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Abstract

We consider in this paper the thermo-diffusive model for flame propagation, which
is a reaction-diffusion equation of the KPP (Kolmogorov, Petrovskii, Piskunov) type,
posed on an infinite cylinder. Such a model has a family of travelling waves of constant
speed, larger than a critical speed c∗. The family of all supercritical waves attract a
large class of initial data, and we try to understand how. We describe in this paper
the fate of an initial datum trapped between two supercritical waves of the same
velocity: the solution will converge to a whole set of translates of the same wave, and
we identify the convergence dynamics as that of an effective drift, around which an
effective diffusion process occurs.

1 Introduction

1.1 Statement of the main results

The topic of this paper is to estimate how fast the solutions of:{
ut −∆u+ α(y)ux = f(u) ((x, y) ∈ R× TN−1)

lim
x→−∞

u(t, x, y) = 0, lim
x→+∞

u(t, x, y) = 1,
(1.1)

with suitable initial data, will converge to travelling wave profiles. Here α is a suffi-
ciently smooth function (C∞ to avoid technical difficulties), and TN−1 denotes the (N − 1)-
dimensional torus. The function f will always be supposed to be smooth enough, and positive
on (0, 1); moreover it will be assumed to be concave in u, and

f(0) = f(1) = 0, f ′(0) > 0, f ′(1) < 0.

This model is sometimes known, in the mathematical theory of flame propagation, as the
’thermo-diffusive model’. It is indeed the simplest model with nontrivial flow may be derived
from the reacting fluid dynamics equations; the (shear flow) field ~V (x, y) = (0, α(y)) is
imposed and only the chemical and heat transfer processses are conserved. The model was
the object of numerical studies - see for instance [6], [19] - as a relevant preliminary account
of the wrinkling of a flame front. See also [7] for its mathematical justification, and [1] for
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large shear asymptotics. The model has from then remained an important tool to understand
the interplay between a flow field and reaction-diffusion processes, see for instance estimates
on the burning rate (see [17]) or existence theorems for systems (see [15]).

Travelling waves propagating at the speed c are solutions of the form φ(x+ ct, y), where
the function φ(ξ, y) solves{

−∆φ+ (c+ α(y))φξ = f(φ) ((ξ, y) ∈ R× TN−1)

lim
ξ→−∞

φ(ξ, y) = 0, lim
ξ→+∞

φ(ξ, y) = 1.
(1.2)

Their existence and qualitative properties are given by the following

Theorem 1.1 (Berestycki-Nirenberg [8]) There is c∗ such that (1.2) has no solution if c <
c∗, and a unique - up to translation in ξ - solution if c ≥ c∗. Moreover we have ∂ξφc > 0.

Some stability results have been proved before by Mallordy and the second author [21]:

Theorem 1.2 (Mallordy-Roquejoffre [21]) Consider c > c∗ and φc a solution of (1.2).
Choose an initial datum u0 satisfying

u0(x, y)

φc(x, y)
= O(erx) as x→ +∞.

Consider the solution u of the Cauchy problem{
ut −∆u+ α(y)ux = f(u) ((x, y) ∈ R× TN−1),

u(0, x, y) = u0(x, y).
(1.3)

Then u(t, x, y) = φc(x+ ct, y) +O(e−ωt) as t→ +∞, uniformly in (x, y) ∈ R× TN−1.

The goal of this paper is to study what happens when the initial datum u0 is trapped
between two supercritical waves of the same velocity, a slightly more general assumption
than that of Theorem 1.2. We are going to prove the following (rather drastic) change in
asymptotic behaviour:

Theorem 1.3 Let u0(x, y) be a Cauchy datum for (1.3). Assume the existence of c > c∗
and M > 0 such that

∀(x, y) ∈ R× TN−1, φc(x−M, y) ≤ u0(x, y) ≤ φc(x+M, y).

Define the initial shift m0(x, y) as

∀(x, y) ∈ R× TN−1, φc(x+m0(x, y), y) = u0(x, y).

Then there exist D∗(c) ≥ 1 and V∗(c) > 0 such that: if spp(t, ξ) is the solution of

sppt −D∗(c)s
pp
ξξ + V∗(c)s

pp
ξ = 0, spp(0, ξ, y) =

∫
y′
er−(c)m0(ξ,y′)ψrc(y

′)2 dy′, (1.4)

where r−(c) > 0 and ψrc is the (positive) principal eigenfunction associated to some explicit
elliptic operator, and if

mpp(t, ξ) :=
1

r−(c)
ln spp(t, ξ),

then we have

sup
(x,y)∈R×TN−1

|u(t, x, y)− φc(x+ ct+mpp(t, x+ ct), y)| = O(
1

t1/4
).
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It is known - see [10], [26] - that very simple equations like (1.4) can exhibit complex be-
haviours. In particular, the ω-limit set (in the sense of uniform convergence on every compact
- can be a whole interval.

Our result extends and completes in several directions some of our earlier results. Before
explaining this, let us add some comments.

• The advection-diffusion (1.4) can be solved explicitely. Hence we may find reasonably
sharp conditions ensuring the convergence of u to some translate of the travelling wave
φc.

• We have D∗(c) > 1 as soon as α is nonconstant; this is a manifestation of the well-
known ’convection-enhanced’-diffusion - see [12].

• When α = 0, V∗(c) =
√
c2 − c2∗; and the proof breaks down when c = c∗ (the reason

being that we have V∗(c∗) = 0).

The main step of Theorem 1.3 will be the computation of the effective dynamics (1.4),
by a Fourier argument combined with some classical functional analysis.

1.2 Comparison with earlier results

In [4], we studied the more general equation of the same type{
ut − div(A(x, y)Du) +B(x, y).Du = f(x, y, u), ((x, y) ∈ R× TN−1),

lim
x→−∞

u(t, x, y) = 0, lim
x→+∞

u(t, x, y) = 1,
(1.5)

a model that contains as particular cases the one-dimensional equation ut − uxx = f(u) and
the thermo-diffusive model (1.3). Under suitable periodicity and smoothness assumptions
on A, B and f , we proved the existence of pulsating waves φc(t, x, y) having a precise
asymptotic behaviour and increasing in time, and then that the family of all these pulsating
waves provides an attractor for a large class of initial data to (1.5):

Theorem 1.4 (Bages-Martinez-Roquejoffre [4]) Let u0(x, y) be a Cauchy datum for (1.5).
Assume the existence of c > c∗ and M > 0 such that φc(−M,x, y) ≤ u0(x, y) ≤ φc(M,x, y).
There exists a smooth function m(t, x, y) such that lim

t→+∞
‖(mt, Dm,D

2m)(t, ., .)‖∞ = 0, and

such that

sup
(x,y)∈R×TN−1

|u(t, x, y)− φc(t+m(t, x, y), x, y)| → 0 as t→ +∞.

This shift m(t, x, y) satisfies - up to a Hopf-Cole transform - a linear diffusion equation. Our
result completes that of [14], which proves the asymptotic stability of all the waves under
fatly decaying perturbations. However, at this level of generality, we were not able to provide
an effective one dimensional equation, nor an estimate of the rate of attraction of the family
of translates of the pulsating waves. The goal of the present paper is to prove such results
in the context of the thermo-diffusive model.
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1.3 Additional comments and open questions

We hope that the ideas developped here will not only provide a better understanding of
the dynamics of super-critical KPP waves, but will also help to understand how the critical
wave is attained from fastly decaying initial data. In a forthcoming work [20] we will see
how this works for the 1D homegeneous model - already proved by Bramson [9] but where
a deterministic proof is still unknown - and on the multi-D model with special cases of
advection. The general case is an important issue that goes far beyond scalar reaction-
diffusion equations, see [11].

There are several questions close to this work whose answers would be very interesting:

• We concentrated our study in the case where the initial condition of the Cauchy prob-
lem is trapped between two translates of the same pulsating wave. It would be very
interesting to investigate the behaviour of the solutions under weakened assumptions
on the initial condition. An important first step is taken in Hamel-Nadirashvili [13],
where it is proved that (almost) every time-global solution of the N -dimensional ho-
mogeneous model

ut −∆u = u(1− u), t > 0, x ∈ RN , 0 < u < 1

is a (possibly uncountably infinite) convex combination of one-dimesional waves.

• The case of initial conditions trapped between two critical waves (c = c∗) is not treated
here. We do not know if a result similar to Theorem 1.3 exists and can be proved.

1.4 Description of the proof of Theorem 1.3,plan of the paper

Since the travelling wave φc is strictly increasing in its first variable, we are able to define

n∗(t, x, y) := (φc(·, y))−1(u(t, x, y)),

which satisfies
u(t, x, y) = φc(n

∗(t, x, y), y),

hence informations on n∗ give informations on u. And to have informations on n∗, we write
the differential problem that it satisfies. Unfortunately, this problem is fully nonlinear, but
it admits an “approximate” solution n(t, x, y), obtained linearizing the problem at −∞. The
final task is then

• to obtain informations on the approximate solution n,

• to study the difference between u and its “approximation” uapp(t, x, y) := φc(n(t, x, y), y).

These two things are in fact closely related.
The plan of the paper is the following:

• in Section 2 we explain how to construct the approximate solution n, and we study the
difference between u and uapp admitting some properties of n; some parts of section 2
are directly adapted from [4], where a more general case is considered, but we included
them in a sake of completeness and clarity for the reader;
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• in Section 3 we prove the admitted properties of n, given in Proposition 2.3; it is
specific for the thermo-diffusive paper and is the heart of the present paper; the proof
of Theorem 1.3 lies on it.

• finally in Section 5 we give some applications of our results.

2 The construction of the approximate solution uapp

2.1 The moving frame

First we note that our assumption on the initial condition u0 and the maximum principle
imply that the solution u(t, x, y) of (1.3) satisfies:

φc(x+ ct−M, y) ≤ u(t, x, y) ≤ φc(x+ ct+M, y),

hence it is natural to consider the problem in the moving frame given by the classical change
of variables (t, x) 7→ (t, ξ = x+ ct). Now if u(t, x, y) is a solution of the Cauchy Problem for
(1.3), the function ũ defined by

ũ(t, ξ, y) := u(t, ξ − ct, y)

satisfies u(t, x, y) = ũ(t, x+ ct, y), and thus is solution of the Cauchy problem{
ũt + cũξ −∆ũ+ α(y)ũξ = f(ũ), t > 0, ξ ∈ R,
ũ(0, ξ) = u(0, ξ) = u0(ξ).

