EXISTENCE AND ASYMPTOTICS OF FRONTS IN NON LOCAL COMBUSTION MODELS

ANTOINE MELLET, JEAN-MICHEL ROQUEJOFFRE AND YANNICK SIRE

Abstract

We prove the existence and provide the asymptotics for non local fronts in homogeneous media.

Contents

1. Introduction 1
2. Truncation of the domain
2.1. Construction of sub- and super-solutions
2.2. Proof of Proposition 2.1
3. Proof of Theorem 1.1
4. Asymptotic behavior 11
References $\quad 12$

1. Introduction

This paper is devoted to the study of fronts propagation in homogeneous media for a fractional reaction-diffusion equation appearing in combustion theory. More precisely, we consider the following classical scalar model for the combustion of premixed gas with ignition temperature:

$$
\begin{equation*}
u_{t}+\left(-\partial_{x x}\right)^{\alpha} u=f(u) \quad \text { in } \mathbb{R} \times \mathbb{R} \tag{1}
\end{equation*}
$$

where the function f satisfies:

$$
\left\{\begin{array}{l}
f: \mathbb{R} \rightarrow \mathbb{R} \text { continuous function } \tag{2}\\
f(u) \geq 0 \text { for all } u \in \mathbb{R} \text { and } \operatorname{supp} f=[\theta, 1] \\
f^{\prime}(1)<0
\end{array}\right.
$$

where $\theta \in(0,1)$ is a fixed number (usually referred to as the ignition temperature).

The operator $\left(-\partial_{x x}\right)^{\alpha}$ denotes the fractional power of the Laplace operator in one dimension (with $\alpha \in(0,1]$). It can be defined by the following singular integral

$$
\begin{equation*}
\left(-\partial_{x x}\right)^{\alpha} u(x)=c_{\alpha} \mathrm{PV} \int_{\mathbb{R}} \frac{u(x)-u(z)}{|x-z|^{1+2 \alpha}} d z \tag{3}
\end{equation*}
$$

where PV stands for the Cauchy principal value. This integral is well defined, for instance, if u belongs to $C^{2}(\mathbb{R})$ and satisfies

$$
\int_{\mathbb{R}} \frac{|u(x)|}{(1+|x|)^{1+2 \alpha}} d x<+\infty
$$

(in particular, smooth bounded functions are admissible). Alternatively, the fractional Laplace operator can be defined as a pseudo-differential operator with symbol $|\xi|^{2 \alpha}$. We refer the reader to the book by Landkof where an extensive study of $\left(-\partial_{x x}\right)^{\alpha}$ is performed by means of harmonic analysis techniques (see Lan72]).

In this paper, we will always take $\alpha \in(1 / 2,1]$, and we are interested in particular solutions of (1) which describe transition fronts between the stationary states 0 and 1 (traveling fronts). These traveling fronts are solutions of (11) that are of the form

$$
\begin{equation*}
u(t, x)=\phi(x+c t) \tag{4}
\end{equation*}
$$

with

$$
\left\{\begin{array}{l}
\lim _{x \rightarrow-\infty} \phi(x)=0 \\
\lim _{x \rightarrow+\infty} \phi(x)=1 .
\end{array}\right.
$$

The number c is the speed of propagation of the front. It is readily seen that ϕ must solve

$$
\left(-\partial_{x x}\right)^{\alpha} \phi+c \phi^{\prime}=f(\phi) \quad \text { for all } x \in \mathbb{R}
$$

When $\alpha=1$ (standard Laplace operator), it is well known that there exists a unique speed c and a unique profile ϕ (up to translation) that correspond to a traveling front solution of (1) (see e.g. BLL90, BN92, BNS85). The goal of this paper is to generalize these results to the case $\alpha \in(1 / 2,1)$. We are thus looking for ϕ and c satisfying

$$
\left\{\begin{array}{l}
\left(-\partial_{x x}\right)^{\alpha} \phi+c \phi^{\prime}=f(\phi) \quad \text { for all } x \in \mathbb{R} \tag{5}\\
\lim _{x \rightarrow-\infty} \phi(x)=0 \\
\lim _{x \rightarrow+\infty} \phi(x)=1 \\
\phi(0)=\theta
\end{array}\right.
$$

(the last condition is a normalization condition which ensures the uniqueness of ϕ). Our main theorem is the following:

Theorem 1.1. Let $\alpha \in(1 / 2,1)$ and assume that f satisfies (园), then there exists a unique pair (ϕ_{0}, c_{0}) solution of (5). Furthermore, $c_{0}>0$ and ϕ_{0} is monotone increasing.

