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Consider a rational map of degree d ≥ 2

F actingx

on the Riemann sphere

as a dynamical system

The minimal totally invariant compact set
of cardinality ≥ 3 is called the Julia set
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Degree 1 rational maps give rise to simple dynamics

.

The fixed points determine the dynamics.

←−
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Degree 2 rational maps present extremely complicated dynamics.

The ambient space is

M2 = Rat2/PSL(2,C)

Ĉ

F ↓

Ĉ

φ−→

φ−→

Ĉ

G ↓

Ĉ

M2 ' C2

Milnor’s parametrization :

[f ] −→ (λ1, λ2, λ3) −→ (σ1, σ2, σ3)

M2 → multipliers of the fixed points → symmetric functions

they satisfy the relation σ3 = σ1 − 2 : coordinates (σ1, σ2).
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Basic dichotomy : connectedness locus

J(f ) is disconnected ⇐⇒ the critical points are in the same Fatou
component containing a fixed point in its closure of multiplier in D ∪ {1}.
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The slices Per1(λ) = {[f ] ∈M2 | f has a fixed point of multiplier λ}

Per1(λ) ' C of slope λ + 1/λ in the above coordinates.

The slice Per1(0) corresponds to the quadratic polynomials :

Z 2 + C

by the action of PSL(2,C) the fixed point with multiplier 0 can be
send to ∞.

For |λ| < 1 any rational map is quasi-conformally conjugate to a
quadratic polynomial by the theory of polynomial-like mappings.

Let Mλ = {[f ] ∈ Per1(λ) | J(f ) is connected} for λ ∈ D ∪ {1}

Roesch P. (IMT) The parabolic Mandelbrot set 21 february 2011 6 / 94



The slices Per1(λ) = {[f ] ∈M2 | f has a fixed point of multiplier λ}

Per1(λ) ' C of slope λ + 1/λ in the above coordinates.

The slice Per1(0) corresponds to the quadratic polynomials :

Z 2 + C

by the action of PSL(2,C) the fixed point with multiplier 0 can be
send to ∞.

For |λ| < 1 any rational map is quasi-conformally conjugate to a
quadratic polynomial by the theory of polynomial-like mappings.

Let Mλ = {[f ] ∈ Per1(λ) | J(f ) is connected} for λ ∈ D ∪ {1}

Roesch P. (IMT) The parabolic Mandelbrot set 21 february 2011 6 / 94



The slices Per1(λ) = {[f ] ∈M2 | f has a fixed point of multiplier λ}

Per1(λ) ' C of slope λ + 1/λ in the above coordinates.

The slice Per1(0) corresponds to the quadratic polynomials :

Z 2 + C

by the action of PSL(2,C) the fixed point with multiplier 0 can be
send to ∞.

For |λ| < 1 any rational map is quasi-conformally conjugate to a
quadratic polynomial by the theory of polynomial-like mappings.

Let Mλ = {[f ] ∈ Per1(λ) | J(f ) is connected} for λ ∈ D ∪ {1}

Roesch P. (IMT) The parabolic Mandelbrot set 21 february 2011 6 / 94



The slices Per1(λ) = {[f ] ∈M2 | f has a fixed point of multiplier λ}

Per1(λ) ' C of slope λ + 1/λ in the above coordinates.

The slice Per1(0) corresponds to the quadratic polynomials :

Z 2 + C

by the action of PSL(2,C) the fixed point with multiplier 0 can be
send to ∞.

For |λ| < 1 any rational map is quasi-conformally conjugate to a
quadratic polynomial by the theory of polynomial-like mappings.

Let Mλ = {[f ] ∈ Per1(λ) | J(f ) is connected} for λ ∈ D ∪ {1}

Roesch P. (IMT) The parabolic Mandelbrot set 21 february 2011 6 / 94



The slices Per1(λ) = {[f ] ∈M2 | f has a fixed point of multiplier λ}

Per1(λ) ' C of slope λ + 1/λ in the above coordinates.

The slice Per1(0) corresponds to the quadratic polynomials :

Z 2 + C

by the action of PSL(2,C) the fixed point with multiplier 0 can be
send to ∞.

For |λ| < 1 any rational map is quasi-conformally conjugate to a
quadratic polynomial by the theory of polynomial-like mappings.

Let Mλ = {[f ] ∈ Per1(λ) | J(f ) is connected} for λ ∈ D ∪ {1}

Roesch P. (IMT) The parabolic Mandelbrot set 21 february 2011 6 / 94



.

