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Abstract. The main result of this paper is a general Hölder estimate in a class of singularly
perturbed elliptic systems. This estimate is applied to the study of the well-known Burke-Schuman
approximation in flame theory. After reviewing some classical cases (equidiffusional case; high
activation energy approximation) we turn to the non-equidiffusional case, and to nonlinear diffusion
models. The limiting problems are nonlinear elliptic equations; they have Hölder or Lipschitz
maximal global regularity. A natural question is then whether this regularity is kept uniformly
throughout the approximation process, and we show that this is true in general.
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1. Introduction and main results

The goal of this paper is the proof of a Hölder estimate for a special class of singularly
perturbed elliptic systems, and its applications to the mathematically rigorous study
of singular limits in the theory of diffusion flames.

1.1. The estimate

Consider the following elliptic system, with unknowns (Y1, ..., Yp):

∀k ∈ [0, p], LkYk = −Ak(x)

ε
F (Y ),(1.1)

where the notations are the following:
• the variable x is in an open set of IRN , N ≥ 3, and the functions Ak are smooth
and nonnegative.
• The function F (Y ) - here the vector Y is the vector of all components (Y1, ..., Yp)
is smooth, nonnegative, and nonzero except if one of the components of Y is zero.
Moreover, F is homogeneous: there is a p-uple (ak)1≤k≤p such that

∀(Y1, ..., Yp) ∈ (IR+)k, F (Y1, ..., Yp) =
p∏

k=1

Y ak
k .(1.2)
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In the applications we will have, most of the time: p = 2 and F (Y ) = Y1Y2.
• The operator Lk is the operator Lk = −∂i(a

k
ij∂j) + bk

i ∂i where the ak
ij and bk

i are
bounded, measurable, and satisfy the usual ellipticity condition aijξiξj ≥ C|ξ|2.

The parameter ε may go to 0; in the applications to diffusion flames it will
represent the inverse of the Damköhler number, a parameter accounting for the
strength of the chemical reaction. Our main result is the

Theorem 1.1 Assume Y = (Y1, ..., Yp) to solve (1.1) in B1, and that 0 ≤ Y1, ..., Yp ≤
1. There is α ∈]0, 1[ and C > 0, uniform in ε, such that

‖Y ‖Cα(B1/2) ≤ C oscB1Y.(1.3)

As usual, we denote by Br(x) the ball with centre x and radius r, and Br the same
ball but with centre x = 0. We note here that N ≥ 3 is a commodity assumption
that could easily be relaxed.

Estimates of the type of Theorem 1.1 can be found in [10], where a singularly
perturbed system of the form

−∆ui = −ui

ε

∑
j 6=i

uj

is analysed. The singular limit is a free boundary problem, and the solution U ε =
(u1, ..., up) is shown to be Lipschitz independently of the small parameter ε. Liouville
type results, similar to the ones in Section 4 below, are a main step in the proof of
the result.

The difference between Theorem 1.1 and [10] is in the fact that a uniform Lip-
schitz regularity needs not be true in system 1.1, unless some compatibility as-
sumption between the matrices Ak := (ak

ij) is made; see Section 5 below. As a
consequence Hölder and Lipschitz regularity - the former always being true - are
two distinct steps, contrary to what happens in [10].

1.2. Diffusion flames and Burke-Schuman approximation

As opposed to premixed flames, where the oxidizer and reactant are considered as
mixed, a diffusion flame is characterized by the fact that oxidizer and reactant mix
on a thin sheet, where the flame precisely occurs. This is the basis of the celebrated
Burke-Schumann assumption - [5]; see also Fendell [12]. A way to justify it is to
introduce a large Damköhler number - the parameter that measures the intensity of
the reaction- in the reaction term. Then, a chemical reaction is described by

O (Oxidizer) + F (Fuel) → P (Products).

Let Ω ∈ IRN be a bounded smooth open subset; let us consider velocity field in
Ω denoted by v(x) - known, as smooth as needed. The simplest description is as
follows: the mass fraction of the oxidizer, YO, and the fuel mass fraction, YF , satisfy
the system

(−∆ + v(x).∇)YO = (−∆ + v(x).∇)YF = −DaYOYF (x ∈ Ω)(1.4)
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with, for instance, Dirichlet conditions of ∂Ω. Here, Da is the Damköhler number
that we assume to be large. Let us check the Burke-Schumann assumption: the
equation for T uncouples from the rest of the system, and the relevant quantity to
introduce is the (commonly called) mixture function: β(x) = YO(x)− YF (x).

Set Ω+ = {β > 0}. In Ω+ the fuel mass fraction YF is a then subsolution to the

equation LY = −DaβY ; a super-solution of which being y 7→ e−Da1/3b(x)(ρ(x)−|y−x|)

with ρ(x) > 0 chosen so that B(x, ρ(x)) ⊂ Ω+, and b(x) = inf
B(x,ρ(x))

β. Hence

(E) 0 ≤ YF (x) ≤ e−Da1/3b(x)ρ(x).

Therefore, assuming that {β = 0} is a smooth hypersurface - which is generically
true - we have the convergence DaY0YF → |βν |δ{β=0}. This very simple argument
will be called the complete combustion principle in the sequel.

The Burke-Schuman assumption has been made very sophisticated, for instance
by the introduction of the high activation energy assumption. The fundamental
paper is Linãn [19]. A summary can be found in Williams [21]. For more recent
applications to triple flames, see Dold [11] and the references therein.

1.3. Further results

In the remainder of the paper, we not only want to prove convergence result to the
Burke-Schuman equations - in most cases, standard weak convergence arguments
would do the job - but we also wish to keep track of the maximal global regularity
available. This is a question of mathematical interest, but also an issue as far as nu-
merical simulations are concerned: the maximal available regularity indeed assesses
the quality of the approximation of the free boundary problem by the singularly
perturbed one.
In the very simple example given in the preceding pargraph, the maximal global reg-
ularity is Lipschitz. This regularity, however, is not really difficult to prove because
the function β does not depend on ε. This does not seem to be so obvious in more
general cases, where β truly depends on ε, although the limiting β is nice - it usually
satisfies a nonlinear elliptic equation with possibly discontinuous coefficients. The
obvious a priori estimates for Y ε

O are indeed H1 and L∞ ones; this yields - at most -
Cα regularity for βε. Although this is quite sufficient to pass to the (pointwise and
strong L2) limit, it is not enough to keep track of the Lipschitz regularity.

A first nontrivial case is given by the following configuration. Let Ω be a smooth
bounded subset of IRN - N ≥ 3 - and, for d > 0, let Ld be the linear operator

Ld = −d∆ + v(x).∇(1.5)

We are dealing with a reacting mixture in which we also want to observe the tem-
perature variations. Consider a Lipschitz continuous function f of the ’ignition
temperature’ type:

f = 0 on IR− and f > 0 on IR+.
There is α > 0 such that f(u) ∼ αu+ around 0.

(1.6)
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The second condition is a nonessential commodity assumption. Consider some real
number θ > 0; the system under consideration is

L1T = −Ld1Y0 = −Ld2YF =
1

ε
YOYF f(

T − θ

ε1/2
)(1.7)

As for boundary conditions, partition ∂Ω as ∂Ω = Σ1 ∪ Σ2, and impose

(T, YO, YF ) = ((T0(x), YO,0(x), YF,0(x)) on Σ1,
∂ν(T, YO, YF ) = 0 on Σ2

(1.8)

Also impose the following condition:

YO,0 − YF,0 6= 0 on Σ1 ∩ Σ2.(1.9)

For fixed ε > 0 and bounded reaction term f , a solution (T ε, Y ε
O, Y ε

F ) to (1.7-1.8)
can easily be found. An H1 bound for (T ε, Y ε

O, Y ε
F ) is also easily found, allowing

therefore for L2 convergence.

Theorem 1.2 Consider a sequence of solutions (T ε, Y ε
O, Y ε

F ) to (1.7-1.8).
[i]. Let (T∞, Y ∞

O , Y ∞
F ) be a possible limit. There are two Hölder functions β(x) and

γ(x), and two measures µ1 and µ2, respectively carried by the sets {β = 0} ∩ {γ >
2θ + |β|} and {γ = 2θ + |β|}, such that

L1T
∞ = −Ld1Y

∞
0 = −Ld2Y

∞
F = µ1 + µ2

Moreover the functions β and γ are C1,α away from the (possibly empty) set

F0 := {β = 0} ∩ {γ = 2θ + |β|}.(1.10)

[ii]. The sequence (T ε, Y ε
O, Y ε

F ) is uniformly Lipschitz with respect to ε, on every
compact not intersecting F0.