(2.1)

Then consider
β(y) := c+ α(y),

and the differential operator

NLc[Ũ ] := Ũt −∆Ũ + β(y)Ũξ − f(Ũ) :

then the function u is solution of the differential equation of (1.3) if and only if

NLc[ũ] = 0. (2.2)

A travelling wave φc satisfies

NLc[φc] = 0, φc(−∞, y) = 0, φc(+∞, y) = 1.

2.2 Specific behaviour of travelling waves

The behaviour of a travelling wave at −∞ is of course by now well-established. Linearizing
(2.2) at 0, we obtain

−∆ṽ + β(y)ṽξ − f ′(0)ṽ = 0. (2.3)

An exponential solution to (2.3) is a solution of the form

ṽ(ξ, y) = eλξψ(y), ξ ∈ R, y ∈ TN−1,
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where λ > 0 is called a characteristic exponent. The function ψ(y) has to solve

L(λ)ψ := −∆ψ + λβ(y)ψ = (λ2 + f ′(0))ψ, y ∈ TN−1, (2.4)

and because φc has to be positive, ψ has to be positive. Hence, given λ > 0, it is natural to
consider the operator L(λ) defined by

L(λ)ψ := −∆yψ + λβ(y)ψ, (2.5)

and acting on the space C2(TN−1). Denote ν1(λ) the first eigenvalue of L(λ) and ψλ an
associated eigenfunction, problem (2.4) amounts to solving

ν1(λ) = λ2 + f ′(0). (2.6)

It is well known that ν1(λ) is a simple, nondegenerate eigenvalue for L(λ) and Kato-Rellich’s
Theorem implies the existence of an analytic extension of ν1 in a complex domain containing
the right half-line. In particular, λ 7→ ν1(λ) is C1. The more special features of the function
ν1 are summarized in the following

Theorem 2.1 ([8]). The function ν1 is concave, and equation (2.6) has solutions if and
only if c ≥ c∗. For c > c∗, there are two solutions 0 < r−(c) < r+(c).

This implies, in particular:

V∗(c) :=
dν1

dλ
(r−(c))− 2r−(c) > 0. (2.7)

Moreover, we have an integral formula for dν1
dλ

(r−(c)): let ψλ be the unique principal eigen-

function of L(λ) such that ψλ(y) > 0,

∫
TN−1

ψ2
λ = 1; then

dν1

dλ
(r−(c)) =

∫
TN−1

βψ2
r−(c). (2.8)

(This follows from an asymptotic analysis similar to the one performed in the proof of Lemma
3.1.)

The additional information that we need for φc is the

Theorem 2.2 ([8]) If c > c∗, there is δ > 0 such that the wave φc has the following asymp-
totic behaviour as ξ → −∞:

φc(ξ, y) = er−(c)ξψrc(y)(1 +O(eδξ)). (2.9)

2.3 Exact local shift

Motivated by [4], we will look for an approximation of the solution of (2.2) with initial datum
u0 as in Theorem 1.3 under the form

ũapp(t, ξ, y) = φc(ξ +m(t, ξ, y), y),

where the (approximate) shift m will satisfy a suitable parabolic problem.
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First consider a general shifted wave: given a sufficiently smooth function m : (0,+∞)×
R× TN−1 → R, consider

T (m)φc(t, ξ, y) := φc(ξ +m(t, ξ, y), y).

Of course, when m is identically zero, we have T (0)φc = φc, and NLc[T
(0)φc] = 0. Let us

compute in the general case NLc[T
(m)φc]: some computations lead to

NLc[T
(m)φc] =

(
mt −∆m+ β(y)mξ − 2

D∂ξφc
∂ξφc

.Dm− ∂ξξφc
∂ξφc

|Dm|2
)
∂ξφc,

where, in the right handside, m and its derivatives are evaluated at (t, ξ, y), and ∂ξφc and
its derivatives are evaluated at (ξ +m(t, ξ, y), y). Hence NLc[T

(m)φc] = 0 if and only if

mt −∆m+ β(y)mξ − 2
D∂ξφc
∂ξφc

.Dm− ∂ξξφc
∂ξφc

|Dm|2 = 0. (2.10)

This is the problem satisfied by the exact shift

m∗(t, ξ, y) := φc(·, y)−1(ũ(t, ξ, y))− ξ,

which is well defined since ∂xφc > 0.
To study the properties of the solution of this problem seems difficult, hence our strategy

will be to find a parabolic problem that will be: as close as possible of the previous one,
but simpler. This will permit us to study the properties of its solution m; of course in this
case the functions ũ and T (m)φc will have no reason to coincide. Then we will consider
the difference ũ − T (m)φc, and estimate its asymptotic behaviour as t → +∞. What came
as a surprise to us is that this very simple and natural strategy actually enables us to say
something about very general models, see also [4].

Even if we cannot say many things on the exact shift m∗(t, ξ, y), we can see that it has
the following property: for all t > 0, m∗(t, ·, ·) is of class C1(R × TN−1) and is bounded in
the natural C1-norm: indeed,

- first, it is clear that m∗ is bounded, and more precisely, m∗(t, ξ, y) ∈ [−M,M ]; this
follows from the assumption that u0(ξ, y) ∈ [φc(ξ − M, y), φc(ξ + M, y)], using the weak
maximum principle;

- next, from parabolic regularity, m∗(t, ·, ·) is of class C1(R× TN−1);
- at last,

m∗ξ(t, ξ, y) =
ũξ(t, ξ, y)

φ′c(ξ +m∗(t, ξ, y))
− 1 =

ũξ(t, ξ, y)

φ′c(ξ, y)

φ′c(ξ, y)

φ′c(ξ +m∗(t, ξ, y))
− 1,

hence m∗ξ(t, ·, ·) is bounded if and only if
ũξ
φ′c

is bounded; and it follows from local parabolic
estimates that this is true, once again using the fact that the weak maximum principle
implies that φc(ξ −M, y) ≤ ũ(t, ξ, y) ≤ φc(ξ + M, y) for all t > 0 and all ξ ∈ R, y ∈ TN−1.
The same property holds for Dym

∗.
Hence, in particular, m∗(1, ·, ·) is of class C1(R × TN−1) and is bounded in the natural
C1-norm. We will use this remark in the following.
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2.4 The approximate shift and the associated shifted wave

Now we are going to approximate the nonlinear parabolic problem (2.10) satisfied by m∗.
Due to elliptic regularity, the exponential deviation in O(e(r−(c)+δ)ξ) of φc from er−(c)ξψrc(y)
also holds for the derivatives. Using this, let us study the asymptotic behaviour of the
coefficients as ξ → −∞: neglecting in a first approach the residual term, we obtain

∂ξφc(ξ, y) = r−(c)er−(c)ξψrc(y) + . . . ,

∂ξξφc(ξ, y) = r−(c)2er−(c)ξψrc(y) + . . . ,

D∂ξφc(ξ, y) = r−(c)2er−(c)ξψrc(y)e1 + r−(c)er−(c)ξDyψrc(y) + . . . .

Hence we are driven to consider the approximate problem

mt −∆m+ (β(y)− 2r−(c))mξ − 2
Dyψrc
ψrc

.Dym− r−(c)|Dm|2 = 0, (2.11)

and to define the approximate shift m as the solution of this nonlinear parabolic equa-
tion, coupled with a suitable initial condition: m(0) = m∗(0) (hence such that φc(ξ +
m∗(0)(ξ, y), y) = u0(ξ, y)) if m∗(0) is C1 and bounded in norm C1, or m(1) = m∗(1), which
is always C1 and bounded in norm C1, as a consequence of the assumption that the ini-
tial condition u0 is trapped between two translates of φc. In the following we assume that
m(0) = m∗(0).

We will prove in section 3 the following properties of the approximate shift m:

Proposition 2.3 The approximate shift m solution of the Cauchy problem (2.11) has the
following properties:

(i) m is bounded on (0,+∞)× R× TN−1, and more precisely

∀t > 0,∀ξ ∈ R,∀y ∈ TN−1, m(t, ξ, y) ∈ [−‖m∗(0)‖∞, ‖m∗(0)‖∞];

(ii) m is C1 on (0,+∞)×R×TN−1, and (t, ξ, y) 7→ Dm(t, ξ, y) is bounded on (0,+∞)×
R× TN−1;

(iii) ‖Dm(t, .)‖L∞(R×TN−1) = O(t−1/4).

Admit Proposition 2.3 for a moment. Then considering the associated shifted wave

ũapp(t, ξ, y) := φc(ξ +m(t, ξ, y), y), (2.12)

we are in position to study the difference ũ− ũapp.

2.5 The difference between the solution and the approximate so-
lution, admitting Proposition 2.3

2.5.1 Preliminary result

Given δ ∈ (0, r+(c)− r−(c))), let Yδ be the space of all continuous functions ũ on R× TN−1

such that

e−(r−(c)+δ)ξũ(ξ, y) is a bounded uniformly continuous function,
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endowed with the natural norm ‖ũ‖Yδ := sup
(ξ,y)∈R×TN−1

|ũ(ξ, y)| e−(r−(c)+δ)ξ.

The following (by now standard) result is useful to study the asymptotic behaviour as
t → +∞ of solutions of parabolic equations decaying sufficiently fast in space, and we will
use it to study the difference ũ− ũapp:

Lemma 2.4 Consider the equation

ṽt −∆ṽ + β(y)ṽξ − f ′(0)ṽ = 0. (2.13)

Then, given δ ∈ (0, r+(c)− r−(c)), there is Cδ ≥ 1 and ωδ > 0 such that, if ṽ(0, .) := ṽ0 is in
Yδ, then the solution ṽ of (2.13) emerging from ṽ0 satisfies: for all t > 0, ṽ(t, ·, ·) ∈ Yδ, and

‖ṽ(t, ·, ·)‖Yδ ≤ Cδe
−ωδt‖ṽ0‖Yδ . (2.14)

Proof of Lemma 2.4. It follows from the construction of a suitable positive super-solution
to (2.13), exponentially decaying in time: first, given λ > 0 and ω ≥ 0, let us consider

Ṽ (λ,ω)(t, ξ, y) := ψλ(y)eλξ−ωt. (2.15)

Then the definition of ψλ immediately implies that

Ṽ
(λ,ω)
t −∆Ṽ (λ,ω)) + β(y)Ṽ

(λ,ω)
ξ − f ′(0)Ṽ (λ,ω) = (ν1(λ)− λ2 − f ′(0)− ω)Ṽ (λ,ω). (2.16)

Since we want Ṽ (λ,ω) to be positive and we want it to be a super-solution to (2.13), we need
to find λ and ω such that

ν1(λ)− λ2 − f ′(0)− ω ≥ 0.

This can be done, noting that it follows from Theorem 2.1 that, given λ ∈ (r−(c), r+(c)), we
have

ν1(λ)− λ2 − f ′(0) > 0.

