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Abstract

We study the vortex pattern in ultra-thin ferromagnetic films of circular cross-section. The
model is based on the following energy functional:

E
2d
ǫ (m) = ǫ

Z

B2

|∇m|2 dx +
| ln ǫ|

2

Z

R2

˛

˛

˛

|∇|−1/2(∇ · m1B2)
˛

˛

˛

2

dx,

for in–plane magnetizations m : B2 → S1 in the unit disc B2 ⊂ R2. The avoidance of volume
charges ∇ · m 6= 0 in B2 and surface charges m · ν 6= 0 on ∂B2 leads to the formation of a
vortex in the limit ǫ → 0. At level ǫ > 0, the vortex is regularized by formation of a 360◦–Néel
wall (a one-dimensional transition layer with core of scale ǫ) concentrated along a radius of
B2. We derive the limiting energy of the vortex by matching upper and lower bounds. Our
analysis on the lower bound is based on a dynamical system argument and an interpolation
inequality with sharp leading order constant, while the upper bound uses the leading order
energy for 360◦ Néel walls.
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1 Introduction & Statement of Results

In thin ferromagnetic films, variations of the magnetization in thickness direction as well as its out
of plane component are energetically strongly penalized. This leads to a reduced two–dimensional
variational model where the magnetization is described by a two–dimensional unit vector field.
The geometry of the sample influences the pattern formation for the magnetization: In the case of
a magnetic sample with circular cross-section, we asymptotically expect the formation of a single
vortex at the center of the disc. The aim of our paper is to analyze the energetic cost of such a
vortex formation.

1.1 The model

We are interested in the energetic cost of a vortex in ultra-thin ferromagnetic films. The analysis
is based on the following renormalized two–dimensional micromagnetic energy:

E2d
ǫ (m) = ǫ

∫

B2

|∇m|2 dx+ | ln ǫ|
∫

R3

|hac(m)|2 dxdz, (1)

where ǫ > 0 is a small parameter. The first term in (1) is called the exchange energy, while the
second term stands for the stray field energy created only by the volume charges in the interior of
the sample. The model is non–dimensionalized: We assume that the magnetization

m : B2 → S1

is a unit–length in-plane vector field defined in the unit disc B2. The stray-field hac(m) : R3 → R3

considered here is generated only by the volume charges (∇ ·m)ac := (∇ ·m)1B2 and is defined as
the unique L2(R3,R3)−gradient field

hac(m) = (∇, ∂
∂z

)Uac(m)

determined by static Maxwell’s equation in the weak sense: For all ζ ∈ C∞
c (R3),

∫

R3

(∇, ∂
∂z

)Uac(m) · (∇, ∂
∂z

)ζ dxdz =

∫

B2

∇ ·m ζ dx. (2)

Explicitly solving (2) in Fourier space, the stray-field energy can be equivalently expressed in terms
of the homogeneous Ḣ−1/2−norm of (∇ ·m)ac (see Appendix):

∫

R3

|hac(m)|2 dxdz =
1

2

∫

R2

1

|ξ| |F((∇ ·m)ac)(ξ)|2 dξ =
1

2
‖(∇ ·m)ac‖2

Ḣ−1/2(R2)
. (3)

Here and in the following, we denote planar coordinates by x = (x1, x2), (x1, x2)
⊥ = (−x2, x1),

the vertical coordinate by z and furthermore, we write (∇, ∂
∂z ) = ( ∂

∂x1
, ∂

∂x2
, ∂

∂z ).

Essential features of this variational model are the nonconvex constraint |m| = 1 and the nonlo-
cality of the stray-field interaction. The competition of exchange energy and stray field energy
together with the above constraints leads to a rich pattern formation for stable states of the
magnetization. Generically, these patterns consist in large almost uniformly magnetized regions
(magnetic domains) separated by narrow smooth transition layers (domain walls) where the mag-
netization varies rapidly [11]. The characteristic domain wall observed in ultra thin-films is the
Néel wall (corresponding to a one-dimensional in-plane rotation connecting two directions of the
magnetization). In particular, we speak about a 360◦ Néel wall when the magnetization performs
a complete turn around a given direction to the wall.
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Vortex. Our goal is to analyze the behavior of a vortex configuration. As we shall explain in
the following, a vortex in our model is a very peculiar structure that is driven by a 360◦ Néel wall
along a radius of a disc. Therefore, it is a completely different configuration than the Bloch line (a
structure characteristic to moderately thick ferromagnetic films, see Section 1.3) or the so called
Ginzburg-Landau vortex (characteristic to superconductors).

Figure 1: Microscopic vortex structure at level ǫ.

Our viewpoint is based on the method of Γ−convergence: We enforce the formation of a vortex in
the limit ǫ→ 0 by considering families {mǫ}ǫ>0 of magnetizations that satisfy

mǫ →
x⊥

|x| in L2(B2) as ǫ→ 0. (4)

and we define the energy of the vortex by the following relaxed problem:

E2d
0 (

x⊥

|x| ) = inf

{

lim inf
ǫ→0

E2d
ǫ (mǫ) : {mǫ} satisfies (4)

}

. (5)

Indeed, the infimum in (5) is achieved (and non–trivial). We call a minimizing family, every family

{mǫ} that satisfies (4) and achieves the minimum (5), i.e. limǫ→0E
2d
ǫ (mǫ) = E2d

0 (x⊥

|x| ). The

L2−compactness of uniformly bounded energy configurations has been proved in [17] (see also [16]
for compactness of magnetizations with values in S2).

Note that the minimal level of energy E2d
ǫ is trivial and all minima are constant since (1) does not

penalize surface charges m ·ν 6= 0 on ∂B2, where ν is the outer normal at ∂B2. In fact, every finite
energy configuration does have surface charges and trivial degree (winding number equal to 0) on
each closed curve in B2. For this reason, both a degree 1 as well as absence of surface charges can
only be imposed in the limit ǫ→ 0 (as in (4)). Our analysis shows that asymptotically the vortex
state represents the minimum energy E2d

ǫ under the constraint (4). We conjecture that the vortex
is still a minimizer if constraint (4) is relaxed and convergence is only assumed on the boundary
∂B2 (i.e., mǫ → x⊥ in L2(∂B2) as ǫ→ 0).

In the following, we motivate our mathematical setting by heuristically explaining why a vortex
is a natural pattern in thin-films with circular cross-section. The pattern formation is driven by
the balance between the exchange energy and the full stray-field energy penalizing both volume
and surface charges (see Section 1.3 for a more detailed view on the connection to physics). The
micromagnetic principle of “pole avoidance” states that there are no volume charges or surface
charges at the mesoscopic level, i.e., the limit magnetization m0 satisfies

|m0| = 1, ∇ ·m0 = 0 in B2 and m0 · ν = 0 on ∂B2. (6)

Now an important remark concerns the rigidity of problem (6) for having smooth solutions. Indeed,
in terms of the stream function m0 = ∇⊥ψ0, (6) turns into a Dirichlet problem for the eikonal
equation:

|∇ψ0| = 1 in B2 and ψ0 = 0 on ∂B2. (7)
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The method of characteristics then implies the nonexistence of smooth solutions of (7). Obviously,
there are infinitely many continuous solutions that satisfy (7) in the sense of distributions. A
crucial issue is that the “viscosity solution” of (7) given by ψ0(x) = dist(x, ∂B2) corresponds to
the vortex configuration

m0 =
x⊥

|x| in B2,

the so called “Landau state” in micromagnetic terminology. One particularity of the vortex m0

is that it admits BV−liftings ϕ (i.e. m0 = eiϕ in B2) and every BV−lifting of minimal total
variation has a jump set concentrated on a radius of the unit disc (see [5], [12]). This jump
set J is an idealization of a 360◦ Néel wall at the mesoscopic level. Indeed, at the microscopic
level, J is replaced by a 360◦ Néel wall where the magnetization turns counter clockwise around
the orthogonal direction at J and the quick transition takes place on a small scale ǫ. Therefore,
understanding the structure and energy cost of these types of 360◦ Néel walls is important for our
aim.

360◦ Néel walls. A Néel wall is a sharp one-dimensional transition layer connecting two meso-
scopic directions of the magnetization. It is characterized by the angle between these two directions
(called wall angle) and the rotation is performed in-plane. Néel walls exhibit a two-scale structure:
Most of the rotation of the magnetization takes place in a small core, enclosed by two logarithmi-
cally decreasing tails with slow variation of the magnetization [21, 22]. Without confining the tails
of the Néel wall, they will spread out, thus leading to vanishing energy in the limit [7]. Hence,
typically, the tails of the Néel wall are confined either by material anisotropy, by finiteness of the
sample or by neighboring Néel walls. The Néel walls we consider in the following are confined by
the boundary of the sample.

For the aim of the paper, we will address the special case of 360◦ Néel walls. In these walls, the
magnetization performs a complete rotation across the transition layer. They are characterized
by the angle α ∈ [0, 2π) between the mesoscopic direction of the magnetization and the normal
direction to the wall (see Figure 2). We call these transition layers “360◦ Néel walls of initial angle
α”. Note that for any Néel wall with a wall angle smaller than 360◦, the condition to be charge free

Figure 2: 360◦ Néel wall of initial angle α.

uniquely determines the initial angle α. For 360◦ Néel walls, the situation is different: In this case,
charge free transition layers can be achieved for any initial angle α. Our analysis shows that the
initial angle α contributes to the leading order energy of the 360◦ Néel wall. Another peculiarity of
360◦ Néel walls (of initial angle α > 0) with respect to general Néel walls resides in their internal
structure. The 360◦ Néel wall consists of two parts with zero magnetic net charge. This means
that these two parts only interact by weak dipole–dipole interaction. For this reason the thickness
of the 360◦ Néel wall is much larger than the thickness of the 180◦ Néel wall. A detailed numerical
analysis of the 360◦ Néel wall, also including the effect of anisotropy and external field, can be
found in [24].

We fix the setting to describe one–dimensional transition layers. We will assume that the magne-
tization m = (u, v) : R → S1 only depends on a single variable t ∈ R. In this case, the specific
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one-dimensional energy associated to m in our model reduces to the following expression:

E1d
ǫ (m) = ǫ

∫

R

1

1 − u2
| d
dt
u|2 dt+ | ln ǫ|

2

∫

R

|| d
dt
|1/2u|2 dt. (8)

For our analysis of 360◦ Néel walls, we assume that the initial direction of the magnetization is
given by the angle α ∈ [0, 2π) and a complete rotation is imposed by the following condition:

m(t) = eiα for |t| ≥ 1 and deg(m) = 1.

In other words, using the lifting m = eiϕ, the above condition is equivalent to

ϕ(t) = α for t ≤ −1, ϕ(t) = 2π + α for t ≥ 1. (9)

We finally remark that 360◦ Néel walls are a commonly observed structure in thin magnetic films,
see [11, p. 457]. They typically arise from (global) topological constraints: These can be related
to the geometry of the magnetic sample. Our analysis indicates that the 360◦ Néel wall is a global
minimizing structure for our sample geometry. Note however that commonly 360◦ Néel walls occur
as metastable states [11].

1.2 Main results

Our first result concerns the exact leading order energy of a 360◦ Néel wall with initial angle α.

Theorem 1.1. Let mǫ : R → S1 be a minimizer of (8) satisfying (9). Then mǫ is a smooth map
inside (−1, 1) and its energetic cost is given by

E1d
ǫ (mǫ) = π (1 + cos2 α) + o(1) as ǫ→ 0. (10)

The result shows that even within the class of 360◦ Néel walls there is a dependence of the energy
in terms of the leading order constant with respect to the initial angle α. This result agrees well
with a numerical simulation in [24, Fig. 2]. In particular, the energetic difference between the two
extreme cases α = 0 and α = π/2 by a factor 2 is predicted by the graph in [24, Fig. 2]. Note that
we have smoothness in the interior for any critical point to the energy functional (8).

The main result in this paper, characterizes asymptotically, the energy of the vortex:

Theorem 1.2. Let {mǫ} be a minimizing family in (5). Then we have

E2d
ǫ (mǫ) = 2π + o(1) as ǫ→ 0.

In this sense, we have E2d
0 (x⊥/|x|) = 2π.

Note that this result includes the precise leading constant of the minimal energy. Our construction
for the upper bound of the energy is based on the inclusion of a single 360◦ Néel wall of initial
angle 0 along a radius of the disk.

