
Existence and stability of time-periodic

solutions in a model for spherical flames with

time-periodic heat losses

Jean-Michel ROQUEJOFFREa, Hélène ROUZAUDb

aUMR CNRS 5640 (MIP) and Institut Universitaire de France, Université Paul
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Abstract

The problem under investigation is the study of the effect of periodicity when time-
periodic heat losses are added in a model for spherical flames introduced by G.
Joulin. In the present context, the flame either quenches in finite or infinite time, or
its radius converges to an upper stable time-periodic solution, or to a lower unstable
time-periodic solution.
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1 Introduction

The problem under study is the large-time behaviour of the solutions to an integro-
differential equation describing the evolution of spherical flames with time-periodic
heat losses. It has been acknowledged for some time (19) that spherical flames (or
flame balls) are an important prototype of flames, and that a detailed study of
their structure and propagation can lead to new insights in complex combustion
processes. Hence the necessity of deriving simple models. G. Joulin (15), (16), (7),
(5)... was a pionneer in this direction: starting from the classical thermo-diffusive
model for flame propagation in 3 space dimensions, he derived, by means of formal
matched asymptotic expansions, a series of models that are numerically tractable,
but whose mathematical study needed to be done. The first attempt in this direction
was (2), where the simplest case - evolution of a flame ball with no heat losses -
was understood. The effect of constant heat losses, as well as a new class of time-
asymptotic preserving numerical schemes, were studied in (21) and (3). See also (20)
for the proof of a universal ignition threshold.
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We are going to investigate here the large time behaviour of a spherical flame model
with time-dependent heat losses, that comes directly from (5). The underlying ques-
tion, which is of a certain practical importance when security issues are at stake,
is the persistence of a flame, despite of the presence of heat losses. The study that
follows is a first step in this direction; the problem under scrutiny here concerns the
solutions to the following equation, with unknown R(t) ∈ C(R+):

∂1/2R = Log R− λ(t)R2 +
Eq(t)

R
, R(0) = 0. (1.1)

The notations are the following

• the operator ∂1/2 is the classical Abel half derivative

∂1/2R(t) =
1√
π

∫ t

0

Ṙ(τ)√
t− τ

dτ, (1.2)

whenever this expression makes sense;
• the function λ(t) models the heat losses; it is smooth, positive and 1-periodic in

t;
• the function q(t) is smooth, connectedly supported and goes to 0 as t → +∞;

moreover we have
∫ +∞

0
q(τ) dτ = 1; it represents the heat source brought to the

flame;
• the parameter E > 0 represents the strength of the heat source.

It is known (21) that, when λ(t) is a constant function that we still call λ, that the
following occurs.

• If λ > λcr = e−1, then all solutions of (1.2) go to 0 - we also may say that they
quench - in finite or infinite time.

• If λ < λcr, then the equation Log R − λR2 has two positive solutions R1 < R2.
Given a smooth function q(t) satisfying the above assumptions, there is Ecr(q) > 0
such that
· if E < Ecr(q), then the solution R(t) of (1.2) quenches in finite or infinite time;
· if E > Ecr(q), then we have lim

t→+∞
R(t) = R2;

· if E = Ecr(q), then we have lim
t→+∞

R(t) = R1.

Our goal is to prove that the above results persist if the function λ(t) is 1-periodic in
t. The difference is of course that the asymptotic states will be 1-periodic functions
instead of constants. This is supported by the simulation displayed of Fig. 1. The
result that we wish to prove is the following.

Theorem 1.1 Consider λ(t) 1-periodic, smooth, connectedly supported, satisfying
the above-listed assumptions, and such that there are two constans λ and λ such
that:

0 < λ ≤ λ(t) ≤ λ < λcr.

Consider R1, R1, R2 and R2 the critical radii associated to λ and λ respectively.
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Fig. 1. Extinction or stabilization according to te energy of the heat source

There are two functions R1(t) < R2(t), smooth and 1-periodic, independent of q,
such that

• we have R1 < R1(t) < R1, R2 < R2(t) < R2;
• if E < Ecr(q), then the solution R(t) of (1.2) quenches in finite or infinite time;
• if E > Ecr(q), then we have lim

t→+∞
(R(t)−R2(t)) = 0;

• if E = Ecr(q), then we have lim
t→+∞

(R(t)−R1(t)) = 0.

