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Statements

Let P be a polynomial and U a bounded Fatou component, that is not
eventually a Siegel disk.

Theorem [Yin, R]
The boundary of U is locally connected.
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Statements

Let P be a polynomial and U a bounded Fatou component, that is not
eventually a Siegel disk.

Theorem [Yin, R]
The boundary of U is locally connected.

Question : is the measure of QU zero?

Theorem [Yin, R]
The boundary of U does not support an invariant line field.

There can be indifferent irrational points, the polynomial can be infinitely
renormalizable.
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Invariant line field

is the data of a real through the origin in the tangent space at each
point z € E where E C J has positive Lebesgue measure, such that

This line field is if f~1(E) = E and f’ maps the line at z to the
line at f(z).
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To a quasi-conformal homeomorphism ¢ on C, one associates a Beltrami

coefficient p(z) = % € Bi(L™)




To a quasi-conformal homeomorphism ¢ on C, one associates a Beltrami
coefficient u(z) = % € B1(L>) and a Beltrami differential y = u(z)%
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To a quasi-conformal homeomorphism ¢ on C, one associates a Beltrami
coefficient p(z) = % € B1(L>) and a Beltrami differential y = u(z)%

If ¢ is conjugating two holomorphic maps : ¢pof = go ¢, then
f'(z . %
H(F(2) 78 = u(z) e Fu=p.

The line field corresponds to the big axis of the ellipse field of the tangent
map.
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Idea of the proof

® we construct sequences of neighborhoods of points of U
( puzzle pieces Pp(z))

® either there exists a sequence (i,), some D > 0 such that
deg(f : P (x) — Po) < D (%)
® or we can construct enhanced nests K, C K, C K] around recurrent
critical points

The enhanced nest has the property K/, \ K, and K, \ kv,, do not intersect
the post-critical set, and the moduli are bounded from below.
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Sketch of the proof of non invariant line

field

Let X be our set. Assume that we have a graph [y that cut X in pieces.
Denote by I', = f~"(Ig), by Pp(x) the connected components of C\ I, .
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Sketch of the proof of non invariant line

field

Let X be our set. Assume that we have a graph [y that cut X in pieces.
Denote by I', = f~"(Ig), by Pp(x) the connected components of C\ I, .

Assume the property Pj(x) N Pi(y) =0 or Pj(x) C Pi(y) with j > i and
equality only if i = j.

x accumulate y within this partition if
Vn> 03k > 0| fX(x) € Py(y)
denote it by y € weomp(X)

We say that P, x(c) is a successor of Py,(c) if F*(P,ik(c)) = Pa(c) and
each critical point appears at most twice in the sequence of pieces
{f(Pa(c)) 1 0 <i <k}
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Sketch of proof

We decompose
XZXl UX2UX3UX4
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Sketch of proof

We decompose
X=X1UXoUX3UX,

® X1 = {z € X | eventually periodic or critical},
® Xo ={z € X\ Xi | w(z) contains a periodic point},
® X is the set of point z € X'\ (X1 U X2) such that weomp(z) # 0 and

for all (¢, ") € weomb(2), € € Weomp(c') and ¢’ € weomp(c), moreover
any Pp(c) for ¢ € weomb(z) has only finitely many succesors.

Remark : Leb(X;) =0
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Sketch of proof

Let x be a point such that v(x) =1 and v is almost continuous at x

Leb{z € D(x,r) | |v(z) — v(x)| > €} _

ve>0, LebD(x, r)

0
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Sketch of proof

Let x be a point such that v(x) =1 and v is almost continuous at x

Leb{z € D(x,r) | |v(z) — v(x)| > €} _
LebD(x, r)

Ve > 0, 0

Using the nest K|, D Ky D R:,
one can define maps gy : Up(x) — V;(x)
® that preserve v
® of degree d € [2, N]
® such that shape(U,(x), x) < M and shape(V,(x),x) < M for some
M.
® diam(Up(x)) — 0 and diam(V,(x)) — 0.
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Let x be a point such that v(x) =1 and v is almost continuous at x

Leb{z € D(x,r) | |v(z) — v(x)| > €} _
LebD(x, r)

Ve > 0, 0

Using the nest K|, D Ky D R:,
one can define maps gy : Up(x) — V;(x)
® that preserve v
® of degree d € [2, N]
® such that shape(U,(x), x) < M and shape(V,(x),x) < M for some
M.
® diam(Up(x)) — 0 and diam(V,(x)) — 0.

where
maxzcopd(z, x)

d(x,0P)

shape(P,x) =

Warwick 2010 8/
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Rescalling by some linear map

ap : (Xn,0) — (Un(x), x)
Bn i (Yn,0) — (Vi(x), x)
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The map h, = 8, 0 g, 0 a, admits a limit h defined at least on
B(0,1/M) which is holomorphic of degree in [2, N].