We see that two types of flames coexist: a classical diffusion flame, supported by
{β = 0}, and where the temperature is above θ - just as in the classical Burke-
Schuman setting - and a premixed flame, where (i) at least one of the two species
is in excess, and (ii) the temperature has exactly the value θ. This effect is well-
known in the context of high activation energies - [19], but does not seem to have
been rigorously described in this setting. The set F0 is nongeneric, it corresponds
to possible interactions between the diffusion flame and the premixed flame.

We revert for our second application to a pure Burke-Schuman system

−÷
(
AO(YO, YF )∇YO

)
+v(x).∇YO = −1

ε
YOYF

−÷
(
AF (YO, YF )∇YF

)
+v(x).∇YF = −1

ε
YOYF

(1.11)

with the conditions (1.8). The matrices AO and AF have smooth, symmetric entries,
and satisfy the usual uniform ellipticity condition. Dirichlet-Neumann conditions
(1.8) are imposed, and it is once again easy to obtain a - uniformly H1 - sequence
(Y ε

O, Y ε
F ) of solutions.
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Theorem 1.3 The following properties hold.
[i]. The sequence (Y ε

O, Y ε
F ) is uniformly Hölder with respect to ε.

[ii] For any converging sequence (Y εn
O , Y εn

F ) there is a (weak) solution β of the fol-
lowing problem:

−÷ (Ā(β)∇β) + V (x).∇β = 0 (Ω)(1.12)

with the boundary conditions (1.8) such that Y ε
O → β+, Y ε

F → β−. We have denoted
by Ā(β) the matrix function equal to AO(β, 0) if β > 0 and AF (0,−β) if β < 0.
[iii]. Assume the existence of d > 0 such that dA0(0, 0) = AF (0, 0). Then the
sequence (Y ε

O, Y ε
F ) is uniformly Lipschitz with respect to ε.

The paper is organized as follows. In Section 2 below, we prove Theorem 1.1.
We review in Section 3 the classical diffusion flame approximations: equidiffusional
case, where we give an ’elementary’ proof; high activation limit. Sections 4 and 5
are devoted to applications of Theorem 1.1: proof of Theorem 1.2 in Section 4, proof
of Theorem 1.3 in Section 5. We conclude with some general remarks on Properties
[i] and [ii], which are indeed optimal in general.

2. Uniform Cα regularity

We are studying in this section a general singularly perturbed system of the form

LkYk = −ρ

ε
f(Y ) := fε,(2.1)

with Lk any uniformly elliptic operator under divergence form:

Lk = −∂i(a
k
ij∂j) + bk

i (x).∇

with ak
ij bounded, measurable, satisfying the usual ellipticity condition; and bk

i as
smooth as needed. The function f is nonnegative, smooth, and vanishes only if
one of the components vanishes. We assume that we have managed to construct a
nonnegative vector solution Y to (2.1).

Note that, because the only assumption on the Ak in (1.1) is their positivity and
boundedness, system (2.1) contains (1.1) with

∀k ∈ [1, p], Ak(x) ≡ 1,(2.2)

and with an additional parameter: the constant ρ might indeed tend to 0 as well,
independently of ε. We introduce it in order to allow ourselves rescalings.

The key result to the proof of Theorem 1.1 is the following lemma.

Lemma 2.1 If Y solves (2.1) in B1, and if oscB1Yk := λk for all k, there exist
µ0 < 1 and r0 < 1 such that, for some k0 ∈ {1, ..., p} we have:

oscBr0
Yk0 ≤ µ0λk0 .(2.3)

Remark 2.1 In the above lemma, the λk can be of arbitrary size; in particular they
may depend on ε. Thus we will in particular keep to ourselves the possibility of
renormalizing the Yk’s in small balls.
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The following three facts about the operator

L = −∂i(aij∂j)

with bounded measurable coefficients, satisfing the ellipticity condition, will be of
constant use. Note that the above form encompasses the operators Lk above, at
the only expense of modifing the diffusion matrix into a - still uniformly elliptic -
nonsymmetric problem.

• (de Giorgi’s oscillation lemma). If |Lu| ≤ C in B1, then there is α > 0
depending only on C and ellipticity, such that u ∈ Cα(B1). Moreover there is
λ ∈]0, 1[ such that

∀r ∈]0,
1

2
[, oscBru ≤ λoscB2ru + rα(2.4)

• (Littman-Stampacchia-Weinberger [18] capacitary estimate). If G(x, y) is the
(Dirichlet) fundamental solution of L in B1 there is C > 0 such that we have,
for (x, y) ∈ B1/2 ×B1/2:

1

C
|x− y|2−N ≤ G(x, y) ≤ C|x− y|2−N .(2.5)

• (Mean value theorem) Let u solve Lu = 0 in B1. There is K > 0, depending

only on ellipticity, such that: for all r ∈]0,
1

2
[ and x ∈ B1/2, there is a Borel

set Sr(x) and K > 0 such that

Br(x) ⊂ Sr(x) ⊂ BKr(x)

and such that

u(x) =
1

|Sr(x)|

∫
Sr(x)

u.(2.6)

See [17]. The equality is replaced by a ≤ sign if Lu ≤ 0.

The proof of Lemma 2.1 requires the following intermediate step.

Lemma 2.2 Denote by λmin (resp. λmax) the minimum (resp. the maximum) of the
λj’s. Let kmin and kmax denote the corresponding indices. There is σ0 > 0 depending
only on ellipticity such that the conclusion of Lemma 2.1 is true for k0 = kmax as
soon as λmax ≥ σ0λmin.

Proof. For every k ∈ {1, ..., p} we write Yk = vk + wk, where

• if Gk,r(x, y) is the Dirichlet fundamental solution of Lk in Br, then:

vk =
∫

B1/2

Gk,1(x, y)fε(y) dy;

• and wk solves Lkwk = 0 in B1/2 with Dirichlet datum Yk at the boundary.

6



Because LkYk ≤ 0 for all k, the de Giorgi oscillation lemma plus the capacitary
estimate imply:

∀k ∈ {1, ..., p}, oscBrvk ≤
∫

B1/2

Gk,1(x, y)fε(y) dy

≤ C
∫

B1/2

Gkmin,1(x, y)fε(y) dy

≤ Cλmin

Hence we have oscB1/2
vkmax ≤

1

4
λmax, as soon as

Cσ−1
0 ≤ 1

4
.(2.7)

Take now r0 ≤
1

2
; we have, from (2.7) and the de Giorgi oscillation lemma:

oscBr0
Ykmax ≤

λmax

4
+ Cλmaxr

α
0 .

Choosing r0 small enough yields

oscBr0
Ykmax ≤

λmax

2
,(2.8)

which ends the proof.

Corollary 2.1 If λmax ≥ σ0λmin, and if r satisfies (2.7), then
(i). The conclusion of Lemma 2.1 holds for all k such that λk ≥ σ0λmin.
(ii) For such a λk: either the quantity oscBr0

Yk is comparable to λmin = 1, or there
is C > 0 independent of ε such that

maxBr0Yk

minBr0Yk

≤ C.(2.9)

Proof. The proof of (i) is obvious; the proof of (ii) comes from the fact that the
oscillatory part of Yk, namely the quantity

vk =
∫

Br0

Gk,r0(x, y)fε(y) dy

is comparable to 1. Consequently, either Yk− vk is comparable to 1, or the Harnack
inequality applied to Yk − vk yields (2.9).

Proof of Lemma 2.1. We may now assume the existence of σ0 independent of ε
such that, with the notations of Lemma 2.2:

λmax

λmin

≤ σ0.
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Moreover we may normalize the Yk’s so that λmin = 1. Let K be the dilation
constant in the mean value theorem; for Λ > 0 (to be large) and k ∈ {1, ..., p} we
define

Ωk,Λ = {x ∈ S1/K : Yk(x) ≤ 1

Λ
}.(2.10)

See the definition of S1/K in the above statement of the mean value theorem. We
consider an integer m that will be chosen in due time, once again large. The proof
is broken into two cases.
Case 1. There is k0 ∈ {1, ..., p} such that

|ΩΛ,k0| ≥
1

m
.(2.11)

We have, if xmax (resp. xmin) is a point in B1/K where Yk reaches its maximum
(resp. its minimum) over B1/K :

oscB1/K
Yk0 = Yk0(xmax)− Yk0(xmin)

≤ (Yk0(xmax)−
1

Λ
) + (

1

Λ
− Yk0(xmin))

≤ 1

|S1/K(xmax)|

∫
S1/K(xmax)

(Yk0(x)− 1

Λ
) dx +

1

Λ

≤ (1− 1

m
+

1

Λλk0

)λk0

Hence, because λk0 ≥ 1, we only have to choose Λ and m large enough.

