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ABSTRACT
We consider a general linear dynamical system and want to
control its behavior. The goal is to reach a given target by
minimizing a cost function. We provide a new generic al-
gorithm with together exact, symbolic and numerical mod-
ules. In particular new efficient methods computing a block
Kalman canonical exact decomposition and the optimal so-
lutions are presented. We also propose a new numerical
algorithm under-approximating the controllable domain in
view of its analytical resolution in the context of singular
sub-arcs.

Categories and Subject Descriptors:
I.1.2 [Symbolic and algebraic manipulation]: Algorithms,
J.1.7 [Computer Applications]: Command and control.

General Terms: Algorithms.

Keywords: Affine Optimal Control Problems, Canonical
Transformation, Controllability.

1. INTRODUCTION
Aerospace engineering, automatics and other industries

provide a lot of optimization problems, which can be de-
scribed by optimal control formulations: change of satel-
lites orbits, flight planning, motion coordination [7] ([16]
for more applications in aerospace industry). Optimal con-
trol has so become a more and more challenging domain
and its theory has been extensively developed for many
years. Nevertheless, the problem of synthesis of optimal
feedback is not solved, even for linear systems. In some
specific cases like time-optimal control problems, adequate
solutions have been found [18, §3],[2, 17, 16]. Also, control
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theory lacks generic algorithms, specially when singular sub-
arcs appear[14, 19, 2].
Furthermore, in “real-life”, optimal control problems are
fully nonlinear. Therefore most of the algorithms presented
here have been developed towards their application to the
hybrid control of nonlinear dynamical systems: in [20], we
propose a piecewise affine approximation by way of a hybrid
automaton. In each cell, the local optimal control problem
is affine and techniques developed here will be applied.
In this paper we consider a linear dynamical system:



Ẋ(t) = AX(t) +Bu(t)
X(0) = X0

(1)

where ∀t ≥ 0, X(t) ∈ R
n and u(t) ∈ Um = {s1, . . . , sp} ⊂

R
m is the control. We want to control the system (1) from

an initial state X0 to a target Xf = 0 at an unspecified
time tf , in such a way that the functional: J(X0, u(.)) =
R +∞

0
l(X(t), u(t))dt is minimized.

Here, we provide a full implementation analyzing linear op-
timal control problems as general as possible. Our algorithm
is divided in four steps:

(1) Canonical transformation (see §2).
(2) Approximation of the controllable set (see §3.2).
(3) Computation of optimal solutions (see §4).
(4) Inverse transformation (see §2.2).

Each step can be done in several different ways and some
salient features of our presentation are:

• a new and more efficient implementation by block ma-
trices of the exact computation of Kalman decompo-
sition.

• symbolic computation of the boundaries of domains,
where the optimal control is constant (see e.g. algo-
rithms 5 and 6).

• a new numerical method to compute an under-approxi-
mation of the controllable domain.

• an efficient implementation of the optimal solution com-
putation, for a very large class of cost functions using
subroutines previously defined (see algorithm 7).

Our approach enables the high dimensions treatment, even
when compared to numerical softwares. Indeed, numeri-
cal methods developed from the Hamilton-Jacobi-Bellman



(HJB) theory are known to suffer from the dimension: they
generally require to generate a grid over a bounded region
of the state space. If the state dimension is n and the num-
ber of discretization points per dimension is 50 (which is the
minimum acceptable: 100 could still be a bit sparse), one has
to consider 50n grid points. Despite the development of ef-
ficient techniques for the choice of the discretization points
like adaptative mesh, computations grow exponentially in
the state dimension. Consequently dimension 4 or 5 cannot
be exceeded, while e.g. aerospace [16] requires treatments
of dimensions 6 or 7. By the use of Hybrid Computation [4]
combining numerical analysis and computer algebra, we are
now able to deal with high dimensions (see [20, Part II]):
first the mesh is made on the fly to reduce the complexity.
Then, at the vertices of the mesh, only a linear interpolation
of our complex system is performed. In each cell, the sys-
tem is linear and one need to develop methods as symbolic
as possible: basically, an analytical approach must allow to
improve the hybrid approximation.

The paper is organized as follows: in section 2, we will
develop explicit algorithms to compute exactly the canon-
ical transformation of any linear optimal control problem
and then the exact inverse transformation. In section 3, we
provide a numerical controllability analysis and then in sec-
tion 4, the analytical computation of optimal solutions of
the canonical problem.

2. CANONICAL TRANSFORMATION
Linear control systems have been widely analyzed. In [13,

12], Kalman considers constant linear optimal control prob-
lems without constraints on the control. In this context, we
have two well-known results: the first one is a controllability
criterion (see [13, 3] for more details), and the second is the
following decomposition theorem:

Theorem 1 ([12] Kalman Canonical Structure).
Let A and B be real matrices having respective sizes n × n
and n×m. There exists an invertible n× n matrix T such
that:

T−1AT =

»

A1 A2

0 A3

–

T−1B =

»

B1

0

–

where r = rk([B AB . . . An−1B]) = rk([B1 A1B1 . . . An−1
1 B1])

A1 is a r dimensional square matrix and B1 a r×m matrix.