Hence consider

λ = λδ := r−(c) + δ, and ω = ωδ := ν1(r−(c) + δ)− λ2
δ − f ′(0).

Then we obtain that Ṽ δ := Ṽ (λδ,ωδ) is solution of (2.13). Now, since ψλ is positive on the
compact TN−1, denoting C̃δ := 1

infTN−1 ψr−(c)+δ
, we have for all ṽ0 ∈ Yδ

|ṽ0(ξ, y)| ≤ C̃δψr−(c)+δ(y)e(r−(c)+δ)ξ‖ṽ0‖Yδ = C̃δ‖ṽ0‖Yδ Ṽ δ(0, ξ, y).

And then, the weak maximum principle implies, for (t, ξ, y) ∈ R+ × R× TN−1:

|ṽ(t, ξ, y)| ≤ C̃δ‖ṽ0‖Yδ Ṽ δ(t, ξ, y) = C̃δ‖ṽ0‖Yδψr−(c)+δ(y)e(r−(c)+δ)ξ−ωδt,

which implies that ṽ(t, ·, ·) ∈ Yδ for all t > 0, and that (2.14) is satisfied with Cδ =
supTN ψr−(c)+δ

infTN ψr−(c)+δ
. �
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2.5.2 Convergence, admitting Proposition 2.3

Now, admitting Proposition 2.3, we have everything to prove the convergence result of
Theorem 1.3: due to elliptic regularity, the exponential deviation of φc from er−(c)ξψrc(y)
also holds for the derivatives, and it follows from the choice of the approximate shift that

NLc[ũ
app] =

(
mt −∆m+ β(y)mξ − 2

D∂ξφc
∂ξφc

.Dm− ∂ξξφc
∂ξφc

|Dm|2
)
∂ξφc

=
(

2r−(c)mξ + 2
Dyψrc
ψrc

.Dym+ r−(c)|Dm|2 − 2
D∂ξφc
∂ξφc

.Dm− ∂ξξφc
∂ξφc

|Dm|2
)
∂ξφc

=
(

2(r−(c)− ∂ξ∂ξφc
∂ξφc

)mξ + 2(
Dyψrc
ψrc

− Dy∂ξφc
∂ξφc

).Dym+ (r−(c)− ∂ξξφc
∂ξφc

)|Dm|2
)
∂ξφc

= O(1)(‖Dm(t)‖L∞(R×TN−1) + ‖Dm(t)‖2L∞(R×TN−1))e
δξ∂ξφc.

Since Dm is bounded, and ∂ξφc goes exponentially fast to 0 as ξ → +∞, there is some r > 0
such that

NLc[ũ
app] =

{
O(e(r−(c)+δ)ξ)‖Dm(t)‖L∞(R×TN−1) for ξ ≤ 0,

= O(e−rξ)‖Dm(t)‖L∞(R×TN−1) for ξ ≥ 0.

Now denote

a(t, ξ, y) := −f(ũ(t, ξ, y))− f(ũapp(t, ξ, y))

ũ(t, ξ, y)− ũapp(t, ξ, y)
.

Since f is concave, we have

−f ′(0) ≤ a(t, ξ, y) ≤ −f ′(1). (2.17)

Of course, the interest in introducing this function a comes from the following fact:

NLc[ũ]−NLc[ũapp] = (ũ− ũapp)t −∆(ũ− ũapp) + β(y)(ũ− ũapp)ξ + a(t, ξ, y)(ũ− ũapp),

hence

(ũ− ũapp)t −∆(ũ− ũapp) + β(y)(ũ− ũapp)ξ + a(t, ξ, y)(ũ− ũapp) = −NLc[ũapp]. (2.18)

Let us denote by g(t, ξ, y) the right-hand side, and w̃ the solution of the Cauchy problem{
w̃t −∆w̃ξξ + β(y)w̃ξ − f ′(0)w̃ = |g(t, ξ)|,
w̃(0, ξ, y) = |ũ− ũapp|(0, ξ, y) = |u0(ξ, y)− φc(ξ +m∗0(ξ, y), y)| = 0.

(2.19)

We are going to prove the following facts:

• Claim 2.5 : for all t > 0 and all ξ ∈ R, y ∈ TN−1, we have |ũ − ũapp|(t, ξ, y) ≤
w̃(t, ξ, y);

• Claim 2.6 : for all ξ0 ∈ R, sup
ξ≤ξ0,y∈TN−1

w̃(t, ξ, y) = O(t−1/4);

• Claim 2.7 : there exists ξ0 ∈ R such that sup
ξ≥ξ0,y∈TN−1

|ũ− ũapp|(t, ξ, y) = O(t−1/4).
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It is clear that Claims 2.5-2.7 imply Theorem 1.3: by Claims 2.5 and 2.6,

sup
ξ≤ξ0,y∈TN−1

|ũ− ũapp|(t, ξ, y) ≤ sup
ξ≤ξ0,y∈TN−1

w̃(t, ξ, y) = O(t−1/4),

and adding Claim 2.7, we obtain that

sup
ξ∈R,y∈TN−1

|ũ− ũapp|(t, ξ, y) = O(t−1/4).

Hence it remains to prove these claims.
Claim 2.5 is a consequence of the weak maximum principle. Indeed, first w̃ is nonnegative;

next, ũ− ũapp − w̃ satisfies

(ũ−ũapp−w̃)t−∆(ũ−ũapp−w̃)+β(y)(ũ−ũapp−w̃)ξξ+a(ũ−ũapp−w̃) = g−|g|−(a+f ′(0))w̃ ≤ 0,

and
(ũ− ũapp − w̃)(0, ξ, y) = 0,

hence ũ− ũapp − w̃ ≤ 0. In the same way, ũ− ũapp + w̃ ≥ 0, hence Claim 2.5 is proved.
Claim 2.6 is a consequence of Lemma 2.4: by Duhamel’s formula:

w̃(t, ξ, y) =

∫ t

0

e−(t−s)(−∂ξξ+β∂ξ−f ′(0))|g(s, .)| ds;

but it follows from the definition of g, the properties of φc and Proposition 2.3 that there is
some δ ∈ (0, r+(c) − r−(c)) and C0 > 0 such that, for all t > 0, ξ ∈ R and y ∈ TN−1 there
holds

|g(t, ξ, y)| ≤ C0

1 + t1/4
1

1 + e−(r−(c)+δ)ξ
;

then Lemma 2.4 implies that

e−(t−s)(−∂ξξ+β∂ξ−f ′(0))|g(s, .)|(ξ) ≤ e(r−(c)+δ)ξe−ω(δ)(t−s) C0

1 + s1/4
.

Then

|w̃(t, ξ, y)| ≤ C ′0 e
(r−(c)+δ)ξ

∫ t

0

e−ω(δ)(t−s) ds

1 + s1/4
.

Since ∫ t

0

eω(δ)s

1 + s1/4
ds ∼t→+∞

1

ω(δ)

eω(δ)t

1 + t1/4
,

we obtain the following bound, valid for all (t, ξ, y) ∈ R+ × R× TN−1:

|w̃(t, ξ, y)| ≤ C1

1 + t1/4
e(r−(c)+δ)ξ,

hence Claim 2.6 is proved.
Claim 2.7 is a consequence of Claim 2.6, using the following classical argument: first,

there is some q0 > 0 and η > 0 such that −f ′(y) ≥ q0 for all y ∈ (1 − η, 1); choose ξ0 such
that φc(ξ0 −M, y) > 1− η for all y ∈ TN−1; next, because u0 is trapped between two waves
of the same speed, this order is preserved for all time; hence ũ(t, ξ, y) ≥ φc(ξ −M, y) for all
t > 0 and all ξ ∈ R, y ∈ TN−1; at last, since we already know that the shift m is bounded
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between −M and M , the mean value theorem implies that a(t, ξ, y) ≥ q0 for all t ≥ 0 and
ξ ≥ ξ0, y ∈ TN−1. And thus the difference ũ− ũapp satisfies

(ũ− ũapp)t −∆(ũ− ũapp)ξ + β(ũ− ũapp)ξ + a(t, ξ)(ũ− ũapp) = O( 1
1+t1/4

), t > 0, ξ ≥ ξ0,

(ũ− ũapp)(t, ξ0, y) = O( 1
1+t1/4

), t > 0,

(ũ− ũapp)(0, ξ, y) = 0, ξ ≥ ξ0.

C
(1+εt)1/4

is a super-solution if C and ε are well chosen (C sufficiently large, ε sufficiently

small), hence the weak maximum principle implies Claim 2.7, and the proof of Theorem 1.3
is complete. �

3 Asymptotic behaviour of the approximate shift:

preparation

3.1 Hopf-Cole transform of the approximate shift

The Hopf-Cole transform s(t, ξ, y) = er−(c)m(t,ξ,y) allows us to transform the nonlinear prob-
lem (2.11) into a linear parabolic equation: s is solution of

st −∆s+ (β(y)− 2r−(c))sξ − 2
Dyψrc
ψrc

.Dys = 0, s(0) = er−(c)m(0). (3.20)

Then standard theory on linear parabolic equations imply (i) (weak maximum principle)
and (ii) (regularity) of Proposition 2.3. Concerning (iii): consider

q(t, ξ, y) = ψrc(y)s(t, ξ, y);

then some computations allow us to check that q satisfies the parabolic problem

qt + Lrcq = 0, q(0) = ψrc(y)er−(c)m(0), (3.21)

where

Lrcq = −∆q + (β − 2r−(c))qξ + (r−(c)β(y)− r−(c)2 − f ′(0))q

= (−∆ξ + L(r−(c))− (r−(c)2 + f ′(0)))q + (β − 2r−(c))qξ

= −∆ξq + (L(r−(c))− ν1(r−(c)))q + (β − 2r−(c))qξ. (3.22)

For commodity, define the operator L0 acting on C2(TN−1) as

L0 := L(r−(c))− ν1(r−(c)) : (3.23)

L0 is symmetric, and its first eigenvalue is 0, associated to ψrc .
Let us describe our startegy. Because the variable ξ does not appear explicitly in the

coefficients of (3.21), we may perform a Fourier transform in ξ, analyze the resulting equation
in one less space variable, and transform back. We are going to do it on the heat kernel (or
fundamental solution) of (3.23), i.e. the solution π(t, ξ, ξ′y, y′) of the equation with initial
datum δξ=ξ′,y=y′ , in other words e−tLrcδξ=ξ′,y=y′ . It is obvious to give a precise meaning to
this with test functions, because we will work with Fourier transforms we will not do it.
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Observe also that e−tLrcδξ=ξ′,y=y′ regularizes immediately and that it has unifom Hk bounds
at t = 1. This will also be used without further mention.