Case 2. For all k ∈ {1, ..., p}, we have - Λ and m are now chosen at least large
enough so that the above case holds:

|ΩΛ,k| ≤
1

m
.(2.12)

Set

Z = B1/K\(
p⋃

k=1

Ωk,λ);(2.13)

if m is large enough we have

|Z| ≥ |B1/K | −
p

m
≥ c > 0.(2.14)

The upshot is that

• the quantity min
k

min
Ωk,Λ

Yk is uniformly controlled from below, and is compa-

rable to σ0. Hence we may throw it into the parameter ρ, and, due to the
homogeneity assumption, assume that f(Y ) is bounded;

• an O(1) fraction of the total mass of fε is bounded independently of ρ and ε.

The first point is obvious. As for the second one, by the theorem of the mean we
have

∀k ∈ {1, ..., p},
∫

B1/K×B1/K

Gk,1(x, y)fε(y) dxdy ≤ oscB1Yk ≤ σ0;
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on the other hand we have, by the capacitary estimate and assuming without loss
of generality that K ≥ 2:∫

B1/K×B1/K

Gk,1(x, y)fε dxdy ≥ C
∫

B1/K×B1/K

fε(y)

|x− y|N−2
dxdy

≥ C|Z\{|x− y| ≤ δ}|
(diamZ)N−2

ρε−1 inf
Zp

f

≥ Cρε−1

(2.15)

as soon as δ > 0 is small enough: indeed, Z ∩ {|x − y| ≥ δ} is nonempty and its
measure is at least C(1− δN). By (2.15) we have

ρε−1 ≤ C independent of ε and ρ(2.16)

Hence ρε−1 is bounded, and we get once again an oscillation decrease.

Remark 2.2 The above case 2 is the only place where we use the particular struc-
ture of the nonlinearity in order to get the oscillation decay. The other oscillation
decays only result from the fact that we have LkYk ≤ 0.

Proof of Theorem 1.1. The goal is to get the conclusion of Lemma 2.1 true for
all k ∈ {1, ..., p}. To reach this conclusion, we use the following induction argument,
whose nth step is

• If the assumptions of Lemma 2.2 are true, then apply it: there is a universal
r0 ∈]0, 1[ and a universal ρ0 ∈]0, 1[ such that

max
1≤k≤p

oscB
r−n−1
0

Yk ≤ ρ0 max
1≤k≤p

oscB
r−n
0

Yk.(2.17)

Also,
max
1≤k≤p

oscB
r−n−1
0

Yk ∼ σ0 min
1≤k≤p

oscB
r−n
0

Yk.(2.18)

Stop.

• If the assumptions of Lemma 2.2 are not satisfied, there is a kn+1 ∈ {1, ..., p}
and a universal constant λ ∈]0, 1[ such that

oscB
2−(n+1)

Ykn+1 ≤ λoscB2−nYkn+1 .(2.19)

Assuming that, at step 1, a real number ρ1 ∈]0, 1[, close to 1, has been chosen
so that

ρ−p
1 λ < 1,(2.20)

check the inequality

max
k∈{1,...,p}

oscB
r
−(n+1)
0

Yk ≤ ρ1 max
k∈{1,...,p}

oscB
r−n
0

Yk.(2.21)

If true, then stop.
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• If (2.21) is incorrect, go to the first point above point and make a step n + 1.

We claim that, in a finite number of steps nmax, then

• either an inequality of the type (2.21) occurs; in which case we have

max
k∈{1,...,p}

oscB
r
−(nmax+1)
0

Yk ≤ ρ1 max
k∈{1,...,p}

oscB1Yk,

(this does not express Hölder continuity yet),

• or the assumptions of Lemma 2.2 become true in Br−nmax
0

.

Indeed, if the algorithm still runs at step n = lp, there is at least one k0 ∈ {1, ..., p}
that will be have been concerned at least l times by the second point of the algorithm.
For that particular k0 we have:

oscB
r
−lp
0

Yk0 ≤ λloscB1Yk0

≤ σ0λ
l maxk∈{1,...,p} oscB1Yk

≤ σ0(ρ
−p
1 λ)l maxk∈{1,...,p} oscB

r
−lp
0

Yk

Consequently, if

l = lmax =
[ |Logσ0|
|Log(ρ−p

1 λ)|

]
+1(2.22)

the assumptions of Lemma 2.2 are true in Br−lp
0

. Moreover, all oscillations in Br−lp
0

become controlled by 1 - the minimum oscillation in B1 - by virtue of Corollary 2.1,
(ii). Moreover, the smallest oscillation in Br−lp

0
is a small constant.

Now, we claim that the oscillation decay for all the components of the vector Y is
obtained by applying our algorithm one more time. Indeed, by corollary 2.1, the first
application of this algorithm has yielded a - possibly empty - subset I1 of {1, ..., P}
such that (2.9) holds for all k ∈ I1. Also, all k ∈ I1 satisfy the oscillation decay
property. Set

Y 1 = (Yk)k/∈I1 , ρ1 = ρ
∏

k∈I1

min
B1

Y ak
k

A1
k(x) =

∏
k∈I1

Y ak
k

minB1 Y ak
k

and consider now the system for the new unknown Y 1. Recall that, by Corollary
2.1, the functions Ak - that depend on ε - are uniformly bounded and bounded away
from 0.

Renormalize the unknowns once again to have the minimum oscillation in Br−lp
0

to be 1. This means changing ρ1, but our lemmas work at all scales of ρ and ε.
So we may apply our algorithm a second time. This yields a subset I2 of

{1, ..., P}\I1, enjoying the same properties as I1, outside which the maximum os-
cillation in Br−2lp

0
is controlled by min

k
oscB

r
−lp
0

Yk. By construction, this is an O(1).

Undoing the normalization, this leads to

max oscB
r
−2lp
0

Yk << 1.

Hence Lemma 2.1 is true for all the components of the vector Y , and Theorem 1.1
follows by a standard iteration argument.
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3. The special case of equidiffusion

3.1. Large Damköhler number

In this section the set Ω is the cylinder {(x, y) ∈ (−L, L)× ω}; we are interested in
the solutions (T, Y0, YF ) of

LT = −LYO = −LYF = YOYF f(T ), x ∈ Ω(3.1)

with the mixed conditions (1.8) where Σ1 = {−a, a} × ω, Σ2 = (−a, a) × ∂ω. The
function f has an ignition temperature θ; see (1.6). The functions

β = YO − YF , γ = 2T + YO + YF(3.2)

solve Lβ = Lγ = 0.
We will in this section make the assumption

(H) The sets {β = 0} and {γ = 2θ + |β|} are nonempty smooth connected
hypersurfaces that do not intersect Σ1. Moreover we have

{β = 0} ⊂ {γ > 2θ + |β|}.

A lot of easy cases where (H) is satisfied are available. For instance, take v(x1, y) :=
v(y) and the following assumptions:

T0(−a, y) < θ << T0(a, y),
0 < YO(−a, y) < YF (−a, y), YO(a, y) > 0, YF (a, y) = 0

Then we have ∂x1β > 0, ∂x1(γ− β) > 0 in {β < 0} hence, if T0(a, .) is large enough,
{β = 0} ⊂ {γ > 2θ + |β|}.

We now replace f by ε−1f , and our goal is to prove Theorem 1.2. Here the
measures µ1 and µ2 can be computed explicitely.

Proposition 3.1 Under Assumption (H), the conclusions of Theorem 1.2 hold true.
Moreover, let Ω+ = {γ > 2θ + |β|}, Ω+ = {γ > 2θ + |β|}. Let T± be the unique
solutions of

LT± = 0 in Ω±, T± = θ on {γ = 2θ + |β|}
with the conditions (1.8) on ∂Ω± ∩ (Σ1 ∪ Σ2). The measures µ1 and µ2 read

µ1 = (∂νT+ − ∂νT−)δ{γ=2θ+|β|}, µ2 = |[βν ]|δ{β=0}

where the vector ν points is chosen such that ν.e1 > 0.

The sequence (Y ε
O, Y ε

F )ε is, as usual, bounded in H1
loc(Ω). Hence, because 2T ε =

γ−Y ε
O−Y ε

F , there is a subsequence - that we relabel (T ε, Y ε
O, Y ε

F ) converging strongly
in L2

loc(Ω) to a triple (T, YO, YF ) satisfying

LT ≥ 0, LYO ≤ 0, LYF ≤ 0.(3.3)

Let us introduce the relaxed semi-limit

T (x) = lim inf
ε→0, x′→x

T ε(x).(3.4)
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From the Barles-Perthame lemma [1] the function T satisfies LT ≥ 0 in the viscosity
sense. This implies T = T : take r > 0 small; for all x ∈ Ω such that d(x, ∂Ω) > r

and all x′ close to x we have T ε(x′) ≥ |Br(x
′)−1|

∫
Br(x′)

T ε + O(r); hence due to the

L2
loc convergence of T ε to T :

T (x) ≥ lim inf
ε→0, x′→x

1

|Br(x′)|

∫
Br(x′)

T ε + O(r)

= limε→0
1

|Br(x)|

∫
Br(x)

T ε + O(r)

=
1

|Br(x)|

∫
Br(x)

T ε + O(r)

Lebesgue’s Lemme implies T ≥ T almost everywhere. On the other hand the
definition of T implies T ≤ T . This implies in turn that (i) the set {T > θ} is an
open subset, (ii) if x0 ∈ {T > θ}, then there exists δ > 0 such that T ε(x0) ≥ θ + δ,
for all ε > 0 small enough. As a result we have the

Lemma 3.1 Let x0 ∈ Ω be such that β(x0) > 0 and T (x0 > θ (resp. β(x0) > 0 and
T (x0 > θ). Then YF (x0) = 0 (resp. YO(x0) = 0).