There exist many numerical algorithms computing the Kal-
man canonical form of full rank linear dynamical systems.
Next, we consider rank deficient systems, for which exact
computation of the rank is needed. Therefore we propose a
new explicit and exact algorithm for the Kalman decompo-
sition. Our approach is to use block versions of the linear
algebra algorithms as in [5] in order to improve the locality of
the computations and treat larger problems faster. Indeed,
we are then able to compute exactly the rank of the system
and use the LQUP decompostion of [6] (nowadays quite as
fast as numerical routines) to perform the decomposition.

2.1 Block Canonical decomposition
We consider the general linear system (1). Our decompo-

sition is divided into two steps: we first reduce the system
to one with a full rank mapping of the control and second
apply a LQUP decomposition to the Kalman matrix.

2.1.1 Simplification tork(B) = m

Lemma 1. Let us consider the linear system (1). There

exists a full rank matrix B̃ ∈ R
n×rk(B) and a linear mapping

Φ ∈ R
rk(B)×m such that: Ẋ(t) = AX(t) + B̃Φu(t).

Proof. b = rk(B). If b < m, then there exists a column

permutation P ∈ R
m×m s.t.: BP = [B̃|B0] where B̃ ∈ R

n×b

and rk(B̃) = b. Moreover, the column vectors of B0 are

linearly dependent of those of B̃, i.e.: ∃Λ ∈ R
b×m−b, B0 =

B̃Λ. Hence: B = B̃ [Ib|Λ]P−1 and Φ = [Ib|Λ]P−1.

In the following, we will denote by FullRank(B) the algo-

rithm computing (b, B̃,Φ) from a matrix B as in the lemma.

2.1.2 Block Kalman Canonical Form
Now we want to decompose the state space of our linear

system into a controllable part and an uncontrollable one.
The classical method is to introduce the linear subspace
W (A,B) = span(B,AB, . . . , An−1B) and then prove that
W is the first subspace of R

n satisfying both: (i) Im(B) ⊂
W (ii) W is A-invariant. The method is then to decompose
the state space R

n into W ⊕ W̄ : one has to compute a basis
of the subspace W (A,B) and to complete it for the whole
state space. The matrix T of theorem 1 would be the change
matrix from the canonical basis to the computed basis.
In this paper we propose a new approach via block matrix
computation developed in collaboration with C. Pernet: we
use the so-called LQUP decomposition of a x× y matrix of

rank r, where U =

»

U1 U2

0 0

–

is x × y, U1 is an upper

triangular r × r invertible matrix, L is x × x, lower block-
triangular, and P and Q are permutation matrices [10].

Algorithm 1 BlockKalmanForm

Require: A n× n matrix, B n×m matrix.
Ensure: r, T,A1, A2, A3, B1 as in theorem 1.
1: K = [B|AB| . . . |An−1B];
2: (L,Q,U1, U2, P, r) = LQUP (KT );
3: if r = n then
4: Return (n, In, A, ∅, ∅, B).
5: end if

6: Form δ = [Ir|0]Q
TLQ

»

Ir

0

–

, lower triangular.

7: Form d = [Ir+1..nm|0]Q
TLQ

»

Ir

0

–

.

8: G = [Ir|0]Q
TKT .

9: C1 = G(ATP T

»

Ir

0

–

U−1
1 δ−1)

10: C2 = [0|In−r ]P (ATP T

»

Ir

0

–

U−1
1 δ−1)

11: C3 = [0|In−r ]PA
TP T

»

−U−1
1 U2

In−r

–

12: Q1 = [Im|0]Q

»

Ir

dδ−1

–

{Q1 is m× r}

13: Return (r,

»

G
[0|In−r]P

–T

, CT
1 , C

T
2 , C

T
3 , Q

T
1 ).

Theorem 2. Algorithm 1 is correct and its arithmetic
complexity is O(nωm)1.
1where ω is the exponent of matrix multiplication (3 for the
classical algorithm and 2.3755 for Coppersmith-Winograd’s)



Proof. [20] It has three parts and is actually another,
constructive, proof of Kalman’s theorem:
1. First, use the generalization of the companion matrix
decomposition to prove that GAT = C1G.
2. Second, use the latter to show that T−1AT is block tri-
angular.
3. Show that T−1B has generic rank profile.
4. Now for the complexity: building the Kalman matrix
is n matrix multiplications n × n by n×m, each requiring
O(nω−1m) operations. Following [6, Lemma 4.1], the LQUP
decomposition requiresO

`

nω−1(mn+ n)
´

operations. Those
two costs dominate the remaining operations: two triangu-
lar inversions O(rω), some permutations and column selec-
tions, and small matrix multiplications (GAT is O(rnω−1)
and dδ−1 is O(nmrω−1) where r ≤ n.).

Our implementation and constructive proof of the Kalman
decomposition are based on LQUP factorization and block
matrix computation. The better locality induced by this
block version enables the use of very fast Basic Linear Al-
gebra Subroutines, even with symbolic computations [6].
Therefore the computation time is improved. Moreover if
we first apply the algorithm FullRank of paragraph 2.1.1,
the system (1) can be replaced by another linear one:

Ẏ (t) =

»

A1 A2

0 A3

–

Y (t) +

»

B1

0

–

ũ(t) (2)

via possibly two variable changes:



Y (t) = T−1X(t)
ũ(t) = Φu(t)

Next, we use these decomposition in order to define a canon-
ical optimal control problem, simpler to solve.