We will also obtain the following result, which describes the asymptotic behavior of the front at $-\infty$:

Theorem 1.2. Let $\alpha \in(1 / 2,1)$ and assume that f satisfies (2). Let ϕ_{0} be the unique solution of (5) provided by Theorem 1.1. Then there exist m, M such that

$$
\phi_{0}(x) \leq \frac{M}{|x|^{2 \alpha-1}} \quad \text { for } x \leq-1
$$

and

$$
\phi_{0}^{\prime}(x) \geq \frac{m}{|x|^{2 \alpha}} \quad \text { for } x \leq-1 .
$$

The proof of Theorem 1.1 follows classical arguments developed by Berestycki-Larrouturou-Lions [BLL90] (see also Berestycki-Nirenberg [BN92]): Truncation of the domain, construction of sub- and super-solutions and passage to the limit. As usual, one of the main difficulty is to make sure that we recover a finite, non trivial speed of propagation at the limit. The main novelty (compared with similar results when $\alpha=1$) is the construction of sub- and super-solutions where the classical exponential profile is replaced by power tail functions.

2. Truncation of the domain

The first step is to truncate the domain: for some $b>0$, we consider the following problem:

$$
\left\{\begin{array}{l}
\left(-\partial_{x x}\right)^{\alpha} \phi_{b}+c_{b} \phi_{b}^{\prime}=f\left(\phi_{b}\right) \quad \text { for all } x \in[-b, b] \tag{6}\\
\phi_{b}(x)=0 \quad \text { for } s \leq-b \\
\phi_{b}(x)=1 \quad \text { for } s \geq b \\
\phi_{b}(0)=\theta
\end{array}\right.
$$

The goal of this section is to prove that this problem has a solution for b large enough. More precisely, we are now going to prove:
Proposition 2.1. Assume $\alpha \in(1 / 2,1)$ and that f satisfies (2). Then there exists a constant M such that if $b>M$ the truncated problem (6) has a unique solution $\left(\phi_{b}, c_{b}\right)$. Furthermore, the following properties hold:
(i) There exists K independent of b such that $-K \leq c_{b} \leq K$.
(ii) ϕ_{b} is non-decreasing with respect to x and satisfies $0<\phi_{b}(x)<1$ for all $x \in(-b, b)$.

Before we can prove this Proposition, we need to detail the construction of sub- and super-solutions.
2.1. Construction of sub- and super-solutions. In the proof of the existence of traveling waves for the standard Laplace operator ($\alpha=1$), suband super-solution of the form $e^{\gamma x}$ play a crucial role, in particular in the determination of the asymptotic behavior of the traveling waves as $x \rightarrow-\infty$. These particular functions are replaced, in the case of the fractional Laplace operator, by functions with polynomial tail. In what follows, we will rely on two important lemmas:

Lemma 2.2. Let $\beta \in(0,1)$ and define

$$
\varphi(x)= \begin{cases}\frac{1}{|x|^{\beta}} & \text { if } x<-1 \\ 1 & \text { if } x>-1 .\end{cases}
$$

Then φ satisfies

$$
\left(-\partial_{x x}\right)^{\alpha} \varphi+c \varphi^{\prime}(x)=\frac{-c_{\alpha}}{2 \alpha|x|^{2 \alpha}}+c \frac{\beta}{|x|^{\beta+1}}+O\left(\frac{1}{|x|^{\beta+2 \alpha}}\right)
$$

when $x \rightarrow-\infty$.
and
Lemma 2.3. Let $\beta>1$ and define

$$
\bar{\varphi}(x)= \begin{cases}\frac{1}{|x|^{\beta}} & x<-1 \\ 0 & x>-1\end{cases}
$$

then

$$
\left(-\partial_{x x}\right)^{\alpha} \bar{\varphi}+c \bar{\varphi}^{\prime}(x)=\frac{-c_{\alpha}}{\beta-1} \frac{1}{|x|^{2 \alpha+1}}+c \frac{\beta}{|x|^{\beta+1}}+O\left(\frac{1}{|x|^{\beta+2 \alpha}}\right)
$$

when $x \rightarrow-\infty$.
Proof of Lemma 2.2. We want to estimate $\left(-\partial_{x x}\right)^{\alpha} \varphi$ for $x<-1$. We have:

$$
\left(-\partial_{x x}\right)^{\alpha} \varphi(x)=-c_{\alpha} \operatorname{PV} \int_{\mathbb{R}} \frac{\varphi(x+y)-\varphi(x)}{|y|^{1+2 \alpha}} d y
$$

which we decompose as follow:

$$
\begin{aligned}
\left(-\partial_{x x}\right)^{\alpha} \varphi(x) & =c_{\alpha} \int_{-\infty}^{-1-x} \frac{\varphi(x)-\varphi(x+y)}{|y|^{1+2 \alpha}} d y+c_{\alpha} \int_{-1-x}^{+\infty} \frac{\varphi(x)-\varphi(x+y)}{|y|^{1+2 \alpha}} d y \\
& =I+I I
\end{aligned}
$$