Proof. Consider, as is allowed by the above remark, ρ > 0 and δ > 0 such that

∀x ∈ Br(x0), f(T (x)) ≥ δ, β(x) ≥ δ.

Hence Y ε
O ≥ Y ε

F + δ ≥ δ and we have

LY ε
F + δ2Y ε

F ≤ 0 in Br(x0), 0 ≤ Y ε
F ≤ 1 on ∂Br(x0).

The complete combustion principle leads to YF (x0) = 0.

Proposition 3.2 Let x0 ∈ Ω be such that T (x0) > θ. Then γ(x0) = 2T (x0) +
|β(x0)|.

Proof. If β(x0) > 0, the above lemma shows that YF (x0) = 0, hence the result;
same argument if β(x0) < 0. It remains to see what happens if β(x0) = 0.

To prove the proposition, it is enough to prove the continuity of YF and YO

across the surface {β = 0} - which is, by the way, the core of the Burke-Schumann
assumption. Parametrize a point x in a tubular neighbourhood by its projection yx

on {β = 0} and its (signed) distance t(x) to yx; for definiteness assume that t(x) > 0
if β(x) > 0. Consider a strip

SL,δ = {x ∈ Ω : |yx| < L, −L < t(x) < δ}

parallel to the surface {β > 0} enclosing the point x0 - with t(x0) = 0 and yx0 = 0,
with δ having a vocation to become small. Then YF ≤ Y , where

LY = 0 in SL,δ

Y = 1 in ({|yx| = L, −δ ≤ t(x) ≤ δ} ∪ {t(x) = −L}), Y = 0 in ({t(x) = δ})

12



The function Y is Lipschitz in SL/2,δ, independently of δ. Hence we have

YF (x) ≤ Cδ if |yx| ≤
L

2
, |t(x)| ≤ δ.

This implies the (Lipschitz) continuity of YF across the interface {β = 0}.

Corollary 3.1 We have ∂({T > θ}) = {γ = 2θ+ |β|}, and T < θ in {γ = 2θ+ |β|}.

Proof. That ∂({T > θ}) ⊂ {γ = 2θ + |β|} comes from the preceding proposition.
For the converse statement we argue as follows: if it was not so, there would be two
points x and y and a continuous path η connecting x and y such that

• T (x) < θ < T (y)

• η does not meet {γ = 2θ + |β|}.

However η does have to meet ∂({T > θ} ⊂ {γ = 2θ + |β|}, a contradiction.
Assume now that a point x0 is such that γ(x0) < 2θ + |β(x0)|. Then, because

|β| ≤ YO + YF we have T (x0) < θ.

Proof of Proposition 3.1. There is a nonnegative measure µ such that

1

ε
Y ε

OY ε
F f(T ε) → µ in the measure sense.

The theorem will be proved when we have proved that µ− |[βν ]|δ{β=0} is supported
on {γ = 2θ + |β|}. To see this, recall that the function γ + β, considered as a
function in Ω− - the notation is given in Proposition 3.1, is maximal and equal to 2θ
on ∂({β > 0} ∩ {γ = 2θ + β}); by the Hopf Lemma it has a nontrivial linear decay
in the vicinity of this portion of boundary. Consequently, there is δ > 0 such that

∀x ∈ O+ s.t. d(x, O0
+) ≤ δ, T ε(x) ≤ max

O+

T ε − Cd(x, O0
+);

we use the fact that T ε goes to θ on ∂O+ - as a consequence of the preceding corollary
- to infer: f ε(T (x)) = 0 for ε > 0 small enough; hence the result.

From then on, we have LT = LYO = LYF = 0 in (Ω+\{β = 0}) ∪Ω−; the inten-
sity of µ is therefore the jump of derivatives of T - resp. Y0 across {γ = 2θ + |β|} -
resp. {γ > 2θ + |β|}\{β = 0}.

3.2. The high activation energy limit

We are still solving (3.1)-(1.8) where Ω is still the cylinder (−L, L)×ω, but we now
replace the nonlinearity f in (3.1) by

fε(T ) =
δ

ε3
φ(

T − 1

ε
),(3.5)

where δ > 0 will be made to run through IR+. Introduce the additional assumptions
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(H1) φ is Lipschitz-continuous and has −1 as an ignition temperature.
(H2) We have ∂x1β > 0 in Ω̄.

In this model, as opposed to the previous one, the temperature is not supposed to
exceed the value 1 too much. In some sense, model (3.1)-(1.8)-(3.5) may be under-
stood as the limit, as the burnt gas temperature tends to the ignition temperature,
of model (3.1)-(1.8). Therefore we assume that the Dirichlet data are chosen so that
γ is close to 2; namely:

γ = 2 + εγ1(x); with γ1 > −1.(3.6)

where γ1 is smooth. We have implicitely assumed 0 to be in Ω; the particular values
of γ1 will be of no importance; the assumption γ1 > −1 is meant to ensure that the
temperature may rise above the ignition temperature.

Theorem 3.1 There are two real numbers δε
1 > δε

0 > 0, such that:

• the sequences (δε
i )ε converges, as ε > 0, to some constants δi > 0;

• for δ < δε
0 the only solution to (3.1)(1.8) is the solution of LT = LYO =

LYF = 0 in Ω with the conditions (1.8); we call this problem the ’extinguished
problem’.

• for δ0 < δ < δ1, there exists a family of stable solutions (T ε
+, Y ε

O,+, Y ε
F,+) such

converging to the unique solution (T+, YO,+YF,+) of

LT = −LY0 = −LYF = 0 (Ω\{β = 0})
T = 1; Y0 = YF = 0 ({β = 0})(3.7)

with the conditions (1.8). We call this problem the ’burning problem’.

• There is a family of stable solutions (T̃ ε
+, Ỹ ε

O,+, Ỹ ε
F,+) converging to the unique

solution of the extinguished problem, and there is a family of unstable solutions
(T ε

−, Y ε
O,−, Y ε

F,−) converging to the unique solution of the burning problem.

Notice that (T̃ ε
+, Ỹ ε

O,+, Ỹ ε
F,+) is really an extinguished solution: the strong maxi-

mum principle indeed implies that, if T̃+ is the limiting solution, we have T̃+ < 1 in
Ω.

Corollary 3.2 There is δε
2 > δε

1 for which there is a unique solution to (3.1), (1.8)

as soon as δ > δε
2. Moreover we have lim

δ→+∞,ε→0

δ

ε3
φ(

T ε
+ − 1

ε
) = |βν |δ{β=0}

This corollary really stems from Theorem 3.1 and Proposition 3.1.

Remark 3.1 [i]. We believe that δε
1 = δε

2, and also that the found solutions are
the only ones. Because this is not the main topic of the paper, this aspect will not
be investigated any further.
[ii]. The apparition of the unstable solution comes from a classical topological degree
argument.
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[iii]. We have retrieved (a sketch of) the classical picture [19], [21]: for small
Damkhöler numbers, only the extinguished solution exists. For large Damkhöler
numbers, only the burning solution exists. To prove this, just use Proposition 3.1.
[iv]. The fact that the burning solution is equal to 1 on the whole set {β = 0} is not
obvious, except from physical arguments. It will be checked in Proposition 3.3 below.
[v]. A slightly non-equidiffusional model is allowed; and could be treated by the same
arguments pertaining to Theorem 3.1. Namely, the system would be

L1+εd1T = −L1+εd2YO = −L1+εd2YF = YOYF fε(T ).

If we were interested in a truly non-equidiffusional model, with the same features,
we would have to define a possibly inhomogeneous flame temperature. If not, the
system under consideration behaves as the one studied in Section 4 (System (1.7).
Such a model, however, seems to have more physical relevance to us.

As is usual, the term fε(T ) is nontrivial only when T − 1 is of order ε. Because the
function γ is of order 2, the temperature is ε-close to 1 only if YO + YF is of order ε;
this may only occur near the set {β = 0}. Hence we meet again the Burke-Schumann
assumption.