2.2 Inverse transformation
In this section, the focus is on the explicit construction of

a new linear optimal control problem under the dynamic (2).
A new cost function and new state and control spaces have
to be constructed and initial solutions have to be recovered.

2.2.1 Control Space
In this paragraph we focus on the construction of a new

control space for the linear system (2). By assumptions (see
section 1), the control u(.) satisfies: ∀t ≥ 0, u(t) ∈ Um =
Conv(s1, . . . , sp). Moreover the image of a polyhedron in fi-
nite dimension by a linear mapping is polyhedral. So the
new control polyhedron is: ΦUm = Conv(Φs1, . . . ,Φsp).
Note that, if rk(B) = m, then Φ = Im, so that no con-
trol change is needed. When rk(B) < m, the main difficulty
to build our optimal control problem is that there is not any
invertible relation between u and ũ ; consequently to switch
from one control problem to the other, we will first need
to define the pseudo-inverse of the control change matrix:
s̃1, . . . , s̃p′ are the vertices of ΦUm. We introduce the Moore-

Penrose pseudo-inverse Ψ ∈ R
m×b) [21] of the matrix Φ =

[Ib|Λ]P−1: Ψ = P

»

Ib

0

–

defined by: ∀i ∈ {1, . . . , p′},Ψs̃i =

sk, where k = min{j ∈ {1, . . . , p} / Φsj = s̃i}. By linear-
ity, Ψ is also well defined on the whole polyhedron ΦUm,

indeed: ∀ũ ∈ ΦUm,∃(αi)i=1...p′ ∈ [0, 1]p
′

,
Pp′

i=1 αi = 1, ũ =
Pp′

i=1 αis̃i. Hence Ψũ =
Pp′

i=1 αiΨs̃i and the proposition 1
is proven:

Proposition 1. (i) ΦΨ = Ib, (ii) ∀u ∈ Um, Bu = B̃Φu,

(iii) ∀ũ ∈ ΦUm, B̃ũ = BΨũ.

2.2.2 State Space
By construction, the change matrix T is non singular.

Therefore, a trajectory Y (.) from an initial point Y0 cor-
responds to a trajectory X(.) = TY (.) from the initial point
X0 = TY0. Every trajectory is necessarily related to a con-
trol, the table 1 displays the correspondence between each
trajectory.

Initial Problem (1) Canonical Problem (3)
(X(.), u(.)) → (T−1X(.),Φu)
(TY (.),Ψũ) ← (Y (.), ũ(.))

Table 1: Matching trajectories

Proof. The key point here is that a trajectory (X(.), u(.))
in the X-space is a solution of the system (1):

X(t) = eAtX0 + eAt
R t

0
e−AwBu(w)dw

T−1X(t) = e(T
−1AT )tT−1X0

+ e(T
−1AT )t

R t

0
e−(T−1AT )wT−1Bu(w)dw]

T−1X(t) = e(T
−1AT )tT−1X0

+ e(T
−1AT )t

R t

0
e−(T−1AT )wT−1B̃Φu(w)dw]

Then (T−1X(.),Φu(.)) is a solution of (2), i.e. a trajectory
in the Y -space.

2.2.3 Cost Function
Let X0 be a controllable point. The value function related

to the initial control problem (1) is defined by: V (X0) =

infu(.)

R +∞

0
l(X(t), u(t))dt. We want to define a new value

function Ṽ (Y0) = inf ũ(.)

R +∞

0
l̃(Y (t), ũ(t))dt such that the

two related optimal control problems are equivalent.
First, the idea is to define a new cost function l̃, such

that the value function is invariant by canonical transfor-
mation (i.e.: V (X0) = Ṽ (T−1X0)). In this case, l̃(Y, ũ) 7→
l(TY,Ψũ) and the new optimal control problem becomes:

“Minimize J̃(Y0, ũ(.)) =
R +∞

0
l̃(Y (t), ũ(t))dt with

respect to the control ũ(.) under the dynamic
(2) and the constraints: ∀t ≥ 0, ũ(t) ∈
Conv{s̃1, . . . , s̃p′}”.

(3)

We then have to verify that optimal solutions of this new
problem correspond to optimal solutions of (1):

Proposition 2. Let (Y ∗(.), ũ∗(.)) be an optimal solution
of (3). Then (TY ∗(.),Ψũ∗(.)) is an optimal solution of the

initial problem (1) and V (TY0) = Ṽ (Y0).

(The proof is by inspection of J(X0,Ψũ
∗).)

2.2.4 Algorithms
To conclude the section, we describe two algorithms: Sim-

plifySystem and InverseTransformation. From one given
optimal control problem, SimplifySystem allows to define
the canonical optimal control problem (see §2.1) ; once this
problem is solved, InverseTransformation exactly computes
the related optimal solutions of the initial problem (1) by
the use of proposition 2. In the following algorithms, the
pseudo-inverse Ψ of Φ is given e.g. by [21].

In this section we achieved the transformation of any lin-
ear optimal control problem into a canonical one. Moreover
we have proved that optimal solutions of the canonical prob-
lem give optimal solutions of our initial problem. We have
also proposed exact computation algorithms for switching



Algorithm 2 SimplifySystem

Require: A, B, Um = [s1, . . . , sp], l.