The plan of this paper comprises three further sections: in Section 2, we give some
precise notions of stability of periodic solutions for (1.1). In Section 3 we prove
Theorem 1.1; finally, Section 4 is devoted to the case of slightly super-critical heat
losses, i.e. when the function λ(t) is sometimes over λcr; this last point is important
for modelling issues.

2 Diffusive formulation and stability definitions

It is known (2) that (1.2) can be lifted into the following parabolic formulation. Set

fλ(t, u) = Log u− λ(t)u2. (2.1)
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The function R(t) satisfies (1.2) if and only if we have: R(t) = u(t, 0) where
ut − uxx = 0, x ∈]0, +∞[,

ux(t, 0) = −fλ(t, u(t, 0))− Eq(t)

u(t, 0)

u(0, x) = 0

(2.2)

Antother equivalent formulation is to extend the solution u(t, x) on the whole real
line, and the parabolic formulation is then

ut − uxx = 2

(
fλ(t, u) +

Eq(t)

u

)
δx=0, x ∈ R,

u(0, x) = 0

(2.3)

Both formulations (2.2) or (2.3), although they involve an additional variable - the
space variable - are more tractable than (2.2): indeed, they are Cauchy problems
whereas (1.2) is not. Further, the maximum principle is available in both formula-
tions. In order to study the asymptotic states of (1.2), we have to study the global
- i.e. defined on the whole time line - of the parabolic equation

ut − uxx = 2fλ(t, u)δx=0, x ∈ R (2.4)

or, equivalently: ut − uxx = 0, x ∈]0, +∞[,

ux(t, 0) = −fλ(u(t, 0))
(2.5)

Equation (2.5) generates a nonlinear discrete semigroup, denoted by S.

Let us now define a stability notion for (2.4). For any a > 0, let ua(t, x) 1-periodic
in time solution of 

ua
t − ua

xx = 0, x ∈]0, a[,

u(t, a) = 0

ua
x(t, 0) = −fλ(u

a(t, 0)),

(2.6)

Note that Equation (2.6) generates a nonlinear discrete semigroup, denoted by Sa.
Consider the linearized problem around ua:

vt − vxx = 0, x ∈]0, a[,

vx(t, 0) = −f ′λ(u
a)v,

v(t, a) = 0.

(2.7)

The fonction ua will be called stable if the first Floquet exponent of (2.7) is nonneg-
ative. In the opposite case, the function ua will be said to be unstable. See (13) for
general parabolic equations.

Let us extend this definition to unbounded domains: let a 1-periodic in time solution
u(t, x) of (2.5), and assume that it has been obtained as a limit of 1-periodic solutions
ua as a → +∞. For every a′ > 0 and a > a′, let λa

a′ ≥ 0 the first Floquet exponent of
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(2.7), posed on the interval ]0, a′[ instead of ]0, a[. Soit λa′ = lim inf
a→+∞

λa
a′ ≥ 0; in fact

λa
a′ is a limit and not a liminf; it is - by Krein-Rutman Theorem - the first eigenvalue

of the linearized problem:vt − vxx = 2f ′λ(u(t, 0))vδx=0,

v(t,±a′) = 0.
(2.8)

The maximum princilpe is valid for equation (2.8) - and proved in a standard way
by multiplications and integrations by parts. It implies that the sequence (λa′)a′ is
nonincreasing; hence λa′ → λ∞ ≥ 0 as a′ → +∞. Consider wa′ the eigenfunction
associated to λa′ . Once again by Krein-Rutman, it is positive except at ±a′. More-
over, normalizing it to 1 at, say, t = 0 and x = 1 we may bound it uniformly from
above and below; the right tool is in this case the Harnack inequalities up to the
boundary; see (4). These bounds are actually independent of a′, and are uniform on
every compact [0, b]. This triggers the local uniform convergence of a subsequence
(wa′

n
)n, from which one retrieves an eigenfunction of (2.8), posed this time on R,

with Floquet exponent λ∞.

Definition 2.1 The solution u(t, x) is said to be stable if and only if λ∞ ≥ 0.

The problem
ut −∆u = f(t, u), t > 0, x ∈ [0, a],

f 1-periodic in its first variable, has been studied a lot in the literature. See for
instance an existence proof of stable periodic solutions in (1) via a sub/super-solution
method - Neumann boundary conditions. Dirichlet and Robin conditions are treated
in (14). Unstable periodic solutions are studied in (18), a study extended in (9). The
long term dynamics when a = +∞ is treated by Feireisl-Polacik in (10), with the
key assumption that f ′(0) < 0. The case a < +∞ was already treated in (12) : the
global attractor for a Fisher-type equation is studied.

