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Institut de Mathématiques de Toulouse

Final Cody Conference, Warwick 2010

P.Roesch (IMT) Rigidity Warwick 2010 1 / 30



Statements

Let P be a polynomial and U a bounded Fatou component, that is not
eventually a Siegel disk.

Theorem [Yin, R]
The boundary of U is locally connected.

Question : is the measure of ∂U zero?

Theorem [Yin, R]
The boundary of U does not support an invariant line field.

There can be indifferent irrational points, the polynomial can be infinitely
renormalizable.
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Invariant line field

A measurable line field supported on J
is the data of a real line through the origin in the tangent space at each
point z ∈ E where E ⊂ J has positive Lebesgue measure, such that the
slope is a mesurable function of z .

This line field is invariant if f −1(E ) = E and f ′ maps the line at z to the
line at f (z).
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To a quasi-conformal homeomorphism φ on C, one associates a Beltrami

coefficient µ(z) = ∂φ
∂φ ∈ B1(L

∞)

and a Beltrami differential µ = µ(z)dz
dz

If φ is conjugating two holomorphic maps : φ ◦ f = g ◦ φ , then

µ(f (z)) f ′(z)
f ′(z) = µ(z) i.e. f ∗µ = µ.

To such a Beltrami coefficient is associated the line field defined by a
measurable map ν with |ν(z)| = 1 and of slope 1

2 arg µ(z).

If φ ◦ f = g ◦ φ then ν is a line field invariant by f .

The line field corresponds to the big axis of the ellipse field of the tangent
map.
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Idea of the proof

we construct sequences of neighborhoods of points of ∂U
( puzzle pieces Pn(z))

either there exists a sequence (in), some D > 0 such that

deg(f in : Pin(x) → P0) ≤ D (∗)

or we can construct enhanced nests K̃n ⊂ Kn ⊂ K ′
n around recurrent

critical points

The enhanced nest has the property K ′
n \ Kn and Kn \ K̃n do not intersect

the post-critical set, and the moduli are bounded from below.
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Sketch of the proof of non invariant line
field

Let X be our set. Assume that we have a graph Γ0 that cut X in pieces.
Denote by Γn = f −n(Γ0), by Pn(x) the connected components of C \ Γn .

Assume the property Pj(x) ∩ Pi (y) = ∅ or Pj(x) ⊂ Pi (y) with j ≥ i and
equality only if i = j .

x accumulate y within this partition if

∀n > 0 ∃k > 0 | f k(x) ∈ Pn(y)

denote it by y ∈ ωcomb(x)

We say that Pn+k(c) is a successor of Pn(c) if f k(Pn+k(c)) = Pn(c) and
each critical point appears at most twice in the sequence of pieces
{f i (Pn(c)) | 0 ≤ i ≤ k}
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Sketch of proof
We decompose

X = X1 ∪ X2 ∪ X3 ∪ X4

X1 = {z ∈ X | eventually periodic or critical},
X2 = {z ∈ X \ X1 | ω(z) contains a periodic point},
X4 is the set of point z ∈ X \ (X1 ∪ X2) such that ωcomb(z) 6= ∅ and
for all (c , c ′) ∈ ωcomb(z), c ∈ ωcomb(c

′) and c ′ ∈ ωcomb(c), moreover
any Pn(c) for c ∈ ωcomb(z) has only finitely many succesors.

Remark : Leb(X1) = 0

Lemme : The points of X2 ∪ X3 satisfy (∗).

Corollary : Leb(X2 ∪ X3) = 0.