On the other hand, we prove the lower bound of a vortex in a slightly more general context. More
precisely, as in [17], we consider localized stray fields h : B3 → R3 determined by static Maxwell’s
equation in the weak sense: For all ζ ∈ C∞

c (B3),
∫

B3

h · (∇, ∂
∂z

)ζ dxdz =

∫

B2

∇ ·m ζ dx, (11)

where B3 ⊂ R3 is the unit ball in R3 and the localized micromagnetic energy

Eloc
ǫ (m,h) = ǫ

∫

B2

|∇m|2 dx+ | ln ǫ|
∫

B3

|h|2 dxdz.

Obviously, Eloc
ǫ (m,hac) ≤ E2d

ǫ (m). We will prove the following estimate for the localized energy:
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Theorem 1.3. Let {mǫ} be a family satisfying (5) and let hǫ : B3 → R3 be localized stray fields
associated to mǫ by (11). Then we have

Eloc
ǫ (mǫ, hǫ) ≥ 2π + o(1) as ǫ→ 0.

1.3 Physical relevance

In this section we explain the validity of our reduced model together with the relevance of the
vortex structure (driven by a 360◦−Néel wall) as a global minimizer in a regime of ultra-thin films.
For a soft magnetic body Ω ⊂ R3, in the absence of anisotropy and external magnetic field, the
Landau–Lifshitz micromagnetic energy is given by:

E3d(m) = d2

∫

Ω

|(∇, ∂
∂z

)m|2 dxdz +

∫

R3

|(∇, ∂
∂z

)U(m)|2 dxdz. (12)

In this model, the magnetization m = (m′,m3) : R3 → R3 satisfies |m| = 1 in Ω and m = 0 outside
of Ω. The material parameter d is called exchange length and is of order of nanometers. The full
stray-field potential U(m) : R3 → R is defined by Maxwell’s equations,

∫

R3

(∇, ∂
∂z

)U(m) · (∇, ∂
∂z

)ζ dxdz =

∫

R3

(∇, ∂
∂z

) ·m ζ dxdz, for every ζ ∈ C∞
c (R3). (13)

We are interested in ferromagnetic samples in the shape of a thin circular film, i.e. Ω = Bℓ × (0, t)
where Bℓ ⊂ R2 is the disc of radius ℓ. The model includes three length scales: the film thickness
t, the diameter of film ℓ and the exchange length d. This leads to the following two dimensionless
parameters:

ǫ :=
d2

ℓt
and η :=

t

ℓ
.

(ǫ can be interpreted as the size of the core of a Néel wall, while η is the aspect ratio of the
micromagnetic sample.) We claim that our model is a good approximation of the full energy (12)
in the following regime of ultra thin-films:

ǫ, η ≪ 1 and ln | ln η| ≪ 1

ǫ| ln ǫ| ≪ | ln η|. (14)

It means that η is exponentially small with respect to ǫ; in particular, η ≪ ǫ which leads to
t≪ d≪ ℓ.

In the following we will explain this assertion with both rigorous and heuristic arguments, see also
[18, 8]: The main issue is the asymptotic behavior of the energy in the regime of ultra– thin films.
We first nondimensionalize in length with respect to ℓ, i.e. (x̄, z̄) = (x

ℓ ,
z
ℓ ), m̄(x̄, z̄) = m(x, z),

Ū(m̄)(x̄, z̄) = 1
ℓU(m)(x, z) and Ē3d(m̄) = 1

ℓ3E
3d(m). Skipping the ¯, we get

E3d(m) = ǫη

∫

B2×(0,η)

|(∇, ∂
∂z

)m|2 dxdz +

∫

R3

|(∇, ∂
∂z

)U(m)|2 dxdz. (15)

We make two assumptions which are enforced by the penalization of exchange energy for minimizers
with energy bounded as in Theorem 1.2. We assume that:

(a) m varies on length scales ≫ η.

(b) m = m(x), i.e. m is z−invariant.
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With these assumptions, (15) can be approximated by the following reduced energy (see [4, 8, 18]):

Ered(m) = ǫη2

∫

B2

|∇m|2 dx+
η2

2
‖(∇ ·m′)ac‖2

Ḣ−1/2(R2)

+
1

2π
η2| ln η|

∫

∂B2

(m′ · ν)2 dH1 + η

∫

B2

m2
3.

(16)

The above formula follows by explicitly solving the stray field equation in Fourier variables; this
is possible due to assumption b), for thickness independent m (see [18], [13]). In Fourier variables
(and in view of assumption a)), it then can be seen that the stray-field energy asymptotically
decomposes into three terms in the thin-film regime: one is penalizing the volume charges (∇·m′)ac

as an homogeneous Ḣ−1/2−norm (equal with the stray-field energy created by hac(m), explained
in Introduction), a second term penalizing the lateral charges m′ · ν in the L2−norm, as well as
the third term that counts the surface charges m3 on the top and bottom of the cylinder.

In order to ensure m′ · ν = 0 at ∂B2 in the limit ǫ → 0 and η → 0, there are three different
structures that typically appear in our regime (14): Néel walls, Bloch lines and boundary vortices.
We explain these structures in the following and compare their respective energies. The comparison
of these energies motivates the regime (14). There also exists a fourth structure, the asymmetric
Bloch wall, but we do not discuss it here since the asymmetric Bloch wall is more expensive than
a Néel wall in the considered regime t≪ d.

As already mentioned in Section 1.1, the structure of a Néel wall consists of two regions: a core
(|x1| . wcore = O(ǫ)) and two logarithmic decaying tails (wcore . |x1| . wtail = O(1)). The
energetic cost (by unit length) of a Néel wall is given by

Ered(Néel wall) = O(
η2

| ln ǫ| )

with the exact prefactor π(1 − cos(θ/2))2/2 where θ is the wall angle (see Lemma 3.5 or [14]).

A Bloch line is a regularization of a vortex on the microscopic level of the magnetization that is
fully out-of-plane at the center. The prototype of a Bloch line is given by a vector field

m : B2 → S2

defined in a circular cross-section B2 of a thin-film and satisfying:

∇ ·m′ = 0 in B2 and m′(x) = x⊥ on ∂B2. (17)

Here, the Bloch line is assumed to be invariant in the vertical direction and the word “line” refers

x3

x2

x1 x1

Figure 3: Bloch line.

to that direction. Since the magnetization turns in-plane at the boundary of the disk B2, a localized
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region is created, the core of the Bloch line, where the magnetization becomes perpendicular to
the horizontal plane (see Figure 3). The reduced energy (16) for a magnetization (17) writes as:

Ered(m) = ǫη2

∫

B2

|∇m|2 dx+ η

∫

B2

m2
3 dx.

The Bloch line corresponds to the minimizer of this energy under the constraint (17). Observe that
the competition between the exchange and the stray field energy (by the penalization of surface
charges) implies that the size of the core of the Bloch line is of order

√
ǫη. Since |∇m′| ≤ |∇m| and

1 ≥ m2
3 ≥ m4

3 = (1−|m′|2)2, the reduced energy has a lower bound given by the Ginzburg-Landau
type functional:

ǫη2GL√
ǫη(m′) ≤ Ered(m),

where

GLλ(m′) =

∫

B2

|∇m′|2 dx+
1

λ2

∫

B2

(1 − |m′|2)2 dx, (18)

with λ > 0 a small parameter. The minimization of (18) is performed over all magnetizations
m′ ∈ H1(B2,R2) such that m′(x) = x⊥ on ∂B2. In view of the theory developed in [2], the minimal
energy of (18) is 2π| lnλ| + O(1). Since the structure of the minimizer of GLλ is divergence-free
in B2 for small λ (see [25]), we deduce that the cost of a Bloch line is given by

Ered(Bloch line) = O(ǫη2| ln(ǫη)|)

with the exact prefactor π.

Next we address boundary vortices. A boundary vortex corresponds to an in-plane transition of the
magnetization along the boundary from ν⊥ to −ν⊥, see Figure 4. The corresponding minimization
problem is given by

Ered(m) = ǫη2

∫

B2

|∇m|2 dx+
1

2π
η2| ln η|

∫

∂B2

(m′ · ν)2 dH1

within the set of in–plane magnetizations m ∈ H1(B2, S1) (i.e., m3 = 0). The minimizer of this
energy is an harmonic map with values in S1 driven by a pair of boundary vortices. These have
been analyzed in [20, 23]. The transition is regularized on the length scale of the exchange part
of the energy, i.e. the core of the boundary vortex has length of O( ǫ

| ln η| ). The cost of such a

transition is given by
Ered(Boundary vortex) = O(ǫη2| ln(ǫ/| ln η|)|)

with exact prefactor π.

Figure 4: A boundary vortex

Our regime (14) is equivalent to the following ordering of energies:

Ered(Boundary vortex) ≪ Ered(Néel wall) ≪ Ered(Bloch line).
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Therefore, when minimizing Ered, Bloch lines are avoided, since they are too expensive. Instead,
our regime corresponds to the energy level of Néel walls; The boundary vortices do not contribute
to the energy in highest order. In particular, our vortex structure is driven by a 360◦ Néel wall
accompanied by a pair of boundary vortices at ∂B2.

In view of energy (16), a more physical model to consider is the following: In the regime (14),
minimize over the set of configurations m : B2 → S1 the functional energy

ǫη2

∫

B2

|∇m|2 dx+
η2

2
‖(∇ ·m′)ac‖2

Ḣ−1/2(R2)
+

1

2π
η2| ln η|

∫

∂B2

(m′ · ν)2 dH1. (19)

We conjecture that the vortex is the minimizer of the above variational problem. While we cannot
rigorously prove that, we would like to compare the vortex with another typical structure observed
in thin ferromagnetic discs, the so called S–state (see [11]). We show that the vortex has asymp-

Figure 5: S-state.

totically lower energy than the S–state, thus indicating that the vortex might be indeed global
minimizer of the energy. Recall that the vortex corresponds to the viscosity solution of the domain
B2, i.e.

m0(x) = ∇⊥ dist(x, ∂B2).

In our regime, renormalizing energy Ered by η2/| ln ǫ| (so that Néel walls have order one energy
per unit length), the asymptotic cost of a vortex follows by Theorem 1.2:

E0(m0) = 2π.

The limit configuration for ǫ = 0 of the S–state is represented by

S(x) =

{

∇⊥ dist(x, ∂B2
+) if x ∈ B2

+

−∇⊥ dist(x, ∂B2
−) if x ∈ B2

−,

where B2
± = {x ∈ B2 : ±x2 ≥ 0} are the upper (resp. lower) half–discs. In order to compute the

asymptotic energetic cost of S, we denote by θ, the wall angle between two mesoscopic directions
m+ and m− in S1, i.e. m+ = eiθm−. Furthermore, we denote the corresponding asymptotic
energy density of a Néel wall connecting the directions m+ and m− by e(m+,m−) = π

2 (1−cos θ
2 )2.

Then

E0(S) =

∫

γ

e(S+, S−) dH1

where γ denotes the jump set of the S−state, i.e.

γ = γ+ ∪ γ− and γ±(x1) = (x1,±
1 − x2

1

2
) with x1 ∈ (−1, 1).

9



In fact, if we denote by S± the traces of S on γ, one has S−(x) = (1, 0) and S+(x) = ±x⊥

|x| for

x ∈ γ± and therefore, by the change of variable x1 = tan t
2 we get

∫

γ

e(S+, S−) dH1 = 2

∫

γ+

e(S+, S−) dH1 = π

∫ 1

−1

(1 − x1
√

1 + x2
1

)2
√

1 + x2
1 dx1

= π

∫ π/2

0

1 + sin2 t
2

cos3 t
2

dt = 2π[
sin t

2

cos2 t
2

]
π/2
0 = 2

√
2π.

The above computation concludes the proof showing that the S–state is less favorable than the
vortex state in the regime (14). It is an open question to rigorously prove that the vortex state
indeed is the global minimizer over all planar configurations of (19).

1.4 Related analysis

A related functional arising in the context of micromagnetics has been introduced and analyzed
by Rivière and Serfaty in [26, 27]. In these papers, the authors consider the following energy

RSǫ(m) = ǫ

∫

Ω

|∇m|2 dx+
1

ǫ

∫

R2

||∇|−1∇ · (m1Ω)|2 dx, (20)

for unit–valued configurations m ∈ H1(Ω, S1) defined in a planar domain Ω ⊂ R2. Physically,
(20) describes the energy of a ferromagnetic sample with shape of an infinitely extended cylinder,
i.e. Ω × R. By assuming m is independent of the vertical z–direction, the micromagnetic energy
(12) indeed reduces to a fully two–dimensional problem, given by (20). In [26, 27], the authors
show Γ–converge to a limiting energy RS0. This energy is concentrated on lines, furthermore it
measures discontinuities of the phase ϕ of m rather than of the magnetization m. They also show
that for disc shaped sample, the vortex configuration ±m0 is asymptotically the global minimizer
and they calculate its energy. Our aim is to shown that for our model, the limit energy E0 for the
vortex has the same features: it is concentrated on a jump line and it is a function of the phase
rather than the magnetization.