In our case, problem (2.2) has a very particular structure that does not make it
reductible to any of the former ones: it may be viewed as a semilinear parabolic
problem on R or R+, but the nonlinearity is degenerate. In particular, no extension
of Krein-Rutman’s theorem is available here.

3 Existence of time-periodic solutions

3.1 Existence of a stable periodic solution

This part, where the main tool is the use of sub and super solutions, is rather
standard.

Theorem 3.1 Problem (2.5) has a 1-periodic, stable solution.
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First, we study the truncated problem.

Lemma 3.2 There is a stable, 1-periodic solution, to (2.6).

Proof : by sub/super-solutions. Consider uλ a compactly supported sub-solution of

ut − uxx = 2δx=0(Log u− λu2);

see (21) for such a construction. For a > 0 large enough, uλ will also be a compactly
supported sub-solution to (2.6). Hence, if u :

u(t + n) = Sn
a uλ(t) = Sa(uλ)(t + n), t ∈]0, 1[, n ∈ N,

the sequence (Snu(t))n is nondecreasing for all t ∈ [0, 1[. On the other hand, R2 is a
super-solution to (2.6), hence an upper bound for Sn

a u(t). Thus (u(t+n))n converges
as n → +∞. This yields a periodic solution to (2.6), such that ua(t, 0) lies beteween
R2 and R2. •

Proof of Theorem 3.1. The preceding lemma generates a sequence (ua
λ) of 1-

periodic, C∞ solutions to (2.6), with:

R2 ≤ ua
λ ≤ R2.

Ascoli’s theorem applies, and yields a function uλ 1-périodique, solution of (2.5).
Because ua

λ is generated by a sub/super-solution process, it is stable. Hence uλ is
salso stable. •

3.2 Existence of an unstable periodic solution

This part is of course more involved, as is usaul when we look for unstable solutions.
The existence proof relies on a topological degree argument and approximation on
a finite domain. Uniqueness is by no means a general feature, and holds thanks to
the very special structure of the system under study.

Theorem 3.3 Problem (2.5) has an unstable, 1-periodic solution.

Proof : in three steps.

1. Approximation on a finite domain. The nonlinearity being singular at u = 0 we
regularize the problem and consider the equation

ua
t − ua

xx = 0, x ∈]0, a[,

u(t, a) = 0

ua
x(t, 0) = −fλ(u

a(t, 0)) +
ε

u
,

(3.1)

where ε > 0. The same procedure as above yields a stable solution u2,ε > R2 , but
also a stable, 1-periodic solution u0,ε which is close to 0. Let us denote by R0,ε, R1,ε

6



and R2,ε (resp. R0,ε, R1,ε and R2,ε) the zeroes of the function f : u 7→ Log u−λu2+
ε

u
(resp. f : u 7→ Log u− λu2 +

ε

u
).

Fig. 2. zeroes of f and f

Choose η ∈]0, R0,ε[. We seek 1-periodic solutions of (3.1) such that ua(t, 0) ∈ [R0,ε−
η, R2,ε + η]. This amounts to looking for a solution u(t, x) of (3.1) such that :

u(0, .) = u(1, .).

Define λτ = τλ + (1− τ)λ, where τ ∈ [0, 1], and consider the function space :

C = {u ∈ C(R, [R0,ε − η, R2,ε + η]), u(a) = 0}.

The maximum principle allows us to define a mapping Fτ by :

Fτ : C → C,

u0 7→ u(1),

where u(t, x) is the solution of (3.1) with initial datum u0. We look for the zeroes
of IdC −Fτ .

Ascoli’s theorem implies that Fτ is a compact operator. On the other hand, λτ ∈
[λ, λ] ; λτ is a 1-periodic function, and we know that the zeroes of IdC−Fτ are such
that their trace at x = 0 is in [R0,ε, R2,ε] ⊂]R0,ε − η, R2,ε + η[= V . Consequently, by
homotopy,

deg(IdC −F1, 0, V ) = deg(IdC −F0, 0, V ).