We note that, in general, it is not at all obvious to estimate heat kernels in the full range
of (t, x, x′, y, y′). Quite precise expressions are known for self-adjoint operators [23] or, for
general operators, in the homogenisation range - i.e. |x− x′| of the order

√
t; see [22]. None

of them are totally useful for our purpose.

3.2 The fundamental solution and its Fourier transform

Given ξ′ ∈ R, y′ ∈ TN−1, consider the solution π(t, ξ, ξ′, y, y′) of

πt + Lrcπ = 0, π(0, ξ, ξ′, y, y′) = δξ=ξ′δy=y′ . (3.24)

Then we have a formula for the solution q of (3.21):

q(t, ξ, y) =

∫
ξ′∈R

∫
y′∈TN−1

π(t, ξ, ξ′, y, y′)q0(ξ
′, y′) dξ′ dy′. (3.25)

Moreover, since the equation (3.24) is translation-invariant in ξ, we have

π(t, ξ, ξ′, y, y′) = π(t, ξ − ξ′, 0, y, y′);

hence

q(t, ξ, y) =

∫
ξ′∈R

∫
y′∈TN−1

π(t, ξ − ξ′, 0, y, y′)q0(ξ′, y′) dξ′ dy′. (3.26)

Now consider the Fourier transform in ξ of π:

π̂(t, ξ̂, ξ′, y, y′) =

∫
ξ∈R

e−iξξ̂π(t, ξ, ξ′, y, y′) dξ. (3.27)

The function π̂ is solution of the following problem:

π̂t + L0π̂ + iξ̂(β − 2r−(c))π̂ + ξ̂2π̂ = 0, π̂(0, ξ̂, ξ′, y, y′) = e−iξ̂ξ
′
δy=y′ , (3.28)

and we will study this problem in the following. The Fourier inversion formula says that

π(t, ξ, ξ′, y, y′) =
1

2π

∫
ξ̂∈R

eiξξ̂π̂(t, ξ̂, ξ′, y, y′) dξ̂,

and then it allows us to transform (3.26) into

q(t, ξ, y) =
1

2π

∫
ξ′∈R

∫
y′∈TN−1

(∫
ξ̂∈R

ei(ξ−ξ
′)ξ̂π̂(t, ξ̂, 0, y, y′) dξ̂

)
q0(ξ

′, y′) dξ′ dy′. (3.29)

Hence, informations on π̂ will provide informations on q. We begin by studying the spectrum
of the operator that appears in (3.28), and in particular its principal eigenvalue.

Consider
Lξ̂ := L0 + iξ̂(β − 2r−(c)) + ξ̂2. (3.30)

The operator L0 is symmetric and its first eigenvalue is 0. Denote ω1 its second eigenvalue
(ω1 is positive). By analyticity, there exists some ξ̂0 > 0 such that, for all complex numbers
ξ̂ of modulus less than 2ξ̂0, we have:
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• Lξ̂ = L0 + iξ̂(β − 2r−(c)) + ξ̂2 has a simple eigenvalue µ1,ξ̂, analytic in ξ̂, with eigen-
function eξ̂(y) such that ‖eξ̂‖L2(TN−1) = 1;

• the rest of the spectrum of Lξ̂ has real part larger than ω1

2
.

We are going to compute an expansion of µ1,ξ̂ and eξ̂ in the neighborhood of ξ̂ = 0. This
will be the key to analyze (3.28).

Lemma 3.1 Denote 〈·, ·〉 the scalar product on L2(TN−1). We have the following asymp-
totics:

eξ̂ = ψrc + iξ̂ψ(1)
rc + ξ̂2ψ(2)

rc +O(ξ̂3), (3.31)

µ1,ξ̂ = iξ̂V∗(c) +D∗(c)ξ̂
2 +O(ξ̂3), (3.32)

where

• V∗(c) is given by
V∗(c) = 〈β(y)− 2r−(c))ψrc , ψrc〉, (3.33)

• ψ(1)
rc is solution of

L0ψ
(1)
rc = V∗(c)ψrc − (β − 2r−(c))ψrc , (3.34)

• D∗(c) is given by
D∗(c) = 1 + 〈L0ψ

(1)
rc , ψ

(1)
rc 〉, (3.35)

• and ψ
(2)
rc is solution of

L0ψ
(2)
rc = −V∗(c)ψ(1)

rc + (β − 2r−(c))ψ(1)
rc + (D∗(c)− 1)ψrc . (3.36)

Proof. The existence of the asymptotic expansions (3.31) and (3.32) follows by ana-
lyticity, hence what we have to prove is that the coefficients appearing in (3.31) and (3.32)
are given by the formulae (3.33)-(3.36). We already know that e0 = ψrc , hence we know the
first term of the expansion of eξ̂. Next, writing Lξ̂eξ̂ = µ1,ξ̂eξ̂, hence

(L0 + iξ̂(β − 2r−(c)) + ξ̂2)(ψrc + iξ̂ψ(1)
rc + ξ̂2ψ(2)

rc +O(ξ̂3))

= (iξ̂V∗(c) +D∗(c)ξ̂
2 +O(ξ̂3))(ψrc + iξ̂ψ(1)

rc + ξ̂2ψ(2)
rc +O(ξ̂3)),

we obtain {
L0ψ

(1)
rc + (β − 2r−(c))ψrc = V∗(c)ψrc ,

L0ψ
(2)
rc − (β − 2r−(c))ψ

(1)
rc + ψrc = −V∗(c)ψ(1)

rc +D∗(c)ψrc .
(3.37)

Take the scalar product of the first equation of (3.37) with ψrc :

V∗(c) = 〈V∗(c)ψrc , ψrc〉 = 〈L0ψ
(1)
rc + (β − 2r−(c))ψrc , ψrc〉

= 〈ψ(1)
rc ,L0ψrc〉+ 〈(β − 2r−(c))ψrc , ψrc〉 = 〈(β − 2r−(c))ψrc , ψrc〉,
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hence V∗(c) is given by (3.33). This implies that V∗(c)ψrc − (β − 2r−(c))ψrc is orthogonal

to ψrc , hence it belongs to the image of L0, which implies the existence of ψ
(1)
rc solution of

(3.34). Now the scalar product of the second equation of (3.37) with ψrc :

D∗(c) = 〈D∗(c)ψrc , ψrc〉 = 〈L0ψ
(2)
rc − (β − 2r−(c))ψ(1)

rc + ψrc + V∗(c)ψ
(1)
rc , ψrc〉

= 1 + 〈ψ(1)
rc , V∗(c)ψrc − (β − 2r−(c))ψrc〉 = 1 + 〈ψ(1)

rc ,L0ψ
(1)
rc 〉,

hence (3.35) is proved. At last, this implies that (β−2r−(c))ψ
(1)
rc +ψrc−V∗(c)ψ

(1)
rc +D∗(c)ψrc

is orthogonal to ψrc , which implies the existence of ψ
(2)
rc satisfying (3.36). �

Note that ξ̂0 can be chosen small enough such that the asymptotic expansion of µ1,ξ̂

satisfies

|µ1,ξ̂ − iξ̂V∗(c)| = |D∗(c)ξ̂
2 +O(ξ̂3)| ∈ [

D∗(c)

2
ξ̂2, 2D∗(c)ξ̂

2].

2

This result brings several remarks:

• first, the expression V∗(c) given by (3.33) is consistent with the one given in (2.7),
thanks to the value of ν ′1(r−(c)) given in (2.8);

• next, although ψ
(1)
rc is defined up to a multiple of ψrc , there are enough orthogonality

relations so that the quantity D∗(c) is uniquely defined;

• at last, notice that we have D∗(c) > 1 as soon as α is nonconstant, this is a manifes-
tation of the well-known ’convection-enhanced’-diffusion.

3.3 Decomposition of π̂ in high and low frequencies, study of the
high frequency part

The analysis of π̂ is broken in two parts: ’high’ frequencies |ξ̂| ≥ ξ̂0, and ’low’ frequencies

|ξ̂| ≤ ξ̂0. Take a C∞ function γ(ξ̂), supported in [−ξ̂0, ξ̂0], equal to 1 in [
−ξ̂0

2
,
ξ̂0
2

]. Set

π̂ = γ(ξ̂)π̂ + (1− γ(ξ̂))π̂ =: π̂` + π̂h.

The function π̂h satisfies

π̂ht + L0π̂
h + iξ̂(β − 2r−(c))π̂h + ξ̂2π̂h = 0, π̂h(0, ξ̂, ξ′, y, y′) = e−iξ̂ξ

′
(1− γ(ξ̂))δy=y′ . (3.38)

Denote ‖ · ‖L2
y

the norm associated to the scalar product 〈·, ·〉.

3.3.1 Main results concerning π̂h and its inverse Fourier transform πh

Lemma 3.2 The function π̂h has the following property: given k, k′ ∈ N, there exists Ck,k′ >
0, ωk,k′ > 0 such that

‖∂k
ξ̂
Dk′

y π̂
h‖2L2

y
≤ Ck,k′e

−ωk,k′ ξ̂2t. (3.39)

This will imply the following
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Corollary 3.3 The inverse Fourier transform of π̂h:

πh(t, ξ, ξ′, y, y′) :=
1

2π

∫
ξ̂∈R

ei(ξ−ξ
′)ξ̂π̂h(t, ξ̂, 0, y, y′) dξ̂

has the following property: given k, k′ ∈ N, there exists Ck,k′ > 0, ωk,k′ > 0 such that, for all
t ≥ 1, for all ξ, ξ′ ∈ R, for all y, y′ ∈ TN−1 we have

(1 + (ξ − ξ′)2)|∂kξDk′

y π
h(t, ξ, ξ′, y, y′)| ≤ Ck,k′e

−ωk,k′ ξ̂20t. (3.40)

This implies in particular that there exists C > 0, ω > 0 such that, for all t ≥ 1, for all
ξ ∈ R, for all y, y′ ∈ TN−1 we have∫

ξ′∈R

(
|πh|+ |∂ξπh|+ |Dyπ

h|
)
≤ Ce−ωξ̂

2
0t. (3.41)

3.3.2 Proof of Lemma 3.2.

First we prove (3.39) for k = 0 = k′, hence that the L2
y-norm of π̂h goes exponentially to 0

as t → +∞. Multiply the equation satisfied by π̂h by its conjugate π̂h, integrate on TN−1

and take the real part of this expression:

0 = <e
∫

TN−1

(π̂ht + L0π̂
h + iξ̂(β − 2r−(c))π̂h + ξ̂2π̂h)π̂h.