Proposition :If ν is an invariant line field on X , then ν = 0 on X4
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Sketch of proof
Let x be a point such that ν(x) = 1 and ν is almost continuous at x

∀ε > 0,
Leb{z ∈ D(x , r) | |ν(z)− ν(x)| > ε}

LebD(x , r)
→ 0

Using the nest K ′
n ⊃ KN ⊃ K̃n,

one can define maps gn : Un(x) → Vn(x)

that preserve ν

of degree d ∈ [2,N]

such that shape(Un(x), x) ≤ M and shape(Vn(x), x) ≤ M for some
M.

diam(Un(x)) → 0 and diam(Vn(x)) → 0.

where

shape(P, x) =
maxz∈∂Pd(z , x)

d(x , ∂P)
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Rescalling by some linear map

αn : (Xn, 0) → (Un(x), x)
βn : (Yn, 0) → (Vn(x), x)

with d(0, ∂Xn) = 1 and d(0, ∂Yn) = 1 ,

by bounded geometry property Xn ⊃ B(0, 1/M), Yn ⊃ B(0, 1/M).

The map hn = β−1
n ◦ gn ◦ αn admits a limit h defined at least on

B(0, 1/M) which is holomorphic of degree in [2,N].

Assume that h′(z) 6= 0 on D ⊂ B(0, 1/M) then h′(z) ≥ δ on D for some
δ > 0.

Let µn = α∗
nν and νn = β∗

nν then µn = h∗nν
Then

Leb{z ∈ B(0, 1/M) | |µn(z)− 1| ≥ ε} → 0

Leb{z ∈ B(0, 1/M) | |νn(z)− 1| ≥ ε} → 0
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Leb({z ∈ D | |νn(hn(z))−1| ≥ ε}) ≤ N

δ2
Leb{w ∈ hn(D) | |νn(w)−1| ≥ ε}

Since a.e.

µn(z) = νn(hn(z))
h′n(z)

h′n(z)

Leb({z ∈ D | |h
′
n(z)

h′n(z)
| ≥ 2ε})

is less than

N

δ2
Leb{w ∈ hn(D) | |νn(w)− 1| ≥ ε}+ Leb{z ∈ D | |µn(w)− 1| ≥ ε} → 0

Therefore Leb({z ∈ D | |h
′(z)

h′(z) | ≥ 2ε}) = 0 so h′ = Constant

But deg(h) ≥ 2 in B(0, 1/M). Contradiction.
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Construction of the neighborhoods

Let c0 be a critical point accumulated by x .

Let V ′
n(x) ⊃ Vn(x) ⊃ Ṽn(x) the pullback of K ′

n ⊃ Kn ⊃ K̃n

Let c be the first critical point that f i (Ṽn(x)) contains.

Then denote the images by Λ′
n(c) ⊃ Λn(c) ⊃ Λ̃n(c) and by f tn the

homeomorphism V ′
n(x) → Λ′

n(c)

Since c accumulate itself, one can pullback one time around c and another
time back to x .

We get U ′
n(x) ⊃ Un(x) ⊃ Ũn(x). Denote the map f rn : U ′

n → Λ′
n(c)

The maps gn are f −tn ◦ f rn .
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n(x) ⊃ Un(x) ⊃ Ũn(x). Denote the map f rn : U ′

n → Λ′
n(c)

The maps gn are f −tn ◦ f rn .

P.Roesch (IMT) Rigidity Warwick 2010 11 / 30



Construction of the neighborhoods

Let c0 be a critical point accumulated by x .

Let V ′
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Sketch of proof

Idea of the proof that Leb(X2 ∪ X3) = 0
1) We can find Pr with Pr ⊂ P0 such that f in(x) ∈ Pr with r > 0.

2) Because of (∗) : deg(f in : Pin(x) → P0) ≤ D. shape(Pin+r (x), x) ≤ C
depending only on mod(P0 \ Pr ), on D and on shape(Pr (x0), x0) where
f in(x) tends to x0.

3) Then let B = D(y , ε) be a ball in Pr ∩ F , then
shape(Bin+r (yn), yn) ≤ C ′ where Bin+r (yn) is a component of f −in(B) in
Pin+r (x);

4) One can deduce that

Leb(Pin+r (x) ∩ J)

Leb(Pin+r (x))
< 1

therefore x is not a density point.
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Construction of the puzzle
Take a critical bounded Fatou component that is periodic.

