the morphism Z̃0 → X. We let Z0 be the (reduced) Zariski closure of

Z0. Furthermore, we assume wrog that the natural map

H1(Z̃0, F
m0,∗
Z̃0

(TXU0)⊗ ΩU0/k)→ H1(Z̃0, F
m0,∗
Z̃0

(TX)⊗ ΩK/k)

is injective. Here as before, TXU0 and ΩU0/k are identified with their pull-backs

to Z̃0.

We write J̃ i(XU0/U0) for the pull-back of J i(XU0/U0) to Z̃0 and Fm0,∗
Z̃0

J̃ i(XU0/U0)

for the base-change of J̃ i(XU0/U0) by Fm0

Z̃0
.

By construction the Fm0,∗
Z̃0

(TXU0)⊗ΩU0/k-torsor Fm0,∗
Z̃0

J̃1(XU0/U0) is trivial. If we

choose a section Z̃0 ↪→ Fm0,∗
Z̃0

J̃1(XU0/U0) then the pull-back by this trivialisation

of the Fm0,∗
Z̃0

(TXU0)⊗ΩU0/k-torsor Fm0,∗
Z̃0

J̃2(XU0/U0) is also trivial. Continuing in

this way, we get a sequence of compatible sections Z̃0 ↪→ Fm0,∗
Z̃0

J̃ i(XU0/U0), for

all i > 0.

17



Now write J̃ i(Z0/U0) for the pull-back of J i(Z0/U0) to Z̃0 and Fm0,∗
Z̃0

J̃ i(Z0/U0)

for the base-change of J̃ i(Z0/U0) by Fm0

Z̃0
. Notice that each of the sections Z̃0 ↪→

Fm0,∗
Z̃0

J̃ i(XU0/U0) factors through Fm0,∗
Z̃0

J̃ i(Z0/U0). This follows simply from the

fact that λi,K(Z0(K))∩Zi is (by construction) dense in Zi and from the fact that

λi,K(Z0(K))) := {J i(z) ∈ J i(Z0/K)(K) ⊆ J i(X/K)(K) | z ∈ Z0(K)}.

Now choose a closed point u0 ∈ U0. View u0 as a closed subscheme of U0. For any

i > 0, let ui be the i-th infinitesimal neighborhood of u0 ' Spec k in U0 (so that

there is no ambiguity of notation for u0). Notice that ui has a natural structure

of k-scheme. Suppose wrog that the u0-scheme X0,u0 is proper and smooth and

that the morphism Z̃0,u0 → Zu0 is birational. Recall that by the definition of

jet schemes (see [18, sec. 2]), the scheme J i(Z0/U0)u0 represents the functor on

k-schemes

T 7→ Morui(T ×k ui,Z0,ui).

Thus the infinite chain of trivialisations Z̃0 ↪→ Fm0,∗
Z0

J̃ i(Z0/U0) gives rise to um

morphisms

Z̃(p−m0 )
0,u0

×k0 ui → Z0,ui (7)

compatible with each other under base-change. Here Z̃(p−m0 )
0,u0

denotes the base-

change of the k-scheme Z̃0,u0 by the m0-th power of the inverse of the Frobenius

automorphism of k.

Let Ûu0 be the completion of the local ring of U at u0. View the Ûu0-schemes

Z̃(p−m0 )
0,u0

×k Ûu0 and Z0,Ûu0
as formal schemes over Ûu0 in the next sentence. The

family of morphisms (7) provides us with a morphism of formal schemes

Z̃(p−m0 )
0,u0

×k Ûu0 → Z0,Ûu0

and since both schemes are projective over Ûu0 , Grothendieck’s GAGA theorem

shows that this morphism of formal schemes comes from a unique morphism of

schemes

ι : Z̃(p−m0 )
0,u0

×k Ûu0 → Z0,Ûu0
.

By construction, at the closed point u0 of Ûu0 , the morphism ι specializes to the

morphism Fm0

Z̃0,u0

composed with the finite morphism Z̃0,u0 → Zu0 . Since the set

of points of XÛu0 , where the fibres of ι are non-empty and of dimension 0 is open,

we see that the morphism ι is finite over the generic point of Ûu0 .
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Let K̂ be the function field of Ûu0 . Since k is an excellent field, we know that the

field extension K̂|K is separable. On the other hand the just constructed finite

morphism Z̃(p−m0 )
0,u0

×k K̂ → Z0,K̂ is defined over a finitely generated subfield K ′

(as a field over K) of K̂. The field extension K ′|K is then still separable, so that

by the theorem on separating transcendence bases, there exists a variety U ′/K,

which is smooth over K and whose function field is K ′. Furthermore, possibly

replacing U ′ by one of its open subschemes, we may assume that the morphism

Z̃(p−m0 )
0,u0

×k K ′ → Z0,K′ extends to a finite morphism

α : Z̃(p−m0 )
0,u0

×k U ′ → Z0,U ′ .

Let P ∈ U ′(Ksep) be a Ksep-point over K (the set U ′(Ksep) is not empty because

U ′ is smooth over K). The morphism P ∗α gives a morphism

Z̃(p−m0 )
0,u0

×k Ksep → Z0,Ksep .

Letting Z0 run through all the irreducible components of Zar(X(K)), we obtain

the morphism h advertised in Theorem 1.2.
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