A simple explicit computation yields:

$$
I I=\left(\frac{1}{|x|^{\beta}}-1\right) \frac{c_{\alpha}}{2 \alpha|x+1|^{2 \alpha}} .
$$

Performing the change of variables $y=x z$, one gets

$$
I=\frac{c_{\alpha}}{|x|^{\beta+2 \alpha}} \int_{+\infty}^{-\frac{1}{x}-1} \frac{|z+1|^{\beta}-1}{|z+1|^{\beta}|z|^{1+2 \alpha}} d z .
$$

Note that the integrand has a singularity at $z=0$, and this integral has to be understood as a principal value. We also observe that the integrand has a singularity at $z=-1$, but since $\beta<1$, this singularity is integrable, and thus

$$
I \sim-c_{\alpha} \frac{1}{|x|^{\beta+2 \alpha}} \mathrm{PV} \int_{-1}^{+\infty} \frac{|z+1|^{\beta}-1}{|z+1|^{\beta}|z|^{1+2 \alpha}} d z . \quad \text { as } x \rightarrow-\infty .
$$

We deduce:

$$
\left(-\partial_{x x}\right)^{\alpha} \varphi(x)=\frac{-c_{\alpha}}{2 \alpha|x|^{2 \alpha}}+O\left(\frac{1}{|x|^{\beta+2 \alpha}}\right)
$$

when $x \rightarrow-\infty$, and the result follows.

Proof of Lemma 2.3. Again, we decompose $\left(-\partial_{x x}\right)^{\alpha} \bar{\varphi}$ as follow:

$$
\begin{aligned}
\left(-\partial_{x x}\right)^{\alpha} \bar{\varphi}(x) & =c_{\alpha} \int_{-\infty}^{-1-x} \frac{\bar{\varphi}(x)-\bar{\varphi}(x+y)}{|y|^{1+2 \alpha}} d y+c_{\alpha} \int_{-1-x}^{+\infty} \frac{\bar{\varphi}(x)-\bar{\varphi}(x+y)}{|y|^{1+2 \alpha}} d y \\
& =I+I I
\end{aligned}
$$

Now, a simple explicit computation yields:

$$
I I=\frac{c_{\alpha}}{|x|^{\beta}} \frac{1}{2 \alpha|x+1|^{2 \alpha}}
$$

And performing the change of variables $y=x z$, one gets

$$
I=\frac{c_{\alpha}}{|x|^{\beta+2 \alpha}} \int_{+\infty}^{-\frac{1}{x}-1} \frac{|z+1|^{\beta}-1}{|z+1|^{\beta}|z|^{1+2 \alpha}} d z .
$$

Note that the integrand as a singularity at $z=0$, and this integral has to be understood as a principal value. We also observe that the integrand has a singularity at $z=-1$ and since $\beta>1$, this singularity is divergent and thus

$$
I \sim \frac{-c_{\alpha}}{\beta-1}|x|^{\beta-1} .
$$

We deduce:

$$
\left(-\partial_{x x}\right)^{\alpha} \bar{\varphi}(x)=\frac{-c_{\alpha}}{\beta-1} \frac{1}{|x|^{2 \alpha+1}}+O\left(\frac{1}{|x|^{\beta+2 \alpha}}\right)
$$

which yields the result.
2.2. Proof of Proposition 2.1. We now turn to the proof of Proposition
2.1. First, we fix $c \in \mathbb{R}$ and consider the following problem:

$$
\left\{\begin{array}{l}
\left(-\partial_{x x}\right)^{\alpha} \phi+c \phi^{\prime}=f(\phi) \quad \text { for all } x \in[-b, b] \tag{7}\\
\phi(x)=0 \quad \text { for } x \leq-b \\
\phi(x)=1 \quad \text { for } x \geq b
\end{array}\right.
$$

We have:
Lemma 2.4. For any $c \in \mathbb{R}$, Equation (7) has a unique solution ϕ_{c}. Furthermore ϕ_{c} is non-decreasing with respect to x and $c \rightarrow \phi_{c}$ is continuous.