Ensure: r, T,Φ,Ψ, A1, A2, A3, Ũ , l̃. (Data for the new op-
timal control problem: r, the state change matrix, the
control change, the dynamic, the control space and the
cost function).
{Definition of the new control space:}

1: (b, B̃,M):=FullRank(B);
2: Ψ := PseudoInverse(Φ);

3: Ũ := ConvexHull(Φs1, . . . ,Φsp);
{Definition of the new optimal control problem:}

4: (r, T, A1, A2, A3, B1) := BlockKalmanForm(A, B̃);
{Definition of the new cost function:}

5: l̃ := (Y, ũ) 7→ l(TY,Ψũ)

6: Return (r, T,Φ,Ψ, A1, A2, A3, Ũ , l̃).

Algorithm 3 InverseTransformation

Require: T,Ψ, Y ∗, ũ∗.
1: Return (TY ∗,Ψũ∗,Um,ΦUm).

to one problem to the other. Now, we can work on the
canonical problem.

3. CONTROLLABLE DOMAIN
In this section, we consider the canonical optimal control

problem previously defined and raise the question of its con-
trollability: how to compute the set of initial points Y0 for
which the control problem (2) with the constraints Y (0) =
Y0 ; Y (tf ) = 0 and ∀t ≥ 0, u(t) ∈ Um = {s1, . . . , sp} ⊂ R

m)
admits a solution.

Let us state: ∀t ≥ 0, Y (t) = (Y1(t), Y2(t)) where: Y1(t) ∈
R

r and Y2(t) ∈ R
n−r. Thus the state space splits clearly up

into an uncontrollable part (Ẏ2 = A3Y2) and a controllable

one (Ẏ1 = A1Y1+A2Y2+B1u). We study the controllability
question in the two configurations.

3.1 Stabilization of the uncontrollable part
Let us consider the uncontrollable part:

Ẏ2(t) = A3Y2(t) (4)

Clearly, 0 ∈ R
n−r is an equilibrium point of (4). Thus the

target 0 is reachable from everywhere if 0 is a stable focus
of (4). In other words, the matrix A3 has to be stable (all
its eigenvalues have negative real parts).

In the following, we prove that the non-stability of A3 in-
volves constraints on Y2(0), so that we can easily come down
to the case of a stable matrix A3: we apply the Schur de-
composition to A3 and choose to sort its eigenvalues in such
a way that: ∀i = 1 . . . k, Re(αi) < 0 and ∀i = k + 1 . . . (n−
r), Re(αi) ≥ 0. Then there exists a unitary Q ∈ C

n×n such
that: Q∗A3Q = D +N where D = diag(α1, . . . , αn−r) and

N ∈ C
(n−r)×(n−r) is strictly upper triangular. Moreover (4)

is easily solvable: ∀t ≥ 0, Y2(t) = eA3tY2(0). Hence:

Q∗Y2(t) = eQ∗A3QtQ∗Y2(0)

= e(D+N)tQ∗Y2(0) = eDteNtQ∗Y2(0)

=

2

4

eα1t ? ?
?

eαn−rt

3

5Q∗Y2(0)

Nevertheless we do not need to compute eNt. Indeed,
we can recursively show (by starting from n − r to k + 1)
that: ([0|In−r−k]Q∗)Y2(0) = 0
Hence: ∀t ≥ 0, ([0|In−r−k] Q∗)Y2(t) = 0.

So under the variable change: Ỹ2 = (Q∗Y2)1..k, the system
(2) then becomes:

(

Ẏ1(t) = A1Y1(t) + Ã2Ỹ2(t) +B1u(t)
˙̃Y2(t) = Ã3Ỹ2(t)

where: Ã2 = A2Q

»

Ik

0

–

and Ã3 = (D+N)

»

Ik

0

–

is stable.

We have shown that the analysis of the uncontrollable
part of the system (2) leads to define a subspace of the state

space, namely {(Y1, Ỹ2, 0) ∈ R
r × R

k × R
n−r−k}. In this

subspace, Ỹ2(.) trajectories converge towards 0. From now
on, we therefore restrict our analysis to a system (2) where
the matrix A3 is stable.

3.2 Under-Approximation of the Controllable
Domain

Now, we assume w.l.o.g that the points si defining the
control boundaries are such that: si /∈ Convj 6=i(sj). There-
fore, each point si is a vertex of the polytope Um and we
have (see §2): rk(B) = m, rk([B|AB| . . . |An−1B]) = n.
We want to find the set of controllable points of our sys-
tem. By time reversal, we come down to the computation
of the attainable set from the target point 0. In [1], for
safety verification, the idea is to compute a conservative
over-approximation of the attainable set. They can thus
certify that the system can not escape from an admissible
set of states. On the contrary, we need a guaranty that
Y0 is controllable. Therefore we instead compute an under-
approximation of this set.

Let us start by defining the controllable set C in our con-
text:
C = {Y ∈ R

n/∃T ≥ 0, ∃u : [0, T ] → Um, Y =
R T

0
e−Aτ Bu(τ)dτ}.

Indeed, any solution of a linear system Ẏ (t) = AY (t)+Bu(t)

has the form: Y (t) = eAtY (0) +
R t

0
eA(t−s)Bu(s)ds.