However, there is an important difference in the qualitative character of the line-energy. For a
small jump of size θ ≪ 1 of the phase ϕ along a line-discontinity, the limit energy density scales
cubically, i.e. RS0 ∼ θ3 (see [26, p. 9]). However, in our case, a line-energy of ϕ is connected
to the corresponding jump energy density of the 360◦ Néel wall. It hence has a quartic scale, i.e.
E0 ∼ θ4, cf. Theorem 1.1 (see also [14]). For this reason, we cannnot rely on entropy methods
as in [26], since the entropy production typically scales cubically for small jumps [8]. We mention
that a theory of Lipschitz entropies has also been developed for Bloch walls (see [15]) in order to
derive their quadratic energetic cost in the jump size.

In the following, we would like to comment on the relationship of our analysis to the well–known
analysis on Ginzburg–Landau vortices (see [2]). As described in the previous section, in the case of
thicker ferromagnetic films, the minimizer is expected to have a Bloch line structure rather than the
360◦ Néel wall. In this case, the corresponding minimization problem is a variant of the Ginzburg–
Landau problem (18). The constraint |(m1,m2)| = 1 is relaxed for the planar components of m by
penalizing the distance of (m1,m2) to S1. There is a big qualitative difference for the microscopic
structure of a vortex: in the case of the Ginzburg–Landau model, it has a core of size ǫ in the
center where the in-plane magnetization vanishes, while in our case it stays with values in S1 and
concentrates on a radius at the same scale ǫ (a line discontinuity of the lifting connecting the
center of the vortex with the boundary). This is related to the fact that the main contribution
of the energy in the case of the Ginzburg–Landau energy is represented by the exchange energy
away from the vortex core, while in our case the main contribution of the energy derives from the
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nonlocal stray field part of the energy (as indicated by the construction for the Néel wall). For
this reason, it is not possible to use the techniques developed for the Ginzburg–Landau theory.

We finally note that there has been further research on Modica–Mortola type problems where the
homogeneous H−1–norm in (20) is replaced by the homogeneous H1/2–norm. One of these models
addresses the dislocations in crystals [19, 10]. Furthermore, in the context of phase separation the
classical Cahn–Hilliard energy has been extended by an H1/2–term, for references see [1].

2 Preliminaries

In this section, we give basic interpolation inequalities upon which our proofs of the lower bounds
for the energy are based.

First, we recall standard definitions and properties for some homogeneous Sobolev spaces, see [28].
Let s ∈ R and u : RN → R be a tempered distribution in S′(RN ). We denote the homogeneous
Ḣs-seminorm of u by

‖u‖2
Ḣs :=

∫

RN

|ξ|2s|F(u)|2(ξ) dξ,

where F(u) ∈ S′(RN ) stands for the Fourier transform of u (as a tempered distribution), i.e.

F(u)(ξ) =
1

(2π)N/2

∫

RN

e−iξ·xu(x) dx, ∀ξ ∈ RN .

These quantities can be also characterized as trace seminorms. In particular,

‖u‖2
Ḣ1/2(RN )

:=
1

2
inf

U∈Ḣ1(RN+1)

U|RN ×{0}=u

‖U‖2
Ḣ1(RN+1)

. (21)

Another equivalent representation of the fractional Sobolev seminorm s = 1/2 is given by difference
quotients:

‖u‖2
Ḣ1/2(R)

=
1

2π

∫

R

∫

R

|u(x) − u(y)|2
|x− y|2 dxdy. (22)

Note that the last two characterizations naturally generalize to smooth bounded domains and also
to the case of periodic functions (in particular when the domain is the unit circle S1).

Our proofs for the lower bounds of vortex and Néel wall energy are based on the following duality
argument and a variant of an interpolation inequality which holds (asymptotically) with exact
leading order constant. The idea is to estimate the dual product (χ, σ)L2(RN ) for a trial function

χ (controlling the length of orbits generated by m⊥ if N = 2) and a function σ (standing for the
volume charges (∇ ·m)1B2 in our physical context). In the limit ǫ/w→ 0, one has

∣

∣(χ, σ)L2(RN )

∣

∣

2 ≤ 2 + o(1)

π
ln
w

ǫ
‖χ‖L∞(RN )‖∇χ‖M(RN )

×
(

ǫ‖σ‖2
L2(RN ) + ‖σ‖2

Ḣ−1/2(RN )
+

1

w
‖σ‖2

Ḣ−1(RN )

)

, (23)

where the Landau symbol o(1) represents a function that converges to zero as ǫ/w → 0 uniformly
in all other unknowns (in particular the speed of convergence does not depend on σ and χ). The
above quantity is best understood as a variation of a duality estimate in the spaces Ḣ1/2(RN ) and
Ḣ−1/2(RN ). In fact, the energy (1) yields a slightly higher control on σ (depending of ǫ) than its
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Ḣ−1/2(RN )−seminorm, whereas (‖χǫ‖L∞‖∇χǫ‖M) has the same scaling as ‖χǫ‖2
Ḣ1/2

but is slightly
weaker. In fact, the rate of the failing interpolation embedding

BV ∩ L∞(RN ) * Ḣ1/2(RN )

is logarithmic: Regularizing the Ḣ1/2(RN )−seminorm, this perturbation gives a weaker seminorm
that is controlled with a logarithmically slow rate having the optimal prefactor 2

π (see [6]): For
ǫ≪ w,

∫

RN

min{1

ǫ
, |ξ|, w|ξ|2}|F(χ)|2 dξ /

2

π

(

ln
w

ǫ

)

‖χ‖L∞ ‖∇χ‖M(RN ).

The parameters ǫ (resp. w) correspond to a cut–off for high (resp. low) frequencies.

A variant of (23) for dimension N = 2 is given in [6, p. 249]. The proof extends directly to (23).
For dimension N = 1, (23) can be written conveniently in terms of the 1–d energy (8) (see e.g.
[14]):

Lemma 2.1. Let m : R → R2 with |m| ≤ 1 in R and let χ : R → R be a function of locally bounded
variation. Let σ = dm1

dx1
1(−1,1) (standing for the divergence of m). Then we have

∣

∣(χ, σ)L2(R)

∣

∣ ≤
(

(
4

π
+ o(1))‖χ‖L∞(R)‖∇χ‖M(R) (E1d

ǫ (m) + o(1))

)1/2

as ǫ→ 0. (24)

The above inequality does not include w in contrary to (23). The reason is that w corresponds to
a low frequency cut–off which is not needed in the case of uniformly bounded support of ∇ · m.
More precisely, (24) corresponds to (23) when we set w := | ln ǫ|2 and N = 1 since

lim
ǫ→0

| ln ǫ|
| ln ǫ/w| = 1 and

1

w
‖σ‖2

Ḣ−1(R)
≤

‖m1‖2
L2(−1,1)

| ln ǫ|2 = o(1).

Note that the change of the prefactor from 2/π in (23) to 4/π in (24) is consequence of the factor
1/2 in (3) coming for the stray field energy in (8).

The localized version of (23) for N = 2 was proved in [17]. We state it in a particular case:

Lemma 2.2. Let m : B2 → R2, σ = ∇ ·m and χ : R2 → {±1} be a function of locally bounded
variation. We consider η ∈ C∞

c (B3) with 0 ≤ η ≤ 1 and let h : B3 → R3 be a stray field associated
to m by (11). Then there exists a universal constant C > 0 such that for all ǫ ∈ (0, 1],

∣

∣

∣

∣

∫

B2

η2 χ ∇ ·m dx

∣

∣

∣

∣

≤
(

4| ln ǫ|
π

‖χ‖L∞(B2)‖η2∇χ‖M(B2)

∫

B3

η2|h|2
)1/2

(25)

+
C(1 + ‖∇η‖C0)(1 + ‖η∇χ‖M(B2))

| ln ǫ|1/2
Eloc

ǫ (m,h)1/2.

The idea of the localization is that in the limit ǫ → 0 only the jump part of ∇χ, but not of the
derivative of the cut-off function η is seen in highest order (i.e. in line (25)). This holds true as
long as the derivative of η stays bounded.

3 360◦ Neel wall

This section is concerned with 1–d 360◦ transition layers with prescribed initial angle α. In Section
3.1, we first show smoothness of critical points of the energy (8). We then give matching upper
and lower bound for the energy in Sections 3.2 and 3.3. In this section, we always assume that m
only depends on one variable t := x1 and satisfies (9). We write m(t) = (u(t), v(t)).
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3.1 Smoothness

We first show how (8) follows from the 2–d energy (1): The calculation for the exchange part of
the energy is trivial and follows directly from |m| = 1. We hence only show the derivation for
the stray field part of the energy: Since the magnetization only depends on t = x1, in view of
(2) it is clear that the stray-field h associated to m only depends on t and z and furthermore the
third component of h is zero. Identifying h with a 2–d vector field, i.e. h = (h1, h3), (2) takes the
following form











( ∂
∂t ,

∂
∂z ) × h = 0 for (t, z) ∈ R2,

( ∂
∂t ,

∂
∂z ) · h = 0 in {z 6= 0},

[h3] = − du
dt on {z = 0},

(26)

where [·] denotes the jump size over the horizontal line {z = 0}. The unique solution h ∈ L2(R2,R2)
of (26) can be explicitly computed in terms of its Fourier transform with respect to t (see e.g. [9]):

F(h(·, z))(ξ) = e−|ξ||z|F(
du

dt
)(ξ)

(

iξ

2|ξ| ,−
sign(z)

2

)

, ξ 6= 0, z 6= 0.

A straightforward computation then shows that
∫

R2

|h|2 dtdz =
1

2

∫

R

|| d
dt
|1/2u|2 dt.

thus concluding the derivation of (8). It is convenient to express (8) in terms of the lifting ϕ, i.e.
(u, v) = (cosϕ, sinϕ). We get

E1d
ǫ (m) = ǫ

∫

R

| d
dt
ϕ|2 dt+

| ln ǫ|
2

∫

R

|| d
dt

|1/2 cosϕ|2 dt. (27)

It follows that the Euler–Lagrange equation in weak formulation is given by:
∫

R

(

ǫ
d

dt
ϕ

d

dt
ζ − | ln ǫ|b(t) sinϕ ζ

)

dt = 0, for all ζ ∈ C∞
c (−1, 1), (28)

where we have defined the non–local operator b(t) by

b(t) :=
1

2
(−∆)1/2(cosϕ− cosα), i.e. F(b)(ξ) = |ξ|F(cosϕ− cosα). (29)

Note that since we have imposed Dirichlet boundary conditions (9), the identity (28) is only valid
in the interior of the domain (−1, 1). Let us also remark that b(t) can be interpreted as the trace
of the first component h1 of the stray field on the horizontal line {z = 0}.
The existence of a minimizer of (27) with Dirichlet boundary conditions of type (9) is standard
since (27) is lower semicontinuous with respect to the weak-topology in H1

loc(R). The smoothness
of the 180◦−Néel wall (on the entire real axis) was shown in [21, Lemma 1] in the case where the
Néel wall is confined by anisotropy (see also [3]). The proof in our model (where the Néel wall is
confined by the interaction with the sample edges) is based on the arguments used in [3]. However,
in contrary to [3], we need to use a localization argumentent since the solution is not smooth at
the boundary. In the following, we show the smoothness of every critical point of the energy (27):

Lemma 3.1 (Smoothness). Let ǫ > 0 and α ∈ [0, 2π). Every weak solution ϕ ∈ Ḣ1(R) of (28)
satisfying the boundary conditions (9) is smooth in (−1, 1), i.e. ϕ ∈ C∞((−1, 1)) and is a classical
solution of

ǫ
d2

dt2
ϕ+ | ln ǫ|b(t) sinϕ = 0, for t ∈ (−1, 1). (30)
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Proof. Since ϕ ∈ Ḣ1(R) is a weak solution of (28), this already means that (30) is satisfied in the
distributional sense. It remains to show that ϕ ∈ C∞((−1, 1)).