M0 : the Mandelbrot set
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Mλ when λ→ e2iπ/3
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Theorem [Goldberg-Keen, Uhre, Bassanelli-Berteloot]

There exists a map Φ : D× Per1(0)→M2 such that :

λ 7→ Φ(λ, f ) is holomorphic on D

f 7→ Φ(λ, f ) is injective

Φ sends Per1(0) to Per1(λ) and M0 to Mλ

the maps f ∈ Per1(0) and Φ(λ, f ) ∈ Per1(λ) are conjugate on a
neighborhood of their Julia sets.
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Holomorphic motion of the Mandelbrot set
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Holomorphic motion of the Mandelbrot set
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What happens at the boundary of D?
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Theorem [Petersen]

If λ→ e2iπp/q with p/q 6= 1 some specific component L−p/q of M0 \ ♥
tends to ∞ inM2 .

Conjecture [Milnor]

For λ = 1 the set M1 is homeomorphic to the Mandelbrot set. Moreover
Mλ tends to M1 when λ tends to 1 for the Hausdorff topology.

In particular can the possible queer components appear or disappear for
λ = 1?
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C. Petersen & R.

There exists a homeomorphism between M and M1 that induces a
(topological) conjugacy between the maps on their Julia sets, except
possibly on the main cardioid.

The maps in Per1(1) which are finitely renormalizable and without
attracting points are rigid. (Topological conjugacy implies conformal
conjugacy.)
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Description of the dynamics in Per1(1)

For B ∈ C the map gB(z) = z + 1/z + B has :

a double fixed point at ∞ of multiplier 1 ;
a fixed point at αB = −1/B of multiplier 1− B2 ;
two critical points at ±1.

αB ↗ ↖∞

A = 1− B2 ∈ C −→ [gB ] ∈ Per1(1) is a biholomorphism.

since g−B(−z) = −gB(z)
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Fatou

Roesch P. (IMT) The parabolic Mandelbrot set 21 february 2011 65 / 94



Fatou

Roesch P. (IMT) The parabolic Mandelbrot set 21 february 2011 65 / 94



Fatou

Roesch P. (IMT) The parabolic Mandelbrot set 21 february 2011 65 / 94



Fatou

Roesch P. (IMT) The parabolic Mandelbrot set 21 february 2011 65 / 94



Fatou

Roesch P. (IMT) The parabolic Mandelbrot set 21 february 2011 65 / 94



gn
B

B∞ = {z | gn(z)→∞}

contains a net by pull-back.
We construct accesses through this net to points of the Julia set.

Roesch P. (IMT) The parabolic Mandelbrot set 21 february 2011 66 / 94



gn
B

B∞ = {z | gn(z)→∞}

contains a net by pull-back.
We construct accesses through this net to points of the Julia set.

Roesch P. (IMT) The parabolic Mandelbrot set 21 february 2011 66 / 94



gn
B

B∞ = {z | gn(z)→∞} contains a net by pull-back.

We construct accesses through this net to points of the Julia set.

Roesch P. (IMT) The parabolic Mandelbrot set 21 february 2011 66 / 94



gn
B

B∞ = {z | gn(z)→∞} contains a net by pull-back.
We construct accesses through this net to points of the Julia set.

Roesch P. (IMT) The parabolic Mandelbrot set 21 february 2011 66 / 94



↖
α
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Model

For [g ] ∈M1 g is conjugate on B∞ to B(z) =
z2 + 1

3

1 + 1
3z2

on D or C\D
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Model

Bn

←− φ−→
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On the circle S, the maps B and z2 are conjugate by some
homeomorphism h

x z2

y B

h−→

If θ =
∞∑
1

εk

2k
, the point Zε = h(e2iπθ) has itinerary ε1 · · · εn · · · with

respect to the partition S \ {−1, 1}
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For every itinerary ε = ε1 · · · εn · · · with εi ∈ {0, 1}, a parabolic ray γε for
B is the minimal arc in the tree joining the points zε1···εn and z∅.

B(γε) = γσ(ε) ∪ [0,
1

3
] where σ(ε1ε2 · · · ) = ε2 · · ·
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An external parabolic ray is
Rε = φ(γε).

”Periodic rays” converge ;

if the fixed point is repelling or parabolic, there exists a periodic ray
converging to it.
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Parameter plane

The parameter A = 1− B2 is the multiplier of the fixed point αB = −1/B

αB is attracting in D

αB is repelling outside D
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C \M1

Milnor

The set M1 is connected. There is a dynamical holomorphic bijection
Φ : C \M1 → Ĉ \ (D ∪ {3}).

It is given by the position of the ”second critical value” in the basin of the
model B.

In the basin of B, take out the Fatou petal P bounded by a vertical and
passing through the critical value, glue the boundary.
The quotient (B \ P)/ ∼ is conformally equivalent to Ĉ \D
Π : B \ P → Ĉ \D the projection.

Roesch P. (IMT) The parabolic Mandelbrot set 21 february 2011 74 / 94



Π−→

The map φ−1 is defined until a neighorhood of the second critical value v .

Φ([g ]) = Π((φg )−1(vg ))
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Define rays Rε as the pull-back of Π(γε) by Φ.
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In the complement of ∪iRσi (ε) the ray RB
ε admits a holomorphic motion.