Proposition 3. The controllable domain C is a convex
subset of the state space.

The main idea of the proof (given in [20]) is to define (by
convexity and at maximal time) a new control from that of
some controllable points within C.
Now we can introduce our under-approximation of the do-
main by time-reversal of the control polytope:

Corollary 1. Let Yi(.) be the trajectory from 0 by time
reversal according to u = si. If C(t) = Conv1..k(Yi(t)), then

C(t) ⊂ C and ∀Y ∈ C(t),∃ a control u, Y =

Z t

0

e−AτBu(τ )dτ

Any point in C(t) is said controllable at least in time t and
C(t) is an under-approximation of the controllable set in
time t.

This gives us an algorithm to build our under-approximation
in time T . Nevertheless for a given time T , the quality of
the approximation could be very poor (see example 1, figure
1-(a)). To refine it, we choose to discretize the time interval
[0, T ] in N subintervals. The under-approximation in time
T is the convex hull of under-approximations in time j∗h for



j = 1..N−1 (where h = T/N) and the quality is significantly
improved (see example 1, figure 1-(b)). We have thus defined
the following algorithm, UnderApproximation, computing a
set of controllable points.

Algorithm 4 UnderApproximation

Require: A,B,U, T, h (where U = Conv{s1, . . . , sp}).
Ensure: an under-approximation with a step h = T/N of

the controllable domain in time T.
1: ApproxVertices:=[0];
2: for all time step j (from 1 to N) do
3: for all vertex si do
4: Yi(.) = trajectory from 0 with u = si;
5: ApproxVertices:=ApproxVertices ∪{Yi(jh)};
6: end for
7: end for
8: Return ConvexHull(ApproxVertices);

Example 1 (2D Under-Approximations). Let us con-

sider the system: Ẏ =

»

1 0
0 2

–

Y +

»

1 1
0 2

–

u with u ∈

Conv([0, 0]T , [1, 0]T , [0, 1]T ).
The following figures show in dashes under-approximations

of the controllable set (represented in plain line) for three re-
finements.

x

y

0
0

-0,2

-0,4

-0,2

-0,6

-0,8

-0,4

-1

-0,6-0,8-1

(a) (b)

Figure 1: Under-approximations in time T = 5 (a)
without refinement (N = 1) (b) by discretizing (N =
5 in dash-dots - N = 30 in dashes, nearly superposed)

4. OPTIMAL SOLUTIONS
In this section, we present some theoretical results and

algorithms for solving linear optimal control problems. The
algorithm is as general and symbolic as possible to design
optimal controllers. Recall that we want to control a linear
system: Ẏ (t) = AY (t) +Bu(t), A ∈ R

n×n, B ∈ R
n×m

from a controllable initial state Y0 to a final state Yf = 0
at an unspecified time tf using the admissible control func-
tions u ∈ Um = Conv1..p(sp) ⊂ R

m in such a way that:

J(Y0, u(.)) =
R +∞

0
l(Y (t), u(t))dt is minimized. According

to the decomposition algorithm developed in section 2, we
also assume: rk(B) = m and rk([B|AB| . . . |An−1B]) = n.
To solve this canonical system, we now introduce the Hamil-
tonian function: H(Y, u, λ) = l(Y, u) + λTAY + λTBu.
The pseudo-Hamiltonian formulation of the optimal control
problem and the Pontryagin Minimum principle provide us
the following optimization problem [18, §1], [2, §2],[17, §4]:

P : “Minimize H with respect to the control variable u ∈ Um

under the constraints:

Ẏ (t) =
∂H

∂λ
(Y (t), u(t), λ(t)) (5)

λ̇(t)T = −
∂H

∂Y
(Y (t), u(t), λ(t)) (6)

and H(Y ?(t), λ?(t), u?(t)) = 0 along the optimal trajec-
tory.”

Our algorithm is divided in two main steps: first, the con-
trollable set is partitioned (see 4.1) in domains, inside which
the optimal control is constant. In practice, we propose sym-
bolic algorithms computing the boundaries of these cells (see
§4.2). The second step requires to compute an optimal tra-
jectory from an entry point to the target within each cell.
In this section, the cost function l is assumed linear in the
control: l(Y, u) = l0(Y ) + l1(Y )u. The case were this func-
tion is nonlinear is actually simple: indeed, the Hamiltonian
optimization problem could be solved by classical tools,since

Hu
not
= ∂H

∂u
= 0 is then solvable in the control variable u.

4.1 Singular control
Let us consider the optimization problem P . By defini-

tion, P is a linear program. It thus admits solutions which
may occur on the boundary of the polyhedral set Um. Now,
any solution (Y, u, λ) of the Hamiltonian system (5) is said to
be extremal and distinguish regular and singular solutions:

Definition 1. An extremal (Y (t), u(t), λ(t)) is called
regular on an interval [t0, t1], if there exists k s.t., for
almost all t ∈ [t0, t1],

[l1(Y (t)) + λT (t)B]sk < min{[l1(Y (t)) + λT (t)B]si; i 6= k}

Therefore, for any regular extremal (Y (t), u(t), λ(t)), the op-
timal control is given by the relation:

u(t) = si

if [l1(Y (t)) + λT (t)B]si < min
j 6=i
{[l1(Y (t)) + λT (t)B]sj}

Consequently one can define a partition of the controllable
set (see definition 2) as follows:

Definition 2. An optimal trajectory Y (.) belongs to the
domain Γi on a time interval [t0, t1] if the condition: ∀t ∈
[t0, t1], ∀j ∈ {1, ..., m}−{i}, [l1(Y (y))+λT (t)B](si−sj) < 0
holds. Thus at any point of the domain Γi, the optimal
control is u(.) = si and the related field vector is AY +Bsi.