Proof. Since 1 and 0 are respectively super- and sub-solutions, we can use Perron's method (recall that the fractional laplacian enjoys a comparison principle) to prove the existence of a solution $\phi_{c}(x)$ for any $c \in \mathbb{R}$. By a sliding argument, we can show that ϕ_{c} is unique and non-decreasing with respect to x. The fact that the function $c \rightarrow \phi_{c}$ is continuous follows from classical arguments (see BN92 for details).

We now have to show that there exists a unique $c=c_{b}$ such that $\phi_{c_{b}}(0)=$ θ. This will be a consequence of the following lemma:

Lemma 2.5. There exist constants M, K such that for $b>M$ the followings hold:
(1) if $c>K$ then the solution of (7) satisfies $\phi_{c}(0)<\theta$,
(2) if $c<-K$ then the solution of (7) satisfies $\phi_{c}(0)>\theta$.

Together with the fact that $\phi_{c}(0)$ is continuous with respect to c, Lemma 2.5 implies that there exists $c_{b} \in[-K,-K]$ such that $\phi_{c_{b}}$ satisfies $\phi_{c_{b}}(0)=\theta$ and is thus a solution of (6). This completes the proof of Proposition 2.1,

Proof of Lemma 2.5. We consider the function

$$
\varphi(x)= \begin{cases}\frac{1}{|x|^{2 \alpha-1}} & x<-1 \tag{8}\\ 1 & x \geq-1\end{cases}
$$

and note that Lemma 2.2 (with $\beta=2 \alpha-1$) yields that if c is large enough $\left(c \geq \frac{c_{\alpha}}{2 \alpha(2 \alpha-1)}\right)$, then

$$
\left(-\partial_{x x}\right)^{\alpha} \varphi(x)+c \varphi^{\prime}(x) \geq 0
$$

for $x \leq-A$ (for some A large enough). We can also assume that $\varphi(x) \leq \theta$ for $x \leq-A$, and so

$$
\left(-\partial_{x x}\right)^{\alpha} \varphi(x)+c \varphi^{\prime}(x) \geq f(\varphi)=0 \quad \text { for } x \leq-A
$$

Furthermore, for $-A<x<-1,\left(-\partial_{x x}\right)^{\alpha} \varphi(x)$ is bounded while

$$
c \varphi^{\prime}(x) \geq c \frac{2 \alpha-1}{A^{2 \alpha}} .
$$

For c large enough, we thus have

$$
\left(-\partial_{x x}\right)^{\alpha} \varphi(x)+c \varphi^{\prime}(x) \geq \sup f \geq f(\varphi) \quad \text { for }-A<x<-1 .
$$

We deduce that there exists K such that if $c \geq K$ then

$$
\left(-\partial_{x x}\right)^{\alpha} \varphi(x)+c \varphi^{\prime}(x) \geq f(\varphi) \quad \text { for } x<-1
$$

and so φ is a supersolution for (7).
Choosing M such that $\varphi(-M)<\theta$, we now see that if $c \geq K$ and $b>M$, then $\varphi(x-M)$ is a super-solution for (7). By a sliding argument, we deduce that $\phi_{c}(x) \leq \varphi(x-M)$ and so $\phi_{c}(0) \leq \varphi(-M)<\theta$.

For the lower bound, we define $\varphi_{1}(x)=1-\varphi(-x)$. Then we we have, if $-c \geq K(c \leq-K)$ and for $x>1$

$$
\left(-\partial_{x x}\right)^{\alpha} \varphi_{1}(x)+c \varphi_{1}^{\prime}(x)=-\left[\left(-\partial_{x x}\right)^{\alpha} \varphi(-x)+(-c) \varphi^{\prime}(-x)\right] \leq 0 \leq f(\varphi) .
$$

Moreover, we have $\varphi_{1}(x)=0$ for $x \leq 1$. Proceeding as above, we deduce that if $c \leq-K$, then $\phi_{c}(0)>\theta$, which concludes the proof.

