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The origin

How can a dynamical system be represented by a symbolic
one?

The natural way to associate a symbolic sequence with an orbit is
to track its history through a partition with special properties

It goes back to an old and very much familiar example:

The representation of real numbers by infinite binary expansions.

A puzzle is a partition that allows to study long-term dynamics
on a space of sequences of abstract symbols
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Branner-Hubbard Theorem

P. Fatou and G. Julia proved the following theorem.

Theorem A

1 The Julia set of a complex polynomial f is connected if and
only if K (f ) contains all critical points of f .

2 The Julia set of a complex polynomial f is a Cantor set if
K (f ) contains no critical points of f .

Fatou conjectured that point 2 in Theorem A is an equivalence.

But this was disproved by Brolin. He gave examples of real cubic
polynomials with a Cantor Julia set containing one critical point.

Using combinatorial system of tableaux, Branner and Hubbard
completely settled the question of when the Julia set of a cubic
polynomial is a Cantor set.
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Emergence of the puzzles.

Theorem (B-H)

For a cubic polynomial f with one critical point in K (f ), the Julia
set J(f ) is a Cantor set if and only if the critical components of
K (f ) are aperiodic.

Theorem (McMullen)

For a cubic polynomial f with Cantor Julia set, the Lebesque
measure of J(f ) is zero.
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Branner-Hubbard Puzzle
Let f be monic of degree 3. f is conjugated to z 7→ z3 near ∞.

• Let Γ0 be an equipotential containing the critical value

• Let Γ1 = f −1(Γ0) figure height curve

• ...let Γn+1 = f −1(Γn) for n ≥ 0

• A piece of puzzle of level n is any bounded connected
component of C \ Γn

Puzzle pieces are topological disks with dynamics

• Let Pn(x) be the puzzle piece containing x

• f (Pn+1(x)) = Pn(f (x))

• f : Pn+1(x) → Pn(f (x)) is a covering of degree at most 2
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Branner-Hubbard Puzzle

Every point x ∈ K (f ) defines a ”nest” of puzzle pieces

x ∈ Pn+1(x) ⊂ Pn(x) ⊂ · · · ⊂ P1(x) ⊂ P0(x)

Kx the connected component of K (f ) containing x satisfies

Kx =
⋂
n≥0

Pn(x)

Remark

• K (f ) is a Cantor set ⇐⇒ diam(Pn(x)) → 0 for every x .

• Kx is k-periodic ⇐⇒ the nest is k-periodic :

f k(Pn+k(x)) = Pn(x) for n ≥ n0.
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Branner-Hubbard Tableaux

The dynamics can be read on the diagonal of the tableaux
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2(x))

P1(f
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Pn−2(f
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Some Analysis
To prove that Kx =

⋂
Pn(x) is reduced to {x} one needs to

understand this combinatorics and the following analysis.

1 The modulus of an annulus A estimates its ”size”, it is a
conformal invariant and mod (DR \ D1) = 1

2π log(R) ;

2 If an annulus D1 \K has infinite modulus then K is one point ;
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1 Consider the annuli An(x) = Pn(x) \ Pn+1(x) which are
disjoint, essential in P0(x) \ Kx ;

2 Grötzsch inequality : mod(P0(x) \ Kx) ≥
∑

mod(An(x)) ;

3 it is enough to prove that
∑

mod(An(x)) = ∞.
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Generally f (An+1(x)) 6= An(f (x)) for An(x) = Pn(x) \ Pn+1(x) but

• It is critical if Pn+1(x) contains the critical point and
mod (An(x)) = 1

2 mod (An−1(f (x))).

�
�
�
�

• It is semi-critical if An(x) contains the critical point and
mod (An(x)) ≥ 1

2 mod (An−1(f (x))).