We study all the terms in this expression: first,

<e
∫
TN−1

π̂ht π̂
h =

1

2

∂

∂t
‖π̂h‖2L2

y
;

next,

<e
∫

TN−1

L0π̂
hπ̂h =

∫
TN−1

(L0(<eπ̂h))<eπ̂h + (L0(=mπ̂h))=mπ̂h,

and all this is nonnegative, since L0 is symmetric and its principal eigenvalue is zero; next

<e
∫

TN−1

iξ̂(β − 2r−(c))π̂hπ̂h = <e
(
i

∫
TN−1

ξ̂(β − 2r−(c))|π̂h|2
)

= 0;

at last,

<e
∫

TN−1

ξ̂2π̂hπ̂h = ξ̂2‖π̂h‖2L2
y
.

Then we obtain that
1

2

∂

∂t
‖π̂h‖2L2

y
+ ξ̂2‖π̂h‖2L2

y
≤ 0,

which implies that t 7→ e2ξ̂
2t‖π̂h‖2L2

y
is nonincreasing, which implies that

‖π̂h‖2L2
y
≤ C0e

−2ξ̂2t,

hence (3.39) holds true for k = 0 = k′.
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Let us prove now that (3.39) holds true for k = 1, k′ = 0. We remark that ∂ξ̂π̂
h is

solution of the nonhomogeneous parabolic equation

(∂ξ̂π̂
h)t + L0(∂ξ̂π̂

h) + iξ̂(β − 2r−(c))(∂ξ̂π̂
h) + ξ̂2(∂ξ̂π̂

h) = −i(β − 2r−(c))π̂h − 2ξ̂π̂h;

then we proceed in the same way:

<e
∫

TN−1

(
(∂ξ̂π̂

h)t + L0(∂ξ̂π̂
h) + iξ̂(β − 2r−(c))(∂ξ̂π̂

h) + ξ̂2(∂ξ̂π̂
h)
)
∂ξ̂π̂

h

= <e
∫

TN−1

(
−i(β − 2r−(c))π̂h − 2ξ̂π̂h

)
∂ξ̂π̂

h,

hence

1

2

∂

∂t
‖∂ξ̂π̂

h‖2L2
y

+ ξ̂2‖∂ξ̂π̂
h‖2L2

y
≤ <e

∫
TN−1

(
−i(β − 2r−(c))π̂h − 2ξ̂π̂h

)
∂ξ̂π̂

h

≤ C‖π̂h‖2L2
y

+
ξ̂2

2
‖∂ξ̂π̂

h‖2L2
y
,

which implies that

∂

∂t
‖∂ξ̂π̂

h‖2L2
y

+ ξ̂2‖∂ξ̂π̂
h‖2L2

y
≤ 2C‖π̂h‖2L2

y
≤ C ′e−2ξ̂2t,

hence
∂

∂t
(eξ̂

2t‖∂ξ̂π̂
h‖2L2

y
) ≤ C ′e−2ξ̂2t,

which implies that

‖∂ξ̂π̂
h‖2L2

y
≤ C1e

−ξ̂2t.

In the same way, the same property holds for Dyπ̂
h since it is solution of a similar

nonhomogeneous parabolic equation.
Finally, since β is smooth enough, we can repeat the argument, and the same property

holds for all the derivatives of π̂h of the form ∂k
ξ̂
Dk′
y π̂

h. �

3.3.3 Proof of Corollary 3.3.

First we prove (3.40) for k = 0 = k′: we have

(1 + (ξ − ξ′)2)πh(t, ξ, ξ′, y, y′) = (1 + (ξ − ξ′)2)

∫
ξ̂

ei(ξ−ξ
′)ξ̂π̂h(t, ξ̂, 0, y, y′) dξ̂

=

∫
ξ̂

ei(ξ−ξ
′)ξ̂(π̂h(t, ξ̂, 0, y, y′)− π̂h

ξ̂ξ̂
(t, ξ̂, 0, y, y′)) dξ̂.

Now, Sobolev’s embeddings ensure the existence of C and ω such that

sup
y,y′

(|π̂h(t, ξ̂, 0, y, y′)|+ |π̂h
ξ̂ξ̂

(t, ξ̂, 0, y, y′)| ≤ Ce−ωξ̂
2t,

hence

(1 + (ξ − ξ′)2)|πh(t, ξ, ξ′, y, y′)| ≤
∫
|ξ̂|≥ξ̂0/2

Ce−ωξ̂
2t dξ̂ ≤ C(ξ̂0)e

−ωξ̂20t.
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The same property holds for all the derivatives of πh, by the same argument. This proves
(3.40), and (3.41) follows from (3.40):∫

ξ′∈R
|πh| ≤

∫
ξ′∈R

C0,0e
−ω0,0ξ̂20t

dξ′

(1 + (ξ − ξ′)2)
=
π

2
C0,0e

−ω0,0ξ̂20t,

and the same property holds for ∂ξπ
h and Dyπ

h. �

4 Influence of the low frequencies

4.1 Part 1: decomposition of π̂`

The function π̂` satisfies

π̂`t + L0π̂
` + iξ̂(β − 2r−(c))π̂` + ξ̂2π̂` = 0, π̂`(0, ξ̂, ξ′, y, y′) = e−iξ̂ξ

′
γ(ξ̂)δy=y′ . (4.42)

Note that both E1 and E2 depend on ξ̂, we will have to keep this in mind but, in order to
reduce the complexity of the different expressions, this dependence will not be mentionned
explicitely.
Since µ1,ξ̂ is an isolated eigenvalue of Lξ̂, {µ1,ξ̂} is a spectral bounded set. Then there exist a
projection E1 associated to this spectral set, and a projection E2 associated to the spectral
set given by the complement of µ1,ξ̂ in the spectrum of Lξ̂ (Theorem 1.5.2 of [16]), such that

π̂` = E1(π̂
`) + E2(π̂

`).

The images of E1 and E2 are stable under Lξ̂, hence E1(π̂
`) and E2(π̂

`) will satisfy similar
parabolic equations. In the following we study these projections. We start by studying the
projection E1(π̂

`), that will give the more important contribution in the behaviour of the
Hopf-Cole transform q.

4.2 Influence of the low frequencies, part 2: study of E1(π̂
`) and

its inverse Fourier transform π`,1

4.2.1 The “principal parts” of E1(π̂
`) and π`,1

First, we note that since everything depends analytically on ξ̂, the projection E1 can be
written:

E1(g) = 〈g,Φ1(ξ̂, y)〉eξ̂,

where ξ 7→ Φ1(ξ̂, y) is analytic. Moreover, the operator L0 is symmetric, hence its eigenspaces
are orthogonal, hence Φ1(0, y) = ψrc(y). This implies that, in a neighborhood of ξ̂ = 0, we
have

Φ1(ξ̂, y) = ψrc(y) +O(ξ̂).

Next we note that the projection E1(π̂
`) satifies the following (simple) equation:

∂tE1(π̂
`) + µ1,ξ̂E1(π̂

`) = 0,
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thus the formula:

E1(π̂
`)(t, ξ̂, ξ′, y, y′) = e−µ1,ξ̂tE1(π̂

`)(0, ξ̂, ξ′, y, y′)

= e−µ1,ξ̂t〈γ(ξ̂)e−iξ̂ξ
′
δy=y′ ,Φ1(ξ̂, y)〉eξ̂ = e−µ1,ξ̂tγ(ξ̂)e−iξ̂ξ

′
Φ1(ξ̂, y′)eξ̂(y). (4.43)

This implies, taking into account the asymptotic expansions (3.31) and (3.32) of eξ̂ and µ1,ξ̂

in the neighborhood of ξ̂ = 0, that

E1(π̂
`)(t, ξ̂, ξ′, y, y′) = e−t(iξ̂V∗(c)+D∗(c)ξ̂

2+O(ξ̂3))γ(ξ̂)e−iξ̂ξ
′
(ψrc(y

′) +O(ξ̂))(ψrc(y) +O(ξ̂)).

Let us call the “principal part of E1(π̂
`)” the following:

π̂pp(t, ξ̂, ξ′, y, y′) := e−t(iξ̂V∗(c)+D∗(c)ξ̂
2)e−iξ̂ξ

′
ψrc(y

′)ψrc(y). (4.44)

The associated inverse Fourier transform will be

πpp(t, ξ, ξ′, y, y′) :=
1

2π

∫
ξ̂∈R

ei(ξ−ξ
′)ξ̂π̂pp(t, ξ̂, 0, y, y′) dξ̂

=
1

2π
ψrc(y)ψrc(y

′)

∫
ξ̂∈R

ei(ξ−ξ
′)ξ̂e−t(iξ̂V∗(c)+D∗(c)ξ̂

2) dξ̂. (4.45)

This is what we call the “principal part of π`,1”. In a classical way, we have

πpp(t, ξ, ξ′, y, y′)

ψrc(y)ψrc(y
′)

=
1

2π

∫
ξ̂∈R

ei(ξ−ξ
′)ξ̂e−t(iξ̂V∗(c)+D∗(c)ξ̂

2) dξ̂

=
1

2π

∫
ξ̂∈R

ei(ξ−ξ
′−tV∗(c))ξ̂e−D∗(c)tξ̂

2

dξ̂

=
1√

4πD∗(c)t
e−(ξ−ξ′−tV∗(c))2/(4D∗(c)t). (4.46)

This allows us to give a simple interpretation of the so-called principal part πpp: πpp satisfies
the transport-diffusion equation

πppt −D∗(c)π
pp
ξξ + V∗(c)π

pp
ξ = 0, πpp(0, ξ, ξ′, y, y′) = ψrc(y)ψrc(y

′)δξ=ξ′ . (4.47)

It remains to prove that we have the right to use that terminology of “principal part”: we
are going to study the difference between π`,1 and its principal part πpp.

4.2.2 The difference between π`,1 and its principal part πpp: statement of the
main results

Lemma 4.1 Denote π`,1 the inverse Fourier transform of E1(π̂
`):

π`,1(t, ξ, ξ′, y, y′) :=
1

2π

∫
ξ̂∈R

ei(ξ−ξ
′)ξ̂E1(π̂

`)(t, ξ̂, 0, y, y′) dξ̂

and
πR(t, ξ, ξ′, y, y′) := π`,1(t, ξ, ξ′, y, y′)− πpp(t, ξ, ξ′, y, y′).