Now, we introduce the switching function Si,j , that de-
scribes transitions between the domains Γi and Γj :

Definition 3 (Switching function).
Si,j(t) = Hu(Y (t), u(t), λ(t))(si − sj)

= [l1(Y (t)) + λT (t)B](si − sj)

Then, the single zeros of Si,j give us the switching time
between the domains Γi and Γj . However it may also be
possible to find time intervals where the switching function
is identically equal to zero. This typically corresponds to the
appearance of singular arcs in each face of the polyhedral
control set. Thus singular trajectories are:

Definition 4. [22] A trajectory Y (.) is called ij-singular
on a time interval [t0, t1] if the condition “Si,j(t) = 0 and
∀k 6= i, j, Sj,k(t) < 0” holds for almost all t ∈ [t0, t1].



Just note that definition could be naturally extended to I-
singular trajectories (I ⊂ {1, . . . , p}). According to defi-
nitions 2 and 4, we show that ij-singular trajectories geo-
metrically correspond to the boundary between Γi and Γj .
On this singular boundary, the optimal control is said to be
singular and satisfies:

Proposition 4. Let us consider an ij-singular trajectory
Y (.) on a time interval [t0, t1]. Then:

∀t ∈ [t0, t1], u(t) ∈ [si, sj ].

Likewise, on an I-singular trajectory, u(t) ∈ Convk∈I (sk ).

4.2 Boundaries computation
At this point of our analysis, we have partitioned our state

space in domains delimited by:

- singular boundaries (see e.g. [17, fully optimal prob-
lem]).

- mixed and non singular boundaries (see [11, ex. 1]).

- non singular boundaries (see [18, time-optimal prob-
lems]).

In our linear control problem, the Hamiltonian has the form:
H0(Y, λ)+H1(Y, λ)u. Now, let us consider the boundary be-
tween domains Γi and Γj . Then, in the whole paragraph, we
use H with the form: H(Y, v, λ) = H0(Y, λ)+H1(Y, λ)(sj +
(si − sj)v) where v ∈ [0, 1] (since u ∈ [si, sj ] with proposi-
tion 4) to show how to symbolically compute the considered
boundary, when it exists.

4.2.1 Switch rules
In this paragraph we briefly describe a method to com-

pute the allowable “switching directions” [11] in the state
space.
From examination of the sign of d

dt
Hv(Y (t), v, λ(t)) at switch-

ing points (i.e. Hv(Y (t), λ(t)) = 0 andH(Y (t), v, λ(t)) = 0),
it is possible to determine whether switchings from u = si

to u = sj are allowed in a given region of the state space.

4.2.2 Singular boundaries
In this paragraph we present a symbolic algorithm com-

puting singular boundaries when they exist. This algorithm
is essentially based on the Pontryagin maximum principle
[18] and classical results in the theory of singular extrema
(see [14, 19, 2] for more details).

We show on table 2 some performances of this algorithm
in high dimension where Um is a random simplex in R

m

and n = m. Note that we still have to check that the

n 2 3 4 5 6 7 8
cpu (s) 0.16 0.22 0.35 0.56 0.91 1.51 2.43

n 9 10 11 12 13 14 15
cpu (s) 4.21 7.03 10.53 19.06 31.38 53.85 94.18

Table 2: Symbolic singular boundaries timings

so-computed boundary really exist in the controllable do-
main and that the switching conditions are satisfied: ∀k /∈
{i, j}, Si,k < 0. However, we show next that these conditions
are not always sufficient to determine if a computed singu-
lar boundary is valid or not. Such cases appear when the
computed singular control explicitly depends of the state Y .

Algorithm 5 ij-singular boundary

Require: i and j, indices of the considered Γ domains.
Require: H(Y, v, λ).
Ensure: ϕ, where ϕ(X) = 0 defines the ij-boundary
Ensure: u? the ij-singular optimal control.
Ensure: λ? the optimal Pontryagin parameter.
1: Compute the smallest integer K such that:

∂
∂v

( d2K

dt2K
Hv) 6= 0 (where Hv = ∂H

∂v
)

2: if the Legendre-Clebsh (LC) condition [14, 19]:

(−1)K ∂
∂v

( d2K

dt2K
Hv) ≥ 0 is not satisfied then

3: Return “no singular solution”.
4: end if
5: Solve (S) {H = 0, Hv = 0,

“

di

dtiHv = 0
”

i=1..2K
} {(S) is

linear in v and λ, hence we obtain the exact singular
values of v and λ in relation with Y . The remaining
relation gives the equation (ϕ(Y ) = 0) of the boundary.}

6: Return (ϕ(Y ), sj + (si − sj)v(Y ), λ(Y )).

While the related boundary is bounded, the whole bound-
ary between Γi and Γj is necessarily also made of a regular
part. The next paragraph is devoted to its computation.