If we believe that the limiting problems in Theorem 3.1 are the right ones, then
we will have to match the derivatives of the solution of (3.7) with the ones of the
inner problem described below. This implies in particular that

|Tν | ≥ |βν | on {β = 0}.(3.8)

The hypersurface {β = 0} being a graph, there exists b > 0 such that any point
x in the tubular neighbourhood

Sb = {dist(x, {β = 0}) ≤ b}(3.9)

is described by its projection x1 on {β = 0} and its projection along the normal
ν(x1), namely x − x1 = x2ν(x1). Without loss of generality assume that β(0) = 0,
and blow up the coordinates: set

x1 = εξ, x2 = εζ

p(ξ, ζ) =
T (ε(ξ, ζ))− 1

ε
, qF,O(ξ, ζ) =

YF,O(ε(ξ, ζ))

ε

(3.10)

In the new coodinates (ξ, ζ) the surface {β = 0} is a smooth open subset Oε of
IRN−1, with diameter of order O(ε−1).

In the coordinate system (ξ, ζ), System (3.1) reads

Lεp = −LεqO = −LεqF = q0qF φ(p),(3.11)

where

L = −∆ξ −
d2

dζ2
+ εM(ε)(3.12)

and where the operator M(ε) is a first-order differential operator with smooth co-
efficients and no zero-order terms. Take any point ξ0 ∈ Oε; in the vicinity of ξ0 we
have

β(ξ, ζ) = β0(εξ0, εζ)ζ, γ(ξ, ζ) = 2 + εγ1(ε(ξ, ζ))
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where β0 is smooth and β0(ξ0, 0) 6= 0. We always may assume

β0(ξ0, 0) > 0.(3.13)

Hence we have, at the order 0 in ε, and omitting the arguments:

qOqF φ(p) = −(γ1 + β0ζ − p)(γ1 − β0ζ + p)φ(p) := fξ0(ζ, p).(3.14)

This leads to the family of one-dimensional problems, parametrized by δ, β0 and α

−p′′(ζ) = fξ0(ζ, p) (ζ ∈ IR)
p′(−∞) = α, p′(+∞) = −α

(3.15)

This problem is analyzed in the Appendix below.

Let (T ε)ε be a sequence of solutions of (3.1). We have 0 ≤ LT ε ≤ C
ε
1T≥1−ε;

hence by [6], the Lipschitz constant of T ε is bounded independently of ε, and the
sequence (T ε)ε is relatively compact in C(Ω). Let T be the limit of a subsequence;
obviously T satisfies LT = 0 in Ω\{β = 0}.

Proposition 3.3 Assume the existence of a nontrivial closed subset of {β = 0} on
which T = 1. Then T = 1 on {β = 0}.

Proof. We work in the original coordinates. Assume the result is false, i.e. there
exists a closed set set F of {β = 0} such that

• we have T < 1 outside F ,

• the open set of {β = 0}: {β = 0}\F is non void.

Let us therefore choose a (geodesic) ball B0 of {β = 0} touching ∂F at some point
x0. Call F0 its complement in {β = 0}. Consider the function T (x) solution of

LT = 0 in Ω\F0 T = T0 on ∂Ω T = 1 on F0(3.16)

We have, for all x in B0 close to x0 [14]: T (x) ≤ 1−C|x|1/2. On the other hand we
have T ≤ T and T (x0) = T (x0) = 1. Hence T cannot be Lipschitz.

Any sequence (T ε)ε of solutions of (3.1)-(1.8) converges to the extinguished state
as soon as δ is small. The next proposition leads us to the characterization of the
first δ when a truly burning flame appears, and implies Theorem 3.1 as an easy
consequence.

Proposition 3.4 Set

δ1 = sup
ξ0∈IRN−1

δcr(β0(ξ0, 0), Tν(ξ0, 0)).(3.17)

where Tν(ξ0, 0) is the normal derivative of the limiting burning solution at the point
(ξ0, 0). Then, for all δ < δ1, any sequence (T ε)ε of solutions of (3.1)-(1.8) converges
to the extinguished state. For all δ > δ1, there is a sequence (T ε)ε of solutions of
(3.1)-(1.8) converging to the upper burning state.
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Proof. Assume first that δ < δ1, and assume the convergence of a - possibly
relabelled - subsequence (T ε)ε to the upper burning state. Then, in the straightened
out and rescaled coordinates (ξ, ζ), there is a ball Bε of Oε, of radius O(ε−1), such
that

∀ξ ∈ Bε, δ < δcr(β0(ξ, 0)).

Let pε be the rescaled function. Then, for ε > 0 small enough, we have inf
ξOε

pε(ξ, 0) >

−1. If this were not true, then (T ε)ε would indeed converge to the extinguished
state by the preceding proposition. Therefore the function p(ζ) = max

ξ∈B
ε
p(ξ, ζ) is

a nontrivial subsolution to (3.15), with the corresponding α. Since 0 is a super-
solution, there exists a solution to (3.15), a contradiction.

If δ > δ1, a sub-solution T ε(x) to (3.11) is constructed in the following fashion.
Let us choose η > 0 so small that

δ = sup
ξ0∈IRN−1

δcr(β0(ξ0, 0), Tν(ξ0, 0) + η).(3.18)

Define Σε = (−A, A) × Oε; the implicit functions theorem argument yields the
existence of a solution pε

+
(ξ, ζ) to

L̃εp = fξ(ζ, p) (Σε)
∂ζp(ξ,−A) = Tν(ξ0, 0) + η, ∂ζp(ξ, A) = Tν(ξ0, 0)− η

p(ξ, ζ) = p+
δ,β(ξ,0),Tν(ξ0,0)+η)(ζ) (ξ ∈ ∂Oε)

(3.19)

A sub-solution T ε is defined in the following way:

• for (ξ, ζ) ∈ Σε we set p(ξ, ζ) = pε
+
(ξ, ζ);

• if Sε is the image of Σε in undoing the change of coordinates let T+(x) represent
the function pε

+
in Sε. We take for T ε the unique solution of LT = 0 outside

Sε, with values T ε on ∂Sε.

For η small enough and ε → 0, the function T ε is a sub-solution. And we know that
1 is a super-solution.

The proof of Theorem 3.1 is now straightforward: once the upper solution is
constrcuted, one only has to prove that a sequence of intermediate solutions will
converge to the limiting burning one; this, however, can be proved by blowing up
the solution around a burning point: the profile can then only be the 1D stable, or 1D
unstable solution constructed in Proposition A1 of the appendix. The temperature
has to be ε-close to 1 on the whole set β = 0; Proposition 3.3 implies that the
temperature is strictly below 1 everywhere.
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4. Non-equidiffusional models with constant dif-

fusion

4.1. Pure Burke-Schuman non-equidiffusional models

We mean by the above appellation diffusion flame models where the chemical pro-
duction term is assumed to be temperature-independent. An immediate application
of Theorem 1.1 is indeed the following system: investigate systems of the form

L1YO = LdYF = −1

ε
YOYF (x ∈ Ω)(4.1)

with the mixed conditions (1.8). A sequence of solutions (Y ε
O, Y ε

F ) to (4.1,1.8) can
easily be constructed. Theorem 1.1 yields a uniform Hölder bound for (Y ε

O, Y ε
F ); we

will see that it implies a uniform Lipschitz bound.
Let us introduce the function β solution of

L1β + (d− 1)v(x).∇β− = 0, (x ∈ Ω)
β = YO,0 − dYF,0, (x ∈ Σ1) ∂νβ = 0 (x ∈ Σ1)

(4.2)

It is in every W 2,p(Ω); moreover - see for instance [16] - the set {β = 0} is a smooth
hypersurface in the vicinity of all its nondegenerate points.

Theorem 4.1 [i] We have, in the measure sense :
1

ε
Y ε

OY ε
F → ∆|β|. If YO and YF

are the respective limiting value of Y ε
O and Y ε

F , then Y0 = β+ and YF =
1

d
β−. In

particular, at a nondegenerate point of {β = 0} we have the Burke-Schuman jump
condition

[∂ν+Y0] = d[∂ν−YF ].

[ii]. The family (Y ε
O, Y ε

F ) is uniformly Lipschitz - independently of ε and the function
βε := Y ε

O − dY ε
F is - independently of ε - in each W 2,p(Ω).

The singular limit is once again almost obvious and does not need Theorem 1.1: the
sequence (Y ε

O, Y ε
F ) is uniformly in H1(Ω); the equation

L1β
ε = −V (x).∇(Y ε

O + Y ε
F )(4.3)

implies a Hölder bound on βε, hence the compactness of the sequence (βε)ε in C(Ω).
Part [ii], i.e. the Lipschitz bound, relies - as is classical - on a Liouville type result.