Then there exists M0 such that we have the following estimate: for all t ≥ 1, for all ξ, ξ′ ∈ R,
for all y, y′ ∈ TN−1,

(t+ (ξ − ξ′ − V∗(c)t)2)|πR(t, ξ, ξ′, y, y′)| ≤M0. (4.48)
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This implies the following important integral estimate on πR:

Corollary 4.2

∀t ≥ 1, ∀ξ ∈ R,∀y, y′ ∈ TN−1,

∫
ξ′∈R
|πR(t, ξ, ξ′, y, y′)| ≤ 4M0√

t
. (4.49)

Finally, we will need similar estimates on the first order derivatives of πR: we will prove
the following

Lemma 4.3 (i) Concerning ∂ξπ
R: there exists some M1 such that for all t ≥ 1, for all

ξ, ξ′ ∈ R, for all y, y′ ∈ TN−1, we have

(t+ (ξ − ξ′ − V∗(c)t)2)|
√
t∂ξπ

R(t, ξ, ξ′, y, y′)| ≤M1; (4.50)

this implies that

∀t ≥ 1,∀ξ ∈ R,∀y, y′ ∈ TN−1,

∫
ξ′∈R
|∂ξπR(t, ξ, ξ′, y, y′)| ≤ 4M1

t
. (4.51)

(ii) Concerning Dyπ
R: there exists some M2 such that for all t ≥ 1, for all ξ, ξ′ ∈ R, for

all y, y′ ∈ TN−1, we have

(t+
(ξ − ξ′ − V∗(c)t)2

√
t

)|Dy

(πR(t, ξ, ξ′, y, y′)

ψrc(y)

)
| ≤M2; (4.52)

this implies that

∀t ≥ 1,∀ξ ∈ R,∀y, y′ ∈ TN−1,

∫
ξ′∈R
|Dy

(πR(t, ξ, ξ′, y, y′)

ψrc(y)

)
| ≤ 4M2

t1/4
. (4.53)

4.2.3 Proof of Lemma 4.1.

First we prove that tπR(t, ξ, ξ′, y, y′) is bounded. Remember that we are dealing with low
frequencies, and we have in fact

π`,1(t, ξ, ξ′, y, y′) =
1

2π

∫ ξ̂0

−ξ̂0
ei(ξ−ξ

′)ξ̂E1(π̂
`)(t, ξ̂, 0, y, y′) dξ̂.

Next, ξ̂0 has been chosen so that the asymptotic expansion of µ1,ξ̂ satisfies

|µ1,ξ̂ − iξ̂V∗(c)| = |D∗(c)ξ̂
2 +O(ξ̂3)| ∈ [

D∗(c)

2
ξ̂2, 2D∗(c)ξ̂

2].

Now consider a function ρ : R+ → R+, nondecreasing, and ρ(t) → +∞ as t → +∞ and
ρ(t)√
t
→ 0 as t→ +∞. (We will choose ρ(t) = t1/4.) Then, first

∣∣∣ 1

2π

∫
|ξ̂|≥ρ(t)/

√
t

ei(ξ−ξ
′)ξ̂E1(π̂

`)(t, ξ̂, 0, y, y′) dξ̂
∣∣∣ ≤ C

∫
|ξ̂|≥ρ(t)/

√
t

e−D∗(c)tξ̂
2/2 dξ̂

= C

∫
σ≥ρ(t)2

e−D∗(c)σ/2
dσ

2
√
t
√
σ

= O(1)
e−D∗(c)ρ(t)

2/2

√
tρ(t)

; (4.54)
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next, in the same fashion,∣∣∣ 1

2π

∫
|ξ̂|≥ρ(t)/

√
t

ei(ξ−ξ
′)ξ̂π̂pp(t, ξ̂, 0, y, y′) dξ̂

∣∣∣
≤ C

∫
|ξ̂|≥ρ(t)/

√
t

e−D∗(c)tξ̂
2

dξ̂ = O(1)
e−D∗(c)ρ(t)

2

√
tρ(t)

. (4.55)

Let us finally consider the last term

1

2π

∫
|ξ̂|≤ρ(t)/

√
t

ei(ξ−ξ
′)ξ̂E1(π̂

`)(t, ξ̂, 0, y, y′) dξ̂ − 1

2π

∫
|ξ̂|≤ρ(t)/

√
t

ei(ξ−ξ
′)ξ̂π̂pp(t, ξ̂, 0, y, y′) dξ̂ :

Since
ρ(t)√
t
→ 0 as t→ +∞, we have for |ξ̂| ≤ ρ(t)/

√
t:

ei(ξ−ξ
′)ξ̂E1(π̂

`)(t, ξ̂, 0, y, y′)

= ei(ξ−ξ
′)ξ̂e−t(iξ̂V∗(c)+D∗(c)ξ̂

2+O(ξ̂3))〈δy=y′ , ψrc +O(ξ̂)〉(ψrc +O(ξ̂))

= ei(ξ−ξ
′)ξ̂e−t(iξ̂V∗(c)+D∗(c)ξ̂

2)(1 +O(tξ̂3))(〈δy=y′ , ψrc〉ψrc +O(ξ̂))

= ei(ξ−ξ
′)ξ̂π̂pp(t, ξ̂, 0, y, y′)(1 +O(ξ̂) +O(tξ̂3)),

hence

∣∣∣ 1

2π

∫
|ξ̂|≤ρ(t)/

√
t

ei(ξ−ξ
′)ξ̂E1(π̂

`)(t, ξ̂, 0, y, y′) dξ̂ − 1

2π

∫
|ξ̂|≤ρ(t)/

√
t

ei(ξ−ξ
′)ξ̂π̂pp(t, ξ̂, 0, y, y′) dξ̂

∣∣∣
≤
∫
|ξ̂|≤ρ(t)/

√
t

(O(ξ̂) +O(tξ̂3))e−tD∗(c)ξ̂
2

dξ̂

= O(1)

∫ ρ(t)2

0

(

√
σ√
t

+ t
σ3/2

t3/2
)e−D∗(c)σ/2

dσ

2
√
t
√
σ

= O(
1

t
). (4.56)

Finally, choosing for example ρ(t) = t1/4, we see that (4.54)-(4.56) imply that πR(t, ξ, ξ′, y, y′) =

O(
1

t
), uniformly in ξ, ξ′, y, y′, hence the first part of (4.48).

For the second part of (4.48), first we integrate by parts (twice) to kill the factor (ξ −
ξ′ − V∗(c)t)2: we have

(ξ − ξ′ − V∗(c)t)2πpp(t, ξ, ξ′, y, y′)

=
1

2π
ψrc(y)ψrc(y

′)

∫
ξ̂∈R

(2tD∗(c)− 4D∗(c)
2t2ξ̂2)ei(ξ−ξ

′)ξ̂e−t(iξ̂V∗(c)+D∗(c)ξ̂
2) dξ̂,

next, in the same way:

(ξ − ξ′ − V∗(c)t)2π`,1(t, ξ, ξ′, y, y′)

=
1

2π

∫
ξ̂∈R

ei(ξ−ξ
′−V∗(c)t)ξ̂ ∂

2

∂ξ̂2

(
−e(iV∗(c)ξ̂−µ1,ξ̂)tγ(ξ̂)Φ1(ξ̂, y′)eξ̂(y)

)
dξ̂,

21



and some easy computations show that

∂2

∂ξ̂2

(
−e(iV∗(c)ξ̂−µ1,ξ̂)tγ(ξ̂)Φ1(ξ̂, y′)eξ̂(y)

)
= e(iV∗(c)ξ̂−µ1,ξ̂)tγ(ξ̂)ψrc(y)ψrc(y

′)(2tD∗(c)− 4D∗(c)
2t2ξ̂2 +O(tξ̂) +O(t2ξ̂3))

+ e(iV∗(c)ξ̂−µ1,ξ̂)tO(tξ̂)χ|ξ̂|∈(ξ̂0/2,ξ̂0),

where χ|ξ̂|∈(ξ̂0/2,ξ̂0) is equal to 1 if |ξ̂| ∈ (ξ̂0/2, ξ̂0) and 0 elsewhere. Now we can proceed in

the same way: we estimate separately the integrals on |ξ̂| ≥ ρ(t)/
√
t and |ξ̂| ≤ ρ(t)/

√
t as

we did in (4.54)-(4.56), and we obtain

(ξ − ξ′ − V∗(c)t)2|π`,1(t, ξ, ξ′, y, y′)− πpp(t, ξ, ξ′, y, y′)|
≤ O(1)tρ(t)e−D∗(c)ρ(t)

2/2 +O(1)tρ(t)e−D∗(c)ρ(t)
2

+O(1), (4.57)

these last three terms being respectively the estimates corresponding to (4.54), (4.55) and
(4.56). With the same function ρ(t) = t1/4, (4.57) allows us to complete the proof of the
estimate (4.48), and the proof of Lemma 4.1. �

4.2.4 Proof of Corollary 4.2.

The estimate (4.49) directly comes from (4.48): indeed, (4.48) implies that

|πR(t, ξ, ξ′, y, y′)| ≤ inf{M0

t
,

M0

(ξ − ξ′ − V∗(c)t)2
},

hence∫
ξ′∈R
|πR(t, ξ, ξ′, y, y′)| dξ′ =

∫
|ξ−ξ′−V∗(c)t|≤

√
t

|πR| dξ′ +
∫
|ξ−ξ′−V∗(c)t|≥

√
t

|πR| dξ′

≤
∫
|ξ−ξ′−V∗(c)t|≤

√
t

M0

t
dξ′ +

∫
|ξ−ξ′−V∗(c)t|≥

√
t

M0

(ξ − ξ′ − V∗(c)t)2
dξ′

≤ 2M0

√
t

t
+

2M0√
t

=
4M0√
t
.