The mapping IdC − F0 has 3 zeroes: R0,ε, R1,ε, R2,ε - hereafter we shall make the
abuse of notations consisting in identifying a zero of IdC − F1, 0, V to its trace at
x = 0. The constant functions R0,ε et R2,ε are not only stable solutions, but their
first Floquet exponents are positive (21); hence the degree of IdC − F0 relative to
each of these functions is 1. In order to determine the degree of IdC −F0 relative to
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R1,ε,we investigate the number of nonpositive eigenvalues to:


−v′′ = νv, x ∈]0, a[,

v′(0) = −
(

1

R1,ε

− 2λR1,ε +
ε

R1,ε

)
v(0), v(a) = 0.

(3.2)

The quantity ν = −θ2 is an eigenvalue if and only if:

th µ =
1

L

(
1

R1,ε

− 2λR1,ε +
ε

R1,ε

)µ,

with the notation µ = aθ. There is only one possible nonpositive eignevalue, which
is in fact negative. Hence the degree of IdC −F0 relative to R1,ε is (−1).

2. Approximation on a bounded domain: computation of the degrees and existence of
the unstable solution. We already know that (2.6), with a general λ, has two stable
solutions; let us prove that their first Floquet exponents are positive.

• The upper solution. Let ua,ε,+
u be the sequence of stable maximal upper solu-

tions; by the strong maximum principle the sequence (ua,ε,+)a is increasing; by
the concavity of u 7→ fλ(t, u), the first Floquet exponent of the upper solution
with general λ is a decreasing sequence.

• The lower solution The lower solution, denited by ua,ε,+
l is of order εLog ε−1; hence

fu(t, .) is always < 0 at that value. The strong maximum principle implies the
positivity of the first Floquet exponent.

Conseqently, these two solutions have unit topological degrees.

We should still have to prove that the upper and lower solutions are the only stable
ones. This is deferred to the next subsection, and we take it for granted. As a result,
should there be a τ ∈ (0, 1] at which IdC − Fτ has no unstable solution in V , the
degree of this mapping relative to V should be 2. On the other hand, we have

deg(IdC −F0, 0, V ) = 1.

This contradicts the degree invariance by homotopy; hence the existence of an in-
termedate, unstable solution.

3. The limits a → +∞, ε → 0. Let us call ua,ε,− the so constructed unstable
solution. We wish to prove that we may pass to the limit and still keep an unstable
solution. From the maximum principle and elementary sub/super-solution theory,
we know that (21) ua,ε,+

l (resp. ua,ε,+) attracts all solutions of (3.1) whose trace at
x = 0 is permanently under R1,ε (resp. over R1,ε); hence there is taε ∈ (0, 1) such that
ua,ε,−(taε , 0) ∈ [R1,ε, R1,ε]. On the other hand, we have lim

ε→0
R1,ε = R1 et lim

ε→0
R1,ε = R1.

This is sufficient - with the help of the boundary Harnack inequalities and (21) - to
conclude that
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• the sequence (ua,ε,−(t, 0)) is uniformly bounded with respect to a;
• the sequence (ua,ε,−(t, 0)) is uniformly bounded away from 0 with respect to a.

Hence the sequence (ua,ε,−)a,ε is relatively compact in Cloc([0, 1]×R); passing to the
limit up to a subsequence yields a solution that has to be, at x = 0, within [R1, R1]
at least for some times. The uniqueness part shows that there can only be one stable
solution to (2.5). Hence the limit cannot be stable. •

4 Uniqueness of the stable and unstable periodic solutions and large
time behaviour

We will in this section present two uniqueness proofs. The first one is valid only
when λ has small variations, but does not use the special form of fλ; hence it is
more general. The second one uses the concavity of u 7→ Log u − λu2, but is valid
for any size of λ, provided it stays below λcr.

4.1 Uniqueness for small variations of λ

Let S+(λ) the set defined by:

S+(λ) = {1-periodic solutions of (2.6) that are ≥ uλ}.

From the preceding section, S+(λ) 6= ∅, S+(λ) is bounded from above and below;
hence it admits a minimal element, called ua

λ. For all τ ∈]0, 1], call ua
τλ the minimal

element of S+(τλ). In what follows, we take a > 0 large enough, and the above
proofs can be carried on to a = +∞.

Lemma 4.1 We have lim
τ→0

ua
τλ = +∞ uniformly on [0,

a

2
].

Proof : Because both uτλ and uτλ can be attained from below starting from a
compactly supported sub-solution, we have uτλ ≥ uτλ. •

Lemma 4.2 Define τ0 by:

τ0 = sup{0 < τ < 1, ∀τ ′ < τ, uτ ′λ ≥ uλ}.