Since ϕ ∈ Ḣ1(R), we have cosϕ ∈ Ḣ1(R). In particular ϕ ∈ H1((−1, 1)) and by (29) we also have
b ∈ L2(R). We want to show that for any fixed R ∈ (0, 1) and any fixed k ∈ N, we have

ϕ ∈ Hk+1((−R,R)), and b ∈ Hk((−R,R)). (31)

By standard Sobolev embedding theorems, smoothness of ϕ and b in (−1, 1) then follow from (31).
In order to show (31), we argue by induction. Fixing δ = (1 − R)/(2k + 2) > 0, we may assume
that we have

ϕ ∈ Hk((−R− 2δ,R+ 2δ)), and b ∈ Hk−1((−R− 2δ,R+ 2δ)). (32)

In view of (30), (32) immediately yields ϕ ∈ Hk+1((−R − 2δ,R + 2δ)). It remains to show that
b ∈ Hk((−R,R)). For this, we apply a localization argument on the (nonlocal) equation (29):

Choose a smooth cut–off function ζ with ζ = 1 in (−R−δ,R+δ) and ζ = 0 outside (−R−2δ,R+2δ).
We localize the right hand side of (29), i.e. let f := (cosϕ − cosα) and decompose f = f0 + f1,
where f0 := fζ. Since (29) is linear, we have b = b0 + b1 where bj := (−∆)1/2fj , j = 1, 2. Since
f0 ∈ Hk+1(R), it immediately follows by (29) that b0 ∈ Hk(R). Therefore in order to get (31), we
need to show that b1 ∈ Hk((−R,R)).

We first note that by (32), we have b1 ∈ Hk−1((−R − 2δ,R+ 2δ)). Using a duality argument, we
will show b1 ∈ Hk((−R,R)), i.e. we claim that

(b1,
dk

dtk
η)L2 ≤ C(R) ‖η‖L2, for every η ∈ C∞

c (−R,R).

Indeed, in using the definition of b1 and the explicit expression (22) of the H1/2 scalar product,
we get

(b1,
dk

dtk
η)L2 =

1

2π

∫

R

∫

R

(f1(t) − f1(s))(
dk

dtk η(t) − dk

dsk η(s))

(t− s)2
dt ds

=
−1

π

∫

supp f1

∫

supp η

f1(t)
dk

dsk η(s)

(t− s)2
dt ds

= Ck

∫

supp f1

∫

supp η

f1(t)η(s)

(t− s)k+2
dt ds

≤ Ck

δk+2
‖f1‖L2(R)‖η‖L2.

In the above estimate, we have used that the two sets supp f1 ⊂ [−1,−R − δ) ∪ (R + δ, 1] and
supp η ⊂ (−R,R) have distance ≥ δ. This concludes the proof of (31) and hence of the lemma.

3.2 Upper bound

In this section, we prove the upper bound in Theorem 1.1. For this, we construct a recovery family
for the 360◦−Néel wall of initial angle α. The main result is:

Proposition 3.2. Let α ∈ [0, 2π). Then there exists mǫ : R → S1 satisfying (9) and

E1d
ǫ (mǫ) ≤ π (1 + cos2 α) + o(1) as ǫ→ 0.

14



The construction of the 360◦−Néel wall with initial angle α is based on the following idea: The
full rotation 360◦ rotation splits up into two rotations of size 2α and 2π − 2α, respectively. Each
of these rotations is (up to minor modifications) represented a rescaled 180◦–Néel wall profile, see
Figure 6 (see [7]).

For δ > 0, we introduce the “bump” function wδ by

wδ(t) =

{

1
| ln δ| ln 1√

t2+δ2
if |t| ≤

√
1 − δ2,

0 if |t| ≥
√

1 − δ2,
(33)

see also the left hand side of Figure 6. Here and in the following, we use the parameter δ as a short
notation for

δ = ǫ| ln ǫ|.

a)

u = wδ

1

δ−1 1

b)

v
1

−1

−1 1

Figure 6: Profiles of the 180◦ Néel wall with magnetization m = (u, v)

Based on wδ, we define for each β ∈ [0, 2], the following S1–valued magnetization (uβ , vβ) : R → S1

by

uβ(t) =















(1 − β) + βwδ(t) if |t| ≤
√

1
4 − δ2,

cos θδ,β(|t|) if
√

1
4 − δ2 ≤ |t| ≤ 1,

1 − β if |t| ≥ 1,

and vβ(t) =







−
√

1 − u2
β(t) if t < 0,

√

1 − u2
β(t) if t > 0.

(34)

Here, θδ,β : [
√

1/4 − δ2, 1] → R is the linear function satisfying

θδ,β

(
√

1/4 − δ2
)

= arccos(1 − β + β
ln 2

| ln δ| ) and θδ,β(1) = arccos(1 − β).

Our 360◦ Néel wall construction is based on two such rescaled functions (uβj , vβj ). Before giving
the proof of Proposition (3.2), we first give the corresponding energy estimates for the profile
(uβ , vβ):

Lemma 3.3. For β ∈ [0, 2], we have that

∫

R

| d
dt

(uβ, vβ)|2 dt = o(
1

ǫ| ln ǫ| ) and

∫

R

|| d
dt
|1/2uβ|2 dt ≤

β2π + o(1)

| ln ǫ| as ǫ→ 0.
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1

1 − β

0−1 1

Figure 7: Sketch of uβ

Proof. We divide the proof in several steps:

Step 1. We first estimate the exchange energy of the profile:
∫

R

| d
dt

(uβ, vβ)|2 dt =

∫

{
√

1
4
−δ2≤|t|≤1}

| d
dt
θδ,β|2 + β2

∫

{|t|≤
√

1
4
−δ2}

1

1 − u2
β

| d
dt
wδ|2

= I + II.

We distinguish two cases:

Case 1. β ∈ [0, 2). For estimating I, if β = 0 then θδ,β is constant, hence

I =

∫

{|t|≥
√

1
4
−δ2}

| d
dt
θδ,β|2 = 0.

Otherwise, β ∈ (0, 2) and we estimate for t ∈ (
√

1
4 − δ2, 1),

| d
dt
θδ,β| =

| arccos(1 − β + β ln 2
| ln δ| ) − arccos(1 − β)|

1 −
√

1
4 − δ2

. | arccos(1 − β + β
ln 2

| ln δ| ) − arccos(1 − β)|

.
1

√

1 − (1 − β)2
β ln 2

| ln δ| .
1

| ln δ| , (35)

where ǫ > 0 (and δ > 0) is small enough. Hence,

I =

∫

{1≥|t|≥
√

1
4
−δ2}

| d
dt
θδ,β|2 .

1

| ln δ|2 = o(
1

ǫ| ln ǫ| ) as ǫ→ 0.

For the estimate of II, we have 1 + uβ ≥ 2 − β > 0 if β ∈ [0, 2). Therefore,

1 − u2
β & 1 − uβ =

β ln t2+δ2

δ2

2| ln δ|
By a change of variable (t = δs), this yields

II = β2

∫

{|t|≤
√

1
4
−δ2}

1

1 − u2
β

| d
dt
wδ|2 .

1

| ln δ|

∫ 1

0

t2

(t2 + δ2)2 ln t2+δ2

δ2

dt

.
1

δ| ln δ|

∫ ∞

0

s2

(s2 + 1)2 ln(s2 + 1)
ds

.
1

ǫ| ln ǫ|2 = o(
1

ǫ| ln ǫ| ) as ǫ→ 0.
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(Here, we used that s 7→ s2

(s2+1)2 ln(s2+1) ∈ L1(R+).) That proves the desired exchange energy

estimate in the case β ∈ [0, 2).

Case 2. β = 2. For estimating I, we use that for t ∈ (
√

1
4 − δ2, 1),

| d
dt
θδ,β| =

| arccos(−1 + 2 ln 2
| ln δ| ) − arccos(−1)|

1 −
√

1
4 − δ2

. | arccos(−1 + 2
ln 2

| ln δ| ) − π| .

√

1

| ln δ| , (36)

where ǫ > 0 is small enough. (Here, we used the inequality | arccos(−1+t)−π| ≤ 2
√
t for t ∈ [0, 1].)

Hence,

I = β2

∫

{|t|≥
√

1
4
−δ2}

| d
dt
θδ,β|2 .

1

| ln δ| = o(
1

ǫ| ln ǫ| ) as ǫ→ 0.

For the estimate of II, we have 1 − u2
β = 4wδ(1−wδ) and therefore, the change of variable t = δs

yields

II = β2

∫

{|t|≤
√

1
4
−δ2}

1

1 − u2
β

| d
dt
wδ|2 .

∫ 1/2

0

t2

(t2 + δ2)2 ln 1
t2+δ2 ln t2+δ2

δ2

dt

.
1

δ

∫ 1
2δ

0

s2

(s2 + 1)2(ln 1
δ2 − ln(s2 + 1)) ln(s2 + 1)

ds

= II1 + II2 + II3,

where II1, II2 and II3 represent the splitting of the last integral into the three intervals (0, 1),
(1, | ln δ|) and (| ln δ|, 1

2δ ), respectively. We compute:

II1 .
1

δ

∫ 1

0

1

ln 1
δ2 − ln 2

ds .
1

δ| ln δ| = o(
1

ǫ| ln ǫ| ),

II2 .
1

δ| ln δ|

∫ | ln δ|

1

ds

s2
. o(

1

ǫ| ln ǫ| )

(since ln 1
δ2 − ln(s2 + 1) & ln 1

δ for 1 < s < | ln δ|) and

II3 .
1

δ

∫ 1
2δ

| ln δ|

ds

s2
= o(

1

ǫ| ln ǫ|) as ǫ→ 0

(since ln 1
δ2 − ln(s2 + 1) & 1 for 1

2δ > s > | ln δ|). Summing up, we deduce the first estimate in
Lemma 3.3 for β = 2.

Step 2. We now estimate the stray-field energy of the profile (uβ , vβ). For that, we extend uβ into

R2 by the following radially symmetric function Uβ : R2 → R defined as Uβ(x1, x2) = uβ(
√

x2
1 + x2

2)

for every (x1, x2) ∈ R2. Using the estimate of the Ḣ1/2−seminorm of uβ as a trace of Uβ , we deduce:

∫

R

|| d
dt
|1/2uβ|2 dt ≤

1

2

∫

R2

|∇Uβ|2 dx = π

∫ 1

0

|duβ

dr
|2 rdr

= π

∫

√
1
4
−δ2

0

|duβ

dr
|2 rdr + π

∫ 1

√
1
4
−δ2

sin2 θδ,β |dθδ,β

dr
|2 rdr.
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The change of variable r = δs leads to the following bound for the first term of the above RHS:

∫

√
1
4
−δ2

0

|duβ

dr
|2 rdr ≤ β2

| ln δ|2
∫ 1

0

r3 dr

(r2 + δ2)2
≤ β2

| ln δ|2
∫ 1/δ

0

s3 ds

(s2 + 1)2
=
β2 + o(1)

| ln δ| .

For the second term on (
√

1
4 − δ2, 1) of the RHS, we distinguish two cases:

Case 1. β ∈ [0, 2). If β = 0, then
dθδ,β

dr = 0 on (
√

1
4 − δ2, 1), therefore the estimate is trivial. If

β ∈ (0, 2), then we use (35) and it implies that

∫ 1

√
1
4
−δ2

sin2 θδ,β |dθδ,β

dr
|2 rdr .

1

| ln δ|2 .

Case 2. β = 2. We have that

sin2 θδ,β(t) ≤ sin2 θδ,β(

√

1

4
− δ2) = 1 − (1 − 2 ln 2

| ln δ| )
2 = O(

1

| ln δ| ) for t ∈ (

√

1

4
− δ2, 1).

Combining with (36), it follows as before that

∫ 1

√
1
4
−δ2

sin2 θδ,β |dθδ,β

dr
|2 rdr .

1

| ln δ|2 .

Therefore, we conclude that

∫

R

|| d
dt

|1/2uβ|2 dt ≤
πβ2 + o(1)

| ln δ| =
πβ2 + o(1)

| ln ǫ| as ǫ→ 0.

We now prove the main result of this section:

Proof of Proposition 3.2 . We combine two transition profiles

(u1, v1) := (uβ1
, vβ1

) and (u2, v2) := (uβ2
, vβ2

)

defined as in (34) where βj , j = 1, 2, is given by

β1 := 1 + cosα and β2 := 1 − cosα.

The first transition profile represents a rotation of (2π − 2α) while the second one represents a
rotation of 2α. Our construction for m = (u, v) is sketched in Figure. 8. It is defined as follows:
If α ∈ [0, π), we define

u(t) =

{

−u1(4(t+ 1
2 )) if t < 0,

u2(4(t− 1
2 )) if t > 0,

and v(t) =

{

−v1(4(t+ 1
2 )) if t < 0,

v2(4(t− 1
2 )) if t > 0.