3. Proof of Theorem 1.1

In order to complete the proof of Theorem [1.1, we have to prove that we can pass to the limit $b \rightarrow \infty$ in the truncated problem. More precisely, Theorem 1.1 follows from the following proposition:

Proposition 3.1. Under the conditions of Proposition 2.1, there exists a subsequence $b_{n} \rightarrow \infty$ such that $\phi_{b_{n}} \longrightarrow \phi_{0}$ and $c_{b_{n}} \longrightarrow c_{0}$. Furthermore, $c_{0} \in(0, K]$ and ϕ_{0} is a monotone increasing solution of (5).
Proof of Proposition [3.1. We recall that $c_{b} \in[-K, K]$, and classical elliptic estimates (see [BCP68) yield:

$$
\left\|\phi_{b}\right\|_{\mathcal{C}^{2, \gamma}} \leq C
$$

for some $\gamma \in(0,1)$. Thus there exists a subsequence $b_{n} \rightarrow \infty$ such that

$$
\begin{gathered}
c_{n}:=c_{b_{n}} \longrightarrow c_{0} \in[-K, K] \\
\phi_{n}:=\phi_{b_{n}} \longrightarrow \phi_{0}
\end{gathered}
$$

as $n \rightarrow \infty$. It is readily seen that ϕ_{0} solves

$$
\begin{equation*}
\left(-\partial_{x x}\right)^{\alpha} \phi_{0}+c_{0} \phi_{0}^{\prime}=f\left(\phi_{0}\right) \quad \text { for all } x \in \mathbb{R} \tag{9}
\end{equation*}
$$

It is also readily seen that $\phi_{0}(x)$ is monotone increasing, $\phi_{0}(0)=\theta$ and ϕ_{0} is bounded. By a standard compactness argument, there exists γ_{0}, γ_{1} such that $\lim _{x \rightarrow-\infty} \phi_{0}(x)=\gamma_{0}$ and $\lim _{x \rightarrow+\infty} \phi_{0}(x)=\gamma_{1}$ with

$$
0 \leq \gamma_{0} \leq \theta \leq \gamma_{1} \leq 1
$$

It remains to prove that $c_{0}>0, \gamma_{0}=0$ and $\gamma_{1}=1$. For that, we will mainly follow classical arguments (see BLL90, BH07]).

First, we have the following lemma:
Lemma 3.2. The function ϕ_{0} satisfies

$$
\int_{\mathbb{R}}\left(-\partial_{x x}\right)^{\alpha} \phi_{0}(x) d x=0
$$

Proof of Lemma 3.2. The result follows formally by integrating formula (3) with respect to x and using the antisymmetry with respect to the variables x and z. However, because of the principal value, one has to be a little bit careful with the use of Fubini's theorem.

To avoid this difficulty, we will use instead the equivalent formula for the fractional laplacian:

$$
\begin{align*}
\left(-\partial_{x x}\right)^{\alpha} \phi_{0}(x)= & c_{\alpha} \int_{\mathbb{R} \backslash[x-\varepsilon, x+\varepsilon]} \frac{\phi_{0}(x)-\phi_{0}(z)}{|x-z|^{1+2 \alpha}} d z \\
& +c_{\alpha} \int_{[x-\varepsilon, x+\varepsilon]} \frac{\phi_{0}(x)-\phi_{0}(z)+\phi_{0}^{\prime}(x)(z-x)}{|x-z|^{1+2 \alpha}} d z \tag{10}
\end{align*}
$$

which is valid for all $\varepsilon>0$ and does not involve singular integrals. Integrating the first term with respect to $x \in \mathbb{R}$, and using Fubini's theorem, we get

$$
\begin{aligned}
\int_{\mathbb{R}} \int_{\mathbb{R} \backslash[x-\varepsilon, x+\varepsilon]} \frac{\phi_{0}(x)-\phi_{0}(z)}{|x-z|^{1+2 \alpha}} d z d x & =\int_{\mathbb{R}} \int_{\mathbb{R} \backslash[z-\varepsilon, z+\varepsilon]} \frac{\phi_{0}(x)-\phi_{0}(z)}{|x-z|^{1+2 \alpha}} d x d z \\
& =-\int_{\mathbb{R}} \int_{\mathbb{R} \backslash[x-\varepsilon, x+\varepsilon]} \frac{\phi_{0}(x)-\phi_{0}(z)}{|x-z|^{1+2 \alpha}} d z d x
\end{aligned}
$$

and so this integral vanishes. Using Taylor's theorem, the second term in (10) can be rewritten as
$\int_{x-\varepsilon}^{x+\varepsilon} \frac{1}{|x-z|^{1+2 \alpha}} \int_{x}^{z}(z-t) \phi_{0}^{\prime \prime}(t) d t d z=\int_{-\varepsilon}^{\varepsilon} \frac{1}{|y|^{1+2 \alpha}} \int_{x}^{x+y}(y+x-t) \phi_{0}^{\prime \prime}(t) d t d y$.
Integrating with respect to x and using (twice) Fubini's theorem, we deduce