Assumptions: One can always assume that the Julia set is connected and
that there is a unique critical point in the bassin.

P.Roesch (IMT) Rigidity Warwick 2010 13 / 30



Construction of the puzzle
Take a critical bounded Fatou component that is periodic.

Assumptions: One can always assume that the Julia set is connected and
that there is a unique critical point in the bassin.

P.Roesch (IMT) Rigidity Warwick 2010 13 / 30



Universality
Consequence: the return map in U is conjugate

either to z 7→ zd

or to the Blaschke product of degree d having a parabolic point:

B(z) =
zd + vd

1 + vdzd
, vd =

d − 1

d + 1

d = 3
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Construction of Puzzles in the
attracting case
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In the parabolic case : Parabolic rays

P

P3

Fatouh
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For any itinerary ε = ε0 · · · εn · · · with εi ∈ {0, 1} define the parabolic ray
γε to be the minimal arc in the tree joining the points zε0···εn and z∅.

B(γε) = γσ(ε) ∪ [0,
1

3
]
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Construction of puzzles
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The periodic case
PROPOSITION: If x is eventually periodic on ∂U,

either E (x) := ∩Pn(x) = {x}
or there exist external rays R∞(ζ),R∞(ζ ′) landing at x and separating
U from E (x) \ {x}.
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Proof of the proposition

We assume that x is fixed (thus E (x)) and that E (x) 6= {x}.

We consider the “external class” g of f on E (x) :

The Riemann map Φ : C \ E (x) →: C \D allows to transport the map f to
a non ramified covering F on some neighborhood of S1.

φ

φ

S
1

g

F

f
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Remark
Fixed points for f in E (x) with a fixed access correspond to fixed points of
g = F|S1 in S1 with a fixed access (by F ).

We have actually three accessible fixed points in E (x) obtained as the
limits of the rays bounding the “fixed” nest Pn(x) :

the boundary rays R∞(ζn) give ζn ↑ ζ so a fixed ray R∞(ζ) landing at
y in E (x) ;

the boundary rays R∞(ζ ′n) give ζ ′n ↓ ζ ′ so a fixed ray R∞(ζ ′) landing
at y ′ in E (x) ;

the third one x ∈ ∂U so it is accessible by an external ray, say
R∞(ζ ′′).

Denote by τ, τ ′ and 1 the points on S1 corresponding to y , y ′ and x .
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Claim :
The fixed points of g are weakly repelling, i.e. | g(z)− p |S1>| z − p |S1 .

Corollary
Between two fixed points of g there is a strict inverse image of 1.

Here in each interval of S1 \ {τ, τ ′, 1}.

Therefore some strict inverse image of R∞(ζ ′′), say R∞(η),

lands on E (x) at a preimage of x .

So R∞(η) lies between R∞(ζn) and R∞(ζ) (or R∞(ζ ′n) and R∞(ζ ′)).

Hence η = ζ or ζ ′

contradiction.
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Therefore x = y = y ′, the rays R∞(ζ) and R∞(ζ ′) land at x .

Using the same kind of argument and Denjoy Wolff’s Theorem, we obtain
that E (x) is separated from U by these two rays.
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Lemma
If x is not eventually periodic but accumulates an eventually periodic point
then it has property (?)

Assume x accumulates y that is fixed.
For k > 0, for any n such that f k(x) ∈ Pn(y), there exists m ≥ n such
that f k(x) /∈ Pm+1(y).

Else E (f k(x)) = E (y) but E (y) ∩ ∂U = {y} would imply f k(x) = y .

Then the map f m : Pm+1(f
k(x)) → P1(f

k+m(x)) is an homeomorphism.

Indeed, Pt+1(y) is the unique inverse image of Pt(y) in P0(y),

so y /∈ f i (Pm+1(f
k(x))) ⊂ P0(y), it is off-critical.
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f(x)
k

y

x
f(x)

...

k+m

.
.