4.2.3 Mixed boundaries
In this paragraph we assume that we have already com-

puted the singular boundary between two domains Γi and
Γj and check the existence condition of these boundary.
So we have its equation: ϕ(Y ) = 0 under the constraint
0 ≤ v(Y ) ≤ 1, the singular control u∗ and the related λ∗.
We now want to compute the related regular boundary (see
algorithm 6).

Algorithm 6 MixedBoundary

Require: i and j, indices of the considered Γ domains.
Require: ϕ equation of the ij-boundary.
Require: λ? optimal Pontryagin parameter on the ij-

boundary.
Ensure: a parameterization of the non singular boundary

between Γi and Γj .
1: Parameterize the singular boundary (by the implicit

functions theorem) :ψ(ξ) (i.e. such that ϕ(ψ(ξ)) = 0).
2: for s ∈ {si, sj} do
3: Compute the trajectory Y [ψ(ξ), s] from ψ(ξ) by time

reversal with u = s:
Y [ψ(ξ), s](t) = eAtψ(ξ) + eAt

R t

0
e−AwBsdw

4: Solve the Euler-Lagrange equations (6) with the initial
condition λ[ψ(ξ), s](0) = λ∗(ψ(ξ)).

5: Compute the first time t(ξ) < 0 for which the switch-
ing condition between si and sj holds, i.e.: Si,j(t) = 0
(see definition 3). No solution t(ξ) invalidates the sin-
gular boundary so that the boundary between Γi and
Γj is necessarily regular.

6: end for
7: Return the switching curve equations(if they exist):

Y [ψ(ξ), s](t(ξ)) = 0, s ∈ {si, sj}

Consider the system [11, Example 1]:

8

<

:

Ẋ(t) =

»

0 1
0 0

–

X(t) +

»

1
−1

–

u(t)

X(0) = X0

(7)



where X ∈ R
2, |u| < 1 and the performance index to be

minimized is: J(X, u(.)) =
R T

0
1
2
x1(t)

2dt. (Note that (7)
already is under its canonical form since rk([B|AB]) = 2).

[11] provides the full analysis of the singular controls and
the graph of the allowable switching regions [11, fig. 5].
There, the singular boundary is defined by φ(x1, x2) = x1 +
2x2 = 0 and −1 ≤ x2 ≤ 1 and the switching function is
S(t) = 2(λ1(t)−λ2(t)). Due to the constraint −1 ≤ x2 ≤ 1,
the singular boundary does not allow us to draw a partition
of the state space. However, we are able to complete [11]’s
results by the computation of the whole boundary between
the controls u = 1 and u = −1: as we have a valid singular
boundary, we can now apply ourMixedBoundary algorithm
as shown on figure 2:
1. Parametrize the singular boundary: ψ(ξ) = (−2ξ, ξ).
2/3. For u=1, compute the trajectory from ψ(ξ) according
to u = 1 by time reversal: Y [ψ(ξ), 1](t) = [− 1

2
t2 + ξt + t −

2ξ,−t+ ξ].
4. Solve the Euler-Lagrange equations S(0) = 0
5. Compute the first time t(ξ) such that S(t(ξ)) = 0 holds:

t(ξ) = 2ξ − 2
p

ξ2 − 3ξ + 3
6. Repeat steps 3., 4. and 5. with u = −1.
7. Return the parametrized switching curve equation:

8

>

>

<

>

>

:

(2ξ
p

ξ2 − 3ξ + 3− 2ξ2 + 6ξ − 6− 2
p

ξ2 − 3ξ + 3,

−ξ + 2
p

ξ2 − 3ξ + 3, ξ ∈ [−1, 1])

(2ξ
p

ξ2 + 3ξ + 3 + 2ξ2 + 6ξ + 6 + 2
p

ξ2 + 3ξ + 3,

−ξ − 2
p

ξ2 + 3ξ + 3, ξ ∈ [−1, 1])
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Figure 2: MixedBoundary in Gibson’s problem

Remark 1. In some cases the equation Si,j(t) = 0 is not
solved by Maple, so that we cannot express the time t(ξ)
in step 5. Nevertheless, by discretizing the given singular
boundary, we can compute a discretization of the regular part
of the searched boundary. Then, by interpolation, we find
again the whole boundary.

4.2.4 Non Singular Boundaries
In this paragraph, we consider the case where there is no

singular or mixed boundary between the two domains Γi

and Γj . The optimal control is then called bang-bang (i.e.

piecewise constant with values in {si, sj}). Let us distin-
guish two possible configurations:
- For all (i, j) ∈ {1, . . . ,m}2, i 6= j, the boundary between
Γi and Γj is non singular.
In this case, one method is to compute all the switching
functions Si,j (see definition 3). After that we can study
the zeros of Si,j and deduce the transition time τ between
two of them. By time reversal, we start from the origin and
build the switching curve. This method is well described in
[17].
- There exists k ∈ {1, . . . , m} − {i, j}, such that the bound-
ary between Γj and Γk exists and is singular. In this case
we come down to the same technique than for mixed bound-
aries: the idea is to take a parameterization of the singular
boundary between Γj and Γk. We consider by time reversal
the trajectory from a point of this boundary according to
u = s ∈ {sj , sk} and compute the first negative time for
which the switching condition: Sj,k(t) = 0 holds.
This latter algorithm, NonSingBoundary is based on the
following proposition [20]:

Proposition 5. Let Y (.) be an optimal trajectory from
an initial point Y0 and u(.) the associated optimal control.
We assume that there exists a time T > 0, such that: ∃ε > 0,
Y(.) regular over [T − ε, T ] and Y (T + .) is ij-singular.
Then: ∀t ∈ [T − ε, T ], u(t) ∈ {si, sj}.