Otherwise if α ∈ [π, 2π), we set

u(t) =

{

u2(4(t+ 1
2 )) if t < 0,

−u1(4(t− 1
2 )) if t > 0,

and v(t) =

{

v2(4(t+ 1
2 )) if t < 0,

−v1(4(t− 1
2 )) if t > 0.
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1

1 − cosα

−1

−0.5 0.5

Figure 8: Sketch of u for 360◦ Néel wall construction

For the exchange energy of m, Lemma 3.3 yields by rescaling:

ǫ

∫

R

| d
dt
m|2 dt = 4ǫ

∑

j=1,2

∫

R

| d
dt

(uj, vj)|2 dt = o(
1

| ln ǫ| ).

For the stray-field energy, it is sufficient to show that

∫

R

|| d
dt
|1/2u|2 dt ≤

∑

j=1,2

∫

R

|| d
dt
|1/2uj|2 dt+ o(

1

| ln ǫ| ), (37)

since Lemma 3.3 will then yield

1

2

∫

R

|| d
dt
|1/2u|2 dt ≤ π(β2

1 + β2
2) + o(1)

2| ln ǫ| =
π(1 + cos2 α) + o(1)

| ln ǫ| as ǫ→ 0.

In order to show (37), we denote by f(t) = u(t) − cosα, f1(t) = −u1(4(t + 1
2 )) − cosα and

f2(t) = u2(4(t+ 1
2 )) − cosα for every t ∈ R. Then we notice that

f = f1 + f2 in R, H1(supp f1) = H1(supp f2) ≤ 1

2
and dist(supp f1, supp f2) ≥ 1

2
.

Moreover,

∫

R

|| d
dt

|1/2u|2 dt =

∫

R

|| d
dt
|1/2f |2 dt and

∫

R

|| d
dt

|1/2uj |2 dt =

∫

R

|| d
dt
|1/2fj |2 dt,

for j = 1, 2. We compute that

∫

R

|| d
dt
|1/2f |2 dt =

1

2π

∫

R

∫

R

|f(s) − f(t)|2
|s− t|2 dsdt

=
∑

j=1,2

∫

R

|| d
dt
|1/2fj|2 dt+

1

π

∫

supp f1

∫

supp f2

−f1(s)f2(t)
|s− t|2 dsdt.

Since f1 and f2 have opposite sign and their supports have distance ≥ 1/2 between each other,
(37) follows by the estimate:

∫

supp f1

∫

supp f2

−f1(s)f2(t)
|s− t|2 dsdt .

∑

j=1,2

∫

supp fj

|fj(t)|2 dt

.

∫

R

|wδ(t)|2 dt+O(
1

| ln δ|2 ) = o(
1

| ln ǫ| ).
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3.3 Lower bound

In this section we give the proof for the lower bound in Theorem 1.1. The main idea for the
proof is the following: Consider any admissible configuration mǫ = (uǫ, vǫ) satisfying (9) for some
given initial angle α. We first give an optimal lower bound separately for the regions where uǫ

is positive respectively nonnegative. We then use the fact that the “interaction” of the nonlocal
magnetostatic component of the energy is positive between these two regions.

Since

E1d
ǫ (mǫ) ≥ Ẽ1d

ǫ (uǫ) := ǫ

∫

R

| d
dt
uǫ|2 dt+

| ln ǫ|
2

∫

R

|| d
dt
|1/2uǫ|2 dt, (38)

it is enough to prove the lower bound for Ẽ1d
ǫ rather than E1d

ǫ :

Proposition 3.4. Let α ∈ [0, 2π) and mǫ = (uǫ, vǫ) : R → S1 satisfy (9). Then

Ẽ1d
ǫ (uǫ) ≥ π (1 + cos2 α) + o(1) as ǫ→ 0.

Proof. Let

ũǫ := uǫ − cosα.

Although the energy Ẽ1d
ǫ is non–local, it behaves super-additively with respect to its positive and

negative components. Indeed, let

fǫ := (ũǫ)+ = max{ũǫ, 0} and gǫ := (ũǫ)− = min{ũǫ, 0}
be the positive and negative part, respectively of ũǫ. In particular.

ũǫ = fǫ + gǫ. (39)

We claim that

Ẽ1d
ǫ (ũǫ) ≥ Ẽ1d

ǫ (fǫ) + Ẽ1d
ǫ (gǫ). (40)

Indeed, the first term in (38) is additive with respect to (39) since the support of fǫ and gǫ is of
zero-measure:

∫

R

| d
dt
ũǫ|2 dt =

∫

R

| d
dt
fǫ|2 dt+

∫

R

| d
dt
gǫ|2 dt.

For the second term in (38), the super-additivity is a consequence of the following representation
of the stray field energy:
∫

R

|| d
dt
|1/2ũǫ|2 dt

(22)
=

1

2π

∫

R

∫

R

|ũǫ(t) − ũǫ(s)|2
|t− s|2 dt ds

=

∫

R

|| d
dt
|1/2fǫ|2 dt+

∫

R

|| d
dt
|1/2gǫ|2 dt+

1

π

∫

supp fǫ

∫

supp gǫ

−fǫ(t)gǫ(s)

|t− s|2 dtds

≥
∫

R

|| d
dt
|1/2fǫ|2 dt+

∫

R

|| d
dt
|1/2gǫ|2 dt,

where in the last line of the above estimate we have used that fǫgǫ ≤ 0. The above computations
show that (40) holds. Since sup ũǫ = sup |fǫ| = 1 − cosα and inf ũǫ = − sup |gǫ| = −1 − cosα,
Lemma 3.5 below, applied for fǫ and gǫ shows that

Ẽ1d
ǫ (fǫ) ≥ π

2
(1 − cosα)2 + o(1) as ǫ→ 0,

Ẽ1d
ǫ (gǫ) ≥ π

2
(1 + cosα)2 + o(1) as ǫ→ 0.

(41)
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Combining (40) and (41), we conclude that

Ẽ1d
ǫ (ũǫ)

(40)

≥ π

2

(

(1 − cosα)2 + (1 + cosα)2
)

+ o(1)
(41)
= π (1 + cos2 α) + o(1).

The next result gives the optimal control on the height of a transition by the energy:

Lemma 3.5. Let β ≥ 0. Suppose that ũǫ : R → R be a continuous function that satisfies sup |ũǫ| =
β and ũǫ = 0 for |x| ≥ 1. Then

Ẽ1d
ǫ (ũǫ) ≥

β2π

2
+ o(1) as ǫ→ 0.

Proof. This lemma is a rescaled version of a corresponding 2–d result in [6]. Let t0 be a point
where ũǫ(t0) = β. We define the test function χ ∈ BVloc(R) by

χ(t) = +1 for t ≤ t0 χ(t) = −1 for t > t0.

Using integration by parts, Lemma 2.1 yields

2β =

∣

∣

∣

∣

∫

R

χ
d

dt
ũǫ dt

∣

∣

∣

∣

≤
(

4

π
‖χ‖L∞(R)‖∇χ‖M(R) (Ẽ1d

ǫ (ũǫ) + o(1))

)1/2

≤
(

8

π
(Ẽ1d

ǫ (ũǫ) + o(1))

)1/2

,

thus concluding the proof.

4 Vortex

We start by constructing a recovery family in order to deduce the upper bound for the energy of
a vortex.

4.1 Upper bound

Proposition 4.1. There exists a family {mǫ ∈ H1(B2, S1)}ǫ>0 satisfying (4) and such that the
following upper bound holds true:

E2d
ǫ (mǫ) ≤ 2π + o(1) as ǫ→ 0.

Proof. In dependence of 0 < ǫ≪ 1, we will use the two small parameters

λ = λ(ǫ) =
1

| ln ǫ|2 and δ = δ(ǫ) = ǫ| ln ǫ|3. (42)

In order to construct the profile mǫ, we distinguish three regions, see Figure 9.:

D1 = B2 \ (D2 ∪D3),

D2 = {x ∈ B2 : λ < |x| < 1, x2 ≥ 0, |x1| ≤ λ} and D3 = {x ∈ B2 : |x| < λ}.

In the region D1, mǫ will coincide with the vortex (in particular mǫ is divergence free). In the
region D2, the profile will turn clockwise as a 360◦−Néel wall of initial angle 0, and the region D3
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D3

D1

D2

2λ

360◦

Néel

wall

Figure 9: Decomposition of B1 and sketch of minimizer

stands for the core of the vortex, where we apply some linear cut–off in the radius for the phase of
mǫ.

Step 1. Construction. Throughout the proof, we denote the phase of mǫ by Φǫ, i.e. mǫ = eiΦǫ .
In D1, the profile mǫ is defined as follows:

mǫ(x) = eiΦǫ(x) =
x⊥

|x| in D1,

or equivalently, in polar coordinates, the phase is given by Φǫ(r, θ) = θ in D1. In D2, we first
denote by (ũδ, ṽδ) = eiϕ̃δ : R → S1, the following approximation of the 360◦−Néel wall of initial
angle 0 (magnetization turning in clockwise direction

ũδ(t) =















1 − 2wδ(t) if |t| ≤
√

1
4 − δ2

cos θ̃δ(|t|) if
√

1
4 − δ2 ≤ |t| ≤ 1

1 if |t| ≥ 1,

and ṽδ(t) =

{

−
√

1 − ũ2
δ(t) if t < 0,

√

1 − ũ2
δ(t) if t > 0,

(43)

where wδ is defined in (33) and θ̃δ : [
√

1/4 − δ2, 1] → [0, π
2 ] is defined by

θ̃δ := linear function with θ̃δ

(
√

1/4 − δ2
)

= arccos
| ln 4δ|
| ln δ| and θ̃δ(1) = 0. (44)

In view of (43), we may assume that ϕ̃δ(0) = −π. We then have ϕ̃δ(−∞) = 0 and ϕ̃δ(+∞) = −2π
and since ϕ̃δ + π is antisymmetric in t, we also get

ϕ̃δ(−t) + ϕ̃δ(t) = −2π for every t ∈ R. (45)

We rescale the transition layer (ũδ, ṽδ) in order to be contained in D2: For each arc with r ∈ (λ, 1)
fixed in D2 and where the angle varies in the interval θ ∈ (π

2 ± arcsin λ
r ), we define the rescaled

transition layer (uǫ, vǫ) with phase ϕǫ by

(uǫ, vǫ)(θ) = eiϕǫ(θ) := (ũδ, ṽδ)

(

θ − π
2

arcsinλ

)

,

or equivalently, the rescaled phase is given by

ϕǫ(θ) = ϕ̃δ

(

θ − π
2

arcsinλ

)

. (46)
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The profile mǫ is defined in terms of its components in radial direction ~r and angular direction ~θ
for rotation around arcs with fixed radius,

mǫ(r, θ) = eiΦǫ(r,θ) = uǫ(θ)~θ − vǫ(θ)~r in D2.

Notice that in D2 (as well as in D1), the profile mǫ (together with its phase Φǫ) are invariant in r.
Also, we have the following relation between ϕǫ and Φǫ:

Φǫ(r, θ) = θ + ϕǫ(θ) +
π

2
in D2. (47)

Our construction is such that the phase Φǫ is continuous in D1∪D2 since Φǫ(r, 0) = Φǫ(r, 2π) = π
2

for r ∈ [λ, 1). Finally, in the core region D3, we define the profile mǫ(r, θ) = eiΦǫ(r,θ) in polar
coordinates by

Φǫ(r, θ) =
r

λ
Φǫ(λ, θ) in D3, (48)

where we recall by (47) that Φǫ(λ, θ) = θ + π
2 + ϕ̃δ(

θ−π
2

arcsin λ) for every θ ∈ (0, 2π).

Step 2. Exchange energy estimate. We first estimate the exchange energy of mǫ. In D1, we have
|∇mǫ| = 1/r in polar coordinates and hence

ǫ

∫

D1

|∇mǫ|2 dx ≤ 2πǫ

∫ 1

λ

dr

r
= O(ǫ| ln λ|) = o(

1

| ln ǫ| ).

In D2, we compute

|∇mǫ|2 = |∇Φǫ|2
(47)

.
1

r2

(

1 +
( d

dθ
ϕǫ

)2
(θ)

)

=
1

r2

(

1 +
( d

dθ ϕ̃δ)
2(

θ−π
2

arcsin λ)

arcsin2 λ

)

, (49)

which implies by Lemma 3.3 that

ǫ

∫

D2

|∇mǫ|2 dx
(49)

. ǫ

∫ 1

λ

∫ π
2
+arcsin λ

r

π
2
−arcsin λ

r

(1 + (
d

dθ
ϕǫ)

2(θ)) dθ
dr

r

(46)

. ǫ

∫ 1

λ

(

arcsin
λ

r

)

dr

r
+

ǫ

arcsinλ

(
∫ 1

λ

dr

r

)(
∫ 1

−1

(
d

dθ
ϕ̃δ)

2 dθ

)

. ǫ+
ǫ| lnλ|
λ

1

δ| ln δ| = o(
1

| ln ǫ| ),

where we have used that arcsin t ≤ 2t for t ∈ (0, 1).