.

.

f(x)

f(x)

k+m+r

For every n take the first k such that f k(x) ∈ Pn(y), the first m ≥ n such
that f k(x) ∈ Pm(y) \ Pm+1(y) and the first r such that
f r (f k+m(x)) ∈ P1(y).
The map f k+m+r : Pk+m+r+1(x) → P1(y) has bounded degree.
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Lemma: For any given sequence kn, if O := {f kn(x), n ≥ 0} does not
accumulate on a parabolic point, it is possible to find a graph Γ and some
r such that Pr ⊂⊂ P0 contains infinitely many points of O.

Fix some graph Γ. Note that the intersections of the boundaries of
puzzle pieces can occur only at eventually periodic points of ∂U.
Therefore such an infinite intersection at the same point, implies that
O has to accumulate an eventually periodic point.
If O accumulates an eventually periodic point up to iterating f , one
can assume that this point y is fixed and not parabolic. We can easily
find graphs such that P1(y) ⊂ P0(y).

Corollary : If x has property (?) then E (x) = {x}.

It follows from Grötzsch inequality on moduli of annuli. If y is parabolic
one has to thickening these puzzle pieces.
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It follows from Grötzsch inequality on moduli of annuli. If y is parabolic
one has to thickening these puzzle pieces.

P.Roesch (IMT) Rigidity Warwick 2010 26 / 30



Lemma: For any given sequence kn, if O := {f kn(x), n ≥ 0} does not
accumulate on a parabolic point, it is possible to find a graph Γ and some
r such that Pr ⊂⊂ P0 contains infinitely many points of O.

Fix some graph Γ. Note that the intersections of the boundaries of
puzzle pieces can occur only at eventually periodic points of ∂U.
Therefore such an infinite intersection at the same point, implies that
O has to accumulate an eventually periodic point.
If O accumulates an eventually periodic point up to iterating f , one
can assume that this point y is fixed and not parabolic. We can easily
find graphs such that P1(y) ⊂ P0(y).

Corollary : If x has property (?) then E (x) = {x}.
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The persistently recurrent case

Every critical point accumulated by x has finitely many successors.

Denote
by Γ(P) the last successor of P.

Lemma: Any puzzle piece has at least two successors.

Theorem (Kozlovski, Shen, van Strien) :

There exists sequences of puzzle pieces (Kn), (K
′
n), (K̃n) in the nest

(Pj(c)) with the property that K ′
n \ Kn and Kn \ K̃n do not intersect the

postcritical set.

f pn(Kn) = Kn−1, pn+1 ≥ 2pn, deg(f pn : Kn → Kn−1) ≤ C (b, δ).

h(K ′
n)− h(Kn) ≥ r(Kn−1) →∞
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Since we are not in a periodic case, we can find Pn0(c) that is compactly
contained in P0(c). It gives a non-degenerate annulus.

We start the inductive construction of the nest with K0 = Pn0(c).

Therefore, for n such that h′n − hn ≥ n0, the annulus K ′
n \ Kn is

non-degenerate . Denote by µn its modulus.

Using ”Kahn-Lyubich covering Lemma”, we can prove that lim inf µn is
bounded from below.

Hence E (c) = {c}.�
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The Covering Lemma

Theorem
Let f : U → V be a degree D ramified covering. For any η > 0, there
exists ε = ε(η, D) > 0 such that :

if A ⊂⊂ A′ ⊂⊂ U and B ⊂⊂ B ′ ⊂⊂ V are sequences of disks ;

if f is a proper map from A to B, and from A′ to B ′ with degree d ;

if mod(B ′ \ B) ≥ ηmod(U \ A) ;

Then

mod(U \ A) > ε

or mod(U \ A) > η
2d2 mod(V \ B).
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Thank you for your attention

some of the pictures were done by :

A. Chéritat

me with the program of Dan Sørensen
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