$$
\begin{aligned}
\int_{\mathbb{R}} \int_{x-\varepsilon}^{x+\varepsilon} & \frac{1}{|x-z|^{1+2 \alpha}} \int_{x}^{z}(z-t) \phi_{0}^{\prime \prime}(t) d t d z d x \\
& =\int_{-\varepsilon}^{\varepsilon} \frac{1}{|y|^{1+2 \alpha}} \int_{-\infty}^{+\infty} \int_{x}^{x+y}(y+x-t) \phi_{0}^{\prime \prime}(t) d t d x d y \\
& =\int_{-\varepsilon}^{\varepsilon} \frac{1}{|y|^{1+2 \alpha}} \int_{-\infty}^{+\infty} \int_{t-y}^{t}(y+x-t) \phi_{0}^{\prime \prime}(t) d x d t d y \\
& =\int_{-\varepsilon}^{\varepsilon} \frac{y^{2}}{2|y|^{1+2 \alpha}} \int_{-\infty}^{+\infty} \phi_{0}^{\prime \prime}(t) d t d y \\
& =0
\end{aligned}
$$

where we used the fact that $\lim _{x \rightarrow \pm \infty} \phi_{0}^{\prime}(x)=0$ and so $\int_{-\infty}^{+\infty} \phi_{0}^{\prime \prime}(t) d t=0$. The lemma follows.

Now, we can integrate equation (9) with respect to $x \in \mathbb{R}$, and using Lemma 3.2, we get:

$$
\begin{equation*}
\int_{\mathbb{R}} f\left(\phi_{0}(x)\right) d x=c_{0}\left(\gamma_{1}-\gamma_{0}\right)<\infty \tag{11}
\end{equation*}
$$

In particular, we observe that (11) implies that

$$
f\left(\gamma_{0}\right)=f\left(\gamma_{1}\right)=0
$$

otherwise the integral would be infinite.
Next, we prove:
Lemma 3.3. The limiting speed satisfies:

$$
c_{0}>0
$$

Proof. First of all, we note that for all n, there exists $a_{n} \in\left(0, b_{n}\right)$ such that $\phi_{n}\left(a_{n}\right)=\frac{1+\theta}{2}$. Furthermore, up to another subsequence, by elliptic
estimates, the function $\psi_{n}(x)=\phi_{b_{n}}\left(a_{n}+x\right)$ converges to a function ψ_{0}. Note that since $\psi_{0} \in \mathcal{C}^{\gamma}$, there exists $r>0$ such that

$$
\psi_{0}(x) \in\left[\frac{3+\theta}{4}, \frac{1+3 \theta}{4}\right] \quad \text { for } x \in[-r, r]
$$

and so there exists $\kappa_{0}>0$ such that

$$
\begin{equation*}
\int_{\mathbb{R}} f\left(\psi_{0}\right) d x>\kappa_{0} \tag{12}
\end{equation*}
$$

Up to a subsequence, we can assume that $b_{n}+a_{n}$ is either convergent or goes to $+\infty$. We need to distinguish the two cases:
Case 1: $b_{n}+a_{n} \rightarrow+\infty$: In that case, ψ_{0} solves

$$
\begin{equation*}
\left(-\partial_{x x}\right)^{\alpha} \psi_{0}+c_{0} \psi_{0}^{\prime}=f\left(\psi_{0}\right) \quad \text { for all } x \in \mathbb{R} \tag{13}
\end{equation*}
$$

Furthermore, $\psi_{0}(0)=\frac{1+\theta}{2}$ and ψ_{0} is monotone increasing. In particular, it is readily seen that there exists $\bar{\gamma}_{0}$ and $\bar{\gamma}_{1}$ such that $\lim _{x \rightarrow-\infty} \psi_{0}(x)=\bar{\gamma}_{0}$ and $\lim _{x \rightarrow+\infty} \psi_{0}(x)=\bar{\gamma}_{1}$ with

$$
0 \leq \bar{\gamma}_{0} \leq \frac{1+\theta}{2} \leq \bar{\gamma}_{1} \leq 1
$$