�
�
�
�

• It is non critical if Pn(x) contains no critical point and
mod (An(x)) = mod (An−1(f (x))).
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Rule 1: T (i0, j) = • =⇒ T (i , j) = • for i ≤ i0
T (i0, j) = ◦ =⇒ T (i , j) = ◦ for i ≥ i0
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Basic Remarks

If critical levels are bounded outside the first column then Kx = x :

There exists N and (nk) such that
f nk−N : Pnk

(x) → PN(f nk−N(x)) has degree bounded by 4.
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Basic Remarks
If there exists N and (nk) such that
f nk−N : Pnk

(x) → PN(f nk−N(x)) has degree at most two, then
Kx = x : mod (Ank

(x)) ≥ 1
2 mod (AN)

so∑
mod (An(x)) = ∞
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Critical nest
If the degree f nk : Pnk

(x) → P0(f
nk (x)) is not bounded

then there are critical position at any level in the tableau of x∑
mod (An(x)) ≥ 1

2

∑
mod (An(c))

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�
�
�

�
�
�

��
��
��

��
��
��



Critical nest
If the degree f nk : Pnk

(x) → P0(f
nk (x)) is not bounded

then there are critical position at any level in the tableau of x

∑
mod (An(x)) ≥ 1

2

∑
mod (An(c))

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�
�
�

�
�
�

��
��
��

��
��
��



Critical nest
If the degree f nk : Pnk

(x) → P0(f
nk (x)) is not bounded

then there are critical position at any level in the tableau of x∑
mod (An(x)) ≥ 1

2

∑
mod (An(c))

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�
�
�

�
�
�

��
��
��

��
��
��



The annulus AN(c) has infinitely many children

∃nk | mod (Ank
(c)) =

1

2
mod (AN(c))

=⇒
∑

mod An(c) = ∞
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Definition :

An annulus A′ is a child of an annulus A if there exists some k > 0
such that f k : A′ → A is a degree 2 non ramified covering.
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It may happen that no annulus has infinitely many children.

The periodic case:
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Assume now that the nest (Pn(c)) is not periodic
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Assume now that the nest (Pn(c)) is not periodic



Two is enough

At leats always two children implies
∑

mod An = ∞

In the tree the level are all different (same annuli have the same
parents)

The sum of the moduli of the generation is constant
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Definition :

An annulus A is a excellent if it does not intersect the orbit of the
critical point.

Proposition :

1 An excellent child has at least two children.

2 Children of an excellent child are also excellent.

3 Unique Child is excellent.

Proposition :

1 If there is a unique child, his sub-tree gives infinite modulus

2 If there is no unique child, every annulus has at least two
children and we obtain infinite modulus
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Two children
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Periodic case

Lemma :

If the nest (Pn(c)) is periodic then Kc is periodic.

If k > 0 is the minimum such that c ∈ Pn(f
k(c)) (for n ≥ n0)

the map f k : Pn(c) → Pn−k(c) is a degree two proper map.
Moreover, the orbit of the critical point (by f k) stays in Pn(c).
Such a map is said to be renormalizable.

Proposition :

If the nest (Pn(c)) is periodic then Kc is (quasi-conformally)
homeomorphic to the filled-in Julia set of a quadratic polynomial.

(by Douady-Hubbard straightening Theorem)
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Key Remark :

All those combinatorial considerations on tableaux are true
provided one has only one critical point of degree 2.

If one find a graph defining a puzzle:

• puzzle pieces are discs, nested or disjoints

• a puzzle piece of level n is map to one of level n − 1, and this
is a covering of degree at most 2

• between consecutive level pieces there is an annulus

THEN one would obtain that the pieces in a nest have diameter
going to zero or that the map is renomalizable.

WHAT FOR???
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• Get total disconnectedness, or prove that certain components
of the Julia set are points...(like in B-H Theorem).

• Get local connectivity of a set X : Every point x ∈ X has a
basis Xn(x) = Pn(x) ∩ X of connected neighbourhoods.

• Get Rigidity: ”The dynamics to the map is given by the
combinatorial dynamics”.

• Get measure 0: based on McMullen inequality

area(Pn+1) ≤
area(Pn)

1 + 4π mod (An)
.

• Get convergence of an access (pieces can be used like
prime-ends).

• Get semi-conjugacy to a rational map and obtain that it is a
mating.
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Two quadratic polynomials f1 and f2 with connected Julia sets are
conjugated near ∞ to z 7→ z2. (Böttcher coordinates)

These maps extend continuously to the Julia sets and give
parameterizations γi . (Carathéodory’s Theorem)

The quotient X of K (f1) ∪ K (f2) by the relation γ1(t) ∼ γ2(−t) is
called the topological mating if X is a sphere.

A rational map is said to be the conformal mating of f1 and f2 if
there is an homeomorphism (conformal in the interior of K (fi ))
that conjugates F and f1 ∗ f2 on X .