In D3, we have

|∇mǫ|2 = |∇Φǫ|2
(48)

.
1

λ2

(

Φǫ(λ, θ)
2 + 1 +

( d
dθ ϕ̃δ)

2(
θ−π

2

arcsinλ )

arcsin2 λ

)

,

which implies by Lemma 3.3 that

ǫ

∫

D3

|∇mǫ|2 dx . ǫ

∫ λ

0

r dr

λ2
+

ǫ

arcsinλ

∫ λ

0

r dr

λ2

∫ 1

−1

(
d

dθ
ϕ̃δ)

2 dθ

. ǫ+
ǫ

λ

1

δ| ln δ| = o(
1

| ln ǫ| ).
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Step 3. Stray-field energy estimate. The stray field potential Uǫ : R3 → R, generated by the
volume charges (∇ ·mǫ)1B2 , is defined in (2) as the solution of

∫

R3

(∇, ∂
∂z

)Uǫ · (∇,
∂

∂z
)ζ dxdz =

∫

B2

∇·mǫ ζ dx, for all ζ ∈ C∞
c (R3).

The existence and uniqueness of this solution are a direct consequence of Lax–Milgram’s Theorem
and are proved in Appendix. By an approximation argument, the above equation holds for all
ζ ∈ Ḣ1(R3). In particular by choosing ζ = Uǫ we have

∫

R3

|(∇, ∂
∂z

)Uǫ|2 dxdz =

∫

B2

∇·mǫ Uǫ dx. (50)

In order to estimate the stray field energy, we will estimate the right hand side of (50) in the three
subdomains B2 = D1 ∪D2 ∪D3. We first note that

∫

D1

∇·mǫ Uǫ dx = 0. (51)

For the estimate in D2, we compute in polar coordinates

∇ ·mǫ = −m⊥
ǫ · ∇Φǫ

(47)
=

vǫ

r
− duǫ

dθ
· 1

r

for every (θ, r) ∈ D2. By Hölder’s inequality and Sobolev’s embedding theorem, we estimate

∣

∣

∣

∣

∫

D2

Uǫ
vǫ

|x| dx
∣

∣

∣

∣

≤
(
∫

D2

U4
ǫ dx

)1/4(∫

D2

∣

∣

sinϕǫ

r

∣

∣

4/3
dx

)3/4

≤
(
∫

R2

U4
ǫ dx

)1/4(∫ 1

λ

∫ π
2
+arcsin λ

r

π
2
−arcsin λ

r

| sinϕǫ(θ)|4/3 dθ
dr

r1/3

)3/4

. ‖Uǫ‖Ḣ1/2(R2)

(

arcsinλ

∫ 1

λ

∫ 1

−1

| sin ϕ̃δ(s)|4/3 ds
dr

r1/3

)3/4

. λ3/4‖Uǫ‖Ḣ1(R3) = O(
1

| ln ǫ|3/2
)‖Uǫ‖Ḣ1(R3). (52)

Integration by parts leads to:
∣

∣

∣

∣

∫

D2

Uǫ
duǫ

dθ

dx

|x|

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 1

λ

∫

S1

Uǫ
duǫ

dθ
dσ(θ)dr

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 1

λ

∫

S1

uǫ
dUǫ(r, ·)
dθ

dσ(θ)dr

∣

∣

∣

∣

≤
∫ 1

0

‖uǫ‖Ḣ1/2(R)‖Uǫ(r, ·)‖Ḣ1/2(S1) dr.

Hence, by application of Lemma 3.3 (with β = 2) and in view of (21), we obtain

∣

∣

∣

∣

∫

D2

Uǫ
duǫ

dθ

dx

|x|

∣

∣

∣

∣

≤
√

4π + o(1)

| ln ǫ|

∫ 1

0

(

1

2

∫

{|x|=r}×R

|(∇, ∂
∂z

)Uǫ|2(r, θ, z) dσ(θ)dz

)1/2

dr

≤
√

2π + o(1)

| ln ǫ| ‖Uǫ‖Ḣ1(R3).

Together with (52), it follows that

∣

∣

∣

∣

∫

D2

∇·mǫ Uǫ dx

∣

∣

∣

∣

≤
√

2π + o(1)

| ln ǫ| ‖Uǫ‖Ḣ1(R3). (53)
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The contribution of the stray field energy in D3 is of lower order as we will show in the following.
We express mǫ = eiΦǫ in polar coordinates:

mǫ(r, θ) = sin(θ − Φǫ +
π

2
)~r + cos(θ − Φǫ +

π

2
)~θ, for (r, θ) ∈ D3. (54)

Continuing to use polar coordinates, the formula ∇ ·mǫ = −m⊥ · ∇Φǫ yields

∇ ·mǫ
(54)
= cos(θ − Φǫ(r, θ) +

π

2
)
Φǫ(λ, θ)

λ
− sin(θ − Φǫ(r, θ) +

π

2
)
∂θΦǫ(r, θ)

r

=
cos(θ − Φǫ(r, θ) + π

2 )Φǫ(λ, θ)

λ
− sin(θ − Φǫ(r, θ) + π

2 )

r
−
∂θ

(

cos(θ − Φǫ + π
2 )

)

r
,

for every (θ, r) ∈ D3. As before, by Hölder’s inequality and Sobolev’s embedding theorem we
estimate

∣

∣

∣

∣

∫

D3

Uǫ

cos(θ − Φǫ(r, θ) + π
2 )Φǫ(λ, θ)

λ
dx

∣

∣

∣

∣

.

(
∫

D3

U4
ǫ dx

)1/4(∫

D3

1

λ4/3
dx

)3/4

. λ1/2‖Uǫ‖Ḣ1/2(R2)

(21)

. λ1/2‖Uǫ‖Ḣ1(R3)

(42)
= O(

1

| ln ǫ| )‖Uǫ‖Ḣ1(R3) (55)

and similarly,
∣

∣

∣

∣

∫

D3

Uǫ

sin(θ − Φǫ(r, θ) + π
2 )

r
dx

∣

∣

∣

∣

.

(
∫

D3

U4
ǫ dx

)1/4(∫

D3

1

r4/3
dx

)3/4

. λ1/2‖Uǫ‖Ḣ1/2(R2)

(42)
= O(

1

| ln ǫ|)‖Uǫ‖Ḣ1(R3). (56)

Integration by parts yields:
∣

∣

∣

∣

∫

D3

Uǫ ∂θ

(

cos(θ − Φǫ +
π

2
)

)

dx

|x|

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ λ

0

∫

S1

cos(θ − Φǫ +
π

2
)
dUǫ(r, ·)
dθ

dσ(θ)dr

∣

∣

∣

∣

≤
∫ λ

0

‖ cos(θ − Φǫ +
π

2
)‖Ḣ1/2(S1)‖Uǫ(r, ·)‖Ḣ1/2(S1) dr. (57)

We next estimate the homogeneous Ḣ1/2−seminorm of the 2π−periodic function

θ 7→ fr(θ) = cos(θ − Φǫ(r, θ) +
π

2
)

for r ∈ (0, λ). By (45), (47) and (48), we deduce that fr is symmetric with respect to π/2.
Therefore, considering the 2π−periodic potential Vr(θ, z) in θ for r ∈ (0, λ),

Vr(θ, z) =

{

fr(
√

(θ − π
2 )2 + z2 + π

2 ) if (θ − π
2 )2 + z2 ∈ (0, π2),

fr(3π/2) if (θ − π
2 )2 + z2 > π2 and θ ∈ (−π/2, 3π/2),

by (47) and (48), we compute

‖ cos(θ − Φǫ −
3π

2
)‖2

Ḣ1/2(S1)

(21)

.

∫ 3π/2

−π/2

∫

R

|∇Vr|2 dθdz .

∫ π

0

s
∣

∣

dfr

ds
(s+

π

2
)
∣

∣

2
ds

.

∫ π

0

s

(

(1 − r/λ)2 + (r/λ)2(
1

arcsinλ

dϕ̃δ

dθ
(

s

arcsinλ
))2
)

ds

. (1 − r/λ)2 + (r/λ)2
∫ ∞

0

t(
dϕ̃δ

dt
)2 dt

. 1 +

∫ ∞

0

t(
dϕ̃δ

dt
)2 dt,
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since r < λ in D3. In view of definition (43), we obtain:

∫ ∞

0

t(
dϕ̃δ

dt
)2 dt

(43)

.

∫

{
√

1
4
−δ2≤ |t|≤1}

t| d
dt
θ̃δ|2 +

∫

{|t|≤
√

1
4
−δ2}

t

wδ(1 − wδ)
| d
dt
wδ|2.

For the first term of the RHS, we have

| d
dt
θ̃δ|

(44)
=

arccos | ln 4δ|
| ln δ|

1 −
√

1
4 − δ2

.

√

1 − | ln 4δ|
| ln δ| .

1

| ln δ|1/2
for t ∈ (

√

1

4
− δ2, 1).

Hence,

∫

{
√

1
4
−δ2≤|t|≤1}

t| d
dt
θ̃δ|2 .

1

| ln δ| = O(
1

| ln ǫ| ) as ǫ→ 0.

For the second term of the RHS, we obtain after the change of variables t = δs:

∫

{|t|≤
√

1
4
−δ2}

t

wδ(1 − wδ)
| d
dt
wδ|2 dt

(33)

.

∫ 1/2

0

t3

(t2 + δ2)2 ln t2+δ2

δ2 ln 1
t2+δ2

dt

.

∫ 1
2δ

0

s2

(s2 + 1)2(ln 1
δ2 − ln(s2 + 1)) ln(s2 + 1)

ds

.
1

| ln δ| +
ln | ln δ|
| ln δ| + ln | ln δ| = O(ln | ln δ|)

where the three estimates follow from the splitting of the last integral into the three intervals (0, 1),
(1, | ln δ|) and (| ln δ|, 1

2δ ), respectively. We conclude that

‖ cos(θ − Φǫ −
3π

2
)‖2

Ḣ1/2(S1)
. ln | ln δ|.

In view of (57) and (21), this yields

∣

∣

∣

∣

∫

D3

Uǫ∂θ

(

cos(θ − Φǫ +
π

2
)

)

dx

|x|

∣

∣

∣

∣

.
√

ln | ln δ|
∫ λ

0

(

∫

{|x|=r}×R

|(∇, ∂
∂z

)Uǫ|2(r, θ, z) dσ(θ)dz

)1/2

dr

≤
√

λ ln | ln δ|‖Uǫ‖Ḣ1(R3) = O(
(ln | ln ǫ|)1/2

| ln ǫ| )‖Uǫ‖Ḣ1(R3).

By (55) and (56), we get

∣

∣

∣

∣

∫

D3

∇·mǫUǫ dx

∣

∣

∣

∣

= O(
(ln | ln ǫ|)1/2

| ln ǫ| ) ‖Uǫ‖Ḣ1(R3). (58)

The estimates (51), (53) and (58) together yield

∫

R3

|(∇, ∂
∂z

)Uǫ|2 dxdz
(50)
=

∫

B2

∇·mǫ Uǫ dx ≤
√

2π + o(1)

| ln ǫ| ‖Uǫ‖Ḣ1(R3),

which concludes the estimate for the stray field energy and hence the proof of the proposition.
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4.2 Lower bound

In the following we give the proof for the lower bound in Theorem 1.3. The proof combines a
dynamical system argument with the interpolation inequality in Lemma 2.2.