This concludes the proof of Corollary 4.2. �

4.2.5 Proof of Lemma 4.3.

(i) The expression of
√
t∂ξπ

R is similar to the expression of πR, with the additional mul-

tiplicative factor i
√
tξ̂ inside the integrals. Hence, proceeding in the same way, we obtain

(4.50), and in the same way as in Corollary 4.49, this implies that (4.51). (ii) Next we see
that

Dy

(πR(t, ξ, ξ′, y, y′)

ψrc(y)

)
= Dy

(π`,1(t, ξ, ξ′, y, y′)− πpp(t, ξ, ξ′, y, y′)
ψrc(y)

)
= Dy

(π`,1(t, ξ, ξ′, y, y′)
ψrc(y)

)
=

1

2π

∫
ξ̂∈R

Dy

(
ei(ξ−ξ

′)ξ̂e−µ1,ξ̂tγ(ξ̂)Φ1(ξ̂, y′)
eξ̂(y)

ψrc(y)

)
dξ̂

=
1

2π

∫
ξ̂∈R

ei(ξ−ξ
′)ξ̂e−µ1,ξ̂tγ(ξ̂)Φ1(ξ̂, y′)Dy

( eξ̂(y)

ψrc(y)

)
dξ̂.
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Since e0(y) = ψrc(y), we have

Dy

( eξ̂(y)

ψrc(y)

)
= O(ξ̂),

hence

Dy

(πR(t, ξ, ξ′, y, y′)

ψrc(y)

)
= O(

1

t
),

which is the first part of (4.52). Next

(ξ − ξ′ − V∗(c)t)2Dy

(πR(t, ξ, ξ′, y, y′)

ψrc(y)

)
=
−1

2π

∫
ξ̂

( ∂2

∂ξ̂2
ei(ξ−ξ

′−V∗(c)t)ξ̂
)(
e(iV∗(c)ξ̂−µ1,ξ̂)tγ(ξ̂)Φ1(ξ̂, y′)Dy

( eξ̂(y)

ψrc(y)

))
dξ̂

=
−1

2π

∫
ξ̂

ei(ξ−ξ
′−V∗(c)t)ξ̂ ∂

2

∂ξ̂2

(
e(iV∗(c)ξ̂−µ1,ξ̂)tγ(ξ̂)Φ1(ξ̂, y′)Dy

( eξ̂(y)

ψrc(y)

))
dξ̂

=
1

2π

∫ ξ̂0

−ξ̂0
ei(ξ−ξ

′−V∗(c)t)ξ̂e(iV∗(c)ξ̂−µ1,ξ̂)t
(
O(t) +O(t2ξ̂2) +O(tξ̂)

)
dξ̂,

hence, thanks to the same change of variables σ = tξ̂2, we get

(ξ − ξ′ − V∗(c)t)2Dy

(πR(t, ξ, ξ′, y, y′)

ψrc(y)

)
= O(

√
t),

which is the second part of (4.52). Finally, as in Corollary 4.2, (4.52) implies (4.53), which
completes the proof of Lemma 4.3. �

4.3 Influence of the low frequencies, part 3: study of the projec-
tion E2(π̂

`) and of its inverse Fourier transform

4.3.1 Statement of the main results concerning E2(π̂
`) and of its inverse Fourier

transform π`,2

We are going to prove the following

Lemma 4.4 First,
‖E2(π̂

`)‖L2
y
≤ Ce−ω1t. (4.58)

Moreover, given n, there exists ξ̂0 > 0 small enough, and C > 0, such that, given k, k′ ∈
{0, · · · , n} such that k + k′ ≥ 1, we have

‖∂k
ξ̂
Dk′

y E2(π̂
`)‖L2

y
≤ Ctk+k

′−1e−D∗(c)ξ̂
2t/2. (4.59)

It will imply the following

Corollary 4.5 Denote π`,2 the inverse Fourier transform of E2(π̂
`):

π`,2(t, ξ, ξ′, y, y′) :=
1

2π

∫
ξ̂∈R

ei(ξ−ξ
′)ξ̂E2(π̂

`)(t, ξ̂, 0, y, y′) dξ̂.

Then there exists ω > 0 and C > 0 such that, for all t ≥ 1, all ξ ∈ R, all y, y′ ∈ TN−1 we
have∫

ξ′∈R

(
|π`,2(t, ξ, ξ′, y, y′)|+ |∂ξπ`,2(t, ξ, ξ′, y, y′)|+ |Dyπ

`,2(t, ξ, ξ′, y, y′)|
)
dξ′ ≤ Ce−ωt. (4.60)
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4.3.2 Proof of Lemma 4.4.

First we have
(∂t + Lξ̂)E2(π̂

`) = 0.

Since |ξ̂| ≤ ξ̂0, the spectrum of Lξ̂, except µ1,ξ̂, lies in the half-plane of complex numbers of

real part larger than ω1/2. Hence, multiplying by E2(π̂`), integrating and taking the real
part, we obtain that

1

2

∂

∂t
‖E2(π̂

`)‖2L2
y

+
ω1

2
‖E2(π̂

`)‖2L2
y
≤ 0,

which implies that
‖E2(π̂

`)‖2L2
y
≤ C0e

−ω1t,

hence (4.58) holds true.
Now, let us study the ξ̂-derivatives of E2(π̂

`), the main reason being that, as in the proof
of Corollary 3.3, we will need integrability bounds of π`,2, which derive from L∞ bounds
of ∂2

ξ̂
E2(π̂

`). Hence we have to study first ∂ξ̂E2(π̂
`): it is solution of the nonhomogeneous

parabolic problem

(
∂

∂t
+ Lξ̂)(∂ξ̂E2(π̂

`)) = −i(β(y)− 2r−(c))E2(π̂
`)− 2ξ̂E2(π̂

`).

Now decompose ∂ξ̂E2(π̂
`) into

∂ξ̂E2(π̂
`) = E1(∂ξ̂E2(π̂

`)) + E2(∂ξ̂E2(π̂
`)).

First, it is easy to verify that ‖E2(∂ξ̂E2(π̂
`))‖L2

y
goes exponentially fast to 0: indeed,

E2(∂ξ̂E2(π̂
`)) is solution of

(
∂

∂t
+ Lξ̂)(E2(∂ξ̂E2(π̂

`))) = E2(−i(β(y)− 2r−(c))E2(π̂
`)− 2ξ̂E2(π̂

`)),

and we already know that the right hand side goes exponentially fast to 0; integrating and
taking the real part, we obtain that

1

2

∂

∂t
‖E2(∂ξ̂E2(π̂

`))‖2L2
y

+
ω1

4
‖E2(∂ξ̂E2(π̂

`))‖2L2
y
≤ C‖E2(π̂

`)‖2L2
y
,

which implies that
‖E2(∂ξ̂E2(π̂

`))‖2L2
y
≤ Ce−ω1t/2. (4.61)

Concerning E1(∂ξ̂E2(π̂
`)): it is solution of

(
∂

∂t
+ µ1,ξ̂)(E1(∂ξ̂E2(π̂

`))) = E1(−i(β(y)− 2r−(c))E2(π̂
`)− 2ξ̂E2(π̂

`)),

hence

E1(∂ξ̂E2(π̂
`))(t, ξ̂, ξ′, y, y′) = E1(∂ξ̂E2(π̂

`))(0, ξ̂, ξ′, y, y′)e−µ1,ξ̂t

+

∫ t

0

e−µ1,ξ̂(t−s)E1(−i(β(y)− 2r−(c))E2(π̂
`)− 2ξ̂E2(π̂

`)) ds.

24



Using the asymptotic expansion (3.32), we have

‖
∫ t

0

e−µ1,ξ̂(t−s)E1(−i(β(y)− 2r−(c))E2(π̂
`)− 2ξ̂E2(π̂

`)) ds‖L2
y

≤ Ce(−D∗(c)ξ̂
2+Mξ̂3)t

∫ t

0

e(D∗(c)ξ̂
2+Mξ̂3)se−ω1s ds ≤ C ′e(−D∗(c)ξ̂

2+Mξ̂3)t,

if ξ̂0 is small enough so that D∗(c)ξ̂
2
0 +Mξ̂3

0 < ω1. Hence

‖E1(∂ξ̂E2(π̂
`))‖L2

y
≤ Ce(−D∗(c)ξ̂

2+Mξ̂3)t. (4.62)

Hence (4.61) and (4.62) imply that

‖∂ξ̂E2(π̂
`)‖L2

y
≤ Ce(−D∗(c)ξ̂

2+Mξ̂3)t ≤ Ce−D∗(c)ξ̂
2t/2 (4.63)

if ξ̂0 has been chosen small enough. This proves (4.59) when k = 1, k′ = 0.
Next we can repeat the procedure: its derivative DyE2(π̂

`) satisfies

(∂t + Lξ̂)(DyE2(π̂
`)) = −iξ̂DyβE2(π̂

`). (4.64)

Multiplying by DyE2(π̂`), integrating and taking the real part, we obtain that

1

2

∂

∂t
‖DyE2(π̂

`)‖2L2
y

+
ξ̂2

2
‖DyE2(π̂

`)‖2L2
y
≤ C‖E2(π̂

`)‖2L2
y
,

hence, thanks to (4.58), there exists C1 such that

‖DyE2(π̂
`)‖2L2

y
≤ C1e

−tξ̂2 , (4.65)

which is an estimate similar to (4.59) with k = 0, k′ = 1. To obtain exactly (4.59), it is
sufficient to decompose

DyE2(π̂
`) = E1(DyE2(π̂

`)) + E2(DyE2(π̂
`)),

and proceed as previously for ∂ξ̂E2(π̂
`).

Next we turn to ∂2
ξ̂
E2(π̂

`): it is solution of the nonhomogeneous parabolic problem

(
∂

∂t
+ Lξ̂)(∂

2
ξ̂
E2(π̂

`)) = −2i(β(y)− 2r−(c))∂ξ̂E2(π̂
`)− 2ξ̂∂ξ̂E2(π̂

`)− 2E2(π̂
`),

and the L2
y norm of the right hand side goes to as 0 as e(−D∗(c)ξ̂

2+Mξ̂3)t. Then, we decompose
into a sum of projections, and we see that

‖E2(∂
2
ξ̂
E2(π̂

`))‖2L2
y
≤ Ce−ω1t/2. (4.66)

Concerning the other projection E1(∂
2
ξ̂
E2(π̂

`)): Duhamel’s formula gives that

E1(∂
2
ξ̂
E2(π̂

`))(t, ξ̂, ξ′, y, y′) = E1(∂
2
ξ̂
E2(π̂

`))(0, ξ̂, ξ′, y, y′)e−µ1,ξ̂t

+

∫ t

0

e−µ1,ξ̂(t−s)E1(−2i(β(y)− 2r−(c))∂ξ̂E2(π̂
`)− 2ξ̂∂ξ̂E2(π̂

`)− 2E2(π̂
`)) ds,
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which easily implies that

‖E1(∂
2
ξ̂
E2(π̂

`))‖L2
y
≤ Ce(−D∗(c)ξ̂

2+Mξ̂3)t

+ Ce(−D∗(c)ξ̂
2+Mξ̂3)t

∫ t

0

e(D∗(c)ξ̂
2+Mξ̂3)se(−D∗(c)ξ̂

2+Mξ̂3)s ds

≤ Ce(−D∗(c)ξ̂
2+Mξ̂3)t + Ce(−D∗(c)ξ̂

2+3Mξ̂3)tt,

hence
‖∂2

ξ̂
E2(π̂

`)‖L2
y
≤ Ce−D∗(c)ξ̂

2t/2t (4.67)

if ξ̂0 is small enough, which proves (4.59) when k = 2, k′ = 0.
The same strategy and a suitable induction argument leads to the validity of Lemma 4.4.