Consequence :

M1 = D ∪ ∪p/qL
1
p/q

L1
p/q ∩ S is one point r1

p/q ;

L1
p/q \ {r

1
p/q} are the connected components of M1 \D ;

in L1
p/q the fixed point has rotation number p/q.

We use Milnor’s argument to prove that there is nothing more ”attached”
to D.
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The bijection
Φ1 : M→M1

Φ1 : [Qc ] 7→ [gB ]

Φ1 : c ∈ ♥ 7→ A ∈ D

such that Qc(z) = z2 + c and gB (with A = 1− B2) have a fixed point
with the same multiplier.

♥

Φ1 : Lp/q 99K L1
p/qto be define now.
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Recall that
M = ♥ ∪ ∪p/qLp/q

Lp/q ∩ S is one point rp/q ;

Lp/q \ {rp/q} are the connected components of M1 \D ;
in Lp/q the fixed point has rotation number p/q.

Therefore in Lp/q every map presents a figure like this :

Qc

←− Qc

←−
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It determines an equivalence relation on Xn = Q−n(e2iπΘ) where Θ is the
cycle of rotation number p/q and Q(z) = z2.
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The equivalence relation is the same until some n in Lp/q (here n = 4).

Then there are choices. Each one defines a region in the parameter plane.

If 0 belongs to a class, the region reduces to one point.
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The set of all the ”laminations” on Xn induces a partition of M in pieces.
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For [g ] ∈ M1 one can define an equivalence relation ∼0
g on X0.

It is determined by the rotation number of the fixed point in C.

Since there is a conjugacy on S between B and z2 we get the same
possible equivalence relations by pull back on Xn.
They define pieces in M1.
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Pieces in Per1(1)

Let G0 = ∪kγσk (ε) be the cycle of parabolic rays landing at p/q cycle in S.

Let Gn = B−n(G0), transport Gn using the parametrization Φ to PGn.

The parameter pieces are the connected components of the complement of
PGn.
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c ∈M −→ (∼n)n∈N sequence of equivalence relations.
They define in M and in M1 nested pieces (P(∼n)) and (P1(∼n)).

Φ1 : ∩nP(∼n) 99K ∩nP1(∼n)

Yoccoz

if (∼n) is non-renormalizable then ∩nP(∼n) is one point

else there exists a homeomorphism χ∼∞ : ∩nP(∼n)→M

Petersen-R

if (∼n) is non-renormalizable then ∩nP1(∼n) is one point

else there exists a homeomorphism χ1
∼∞ : ∩nP1(∼n)→M

The bijection c ∈M −→ (∼n)

if (∼n) is non-renormalizable, Φ1(c) = Φ1(∩nP(∼n)) = ∩nP1(∼n)

else Φ1(c) = χ1
∼∞ ◦ (χ∼∞)−1(c)
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In the dynamical plane
The sequence of equivalence relations ∼g , ∼c define pieces in the
dynamical plane for g and for Qc .

If ∼g=∼c there is a bijection between the set of pieces of level n for g and
for Qc .

The bijection sends the critical piece of level n to the critical piece of
level n,

it commutes with the dynamics induced on the pieces.
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The dynamical pieces do not shrink to points. One should add
equipotentials.

There are no equipotentials for parabolics.

Roesch P. (IMT) The parabolic Mandelbrot set 21 february 2011 89 / 94



We add some ”shortcut” between the parabolic rays.

11100

11010
11001010

001
01001010

01100

00001
0001

10001

100

They are preserved by the dynamics (excepted for the nest around the
parabolic point at ∞ and its preimage).
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The bijection preserves the non degenerate annuli.

11100

11010
11001010

001
01001010

01100

00001
0001

10001

100

Same combinatorics, same degree, same non-degenerate annuli, the proof
of Yoccoz passes to the parabolic case.
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Construction of the conjugacy between the two Julia sets:

In the non renomalizable case, they are both locally connected.

In the renormalizable case, the conjugacy between the small Julia sets
extends to the whole Julia sets by pull back.

Transfer to the parameter plane :

We use Shishikura’s argument on holomorphic motions to compare the
modulus of the annuli in parameter and dynamical planes.

Therefore ∩nP1(∼n) is either a point or a copy of the Mandelbrot set.
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Continuity

At non renomalizable maps, parameter pieces of level n define
neighborhoods. The continuity follows from ∩nP1(∼n) = {∗}.

At renormalizable maps, we use that the map χ is continuous and the
following result

C. Petersen & R. If one takes away any small copie of M in M or in
M1, the diameter of the remaining connected components tends to 0.
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the pictures of this talk were done by :

A. Chéritat

C. L. Petersen

myself with the program of D. Sørensen and H. Inou

Thank you for your attention.
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