Then τ0 = 1.

Proof :Due to the preceding lemma we have τ0 > 0. Assume therefore that τ0 < 1.
Then there is (t0, x0) such that:

uτ0λ(t0, x0) = uλ(t0, x0).
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On the other hand,

∂x(uτ0λ − uλ)(t0, x0) = (τ0 − 1)λuλ(t0, x0)
2 < 0,

which is impossible because uτ0λ ≥ uλ. Once again from the Hopf Lemma, ∂x(uτ0λ−
uλ)(t0, x0) > 0. Finally, the assumption x0 ∈]0, a[ is against the strong maximum
principle. •

Lemma 4.3 Consider 0 ≤ u1 ≤ u2 two 1-periodic functions, solving - recall that we
may take a = +∞ : ui

t − ui
xx = 2δx=0fi(u

i), x ∈ [−a, a],

ui(0, x) = ui
0(x),

where
∀ε > 0, ∃η > 0, ∀x, y ∈ R, y − x ≥ η, f2(y)− f1(x) ≥ ε. (4.1)

Also assume that :
∀α ∈ R+, u1 + α 6≤ u2.

Then, ∃t0 > 0 such that u1(t0, 0) = u2(t0, 0).

Proof : Assume that, for all t ∈ R, u1(t, 0) < u2(t, 0). Then, there is η > 0 such
that:

u1(t, 0) ≤ u2(t, 0)− η.

Set v = u2 − u1. Let Ga(s, t, x, y) be the Green function of the heat operator on
(−a, a) with Dirichlet condition; let us compute v :

v(t, x) =
∫ a

−a
Ga(0, t, 0, y)(u0

2−u0
1)(x)+

∫ t

0
Ga(s, t, 0, 0)(f2(u2(s, 0))−f1(u1(s, 0)))ds.

The first term goes to 0 as t → +∞; moreover, by assumption we have

f2(u2(s, 0))− f1(u1(s, 0)) ≥ ε > 0.

Hence,
lim inf
t→+∞

v(t, x) = 0 uniformly on every compact of (−a, a),

wich contradicts the assumptions of the lemma. •

These three lemmas imply that there is only one solution of (2.6) which is uλ. Indeed,
choose

f1(x) = Log x− λx2, f2(x) = Log x− τλx2,

assumption (4.1) is indeed satisfied, for uλ(t, 0) ≥ R2(λ). Hence, by Lemma 4.3,
there is t0 > 0 such that uτλ(t0, 0) = uλ(t0, 0); otherwise we would contradict the
maximality of τ0. But then we contradict the Hopf Lemma: therefore we have τ0 = 1.
Now, call u = lim

τ→1
uτλ. Should there be a contact point between u and uλ we may

prove, by the same argument as in the case τ0 < 1, that u = uλ. If there is no contact
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point between u and uλ, then lim
τ→1

uτλ − uλ > 0, and u is also a periodic solution of

(2.6). On the other hand,

∂x(u− uλ)(t, 0) = −(Log u− λu2) + (Log uλ − λu2
λ) > 0 (4.2)

as soon as λ does not vary too much. Indeed, u 7→ Log u − λu2 is decreasing from

u =
1√
2λ

. For the above inequality to be valid, we must therefore have R2 >
1√
2λ

,

as is illustrated on Figure 3.

Fig. 3. Cases where inequality (4.2) is satisfied

Remark : this proof is also valid for the uniqueness of the unstable solution; indeed
the function u 7→ Log u− λu2 is increasing on [R1, R1]. Take

S−(λ) = {periodic solutions of (2.6) with trace ∈ [R1, R1]},

v ∈ Sλ and (uτ )τ∈(0,1) a family of unstable solutions which is above v for small τ .
Then, as long as uτ > v, we have

Log uτ − τλuτ + Log v − λv > 0,

and we proceed as above.
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4.2 Uniqueness under the concavity assumption.

4.2.1 Uniqueness of the stable solution

As is now usual, we start by working on a bounded interval :


ut − uxx = 0, x > 0,

ux(t, 0) = −fλ(u(t, 0)),

u(t, a) = 0,

where a > 0, fλ(x) = Log x−λx2, and u is 1-periodic in time. We may assume u to be
the minimal stable solution, and let v be another stable solution. Set w = v−u ≥ 0.
Then wt − wxx ≤ 2δx=0f

′
λ(u)w, x ∈ [−a, a],

w(t,±a) = 0,

thanks to the concavity of fλ. By assumption, the first Floquet exponent of the
linearized operator, λa, is nonnegative.