Lemma 4.1 There is no positive locally bounded solution of

−∆p + p2 = 0, x ∈ IRN .(4.4)

There is no positive locally bounded solution of

−∆p + p2 = 0 (x′, xN) ∈ IRN−1 × IR+

∂xN
p = 0, (x′ ∈ IRN−1, xN = 0)

(4.5)
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Proof. Let us first study (4.4). If p is such a solution, then

q(r) = sup
x∈Sr(0)

p(x)(4.6)

is a Lipschitz sub-solution to (4.4); integrating once between 0 and r we have:

qr ≥
∫ r

0
(
ρ

r
)n−1q2 dρ ≥ (1− n− 1

r
)
∫ r

0
q2 dρ.(4.7)

the last inequality being obtained by an integration by parts. Multiplying by q2 and
integrating from r0 > 0 large enough to r yields, for some λ < 1 and C > 1 - the
latter depending on p(0), which is assumed to be positive:

q2 ≥ λ
(∫ r

r0

q2 dρ + C
)2

;

hence we have
∫ r

r0

q dρ ≥ Q(r), where Q is the solution of

Q̇ = λ(Q2 + C), Q(r0) = 0

which blows up for finite r > r0.
As for Problem (4.5) we introduce the sub-solution

q(r) = sup
x∈Sr(0)∩{xN>0}

p(x)

and the proof follows the above lines.

Lemma 4.1 may be strengthened into the following

Lemma 4.2 Consider a bounded function V (x). For δ > 0 small enough, there is
no positive C2 solution of

−∆p + δV (x).∇p + (p− δ)p ≤ 0, x ∈ IRN

p(0) = 1
(4.8)

The same result is valid for

−∆p + δV (x).∇p + (p− δ)p ≤ 0 (x′, xN) ∈ IRN−1 × IR+

∂xN
p = 0, (x′ ∈ IRN−1, xN = 0)

p(0) = 1
(4.9)

Proof. It is enough to prove the result for the inequation

−∆p− ‖V ‖∞|∇p|+ (p− δ)p ≤ 0, p(0) = 1.(4.10)

The upper envelope q, defined by (4.6) satisfies inequalities of the following form,
for all δ > 0 small enough

qr ≥ (1− µδ)
∫ r

0

ρn−1 + δ‖V ‖∞eδ‖V ‖∞ρ

rn−1 + δ‖V ‖∞eδ‖V ‖∞r
q(q − δ) dρ.(4.11)
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where µδ > 0 is close to 0. If δ > 0 is small enough, the RHS of (4.11) becomes
larger than

(1− 2µδ) ≥ (1− n− 1

r
)
∫ r

0
q2 dρ as long as p ≥ 1

2
.

Then - simple modification of the computations - the new function qr blows up at r
close to the radius r0 of Lemma 4.1.

Proof of Theorem 4.1. Only Point [ii] needs a proof. For this, notice that
equation (4.3) implies a uniform C1,α bound on βε; hence this function becomes
amenable to the natural scaling of the equation. Consider A > 0 large, and let xε

be such that
βε(xε) ∈ [−Aε1/3, Aε1/3].(4.12)

We point out that it is enough to do so: indeed, outside this set, the complete
combustion principle implies the Lipschitz bound trivially.

Rescale around xε:

pε
O(ξ) =

1

ε1/3
Y ε

O(xε + ε1/3ξ), pε
F (ξ) =

1

ε1/3
Y ε

F (xε + ε1/3ξ).(4.13)

Our main task will be to prove that the family (pε
O, pε

F ) is uniformly bounded. We
have

−∆pε
O + ε1/3V.∇pε

O = −(bε + O(ξ) + pε
O)pε

O, pε
O(0) = µε.(4.14)

Case 1. The sequence dist(xε, ∂Ω)ε goes to +∞ , and assume that lim
ε→0

ε−1/3βε(xε) =

+∞. Due to Theorem 1.1 we have, for some α < 1:

pε
O(ξ)− pε

O(ξ′) = O(ε(α−1)/3)|ξ − ξ′|α;(4.15)

therefore we may assume

ε−1/3βε(xε) = O(ε(α−1)/3).(4.16)

Indeed, if µε is above that order of magnitude, (4.15) implies that it is so in a large

neighbourhood of 0. Examine the equation for pε
F : because ξ 7→ βε(x0 + ε1/3ξ)− bε

ε1/3

is Lipschitz - due to the invariance of Lipschitz norms under the scaling (4.13) - and
because of the equality Y ε

F = Y ε
O − βε we have pε

F = O(µε) in B1(0). On the other
hand we have, in B1(0):

−∆pε
F + ε1/3V.∇pε

F ≤ −µεpε
F .

This implies - complete combustion principle - pε
F (0) = O(µεe−(µε)1/3

); contradicting
the boundedness of βε(x0). Hence (4.16) is true.
Rescale now pε

O and ξ as

ξ =
√

µεζ, qε
O(ζ) =

1

µε
pε

O(
√

µεζ).(4.17)
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Equation (4.14) becomes

−∆qε
O + ε1/3√µεV.∇pε

O = −(
bε + O(ξ)

µε
+ pε

O)pε
O, qε

O(0) = 1.(4.18)

Recall that ε1/3√µε → 0 due to the uniform Hölder bound for Y ε
O. By Lemma 4.2

there is ξε, with norm controlled from above, such that qε
O(ξε) = +∞. This is of

course impossible.
Case 2. dist(xε, ∂Ω)ε is bounded. This can only occur near a boundary point with
either a Neumann condition, or a point where we have exactly YO − YF = 0. In the
first case, one may work exactly as in Case 1, and arrive - once a suitable change of
coordinates has been performed - to equation (4.5); this is also an impossibility. In
the second case, remember that we have chosen a Lipschitz boundary datum; hence
the sequence pε

O(0) is globally bounded.

From then on, Point [i] is easy: we may as well assume that bε = 0 and set,
up to a rotation of the coordinates: ∇β(x0) = le1 with l ≥ 0. The family (pε

0)ε(ξ)
converges to a solution of

−∆p0 + (p0 − b− lξ1)p0 = 0,(4.19)

a continuous family of sub-solutions of which being: ξ 7→ aξ+
1 , 0 ≤ a ≤ l. Hence we

have, by the maximum principle: u(ξ) ≥ lξ+
1 . However, the function p 7→ p− lξ1 is

strictly increasing as soon as p ≥ lξ+
1 ; hence (4.19) has a unique nontrivial solution

- to see this, just examine the difference between two possible solutions and realize

that the usual maximum principle applies - namely the function u(
l

ξ 1

), where u is

the unique nonzero solution of the ODE −u′′ = −(u− lξ1)u. This ends the proof of
the theorem.

4.2. Putting the temperature equation back in

This section is basically devoted to the proof of Theorem 1.2. Having Section 3.1
in mind, let us immediately deal with the functions β and γ. The function β was
already accounted for; define γε as

γε = 2T ε + d1Y
ε
0 + d2Y

ε
F .(4.20)

An equation for γ is

−∆γε + V.∇γε = −V.∇
(
(1− d1)Y

ε
0 + (1− d2)Y

ε
F

)
.(4.21)

An immediate consequence is a uniform estimate of γε in Hölder norms; hence, in
particular, a bound on the temperature that is also independent of ε. To go to C1,α

we need to improve the regularity of at least two of the three unknowns. This is
given by the following

Theorem 4.2 The triple (T ε, Y ε
O, Y ε

F ) is uniformly Hölder away from the set F0

defined by (1.10).
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Proof. The assumptions of Theorem 1.1 concerning the functions Ak can be relaxed
a bit: namely, we may assume them to be nonnegative - Lemma 2.2 is still true under
that assumption -; however, in order to keep Lemma 2.1 true we need to say a few
more words. Scanning the proof of this lemma we see that only Case 2 has to
be re-examined; and only around the points where T ε is close to θ. Then we set
uε = T ε − θ; the situation is the following: in a set of B1(0) that we call ΩΛ with
measure as close to |B1(0)| as we wish, we have

L1T
ε = −Ld1Y

ε
O = −Ld2Y

ε
F = ρε−1Y ε

OY ε
F fε(T

ε)

Y ε
O, Y ε

F ≥
1

Λ2

1 ≤ oscB1Y
ε
O, oscB1Y

ε
F ≤ σ0

(4.22)

where ρ > 0 accounts for some possible normalisation.
Because the functions βε and γε are uniformly Hölder, they converge - up to a

subsequence - to Hölder functions β and γ. Also, the results of Corollary 3.1 are
true in our case.
1. Assume that we have

γ(0) > 2θ + |β(0)|.(4.23)

Then there is δ > 0 such that

T ε ≥ θ + δ in B1.

We are then in the situation of Lemma 2.1, and the oscillation decay is automatically
valid for Y ε

O and Y ε
F . The oscillation decay of T ε follows from the expression of T ε

in terms of γ and YO,F .
2. Assume that we have

γ(0) = 2θ + |β(0)| and β(0) > 0.(4.24)

Let us set

vε =
uε

√
ε
.(4.25)

2.1. Assume that the sequence (max
B1/2

vε)ε is unbounded. Then we may find µε,ρ,

that we denote by µ, and δ > 0 independent of ε and ρ, such that we have, in B1:

(−∆ + ρV.∇)T ε ≥ 1

µ
(θ + µ− T ε)

(
T ε − θ − µ

µ

)
+
.