Proof of Theorem 1.3. Without loss of generality, we may assume that all mǫ : B2 → S1 are
smooth since smooth maps with values into S1 are dense in H1(B2, S1) and furthermore, we may
also assume that

Eloc
ǫ (mǫ, hǫ) ≤ 2π as ǫ→ 0. (59)

We divide our proof in several steps:

Step 1. A dynamical system argument. Crucial for the estimate of the lower bound is the control
of the stray field energy. Since the stray field energy is created by ∇·mǫ, by Stokes theorem this
implies a control for the net flow of mǫ across the boundary of any subdomain of B2. The first
step of the proof consists of finding such a domain with maximal net flow. Using Stokes theorem,
this eventually yields the optimal lower bound for the energy. As in [6, 17], we consider the flow
generated by the rotated vector field m⊥

ǫ (see Figure 10). In particular, let γǫ be the orbit passing
through the origin, defined by

γ̇ǫ(t) = m⊥
ǫ (γǫ(t)), γǫ(0) = 0. (60)

Since m⊥
ǫ is smooth and unit–valued in B2, the orbit cannot have cycles, but rather has to enter

and leave every ball B ⊂ B2 in finite time. Indeed, if mǫ would form a cycle, then mǫ would have
a degree 1 on the cycle, so mǫ would have a zero inside which is not possible since |mǫ| = 1.

b

m

γǫ b

χ = 1

χ = −1

Ω+

Ω−

Figure 10: Construction of γǫ, χǫ and γ+
ǫ

We will show that for arbitrary fixed 0 < δ < 1, we have

Eloc
ǫ (mǫ, hǫ) ≥ 2π − Cδ − oδ(1) as ǫ→ 0, (61)

where C is a universal constant, in particularly independent on ǫ and δ. The Landau symbol oδ(1)
corresponds to a function that converges to zero for ǫ → 0 for every fixed δ > 0 (the convergence
hence may depend on δ). Note that the statement of the proposition follows from (61).

We first introduce some notation: It is convenient to work in polar coordinates (r, θ). Furthermore

we denote by ~r (resp. ~θ) the unit vector in radial (resp. angular) direction. Let Br ⊆ B2 denote
the ball with radius r around the origin and let Ar2

r1
:= Br2

\Br1
be the annulus enclosed by the

radii r1 and r2.

The following observation is crucial for the proof: We have that the length H1(γǫ) of the orbit γǫ

is bounded by below by

H1(γǫ) ≥ 2. (62)
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This follows, since γǫ has to leave and enter every ball Br ⊂ B2 with r < 1 at two different points
(in between passing through the origin). In fact, γǫ divides B2 into two domains Ω±. We choose
Ω± such that the flow of mǫ passing through γǫ flows from Ω+ to Ω− (see Figure 10). We introduce
the indicator function χǫ by

χǫ(x) = ±1 on Ω±.

Therefore, we have

|∇χǫ| = −∇χǫ ·mǫ = 2H1⌊{γǫ}.

In Step 2, we prove that the length of the orbits are uniformly bounded in the interior of B2. Then
in Step 3, we demonstrate the idea of the proof with a ’naive’ attempt. This first attempt fails by
a factor of 2. By a more refined analysis using a localization argument we then obtain the optimal
constant for the lower bound of the energy in Steps 4 and 5.

Step 2. Locally uniform bounds on the orbit length. We first show that the total length of γǫ (i.e.,
the jump set of χǫ) is bounded in every interior ball B1−2δ3 for ǫ sufficiently small: We claim that
there is a constant only depending on δ such that

‖∇χǫ‖M(B
1−2δ3 ) ≤ Cδ. (63)

We follow the lines in [17]. Let χ̃ǫ := χǫ1B
1−2δ3

. We first note that

‖∇χǫ‖M(B
1−2δ3 ) ≤ ‖∇χ̃ǫ‖M(B2) + 2π.

Hence in order to obtain (63), it is enough to show

‖∇χ̃ǫ‖M(B2) ≤ Cδ. (64)

Choose a smooth cut–off function 0 ≤ η ≤ 1 with η = 1 on B1−2δ3 , η = 0 outside B1−δ3 and
‖∇η‖C0 ≤ Cδ. We apply the local interpolation inequality (Lemma 2.2) for χ̃ǫ and η. Then by
(59), we get

∣

∣

∣

∣

∫

B2

χ̃ǫ ∇ ·mǫ dx

∣

∣

∣

∣

≤ C‖∇χ̃ǫ‖1/2
M(B2) +

Cδ(1 + ‖∇χ̃ǫ‖M(B2))

| ln ǫ|1/2
.

Integration by parts on the left hand side combined with (60) yields

‖∇χ̃ǫ‖M(B2) − C ≤ C‖∇χ̃ǫ‖1/2
M(B2) +

Cδ(1 + ‖∇χ̃ǫ‖M(B2))

| ln ǫ|1/2
.

Now, the last term on the right hand side can be absorbed by the left hand side if ǫ is sufficiently
small. Then (64) and hence (63) follow easily.

Step 3. Radial cut–off and a non-optimal lower bound. We introduce a radial cut–off function

η1 = η1(r) ∈ C∞
c (A1−2δ3

δ3 ) with 0 ≤ η1 ≤ 1, |∇η1| ≤ Cδ and η1 = 1 in A := A1−3δ3

2δ3 .

Note that at this point of the proof, the cut–off near the origin is not needed. However, we use
this cut–off here, since it will be needed later. We have chosen η1 such that Step 2 applies, i.e. the
orbit has bounded length on supp η. Let γǫ,A be the part of γǫ in A. Since we have cut off only a
small part in the center of the disc, the argument in (62) still yields

H1(γǫ,A) ≥ 2 − Cδ. (65)
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The function χǫ and the orbit γǫ,A have been chosen such that the flow over the jump set of χǫ is
maximal. In fact, we have

2H1(γǫ,A) ≤
∫

B2

η2
1 |∇χǫ| dx

(60)
= −

∫

B2

η2
1 ∇χǫ ·mǫ dx. (66)

We prove a non-optimal lower bound where instead of the leading order constant 2π in (61) we
obtain only π. For that, we apply integration by parts on the ’duality product’ of χǫ and ∇·mǫ,
to get

∫

B2

η2
1 χǫ ∇·mǫ dx = −

∫

B2

η2
1 ∇χǫ ·mǫ dx−

∫

B2

χǫ∇(η2
1) ·mǫ dx. (67)

Since η1 = η1(r) we obtain for the last term on the right hand side of (67)

∣

∣

∣

∣

∫

B2

χǫ∇(η2
1) ·mǫ dx

∣

∣

∣

∣

≤
∫

B2

∣

∣

∣

∣

∂r(η
2
1) mǫ · ~r

∣

∣

∣

∣

dx
(4)
= oδ(1) as ǫ→ 0. (68)

Inequalities (66), (67) and (68) together yield

∫

B2

η2
1 χǫ ∇·mǫ dx ≥ ‖η2

1∇χǫ‖M(B2) − oδ(1) as ǫ→ 0. (69)

Application of Lemma 2.2 yields

∣

∣

∣

∣

∫

B2

η2
1 χǫ ∇·mǫ dx

∣

∣

∣

∣

≤
(

4

π
‖χǫ‖L∞(B2)‖η2

1∇χǫ‖M(B2) E
loc
ǫ (mǫ, hǫ)

)1/2

+
C(1 + ‖∇η1‖C0)(1 + ‖η1∇χǫ‖M(B2))

| ln ǫ|1/2

(63)

≤
(

4

π
‖η2

1∇χǫ‖M(B2) E
loc
ǫ (mǫ, hǫ)

)1/2

+ oδ(1) as ǫ→ 0.

In view of (69), this turns into

‖η2
1∇χǫ‖M(B2) ≤

(

4

π
‖η2

1∇χǫ‖M(B2) E
loc
ǫ (mǫ, hǫ)

)1/2

+ oδ(1).

Using (59), (65) and (66), this implies

Eloc
ǫ (mǫ, hǫ) ≥

π‖η2
1∇χǫ‖M(B2)

4
+ oδ(1)

(66)

≥ πH1
ǫ (γǫ,A)

2
+ oδ(1)

(65)

≥ π − Cδ + oδ(1).

We conclude that this first attempt of proof misses the optimal constant 2π by a factor of 2. Note
that as a side result of this paragraph, the last inequality together with (59) yields

H1(γǫ,A) ≤ 4 + oδ(1), (70)

which is a substantial improvement with respect to (63), but still not optimal since in the limit
ǫ→ 0, we expect the length of the orbit γǫ to be close to 2.

Step 4. Radial and angular cut–off. The optimal lower bound in a special case. In this paragraph,
we give an argument providing the optimal constant, but in a restricted setting. In contrary to
before, the argument is solely based on the part γ+

ǫ of γǫ before the curve passes the origin (see
Figure 11). In fact, only on this part of the orbit the magnetization (generically) points opposite to
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b

γ+
ǫ

mǫ

Ω−

Ω+

b

T

η2 = 1η2 = 1

η2 = 0

Figure 11: Angular cut–off function η2

the limiting vortex configuration x⊥/|x|. Reparametrizing the orbits, we assume in the following
that all orbits γǫ enter the disc B2 at time t = 0. Furthermore, by rotational invariance of the
energy, we may assume without loss of generality that all γǫ enter ’at the bottom’ of B2 (in polar
coordinates this corresponds to (r, θ) = (1, 3

2π)) at time t = 0.

We consider here the special case where we have a uniform control on the rotation around the
origin: We assume that the sector

T = {(r, θ) : |θ − π/2| < π/8} (71)

is not touched by any γ+
ǫ for all ǫ > 0, see Figure 11. Let η1 = η1(r) be the same cut–off function

as in Step 3. Furthermore let η2 = η2(θ), independent of ǫ, such that η2 = 1 outside T , η2 = 0 at
θ = π/2 and

η = η1η2 ∈ C∞
c (B2) with 0 ≤ η ≤ 1, |∇η| ≤ Cδ in B2,

where η1 is the cut-off function defined in Step 3. The domains Ω± are defined slightly different
than before: The curve γ+

ǫ and the semi-line θ = π/2 divide the disc into two parts. We denote
these two parts by Ω±. As before, Ω+ is chosen such that the flow of mǫ crossing through γ+

ǫ is
directed from Ω+ to Ω− and we define the indicator function χǫ by χǫ(x) = ±1 on Ω±. By our
choice of η, we have

−
∫

B2

η2 ∇χǫ ·mǫ dx = ‖η2∇χǫ‖M(B2) and ‖η2∇χǫ‖M(B2) ≥ 2H1(γ+
ǫ ) − Cδ ≥ 2 − Cδ.

(72)

As before, we apply integration by parts:
∫

B2

η2 χǫ ∇·mǫ dx = −
∫

B2

η2 ∇χǫ ·mǫ dx−
∫

B2

∇(η2) χǫ ·mǫ dx. (73)

For the last term on the right hand side of (73), we get using the definitions of χ and η:

−
∫

B2

∇(η2) χǫ ·mǫ dx = −
∫

B2

1

r
∂θ(η

2) χǫ mǫ · ~θ dx−
∫

B2

∂r(η
2) χǫ mǫ · ~r dx

(4)
= −

∫ 1

0

∫ π/2

π/4

∂θ(η
2
2)η2

1 dθdr +

∫ 1

0

∫ 3π/4

π/2

∂θ(η
2
2)η2

1 dθdr + oδ(1)

=
(

η2
2(π/4) − 2η2

2(π/2) + η2
2(3π/4)

)

∫ 1

0

η2
1 dr + oδ(1)

≥ 2 − Cδ + oδ(1). (74)
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Applying (72) and (74) on the right hand side of (73) yields

∫

B2

η2 χǫ ∇·mǫ dx ≥ ‖η2∇χǫ‖M(B2) + 2 − Cδ + oδ(1). (75)

On the other hand, the interpolation estimate in Lemma 2.2 yields

∣

∣

∣

∣

∫

B2

η2 χǫ ∇·mǫ dx

∣

∣

∣

∣

(63)

≤
(

4

π
‖χǫ‖L∞(B2)‖η2∇χǫ‖M(B2) E

loc
ǫ (mǫ, hǫ)

)1/2

+ oδ(1).

Together with (75), this implies

‖η2∇χǫ‖M(B2) + 2 ≤
(

4

π
‖η2∇χǫ‖M(B2) E

loc
ǫ (mǫ, hǫ)

)1/2

+ Cδ + oδ(1).

It follows that (also using (59) and (72))

Eloc
ǫ (mǫ, hǫ) ≥ π(‖η2∇χǫ‖M(B2) + 2)2

4‖η2∇χǫ‖M(B2)
− Cδ + oδ(1) ≥ 2π − Cδ + oδ(1),

thus yielding the optimal constant 2π. Note that in the last inequality we used that ϕ(t) = (t+2)2/t
achieves its minimum on (0,+∞) for t = 2.