• λa > 0.
Call w the solution of : 

wt − wxx = 2δx=0f
′
λ(u)w,

w(t,±a) = 0,

w(0, x) = w(0, x).

(4.3)

From the maximum principle, w > 0 on ]− a, a[, and, on the other hand, w(t, x)
decays exponentially to 0 as t → +∞. Once again by the maximum principle,
w(t) ≤ w(t). The function w is 1-periodic in time and w(t) → 0 as t → +∞.
Consequently, w ≤ 0 and u = v.

• λa = 0.
The function w, solution of (4.3), is the eigenfunction associated to 0. By Krein-
Rutman, it is > 0; moreover it is 1-periodic in t. Assume that we may choose
C > 0 such that w(0, .) and Cw(0, .) have a unique contact point x0 ∈]−a, a[. Set
z = w − Cw. 

zt − zxx = 0, x ∈]0, a[,

z(0, x0) = 0,

z(t, a) = 0.

Because of the periodicity of z, we have z(0, x0) = z(1, x0) = 0, which is against
the strong maximum principle. If the contact point is ±a, we may use the Hopf
Lemma. Consequently, for all C > 0, we have w − Cw ≤ 0 and w ≤ 0.
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Let us turn to the unbounded interval case. The case λ∞ > 0 being solved exactly
as in the compact interval case, let us investigate the case λ∞ = 0. We still may
consider the real number C, smallest C ′ > 0 such that w(0, .) ≤ C ′w(0, .). Either
there is a contact point, and we come to a contradiction at t = 1. Or there is no
contact point; consider then z = w− (C− δ)w. For small δ we have z(t, 0) < 0. This
function z, besides being 1-periodic in time, satisfies:zt − zxx = 0, x > 0,

z(t, 0) ≤ −α < 0.

This is impossible: when t → +∞, we have z(t, 0) → 0. Hence, w ≤ 0 and v ≤ u. •
Remark : When λ is constant, there is a

1√
t

convergence to the upper radius R2:

we conjecture therefore that λ∞ = 0 in most cases.

4.2.2 Uniqueness of the unstable solution

Here, we only prove the interesting case a = +∞, he case of finite a being even
easier. Consider u1 and u2 two unstable solutions. Two cases may occur.

• Either u1 < u2. It is a standard - at least in the compact interval case - fact that
two unstable solutions cannot be ordered; let us say why in this particular case
of inifinite domain. First, because u2 − u1 is bounded away from 0 at x = 0 at all
times we have, letting t → +∞, the existence of a δ > 0 such that

u2 − u1 ≥ δ on R2.

This can be seen by a straightforward computation on the heat equation on R+×
R+ with Dirichlet conditions at x = 0. This fact being at hand, the rest of the
proof is standard - see for instance (12); let us only recall it: let φ(t, x) be an
eigenfunction of the first - negative Floquet exponent of the linearized system;
then, for small ε > 0 the function u1+εφ1 is a subsolution to (2.5), which therefore
grows up in time, while being bounded by u2; hence it converges to some 1-periodic
solution u3 ≤ u2. By the uniqueness of stable solutions, u3 is unstable, hence has
a neagtive Floquet exponent λ3. However, if T3 is the linearized Poincaré map
around u3, the mapping T3 − λ3I is Fredholm; moreover from (11), Chap. 5, λ3

is an isolated eigenfunction of T3 − λ3I. A spectral projector on the null space of
T3 − λ3I can therefore be defined, from which one may use the classical stability
theory to build a solution of (2.5) that starts close to u3 and that is O(1) far from
u3 at a large time. From the positivity of the first eigenfunction, this latter solution
might be taken to be below u3, but above u1 + εφ1. Hence the two solutions that
we have constructed collide at some time, which is a contradiction.

• For all t ∈ [0, 1] the function x 7→ u1(t, x) − u2(t, x) has zeroes. The lap number
decay - see (21) for its application - implies that the set of zeroes of u1 − u2 is
a finite or infinite number of smooth curves (xi(t))1≤i≤N , with xi+1 − xi bounded
away from 0 and xi 1-periodic in time. This is possible because the functions u1

and u2 are time-global solutions. Consider any curve {x = xi(t)}; the function
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v = u1 − u2 satisfies the heat equation on {x = xi(t)}, with Dirichlet conditions
at the boundary of this smooth open subset of R+ × R. Hence it goes to 0 as
t → +∞; consequently - another very easy computation with the explicit solution
of the heat equation - u1 ≡ u2 on that set. By Cauchy-Kovalewskaya Theorem,
u1 ≡ u2 everywhere.