In conclusion, we have proposed three algorithms to com-
pute boundaries between the domains Γi. We can now
define a general one Boundary that compute the bound-
ary between two given domains Γi and Γj : (ϕ, ω, u) :=
Boundary(i, j) where ϕ is the equation of the boundary,

ω is defined by: ω(Y ) =



1 if ϕ(Y ) = 0 is singular
0 otherwise

and

u∗ is the related optimal control. We therefore have all the
necessary subroutines to solve our problem.

4.3 Linear Optimal Control
In this section, we detail the general algorithm for solv-

ing any linear optimal control problem. The principle is as
follows: after a virtual partition of the state space in Γi

domains, one follows the trajectory within each cell of the
partition. Indeed, in each cell and in every boundaries, the
control is known thanks to the algorithms of section 4.2.
When the trajectory reaches a boundary, there is a switch-
ing of cell and a control change. This goes on till the target
is reached.
Once the canonical problem is solved with algorithm 7, we
just have to apply the inverse transformation 3 to come down
to optimal solutions of our initial control problem.

5. CONCLUSION
We have presented an algorithm for solving general lin-

ear optimal control problems. First we propose an explicit
method to transform any problem into a canonical one by
the way of a block Kalman decomposition. We have also
developed generic algorithms solving the canonical problem
even when complex boundaries occur. Yet, two important
new features of our algorithms are that we give a full generic
implementation and that they are mainly symbolic. Also,all
the algorithms presented here have been implemented in
Maple and work in high dimensions2.
2The maplets are available online at: www-lmc.imag.fr/
lmc-mosaic/Jean-Guillaume.Dumas/SHOC



Algorithm 7 LinearOptimalControl

Require: A, B, Y0, l(Y, u) = l0(Y ) + l1(Y )u and
{s1, . . . , sm}.

Ensure: Optimal trajectory, control and value function.
1: V := 0; {Initialize switching functions}
2: Si,j = ∂

∂u
H(Y, sj +(si−sj)v, λ) = l1(Y )+λTB(si−sj).

{Virtual partition of the state space}
3: I = {i ∈ [|1, m|]/{λ/∀j 6= i, Si,j < 0} 6= ∅}.
4: for all i ∈ I and j ∈ I such that i < j do
5: (ϕi,j , ωi,j , ui,j) := Boundary(i, j).

6: (Γ̃j)j∈I is the induced partition of the controllable set.
7: end for
{Identification of the domains where u = si}

8: for all j ∈ I do
9: if ∂D̃j ==

S

k
{Y s.t. ϕi,k(Y ) = 0} then

10: Γi := Γ̃j .
11: end if
12: end for
13: k := 0; T0 := 0;
{Within each cell, reach the boundary}

14: while Yk 6= 0 do
15: Find i s.t. Yk ∈ Γi.
16: if Yk ∈ ∂Γi then
17: Find j s.t. ϕi,j(Yk) = 0.
18: u := ui,j(Yk);
19: if ωi,j(Yk) == 1 {0 is reached on this ij-singular

boundary.} then
20: Tk+1 := Solution of Y [Yk, u](t) = 0;
21: break while loop;
22: end if
23: else
24: u := si;
25: end if

{Piecewise solution}
26: Compute Tk+1 = inf{t > 0;Y [Yk, u](t) ∈ ∂Γi}
27: Yk+1 := Y [Yk, u](Tk+1).
28: u? := u for t ∈ [Tk, Tk+1];
29: Y := Y [Yk, u] for t ∈ [Tk, Tk+1];

30: V := V +
R Tk+1−Tk

0
l(Y [Yk, u](t)dt

31: end while
32: Return (Y, u?, V )

Further developments already are in progress:
• Complete the whole algorithm for a cost function nonlinear
in the control. In this case, the Hamiltonian optimization
problem could be solved by classical tools. Indeed, ∂H

∂u
= 0

can now be solved in the control variable u.
• The UnderApproximation and solving algorithms have
been performed on linear dynamical systems under the canon-
ical form where A2 = 0 (see §3.2 and section 4). These two
algorithms have to be extended for any canonical form (see
(2)). In practice, this corresponds to the appearance of a
perturbation time function t→ A2e

A3tY2(0) in the dynam-
ical system. The technique does not change, but practical
implementations are slightly more complex.
• The UnderApproximation could be refined and a study
of the approximation error has still to be made. The idea
is to consider cases where the dynamical system for u = si

admits one (or an infinite number of) equilibrium point Pi

(note that 0 is an equilibrium point when u = 0). The under-
approximation can e.g. be completed by the convex hull of

trajectories from Pj that go through (or tend towards) Pj

by time reversal according to u = si. Also, a rigorous proof
of the convergence of our under-approximation towards the
real controllable set has still to be completed.
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