Integrating (13) over \mathbb{R}, and using the fact that

$$
\int_{\mathbb{R}}\left(-\partial_{x x}\right)^{\alpha} \psi_{0}(x) d x=0
$$

(the proof is the same as in Lemma 3.2) we deduce

$$
\begin{equation*}
c_{0}\left(\bar{\gamma}_{1}-\bar{\gamma}_{0}\right)=\int_{\mathbb{R}} f\left(\psi_{0}\right) d x<\infty \tag{14}
\end{equation*}
$$

and so

$$
f\left(\bar{\gamma}_{0}\right)=f\left(\bar{\gamma}_{1}\right)=0
$$

This implies that

$$
\bar{\gamma}_{1}=1 \quad \text { and } \quad \bar{\gamma}_{0} \leq \theta
$$

Finally, (14) and (12) yields

$$
c_{0}(1-\theta) \geq \int_{\mathbb{R}} f\left(\psi_{0}\right) d x \geq \kappa_{0}
$$

which gives the result.
Case 2: $a_{n}+b_{n} \rightarrow \bar{a}<\infty$: In that case, ψ_{0} solves

$$
\begin{equation*}
\left(-\partial_{x x}\right)^{\alpha} \psi_{0}+c_{0} \psi_{0}^{\prime}=f\left(\psi_{0}\right) \quad \text { for all } x \in(-\infty, \bar{a}) \tag{15}
\end{equation*}
$$

and we need to modify the proof slightly. First, we notice that $\psi_{0}(x)=1$ for $x \geq \bar{a}$, and we observe that $\left(-\partial_{x x}\right)^{\alpha} \psi_{0}(x) \geq 0$ for $x \geq \bar{a}$. In particular

$$
\int_{-\infty}^{\bar{a}}\left(-\partial_{x x}\right)^{\alpha} \psi_{0}(x) d x \leq \int_{\mathbb{R}}\left(-\partial_{x x}\right)^{\alpha} \psi_{0}(x) d x=0
$$

Proceeding as above, we check that $\lim _{x \rightarrow-\infty} \psi_{0}(x)=\bar{\gamma}_{0} \leq \theta$ and integrating (15) over $(-\infty, \bar{a})$, we deduce

$$
c_{0}(1-\theta) \geq \int_{\mathbb{R}} f\left(\psi_{0}\right) d x>0 .
$$

The positivity of the speed, together with the sub-solution constructed in Lemma 2.2 will now give $\gamma_{0}=0$. More precisely, we now prove:

Lemma 3.4. The function ϕ_{0} satisfies:

$$
\lim _{x \rightarrow-\infty} \phi_{0}(x)=0 .
$$

Proof. Let $c_{1}=c_{0} / 2>0$ and take n large enough so that $c_{b_{n}} \geq c_{1}$.
We recall that by Lemma 2.2 (see also the proof of Lemma 2.5) that the function

$$
\varphi(x)= \begin{cases}\frac{1}{x^{2 \alpha-1}} & x<-1 \\ 1 & x>-1\end{cases}
$$

satisfies

$$
\left(-\partial_{x x}\right)^{\alpha} \varphi+K \varphi^{\prime} \geq 0 \quad \text { in }\{\varphi<1\}
$$

for some K large enough. Introducing $\varphi_{\varepsilon}(x)=\varphi(\varepsilon x)$, we deduce

$$
\left(-\partial_{x x}\right)^{\alpha} \varphi_{\varepsilon}+\varepsilon^{2 \alpha-1} K \varphi_{\varepsilon}^{\prime}(x) \geq 0 \quad \text { in }\left\{\varphi_{\varepsilon}(x)<1\right\}
$$

and taking ε small enough (recalling that $2 \alpha>1$), we get

$$
\left(-\partial_{x x}\right)^{\alpha} \varphi_{\varepsilon}+c_{1} \varphi_{\varepsilon}^{\prime}(x) \geq 0 \quad \text { in }\left\{\varphi_{\varepsilon}<1\right\} .
$$

Furthermore, $\varphi_{\varepsilon}=1$ for $x \geq 0$, and so by a sliding argument, we deduce $\phi_{b_{n}}(x) \leq \varphi_{\varepsilon}(x)$ for all n such that $c_{b_{n}} \geq c_{1}$ and thus

$$
\phi_{0}(x) \leq \varphi_{\varepsilon}(x)
$$

which implies in particular that $\gamma_{0}=0$.

Finally, we conclude the proof of Proposition 3.1 by proving that $\gamma_{1}=1$:
Lemma 3.5. The function ϕ_{0} satisfies:

$$
\lim _{x \rightarrow+\infty} \phi_{0}(x)=1
$$

Proof. We recall that (11) implies that either $\gamma_{1}=\theta$ or $\gamma_{1}=1$ (otherwise the integral is infinite). Furthermore, if $\gamma_{1}=\theta$, then $\phi_{0} \leq \theta$ on \mathbb{R} and so $\int_{\mathbb{R}} f\left(\phi_{0}(x)\right) d x=0$. Since $\gamma_{0}=0<\theta$, (11) implies $c_{0}=0$, which is a contradiction. Hence $\gamma_{1}=1$.