Now that we have periodic solutions, we may prove Theorem 1.1. However, once
uniqueness is known, the proof resembles very much to (2) and (21); so we only
indicate the main steps.

Proof of Theorem 1.1. The first thing to prove is the fact that, for large E,
the solution of (1.1) tends to the upper solution as t → +∞. Let ua,ε,+ be the
stable solution of (2.8); extend it by 0 outside (−a, a) into a compactly supported
subsolution of (2.5). Our task can be reduced to proving that the solution u(t, x) of
(2.5) with Cauchy datum 0 exceeds ua,ε,+ in finite time; however this is done exactly
as in (21).

The next step consists in proving that, if a solution R(t) of (1.1) becomes too small,
it goes to 0 in finite or infinite time. This is detailed in (2).

We conclude by a shooting method. Let u± be the stable (resp. unstable) 1-periodic
solutions of (2.5), with radii R±(t). If RE(t) is the solution of (1.1) and uE(t, x) is
diffusive extension, we introduce the sets

X+ = {E > 0 : limt→+∞ |RE(t)−R+(t)| = 0}

X− = {E > 0 : ∃t0 ∈ (0, +∞] such that lim
t→t0

RE(t) = 0}.

From (2), these two sets are open in R+. Hence the set X0 = R+\(X+ ∪X−) is non
void. The last step is therefore to prove that; if E ∈ X0, then RE(t)− R−(t) tends
to 0; this is done by studying the zero set of uE − u−; once again it mimicks (2).
Finally, the instability of u− implies that X0 is reduced to one point. •

5 Partially supercritical heat losses

In this section, we wish to show the possibility of non-extinction of spherical flames
when the function λ is sometimes supercritical, in a periodic fashion. For a given
λ(t), let us come back to the solution R(t) of

∂1/2R = Log R− λ(t)R2 +
Eq(t)

R
, t > 0,

R(0) = 0,
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and its diffusive extension, u(t, x), solution of
ut − uxx = 2δx=0

(
Log u− λ(t)u2 +

Eq(t)

u

)
, x ∈ R, t > 0,

u(0) = 0,

where λmin ≤ λ(t) ≤ λmax, with λmin < λcr < λmax. Thus u ≥ v; where v solves
vt − vxx = 2δx=0

(
Log v − λmaxv

2 +
Eq(t)

v

)
, x ∈ R, t ∈ [0, 1],

v(0, .) = 0.

(5.1)

Consider λ =
λcr + λmin

2
. We may bound λ by the 1-periodic function λ̃, represented

on Fig. 4.

Fig. 4. Représentation des fonctions λ et λ̃

Denote by R1 < R2 the two critical radii attached to λ. We wish to construct λ̃ on

[1, 2] so that R(t) ≥ R1 + R2

2
. From the maximum principle, u(t) ≥ w(t), with

wt − wxx = 2δx=0(Log w − λ̃w2), t ∈ [1, 2], x ∈ R,

w(1, .) = v(1, .).

When E is large enough and ε > 0 small enough so that w(1 + ε, .) is above a
compactly supported subsolution of

ut − uxx = 2δx=0(Log u− λu2),

the function w is above an increasing function on the time-interval [1 + ε, 2]; up
to shrinking our parameter ε we may iterate this process over the time-intervals
[n, n + 1], n ≥ 2. Hence we have constructed a class of time-periodic, partially
supercritical heat losses, for which a spherical flame will survive eternally, provided
that the initial energy input is large enough.
This phenomenon is represented on figures 5 and 6; they respectively represent
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a function λ(t) constructed as above, and the time-evolution of the radii for two
different energy inputs : for E = 10, we get quenching; for E = 20, and for the
same heat loss term, the flame stabilizes to an upper 1-periodic solution, despite the
fact that the heat losses are supercritical on an infinite time-interval. The integro-
differential equation is integrated with the numerical scheme devised in (3), which is
known to preserve - at least in the constant coefficient case - the large-time dynamics.

Fig. 5. Heat loss coefficient Fig. 6. Time-evolution of the flame
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