In particular we have arranged that

∀T ∈ [0, θ +
√

µ], ∀x ∈ B1,
ρ

ε
YF (

γε + βε

2
− T )f(

T − θ

ε
)

≥ 1

µ
(θ + µ− T )

(
T − θ

µ

)
+

(4.26)

and that (T ε − θ)(0) ≥ √
µ. Setting

wε(ξ) =
1

µ
(T ε(µξ)− θ).
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we have
−∆wε ≥ Cµ(−wε(1− wε)+ + ρ|∇wε|).(4.27)

Now, argue as in lemma 4.1: set

pε(r) = inf
Br

wε;(4.28)

then pε satisfies (4.27) in the viscosity sense - except that ∇ should be replaced by
∂r. This implies (just integrate the ODE as in Lemma 4.1) that pε decays from 0
at most like −µr. Scaling back, we end up with a nontrivial ball Br0 , r0 bounded
away from 0 independently of ρ and ε, such that inf

Br0

vε blows up. This implies that

ρε−1 is bounded; hence the oscillation decay.
2.2 Assume now the existence of a uniform constant C such that vε is bounded by
C in B1. We might as well assume that C = 1. Let us set

ρε =
∫

B1

(vε)+.(4.29)

Define the sets Ωk, k ≥ 0, as

Ωk = { 1

2k+1
≤ vε <

1

2k
}(4.30)

and
µk = |Ωk|.(4.31)

Equality (4.29) implies existence of a constant C such that:

ρ

ε3/2
(µ0 +

∑
k≥1

µk

2k
) ≥ Cρε.(4.32)

In Ωk, rescale the coordinate x as x = µ
1/N
k ξ; if Ω̃k is the so obtained transformed

set we have |Ω̃k| = 1. If ṽε
k is the rescaled function we have, by assumption of f :

(−∆ + ρV.∇)ṽε
k ≥

µ
2/N
k ρ

ε3/22k+1
1Ω̃k

This implies in turn, taking into account the values of uε in Ω̃k - here we have k ≥ 1:

α
µ

2/N
k ρ

ε3/22k+1
≤ C

2k
.(4.33)

The constant α is defined in (1.6). Inequality (4.33) implies, together with (4.32):

ρε ≤ C
(

ε3/2

ρ

)N/2

.(4.34)

Now, let us come back to the equation

(−∆ + ρV.∇)uε = O(α
ρ

ε
vε).
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From (4.34) there is p > N such that

ρ

ε
‖vε‖Lp(B1) is controlled independently of ε.

Therefore uε has a uniform Hölder bound in B1, hence the oscillation decay once
again.
3. Assume that

γ(0) = 2θ.(4.35)

This implies, due to the uniform Hölder bound on γε, that γε ∼ 2θ in B1. Assume
that |β| 6= 0; then we have, once again from the Hölder bound for β:

Y ε
0 + Y ε

F ≥ δ0 in B1

for some uniform positive constant δ0. As a consequence, T ε is uniformly below θ in
B1; and we conclude, for the last time, to the uniform Hölder bound for the triple
(T ε, Y ε

O, Y ε
F ) in B1. The remaining case is the set F0, that we have excluded.

Proof of Theorem 1.2. Let x0 be a point outside F0; once again we may translate
it to 0. the functions βε and γε are now uniformly C1,α in a vicinity of this set. Let
(T, YO, YF ) be a possible limit for (T ε, Y ε

O, Y ε
F ).

1. Assume that γ(0) > 2θ + β(0). We already saw that there was nothing to prove
if β(0) 6= 0; if β(0) = 0 we are in the situation of Theorem 4.1.
2. We have γ(0) = 2θ and β(0) 6= 0. If T (0) < θ, this evidently implies the Lipschitz
bound in a vicinity of 0. The remaining case to discuss is T (0) = θ; however the
argument essentially the same as in Theorem 4.1: the only change to be made is
the equation for which we prove the Liouville theorem. Let us sketch the argument,
leaving the complete proof to the reader.

Assume for definiteness that we have β(0) > 0. Thus Y ε
O is bounded away from

0, uniformly in ε, in a - uniform - vicinity of 0. The equation for T ε writes

L1T =
1

4
(γε + βε − 2T ε)(γε − βε − 2T ε)f(

T − θ√
ε

).

The natural scaling is

x =
√

εξ, T (
√

εξ) =
√

εpε(ξ).

Under this scaling, and due to the C1,α character of βε and γε, and because β(0) > 0,
there is δ > 0 independent of ε such that the function pε satisfies

−∆pε +
√

εV.∇pε ≤ −δpf(p)(4.36)

in an ε−1/2 neighbourhood of 0. Arguing as in the proof of Lemma 4.1 we first prove
that there is no nonzero solution of

−∆p + pf(p) = 0,

then finish the proof as in the proof of Theorem 4.1.

Remark 4.1 We point out here the similarity between the above case 2 and the
singular perturbation problems studied in, for instance, [2] and [6]. This emphasizes
the fact that we are studying a point where the flame is premixed.

24



5. Nonlinear diffusion

In this section we concentrate on pure Burke-Schuman models, but the additional
effect that we want to observe is nonlinear diffusion. This is, as a matter of fact,
the natural assumption in flame theory; see [21]. We need, however, maximum
principles that we are not able to ensure in systems with cross-diffusion effects.

Part [i] of Theorem 1.3 follows from Theorem 1.1; hence the uniform convergence
of (Y ε

O, Y ε
F ) is granted. Part [ii] follows from standard weak convergence arguments.

Hence we only need to say something about Part [iii], and this the object of the
next paragraph.

5.1. Uniform Lipschitz regularity

In this case, it seems to be less easy to derive a global equation for the function βε,
that would imply a C1,α estimate for it. Let us, however, notice that the limiting
function β - due to (1.12) - satisfies an equation of the following type:

−
∑
i,j

Āij(β)∂ijβ +
∑

i

Bi(β)∂iβ = 0.

We have set Ā = (Āij)1≤i,j≤N ; because AO(0, 0) = AF (0, 0) the functions Āij(β) are
Hölder in ξ. The functions Bi are L∞; consequently we have β ∈ W 2,p(Ω) for all
p ∈ (1, +∞). Hence β ∈ C1,α(Ω̄).

In the sequel, σ will be a small number; in any case much smaller than
1

3
. Choose

any point x0 in Ω.

Case 1. We have Y ε
O(x0) ≥ εσ. Therefore there is C > 0 such that

Y ε
O(x) ≥ εσ

2
in Bεσ/α/C(x0).

The complete combustion principle implies

Y ε
F (x) ≤ Ce−ε−1/4

in Bεσ/α/2C(x0);

hence a bound of the same sort in ∇Y ε
F . This implies, by rescaling, a uniform Cα

bound for ∇Y ε
O and D2YO.

The same argument would hold if we had Y ε
F (x0) ≥ εσ.

Case 2. We have Y ε
O(x0), Y

ε
F (x0) ≤ εσ. Set, once again

βε(x) = Y ε
O(x)− 1

d
Y ε

F (x);

rescale x once again as

x0 + ε1/3ξ, (pε
O, pε

F (ξ), bε(ξ)) = ε−1/3(Y ε
O, Y ε

F , βε)(x0 + ε1/3ξ).

Case 2.1. We have lim
ε→0

bε(0) = ±∞. Same argument as in Case 1.

Case 2.2. The sequence (bε(0))ε is bounded. Then, an equation for bε in the vicinity
of x0 can then be written as - we set BO,F = AO,F − AO,F (0, 0):

−÷ (AO(0, 0)∇bε) = ÷(BO(Y ε
O, Y ε

F )∇pε
O + BF (Y ε

O, Y ε
F )∇pε

F ).(5.1)
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The matrices BO and BF are denoted by (Bij
O )1≤i,j≤N and (Bij

F )1≤i,j≤N . Set

Ωε
1 = {YO > εσ} ∪ {YF > εσ}; Ωε

2 = Ω\Ω̄ε
1.

Let (γ1(ξ), γ2(ξ)) be a partition of unity in ε−1/3(Ω−x0): γ1+γ2 ≡ 1 in ε−1/3(Ω−x0);
suppγ2 ⊂ {YO > εσ/2}. In particular, γ1 and γ2 have uniform C2,α estimates - in ξ.