4. Asymptotic behavior

We now prove Theorem 1.2, which further characterizes the behavior of ϕ_{0} as $x \rightarrow-\infty$. We recall that in the case of the regular Laplacian $(\alpha=1)$, ϕ_{0} and its derivatives decrease exponentially fast to 0 as $x \rightarrow-\infty$. When $\alpha \in(1 / 2,1)$, it is readily seen that the proof of Lemma 3.4 actually implies:

Proposition 4.1 (Asymptotic behavior of ϕ_{0}). There exists M such that

$$
\phi_{0}(x) \leq \frac{M}{|x|^{2 \alpha-1}} \quad \text { for } x \leq-1
$$

Noticing that $\phi_{0}^{\prime}>0$ solves

$$
\left(-\partial_{x x}\right)^{\alpha} \phi_{0}^{\prime \prime}+c_{0}\left(\phi_{0}^{\prime}\right)^{\prime}=0 \quad \text { for } x \leq 0,
$$

we can also prove:
Proposition 4.2 (Asymptotic behavior of ϕ_{0}^{\prime}). There exists a constant m such that

$$
\phi_{0}^{\prime}(x) \geq \frac{m}{|x|^{2 \alpha}} \quad \text { for } x \leq-1 .
$$

Proof. Lemma 2.3 implies that the function

$$
\bar{\varphi}(x)= \begin{cases}\frac{1}{|x|^{2 \alpha}} & x<-1 \\ 0 & x>-1\end{cases}
$$

satisfies

$$
\left(-\partial_{x x}\right)^{\alpha} \bar{\varphi}+c \bar{\varphi}^{\prime}(x)=-\frac{c_{\alpha}}{2 \alpha-1} \frac{1}{|x|^{2 \alpha+1}}+c \frac{2 \alpha}{|x|^{2 \alpha+1}}+O\left(\frac{1}{|x|^{4 \alpha}}\right)
$$

when $x \rightarrow \infty$, and so

$$
\left(-\partial_{x x}\right)^{\alpha} \bar{\varphi}+k \bar{\varphi}^{\prime}(x) \leq 0 \quad \text { for } x \leq-A
$$

if k is small enough and A is large.
We introduce $\varphi_{\varepsilon}(x)=\bar{\varphi}(\varepsilon x)$, which satisfies

$$
\left(-\partial_{x x}\right)^{\alpha} \varphi_{\varepsilon}+\varepsilon^{1-2 \alpha} k \varphi_{\varepsilon}^{\prime} \leq 0 \quad \text { for } x<-\varepsilon^{-1} A
$$

hence

$$
\left(-\partial_{x x}\right)^{\alpha} \varphi_{\varepsilon}+c_{0} \varphi_{\varepsilon}^{\prime} \leq 0 \quad \text { for } x<-\varepsilon^{-1} A
$$

provided we choose ε small enough.
Finally, we take r so that

$$
\phi_{0}^{\prime}(x) \geq r \varphi_{\varepsilon}(x) \quad \text { for }-\varepsilon^{-1} A<x<-\varepsilon^{-1} .
$$

Proposition 4.2 now follows from the maximum principle and a sliding argument using the fact that $\varphi_{\varepsilon}(x)=0$ for $x \geq-\varepsilon^{-1}$.

References

[BCP68] Jean-Michel Bony, Philippe Courrège, and Pierre Priouret. Semi-groupes de Feller sur une variété à bord compacte et problèmes aux limites intégrodifférentiels du second ordre donnant lieu au principe du maximum. Ann. Inst. Fourier (Grenoble), 18(fasc. 2):369-521 (1969), 1968.
[BH07] Henri Berestycki and François Hamel. Generalized travelling waves for reactiondiffusion equations. In Perspectives in nonlinear partial differential equations, volume 446 of Contemp. Math., pages 101-123. Amer. Math. Soc., Providence, RI, 2007.
[BLL90] H. Berestycki, B. Larrouturou, and P.-L. Lions. Multi-dimensional travellingwave solutions of a flame propagation model. Arch. Rational Mech. Anal., 111(1):33-49, 1990.
[BN92] Henri Berestycki and Louis Nirenberg. Travelling fronts in cylinders. Ann. Inst. H. Poincaré Anal. Non Linéaire, 9(5):497-572, 1992.
[BNS85] Henri Berestycki, Basil Nicolaenko, and Bruno Scheurer. Traveling wave solutions to combustion models and their singular limits. SIAM J. Math. Anal., 16(6):1207-1242, 1985.
[Lan72] N. S. Landkof. Foundations of modern potential theory. Springer-Verlag, New York, 1972. Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180.