�

4.3.3 Proof of Corollary 4.5.

Sobolev’s embeddings imply that HN(TN−1) ⊂ L∞(TN−1), and there exists some θ > 0 and
C > 0 such that, for all f ∈ HN+1(TN−1), we have

‖f‖L∞(TN−1) ≤ C(‖f‖L2(TN−1) + ‖f‖θL2(TN−1)‖D
N+1
y f‖1−θ

L2(TN−1)
).

Then (4.58) and (4.59) imply that there exists ω > 0 and C > 0 such that, for all t ≥ 1, all
ξ̂, ξ′ ∈ R, all y, y′ ∈ TN−1 we have

|E2(π̂
`)(t, ξ̂, ξ′, y, y′)| ≤ Ce−ωt. (4.68)

In the same way, Sobolev’s embeddings imply that in fact all the y-derivatives of E2(π̂
`) go

exponentially fast to 0, uniformly in ξ̂, ξ′, y, y′. Then, since E2(π̂
`) is compactly supported

in ξ̂, this implies an L∞ bound for π`,2:

|π`,2(t, ξ, ξ′, y, y′)| ≤ Ce−ωt.

Now, as in Corollary 3.3, we consider

(ξ − ξ′)2π`,2(t, ξ, ξ′, y, y′) = − 1

2π

∫
ξ̂∈R

ei(ξ−ξ
′)ξ̂∂2

ξ̂
E2(π̂

`)(t, ξ̂, 0, y, y′) dξ̂.

(4.59) and Sobolev’s embeddings imply that there

|∂2
ξ̂
E2(π̂

`)(t, ξ̂, ξ′, y, y′)| ≤ CtN+2e−D∗(c)ξ̂
2t/2.

Then
(ξ − ξ′)2|π`,2(t, ξ, ξ′, y, y′)| ≤ CtN+3/2.

This seems a rough estimate, but as we did before:

|π`,2(t, ξ, ξ′, y, y′)| ≤ inf{e−ωt, tN+3/2

(ξ − ξ′)2
} ≤ inf{e−ωt, eωt/2

(ξ − ξ′)2
},

which implies that ∫
ξ′∈R
|π`,2(t, ξ, ξ′, y, y′)| ≤ Ce−ωt/4.

The same strategy yields that the same estimate holds for the first order derivatives ∂ξπ
`,2

and Dyπ
`,2, hence (4.60) holds true. �
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4.4 Application of these estimates to the Hopf-Cole transform q.

We decomposed successively π̂ into

π̂ = π̂h + π̂` = π̂h + π̂`,1 + π̂`,2 = π̂h + π̂pp + π̂R + π̂`,2,

and this yields
π = πh + πpp + πR + π`,2,

and
q = qh + qpp + qR + q`,2

with the natural definition:

qj(t, ξ, y) :=

∫
ξ′∈R

∫
y′∈TN−1

πj(t, ξ, ξ′, y, y′)q0(ξ
′, y′) dξ′ dy′.

We are going to study these four terms, and prove the following

Lemma 4.6 (i) qpp has the following property: it is the solution of the advection diffusion
equation

qppt −D∗(c)q
pp
ξξ + V∗(c)q

pp
ξ = 0, qpp(0, ξ, y) = ψrc(y)

∫
y′
q0(ξ, y

′)ψrc(y
′) dy′. (4.69)

(ii) qh has the following property: for all k, k′ ∈ N, there exists Ck,k′ > 0, ωk,k′ > 0 such that
we have:

∀t ≥ 1,∀ξ ∈ R,∀y ∈ TN−1, |∂kξDk′

y q
h(t, ξ, y)| ≤ Cαe

−ωαt‖q0‖∞. (4.70)

(iii) qR has the following property:

∀t ≥ 1,∀ξ ∈ R,∀y ∈ TN−1, |qR(t, ξ, y)| ≤ 4M0√
t
‖q0‖∞. (4.71)

(iv) q`,2 has the following property: there exists C > 0 and ω > 0 such that

∀t ≥ 1,∀ξ ∈ R, ∀y ∈ TN−1, |q`,2(t, ξ, y)| ≤ Ce−ωt. (4.72)

Proof. Part (i) is a consequence of (4.47). Part (ii) follows Corollary 3.3. Part (iii) follows
from Corollary 4.2, and Part (iv) is a direct consequence of Corollary 4.5. 2

4.5 Application of these estimates to the Hopf-Cole transform s.

Now let us consider the decomposition of the Hopf-Cole transform s

er−(c)m(t,ξ,y) = s = sh + spp + sR + s`,2

with the definition:

sj(t, ξ, y) :=
1

ψrc(y)
qj(t, ξ, y) =

1

ψrc(y)

∫
ξ′∈R

∫
y′∈TN−1

πj(t, ξ, ξ′, y, y′)q0(ξ
′, y′) dξ′ dy′.

We are going to study these four terms, and prove the following
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Corollary 4.7 (i) The function spp is solution of the advection diffusion

sppt −D∗(c)s
pp
ξξ + V∗(c)s

pp
ξ = 0, spp(0, ξ, y) =

∫
y′
q0(ξ, y

′)ψrc(y
′) dy′, (4.73)

hence it does not depend on y and is bounded between two positive constants.
(ii) sh converges exponentially fast to 0: there is some ω > 0 such that

sup
ξ,y
|sh(t, ξ, y)| = O(e−ωt). (4.74)

(iii) sR converges uniformly to 0 as t−1/2:

sup
ξ,y
|sR(t, ξ, y)| = O(

1√
t
). (4.75)

(iv) s`,2 converges exponentially fast to 0: there is some ω > 0 such that

sup
ξ,y
|s`,2(t, ξ, y)| = O(e−ωt). (4.76)

Proof. (i) follows from the parabolic equation (4.69) satisfied by qpp and the weak maximum
principle, (ii) follows from (4.70) of Lemma 4.6. (iii) is a consequence of Corollary 4.2, and
(iv) comes from Corollary 4.5. 2

Finally, we need estimates on the first order derivatives of s.

Corollary 4.8 (i) Dspp = ∂ξs
pp = O(t−1/2) uniformly in ξ, y.

(ii) There is ω > 0 such that Dsh = O(e−ωt) uniformly in ξ, y.
(iii) DsR = O(t−1/4) uniformly in ξ, y. More precisely, ∂ξs

R = O(t−1) and Dys
R =

O(t−1/4).
(iv) There is ω > 0 such that Ds`,2 = O(e−ωt) uniformly in ξ, y.

Proof of Corollary 4.8. Part (i) follows from the advection diffusion equation (4.73)
satisfied by spp. Part (ii) follows from Corollary 3.3. Part (iii): first we derive from (4.51)
that

∂ξs
R(t, ξ, y) =

1

ψrc(y)

∫
ξ′∈R

∫
y′∈TN−1

∂ξπ
R(t, ξ, ξ′, y, y′)q0(ξ

′, y′) dξ′ dy′ = O(
1

t
)‖q0‖∞;

next we see that

Dys
R(t, ξ, y) =

∫
ξ′

∫
y′
Dy

(πR(t, ξ, ξ′, y, y′)

ψrc(y)

)
q0(ξ

′, y′) dξ′ dy′,

hence (4.53) implies (iii).
Part (iv) comes directly from Corollary 4.5. 2
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4.6 Application to these estimates to the approximate shift m

We derive from Corollary 4.8 the following

Corollary 4.9 Denote

mpp(t, ξ) :=
1

r−(c)
ln spp(t, ξ) (4.77)

Then the approximate shift m has the following properties

sup
ξ,y
|m(t, ξ, y)−mpp(t, ξ)| = O(

1√
t
), (4.78)

and

sup
ξ,y
|mξ(t, ξ, y)| = O(

1√
t
), sup

ξ,y
|Dym(t, ξ, y)| = O(

1

t1/4
). (4.79)

Proof. It derives immediately from Corollaries 4.7 and 4.8: by the mean value theorem,

m−mpp =
1

r−(c)
ln s− 1

r−(c)
ln spp = O(s− spp) = O(sh + sR + s`,2) = O(

1√
t
);

next

mξ =
1

r−(c)

sξ
s

=
1

r−(c)

shξ + sppξ + sRξ + s`,2ξ
s

= O(
1√
t
),

and in the same way Dym = O(t−1/4). 2

5 Conclusion and examples

Corollary 4.9 gives us that ‖Dm‖∞ = O(t−1/4), and this completes the proof of Proposition
2.3. Now we have a quite precise description of the asymptotic behaviour of the solution u
of the Cauchy problem associated to (1.3): Proposition 2.3 gives that the approximate shift
m satisfies ‖Dm‖∞ = O(t−1/4), and in subsection 2.5, we have seen that this implies that
the difference between u and the approximate solution uapp satisfies ũ(t, ξ, y)− ũapp(t, ξ, y) =
O(t−1/4) uniformly in ξ and y. But then it is natural to introduce the “principal part” of u:

ũpp(t, ξ, y) := φc(ξ +mpp(t, ξ), y), (5.80)

and we have immediately

ũ(t, ξ, y)− ũpp(t, ξ, y) = ũ(t, ξ, y)− ũapp(t, ξ, y) + φc(ξ +m(t, ξ, y), y)− φc(ξ +mpp(t, ξ), y)

= O(
1

t1/4
) +O(m−mpp) = O(

1

t1/4
) +O(

1√
t
) = O(

1

t1/4
).

The main gain is that spp(t, ξ) = er−(c)mpp(t,ξ) satisfies the very simple one dimensional
advection diffusion equation 4.73, whose solution is explicit, using the classical heat kernel.
As a consequence, let us mention these two simple examples, extracted from a more complete
study given in [4]:
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• assume that m0(ξ, y)→ m0(−∞, y) as ξ → −∞; then, considering

s0(−∞) :=

∫
y′
er−(c)m0(−∞,y′)ψrc(y

′)2 dy′,

the explicit formula of spp allows us to prove that

ũpp(t, ξ, y)− φc(ξ +
1

r−(c)
ln s0(−∞), y)

converges uniformly to 0 as t → +∞, uniformly in ξ and y (with an explicit decay
rate, depending on the convergence of m0(ξ, y)−m0(−∞, y) to 0); hence, the solution
u converges to some translate of the travelling wave:

sup
ξ,y
|ũ(t, ξ, y)− φc(ξ +

1

r−(c)
ln s0(−∞), y)| →t→+∞ 0;

• assume now that spp(t, 0) “slowly oscillates” at −∞ (see [4] for a precise definition);
then upp, and consequently u, does not converge to any translate of the travelling wave
φc.
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