The strategy of the proof:

1 First recognise the rational map F that will be the mating

2 construct the semi-conjugacy J(fi ) → J(f ) (identification)

3 transport Yoccoz puzzle f of fi to a puzzle for F

4 prove diam(Pn(x)) → 0 (in the good cases)

5 get the conjugacy since there are no other identifications than
the ones given by the nests shrinking to points.
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The quotient X of K (f1) ∪ K (f2) by the relation γ1(t) ∼ γ2(−t) is
called the topological mating if X is a sphere.

A rational map is said to be the conformal mating of f1 and f2 if
there is an homeomorphism (conformal in the interior of K (fi ))
that conjugates F and f1 ∗ f2 on X .

The strategy of the proof:

1 First recognise the rational map F that will be the mating

2 construct the semi-conjugacy J(fi ) → J(f ) (identification)

3 transport Yoccoz puzzle f of fi to a puzzle for F

4 prove diam(Pn(x)) → 0 (in the good cases)

5 get the conjugacy since there are no other identifications than
the ones given by the nests shrinking to points.



Quadratic polynomials.



Yoccoz puzzle

Consider quadratic polynomials

Fatou conjecture:

are hyperbolic polynomials dense?

MLC conjecture implies Fatou conjecture

MLC = Mandelbrot is Locally Connected,
M = {c | J(z2 + c) is connected}

Previous question : Are the Julia set locally connected ?

There is a way then to get puzzle around points of M and compare
the moduli of the annuli.

One need to find a good graph
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Problem of annuli

A new problem arise here:

TO FIND ENOUGH NON DEGENERATE ANNULI

P0(0) \ P1(−c1) and P0(0) \ P1(−c2) are non degenerate.



As before we focus on the critical nest (to be defined we need to)
Assume that the critical orbit does not contain the fixed
point α

Lemma

1 If the critical orbit falls in one puzzle piece not attached to α,
P1(−c1) or P1(−c2), we get a critical non degenerate annulus
(by pull-back) ;

2 if the critical orbit stays in P1(0) ∪ P1(c1) ∪ P1(c2) then the
map is renormalizable.

Remark

In the tableau non degeneracy is stable along diagonals :

Pn(f
k(x)) \ Pn+1(f k(x)) is non degenerate

then
Pn+k(x) \ Pn+k+1(x) also.
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Corollary

If the critical point is not eventually fixed and if the map is not
renormalizable, the size of the pieces shrinks to 0

Theorem (Yoccoz)

If a quadratic polynomial f has only repelling fixed points and is
not renormalizable, then J(f ) is locally connected if it is conected.

Corollary

The dynamics on J(f ) is semi-conjugated to z 7→ z2 on the unit
circle.

Corollary

The Mandelbrot set is locally connected at such polynomials.
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Generalization?



Definition
A map f : X ′ → X is (weakly) rational like if

• X and X ′ are connected open sets of Ĉ with smooth boundary,
X contains the closure X

′
of X ′ (X ⊃ X ′ and ∂X ∩ ∂X ′ is

finite) and ∂X has finitely many connected components ;

• f : X ′ → X is a proper holomorphic map with a finite number
of critical point and extends continuously to X

′ → X .

X’

X

f
If X ,X ′ are discs it is polynomial-like.
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Definition
Let f : X ′ → X a (weakly) rational like map with only one critical
point, which is simple. A graph Γ is said admissible if it satisfies
the following conditions:

• Γ is a connected finite graph included in X and containing ∂X ;

• Γ is stable meaning f −1(Γ) contains Γ ∩ X ′;

• the forward orbit of the critical point is disjoint from Γ.

Admissible graph in a basin of attraction
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Given an admissible graph Γ for f : X ′ → X , the puzzle pieces of
level n, are the connected components of

f −n(X \ Γ) = f −n(X ) \ f −n(Γ).

Puzzle pieces are discs and f (Pn(x)) = Pn−1(f (x)).

Theorem
Let Γ be an admissible graph the that there exists a non
degenerate annulus surrounding the critical point c.
Let x be a point of K (f ) = ∩f −n(X ) that is surrounded by
infinitely many annuli of Γ, then

• if the critical nest is not periodic, then the puzzles pieces
shrink to the point (c or x) ;

• if the critical nest is periodic, then the map is renormalizable.
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Parabolic rays

Path of good itinerary in the tree T = ∪nB
−n([0, v ]), where

B : z 7→ zd+v
1+vzd .





Puzzles



Rational maps

0

0 0