Step 5: Localization argument. General case. It remains to generalize the above argument for
arbitrary orbits γ+

ǫ . In general, each orbit γ+
ǫ can rotate many times about the origin. However,

this goes along with an increase of length of γ+ which in turn yields a better control on the energy.
Using a localization argument and by balancing these two effects (rotation & length of γ+

ǫ ), we
obtain the optimal constant for the lower bound of the energy. We control the rotation in terms of
annuli of fixed thickness (depending on δ). We again use the parameter δ > 0 as ’cut–off’ around
the origin (in order to prevent infinitely many rotations near zero) and near ∂B2 (in order to be
able to apply the localized interpolation inequality). We inductively define

r0 = 1 and rk+1 = (1 − δ)rk, (76)

i.e., rk = (1 − δ)k, k ≥ 0. After finitely many iterations N = Nδ we have rN ≤ δ < rN−1. We
define the annuli

Ak :=
{

(r, θ) : rk ≤ r ≤ rk−1

}

for 1 ≤ k ≤ N − 1

and AN := BrN . Furthermore, let sǫ,k be the time t when γ+
ǫ (t) (with starting point on ∂B2)

first touches the circle {r = rk−1 − δ3} and let tǫ,k be the time when the curve touches the circle
{r = rk + δ3} the last time before passing through the origin. Furthermore, let γ+

ǫ,k : (sǫ,k, tǫ,k) →
B2 the corresponding restriction of γ+

ǫ . The above definitions mean that γ+
ǫ,k roughly (up to a

δ3–misfit) connects the outer and inner boundary of Ak. We distinguish between ’good’ and ‘bad’
annuli according to the rotation about the origin that γ+

ǫ,k assumes within Ak: For this, using polar
coordinates we define Θǫ,k ∈ [0, 2π] by

Θǫ,k :=
∣

∣

∣

{

θ ∈ [0, 2π) : θ is attained by γ+
ǫ,k

}
∣

∣

∣
.

Here and in the following, we will always think as ǫ → 0 in terms of a sequence ǫj → 0. For the
sake of simplicity, we skip the index j. By possibly taking a subsequence (and in view of (63)) we
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η = 0

Figure 12: Localization argument

may assume that tǫ,k → tk, sǫ,k → sk and Θǫ,k → Θk as ǫ → 0. We consider Ak to be a ‘good’
annulus for the sequence {mǫ}, if the rotation of the orbit is controlled, i.e.

|Θk| ≤
3

2
π. (77)

In this case, there is a θǫ,k and a sector

Tǫ,k = Ak ∩ {(r, θ) : |θ − θǫ,k| < π/8}

which is not touched by γ+
ǫ,k for small ǫ > 0. By possibly taking a subsequence we may assume

that θǫ,k → θk as ǫ→ 0.

For each ǫ, the orbit γ+
ǫ separates the annulus B1−δ3 \Bδ into two parts. As in Step 1 of the proof,

we define χǫ : B2 → {±1} such that

∇χǫ = −2mǫH1⌊{γ+
ǫ } in B1−δ3 \Bδ

and we set χǫ = 0 in Bδ ∪ (B2 \B1−δ3). We now define an ǫ–independent cut–off function η that
serves two purposes: It localizes the estimate onto each single annulus. Secondly, if the annulus
is a “good” annulus (i.e. with controlled rotation of the orbit as described before), η is used to
separate the annulus onto two separate parts (as in Step 4). On the bad annuli, we will use the
estimate as in Step 3. We define

η = η1η2 ∈ [0, 1] with |∇η| ≤ Cδ

as follows (see Figure 12): First, we choose η1 to be radial such that η1(r) = 0 on

N1 = (0, δ) ∪ (1 − 2δ3, 1) ∪
N
⋃

k=1

(rk − δ3, rk + δ3)

and η1 = 1 outside a δ3–neighborhood of N . Secondly, we choose η2 such that for every good
annulus Ak, i.e., |Θk| ≤ 3π/2, we impose that η2 depends only on θ and η2 = 0 in (θk − δ3, θk + δ3)
and η2 = 1 outside a δ3–neighborhood of that interval. The function η2 may jump on ∂Ak, but it
doesn’t affect η since η1 = 0 around a neighborhood of ∂Ak. The number Nδ of annuli is estimated
by

Nδ .
| ln δ|

| ln(1 − δ)| ≤ 1

δ2
. (78)

In particular, the area of the δ3–neighborhood of N is estimated by Cδ.
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On each ’good’ annulus Ak, the arguments in Step 4 of the proof show that we have a good lower
bound for the duality product:

∫

Ak

η2 χǫ ∇·mǫ dx ≥ ‖η2∇χǫ‖M(Ak) + 2(rk − rk+1) − Cδ3 − oδ(1). (79)

Indeed, (79) correponds to (75) when adjusting the cut–off function η from the annulus considered
in Step 4 to the annulus Ak considered here. However, we only have weak control on the length of
the corresponding orbit

‖η2∇χǫ‖M(Ak) ≥ 2(rk − rk+1) − Cδ3. (80)

Note that the factor 2 on the right hand side of the above estimate relates to the fact that χǫ has
a jump of size 2 over γ+

ǫ . Now, let us assume that (77) is not fulfilled for the annulus Ak, i.e., it is
a bad annulus. Then the arguments in step 3 of the proof only give us a weaker lower bound on
the duality product:

∫

Ak

η2 χǫ ∇·mǫ dx ≥ ‖η2∇χǫ‖M(Ak) − Cδ3 − oδ(1). (81)

Indeed, (81) correponds to (69) when adjusting the cut–off function η from the annulus considered
in step 4 to the annulus Ak considered here. However, in view of Θk >

3
2 , we have a better lower

bound on the length of the corresponding orbit:

‖η2∇χǫ‖M(Ak) ≥ 2 · 3

2
πrk − Cδ3

(76)

≥ 3π

δ
(rk − rk+1) − Cδ3. (82)

Let 0 ≤ Rbad ≤ 1 be defined by as the sum of the thicknesses of all annuli that do not satisfy (77)
and let Rgood = 1 − Rbad. We recall (78) and that for each annulus the thickness of the radial
cut–off is less than δ3. Summing over all orbits and using (80) and (82), we hence obtain

‖η2∇χǫ‖M(B2) =
∑

k

∫

Ak

η2|∇χǫ| dx ≥ 2Rgood +
3πRbad

δ
− Cδ. (83)

Analogously, using (79), (81) and summing over all orbits we get
∫

B2

η2 χǫ ∇·mǫ dx ≥ ‖η2∇χǫ‖M(B2) + 2Rgood − Cδ − oδ(1). (84)

By Lemma 2.2 we have

∣

∣

∣

∣

∫

B2

η2 χǫ ∇·mǫ dx

∣

∣

∣

∣

≤
(

4

π
‖χǫ‖L∞(B2)‖η2∇χǫ‖M(B2) E

loc
ǫ (mǫ, hǫ)

)1/2

+ oδ(1).

Using (84) and since ‖χǫ‖L∞(B2) = 1, this turns into

‖η2∇χǫ‖M(B2) + 2Rgood ≤
(

4

π
‖η2∇χǫ‖M(B2) E

loc
ǫ (mǫ, hǫ)

)1/2

+ Cδ + oδ(1).

This yields

Eloc
ǫ (mǫ, hǫ) ≥ π(‖η2∇χǫ‖M(B2) + 2Rgood)2

4‖η2∇χǫ‖M(B2)
− Cδ − oδ(1)

(83)

≥ π(3πRbad/δ + 4Rgood)2

4(3πRbad/δ + 2Rgood)
− Cδ − oδ(1).
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For the second inequality, we have used that v(t) = (t + Rgood)2/t is monotonically increasing in
t as long as t > Rgood and also the fact that |v(Rgood − Cδ) − v(Rgood)| ≤ Cδ. The following
simple calculation shows that we indeed get the sharp lower bound with optimal constant. Let
M := 3π/δ. Minimizing in the radius Rbad ∈ [0, 1] for M large enough, we get

π(MRbad + 4Rgood)2

4(MRbad + 2Rgood)
= 2π

(

(M − 4)Rbad + 4
)2

8 ((M − 2)Rbad + 2)
≥ 2π

M(M − 4)

(M − 2)2
.

(where the minimum inside [0, 1] is achieved at Rbad = 8/((M − 2)(M − 4)) if M is large enough).
It is then easy to see that for M large enough,

M(M − 4)

(M − 2)2
≥ 1 − C

M
= 1 − Cδ.

This yields (61), thus concluding the proof of the proposition.
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5 Appendix

We prove existence and uniqueness of the stray field generated by the volume charges, as well as
the expression of the stray field energy. For that, we introduce the Beppo-Levi space:

BL = {U : R3 → R : ∇U ∈ L2(R3),
U

1 + |x| ∈ L2(R3)}.

Then the space BL endowed by the homogeneous Ḣ1−norm, i.e., U 7→ ‖∇U‖L2(R3) is a Hilbert
space and the set C∞

c (R3) of smooth compactly supported functions is a dense set.

Theorem 5.1. Let m ∈ H1(B2,R2). Then the variational problem (2) has a unique solution
Uac ∈ BL. Classically, Uac satisfies

{

∆Uac = 0 in R3 \B2 × {0},
[

∂Uac

∂z

]

= −∇ ·m on B2 × {0}, (85)

where [q] = q+ − q− stands for the jump in vertical direction z of a quantity q across the horizontal
plane. Moreover, the stray field energy generated by the volume charges is given by (3).

Proof. We apply Lax-Milgram’s theorem for the variational problem (2) in the space BL. For this,
we only need to check that ζ 7→

∫

B2 ∇ · mζ dx is continuous as a functional in BL. Indeed, by
duality and the trace estimate, we have for every ζ ∈ BL

∫

B2

∇ ·mζ(·, 0) dx ≤ ‖∇ ·m1B2‖Ḣ−1/2(R2)‖ζ(·, 0)‖Ḣ1/2(R2)

≤ C‖∇ ·m1B2‖Ḣ−1/2(R2)‖∇ζ‖L2(R3).
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Setting f := ∇ ·m1B2 , it remains to show that

‖f‖Ḣ−1/2(R2) ≤ C‖f‖L2(R2), (86)

for every f ∈ L2(R2) with supp f ⊂ B2. Estimate (86) can be seen as follows: Decomposing the
Ḣ−1/2(R2)−seminorm into

‖f‖2
Ḣ−1/2(R2)

=

∫

|ξ|≥1

|F(f)(ξ)|2
|ξ| dξ +

∫

|ξ|≤1

|F(f)(ξ)|2
|ξ| dξ,

≤ ‖Ff‖L2(R2) + ‖Ff‖2
L∞(R2)

∫

|ξ|≤1

1

|ξ| dξ

≤ C
(

‖f‖2
L2(R2) + ‖f‖2

L1(B2)

)

≤ C‖f‖2
L2(R2).

Hence, we Lax–Milgram’s Theorem can be applied and (85) has a unique solution. It remains to
prove (3). For this, we apply the Fourier transform with respect to the in–plane variables x onto
(85). We get an ODE for F(Uac) in terms of z with the Fourier variable ξ as parameter:

∂2

∂z2
F(Uac)(ξ, ·) − |ξ|2F(Uac)(ξ, ·) = 0 for z 6= 0. (87)

We have the following jump conditions at z = 0:

[F(Uac)(ξ, ·)] = 0,

[

∂

∂z
F(Uac)(ξ, ·)

]

= −F(∇ ·m1B2)(ξ) for z = 0. (88)

The explicit solution of (87)–(88) is given by

F(Uac)(ξ, z) =
1

2|ξ|e
−|ξ||z|F(∇ ·m1B2)(ξ), for ξ 6= 0, z ∈ R.

Plancherel’s identity then yields

∫

R3

|∇Uac|2 dxdz =

∫

R2

∫

R

(

|ξ|2|F(Uac)(ξ, z)|2 +

∣

∣

∣

∣

∂F(Uac)(ξ, z)

∂z

∣

∣

∣

∣

2
)

dξdz

=
1

2

∫

R2

∫

R

e−2|ξ||z||F(∇ ·m1B2)(ξ)|2 dξdz

=
1

2

∫

R2

1

|ξ| |F(∇ ·m1B2)(ξ)|2 dξ.
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MA, 2000. The Ginzburg-Landau model.

[26] Tristan Rivière and Sylvia Serfaty. Limiting domain wall energy for a problem related to
micromagnetics. Comm. Pure Appl. Math., 54(3):294–338, 2001.

[27] Tristan Rivière and Sylvia Serfaty. Compactness, kinetic formulation, and entropies for a
problem related to micromagnetics. Comm. Partial Differential Equations, 28(1-2):249–269,
2003.

[28] Michael Struwe. Variational methods, volume 34 of Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics
and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag,
Berlin, fourth edition, 2008. Applications to nonlinear partial differential equations and Hamil-
tonian systems.

37