Next, we set

Λij
O(pO, b) =

∫ pO

0
Bij

O (ε1/3p′O, ε1/3(p′O − b)) dp′O

Λij
F (pF , b) =

∫ pF

0
Bij

F (ε1/3(p′F + b), ε1/3p′F ) dp′F

We have then
Bij

O (Y0, YF )∂jp
ε
O = ∂ξj

Λij
O − ε1/3∂βΛij

O∂jb
ε

Bij
F (Y0, YF )∂jp

ε
F = ∂ξj

Λij
F − ε1/3∂βΛij

F ∂jb
ε(5.2)

In the functions Λij
O,F we have - in order to alleviate the notations - omitted the

arguments (YO, YF ). Equation (5.1), together with (5.2), implies, with the Einstein
summation convention:

−÷ (AO(0, 0)∇bε = ε1/3∂i(∂β(Λij
O + Λij

F )∂jb
ε)−∂ij(Λ

ij
O + Λij

F )(5.3)

Let bε
1 be the unique solution of

−÷ (AO(0, 0)∇bε
1 = −∂ij

(
(Λij

O + Λij
F )γ1)

)

in ε−1/3(Ω−x0), with the corresponding boundary conditions. If G0(ξ) is the Green
function of the operator −÷ (AO(0, 0)∇) in IRN , we have

bε
1 ∼ −G0 ∗ ∂ij

(
(Λij

O + Λij
F )γ1)

)
(5.4)

in an ε−σ/2-neighbourhood of 0. We notice that bε
1 is uniformly C2,α on ε, in an

ε−σ/2-neighbourhood of 0.
Now, we set

bε
2 = bε − bε

1.

There are N2 functions cε
ij(ξ), such that ‖cε

ij‖Cα(B
ε−σ/2 ) is uniformly bounded with

respect to ε.

−÷ (AO(0, 0)∇bε
2 = −ε1/3∂i(∂β(Λij

O + Λij
F )∂jb

ε
2)+εσ∂ijc

ε
ij.

Hence we have
‖cε

ij‖Cα(B
ε−σ/2 ) ≤ Cεσ/2.(5.5)

Consequently, the function bε decomposes into a uniformly C2,α function and a small
one. The proof of Theorem 4.1 from then on applies.

26



5.2. Concluding remarks

5.2.1. Error estimates

The theory developped in the preceding section readily implies readily error esti-
mates. For the sake of simplicity we formulate them in the context of Problem
(1.11), accounted for in Theorem 1.3. Also assume

• that we are in the cylinder case, i.e Ω = {(x, y) ∈ (−L, L)× ω};

• the velocity field V only depends on y:

Thus the limiting steady problem for β has a unique solution. This can be seen by
the sliding method [3]. Let (Y ∞

O , Y ∞
F ) be the limiting solution.

Theorem 5.1 Assume AO(0, 0) and AF (0, 0) to be proportional. For every α <
1

3
there is Cα > 0 such that

|Y ε
O − β+|+ |Y ε

F − β−| ≤ Cαεα.(5.6)

Proof. Consider any α <
1

3
.

1. In the area {βε ≤ εα} we notice that ∂xβ
ε ≥ δ for some δ > 0 independent of ε.

This, together with the uniform Lipschitz bound for Y ε
O,F , implies the error bound.

2. In the area {βε ≥ εα} we have Y ε
F ≤ Ce−ε−α/2

. Hence

1

ε
Y ε

OY ε
F << εα, ‖YF‖C2,α({βε>εα}) << εα.

The area ∂({βε > εα}) has a nonempty intersection with Σ0 - i.e. where the values
of YO and YF are imposed. Setting

Ãε(x) =
∫ 1

0
∂Y AO(Y ε

O + tY ∞
O , 0) dt

we have
| − ÷(Aε∇(Y ε

O − Y ∞
O )) + v.∇(Y ε

O − Y ∞
O )| << εα.

with Dirichlet conditions on Σ0, Neumann boundary conditions on Σ1 and Y ε
O −

Y ∞
O = O(εα) on ∂({βε > εα}) ∩ Ω. From the global Lipschitz bound for Y ε

O, the
operator − ÷ (Aε∇) can be written as a nondivergence elliptic operator with L∞

coefficients; hence [4] it has a first eigenvalue that is bounded away from 0 indepen-
dently of ε. This implies once again the error bound in the considered region.
3. In the area {βε ≤ −εα} we argue as above.

5.2.2. Monotonicity formula

Another tool to prove the global Lipschitz regularity - once Hölder is known - in the
cases where it is possible is the monotonicity formula, as presented in [7] and used
in [8]. Let us consider System 1.11 with the assumption that AO(0, 0) and AF (0, 0)
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are proportional. Once the function bε is proved to be a small quantity plus a C1,α

function we may prove an equality of the form

(YO − Aε1/3)+(YF − Aε1/3)+ = 0.(5.7)

Also, recall that Y0 and YF are uniformly α-Hölder, for some α > 0: this implies
that, up to a change of coordinates, we are in the conditions of application of Lemma
2.1 of [7]. The function

r 7→ 1

r4e−rα

∫
Br(0)

|∇(YO − Aε1/3)+|
|x|N−2

dx
∫

Br(0)

|∇(YF − Aε1/3)+|
|x|N−2

dx

is nonincreasing. Arguing as in Step 1 of Theorem 5.1 of [8] implies the boundedness
of ε−1/3(YO,F − Aε1/3); hence the result in a straightforward way.

In the general case - i.e. AO(0, 0) and AF (0, 0) are not proportional - the mono-
tonicity formula is not guaranteed. See a counter-example in [9].

APPENDIX: the flame layer in the high activation

energy model

Proposition A1. Assume γ1 > −1 and α ≥ β0. There is δcr(β0, α) > 0 such that
Problem (3.15) has at least two solutions p−δ,β0,α < p+

δ,β0,α ≤ 0 for δ > δcr(β0, α), and
no solution for δ ≤ δcr(β0, α). Moreover

• We have p±(ζ) + γ1 < −β0|ζ|,

• the branche δ 7→ p±δ,β0,α are smooth,

• consider δ > δcr(β0, α) > 0, and A > 0 large enough so that p±δ,β0,α(±A) < −1.
Also consider the operator

IL±δ,β0,α = − d2

dζ2
− ∂pfξ0(., p

±
δ,β0,α),(5.8)

defined for all H2([−A, A]) functions with zero derivative at ±A. Then its first
eigenvalue µ1(IL

±
δ,β0,α) is positive - resp. negative.

Proof. First, notice that it is enough to assume γ1 = 0. Then, assume α = β0

until step 4.
1. Estimates. Let us first carry out the proof for the stable branch. For all
α ∈ [0, 1], the function ζ 7→ −α|ζ| is a super-solution to (3.15). Hence any solution
of (3.15) is below ζ 7→ −β0|ζ|.
2. Existence and stability for large δ: a standard geometric singular pertur-
bation argument (see Jones [15]) shows that pβ0,δ(ζ) ∼ −β0|ζ|. Moreover, it yields
uniqueness for large δ’s.

On the other hand, the function qβ0,δ := ∂δpβ0,δ satisfies, because of Step 1:

ILqβ0,δ > 0, q′β0,δ(±A) = 0.

28



Hence µ1(β0,δ) > 0.
3. Continuation. The implict functions theorem implies the existence of a smooth
branch pβ0,δ down to some δcr(β0) ≥ 0. Let us prove that δcr(β0) > 0; to see this let
us notice that any solution p of (3.15) satisfies

p′′ ≥ −δ‖φ‖∞,

hence p′(+∞) cannot reach −|β0| if δ is too small. This also proves that we cannot
have lim

δ→δcr

pβ0,δ = 0.

4. Uniqueness. If δ0 > δcr(β0) ≥ 0 is given, any solution p of (3.15) is below pδ,β0

if δ large. Then decrease δ to get a contact point between p and pδ,β0 .
5. α > β0. Let us notice that any solution pδ,β0,α is below −β0|ζ|. It is certainly true
for large negative ζ; consider then the first point ζ0 when pδ,β0,α and −β0|ζ| meet;
at that point (i) the two functions are differentiable - strong maximum principle -
and (ii) the derivatives are strictly ordered. Hence p′δ,β0,α(ζ) is increasing; hence is
always above −β0. This contradicts the condition at +∞.

Once we have this estimate, we may follow steps 1 to 4.
6. Unstable branch. We first notice that the solution is now decreasing with
respect to δ. We may get some help from the singular profile min(−α|ζ|,−1). What
may occur is that the branch is degenerate at some δ0 > δcr(β0, α) and hence might
lose its smoothness. However, for δ ∈ (δcr, δ0) there has to be a solution, by a stan-
dard - see [20] - topological degree argument.

Remark 5.1 We believe that the solutions p± constructed in Proposition A1 are
the only ones, and that the branch p− is smooth - at least in most cases of interest.
Should this fact be true, this would open the way to a much more precise description
of the multi-D solutions constructed in Section 3.2, and would render the complete
S-shaped solution curve claimed in the classical physics textbooks.
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