Assume that h'(z) 20 on D C B(0,1/M) then h'(z) > 6 on D for some
0> 0.
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ap : (Xn,0) — (Un(x), x)

Bn (Ynao) = (Vn(X)7X)

with d(0,0X,) =1 and d(0,0Y,) =1,

by bounded geometry property X, D B(0,1/M), Y, D B(0,1/M).

The map h, = 8, 0 g, 0 a, admits a limit h defined at least on
B(0,1/M) which is holomorphic of degree in [2, N].

Assume that h'(z) 20 on D C B(0,1/M) then h'(z) > 6 on D for some
0> 0.

Let pun = v and v, = By then p, = hjv
Then
Leb{z € B(0,1/M) | |pn(z) = 1| > e} — 0

Leb{z € B(0,1/M) | [up(z) — 1| > €} — 0
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Leb({z € D | [up(ha(2))—1| > €}) < %Leb{w € ho(D) | [va(w)—1| > &}
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is less than

52

pnz) = ()}
Leb({z € D | |:8 > 2¢})

N
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tin(2) = va(ha(2))

o (2)
z) = Y

Leb({z € D |

is less than

N
52Leb{w € hp(D) | |va(w)—1| > e} + Leb{z € D | |un(w)—1| > e} — 0

Constant

Therefore Leb({z € D | |h,(z)| >2})=0s0oh =

But deg(h) > 2 in B(0,1/M). Contradiction.
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—_—~—

Let V/(x) D Va(x) D Va(x) the pullback of K. 5 K, O K,

P

Let ¢ be the first critical point that f/(V,(x)) contains.

Then denote the images by A, (c) D Ay(c) D /\/,,\(c/) and by ' the
homeomorphism V/(x) — A/ (c)

Since ¢ accumulate itself, one can pullback one time around ¢ and another
time back to x.

We get U/ (x) D Un(x) D Upn(x). Denote the map ' : U, — N, (c)

The maps g, are f o f'n,
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Sketch of proof

Idea of the proof that Leb(X; U X3) =0
1) We can find P, with P, C Py such that fin(x) € P, with r > 0.
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2) Because of (*) : deg(f’ : P; (x) — Po) < D. shape(P;,+,(x),x) < C
depending only on mod(Py \ P;), on D and on shape(P,(xp), Xo) where
fin(x) tends to xo.
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1) We can find P, with P, C Py such that fin(x) € P, with r > 0.

2) Because of (*) : deg(f’ : P; (x) — Po) < D. shape(P;,+,(x),x) < C
depending only on mod(Py \ P;), on D and on shape(P,(xp), Xo) where
fin(x) tends to xo.

3) Then let B = D(y,¢) be a ball in P, N F, then
shape(B;,++(¥n),¥n) < C' where B; . .(y,) is a component of f~/»(B) in
P’n+r(X)’

4) One can deduce that

Leb(Pj,+r(x) N J)

Leb(Pyy i (x)

therefore x is not a density point.
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Construction of the puzzle
Take a critical bounded Fatou component that is periodic.

Assumptions: One can always assume that the Julia set is connected and
that there is a unique critical point in the bassin.
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Unwversality
Consequence: the return map in U is conjugate

® either to z — z¢

® or to the Blaschke product of degree d having a parabolic point:
_ 29 + vy fo e |
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Construction of Puzzles in the
attracting case
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In the parabolic case : Parabolic rays
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I —a
L/
]
e N
o N J\}L\ .
T~y O
T 0\
\{Y:

[ Zg ‘

\ |
o 1 -/
S e

e ey

\\\g&}l/ﬁ@/

For any itinerary e = eg---€,--- with g; € {0,1} define
v to be the minimal arc in the tree joining the points z,...., and z.

1
B('Ys) = Yo(e) Y [O, 5]
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Construction of puzzles
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The periodic case
PROPOSITION: If x is eventually periodic on U,

® either E(x) := NPy(x) = {x}
® or there exist external rays R (), Rwo(¢’) landing at x and separating
U from E(x) \ {x}.
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Remark
Fixed points for f in E(x) with a fixed access correspond to fixed points of
g = Fs1in St with a fixed access (by F).
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Remark
Fixed points for f in E(x) with a fixed access correspond to fixed points of
g = Fs1in St with a fixed access (by F).

We have actually three accessible fixed points in E(x) obtained as the
limits of the rays bounding the “fixed” nest P,(x):

® the boundary rays R ((,) give ¢, T ¢ so a fixed ray R (() landing at
y in E(x);

® the boundary rays R ((},) give ¢, | ¢’ so a fixed ray Ry (¢’) landing
at y' in E(x);

® the third one x € QU so it is accessible by an external ray, say
Roo(¢7).
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g = Fs1in St with a fixed access (by F).

We have actually three accessible fixed points in E(x) obtained as the
limits of the rays bounding the “fixed” nest P,(x):

® the boundary rays R ((,) give ¢, T ¢ so a fixed ray R (() landing at

y in E(x);

® the boundary rays R ((},) give ¢, | ¢’ so a fixed ray Ry (¢’) landing
at y' in E(x);

® the third one x € QU so it is accessible by an external ray, say
R (¢")-

Denote by 7,7’ and 1 the points on S! corresponding to y,y’ and x.
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Claim :
The fixed points of g are weakly repelling, i.e. | g(z) —pls1>| z— p |st-
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Corollary
Between two fixed points of g there is a strict inverse image of 1.

Here in each interval of S*\ {r,7/,1}.

Therefore some strict inverse image of Ry(¢"), say R (1),

lands on E(x) at a preimage of x.

So Roo(n) lies between Roo(Cn) and Roo(€) (or Reo(¢)) and R (¢)).

Warwick 2010 22 / 80



Claim :
The fixed points of g are weakly repelling, i.e. | g(z) —pls1>| z— p |st-

Corollary
Between two fixed points of g there is a strict inverse image of 1.

Here in each interval of S*\ {r,7/,1}.

Therefore some strict inverse image of Ry(¢"), say R (1),

lands on E(x) at a preimage of x.

So Roo(n) lies between Roo(Cn) and Roo(€) (or Reo(¢)) and R (¢)).

Warwick 2010 22 / 80



Therefore x = y = y’, the rays Roo(¢) and Roo(¢’) land at x.
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Therefore x = y = y’, the rays Roo(¢) and Roo(¢’) land at x.

Using the same kind of argument and Denjoy Wolff's Theorem, we obtain
that E(x) is separated from U by these two rays.
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Lemma
If x is not eventually periodic but accumulates an eventually periodic point
then it has property (x)
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Lemma
If x is not eventually periodic but accumulates an eventually periodic point
then it has property (x)

Assume x accumulates y that is fixed.
For k > 0, for any n such that *(x) € P,(y), there exists m > n such
that

Else E(f%(x)) = E(y) but E(y) N U = {y} would imply fk(x) = y.
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Lemma
If x is not eventually periodic but accumulates an eventually periodic point

then it has property (x)

Assume x accumulates y that is fixed.
For k > 0, for any n such that *(x) € P,(y), there exists m > n such

that :
Else E(f%(x)) = E(y) but E(y) N U = {y} would imply fk(x) = y.

Indeed, P:11(y) is the unique inverse image of P:(y) in Po(y),
soy & fi(Pmi1(f¥(x))) C Po(y), it is off-critical.
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k+m+r
f(x)

k
f(x)

f(x)

£(x)




k+m+r
f(x)

R

“«—— 0 k+m

N :
X

For every n take the first k such that f%(x) € P,(y), the first m > n such
that f¥(x) € Pm(y) \ Pmt1(y) and the first r such that

Fr(FAm(x)) € Pu(y).
The map F<+™+: Pyt r1(x) — Pi(y) has bounded degree.

£(x)
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Lemma: For any given sequence k,, if O := {f%(x), n > 0} does not
accumulate on a parabolic point, it is possible to find a graph I' and some
r such that
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The persistently recurrent case

Every critical point accumulated by x has finitely many successors.
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The persistently recurrent case

Every critical point accumulated by x has finitely many successors. Denote
by the last successor of P.

Lemma: Any puzzle piece has at least two successors.

Theorem (Kozlovski, Shen, van Strien) :
There exists sequences of puzzle pieces (K,), (K}), (K,) in the nest

(Pj(c)) with the property that K} \ K, and K, \ K, do not intersect the
postcritical set.

O fpn(Kn) = Kn—1, Pnt1 = 2pp, deg(f"” Ky — Kn_1) < C(b, 5).
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Lemma: Any puzzle piece has at least two successors.
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Since we are not in a periodic case, we can find Py, (c) that is compactly
contained in Py(c). It gives a non-degenerate annulus.
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Since we are not in a periodic case, we can find Py, (c) that is compactly
contained in Py(c). It gives a non-degenerate annulus.

We start the inductive construction of the nest with Ko = Pp,(c).

Therefore, for n such that h’, — h, > ng, the annulus K’ \ K, is
. Denote by its modulus.

Using " Kahn-Lyubich covering Lemma”, we can prove that

Hence E(c) = {c}.0




The Covering Lemma

Theorem
Let f : U — V be a degree D ramified covering. For any n > 0, there
exists € = ¢(n, D) > 0 such that :

e if ACC A cc Uand Bcc B’ cC V are sequences of disks;
» if f is a proper map from A to B, and from A’ to B’ with degree d ;
o if mod(B’\ B) > nmod(U \ A);
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The Covering Lemma

Theorem
Let f : U — V be a degree D ramified covering. For any n > 0, there
exists € = ¢(n, D) > 0 such that :

e if ACC A cc Uand Bcc B’ cC V are sequences of disks;
» if f is a proper map from A to B, and from A’ to B’ with degree d;
o if mod(B’\ B) > nmod(U \ A);
Then
® mod(U\ A) >¢
® or mod(U\ A) > 55z mod(V \ B).
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Thank you for your attention
some of the pictures were done by :
A. Chéritat

me with the program of Dan Sgrensen
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