Vortex sheet solutions for the Ginzburg-Landau system in cylinders: symmetry and global minimality

Radu Ignat* Mircea Rus ${ }^{\dagger}$

January 30, 2023

Abstract

We consider the Ginzburg-Landau energy E_{ε} for \mathbb{R}^{M}-valued maps defined in a cylinder shape domain $B^{N} \times(0,1)^{n}$ satisfying a degree-one vortex boundary condition on $\partial B^{N} \times(0,1)^{n}$ in dimensions $M \geq N \geq 2$ and $n \geq 1$. The aim is to study the radial symmetry of global minimizers of this variational problem. We prove the following: if $N \geq 7$, then for every $\varepsilon>0$, there exists a unique global minimizer which is given by the non-escaping radially symmetric vortex sheet solution $u_{\varepsilon}(x, z)=$ $\left(f_{\varepsilon}(|x|) \frac{x}{x}, 0_{\mathbb{R}^{M-N}}\right), \forall x \in B^{N}$ that is invariant in $z \in(0,1)^{n}$. If $2 \leq N \leq 6$ and $M \geq$ $N+1$, the following dichotomy occurs between escaping and non-escaping solutions: there exists $\varepsilon_{N}>0$ such that - if $\varepsilon \in\left(0, \varepsilon_{N}\right)$, then every global minimizer is an escaping radially symmetric vortex sheet solution of the form $R \tilde{u}_{\varepsilon}$ where $\tilde{u}_{\varepsilon}(x, z)=\left(\tilde{f}_{\varepsilon}(|x|) \frac{x}{|x|}, 0_{\mathbb{R}^{M-N-1}}, g_{\varepsilon}(|x|)\right)$ is invariant in z-direction with $g_{\varepsilon}>0$ in $(0,1)$ and $R \in O(M)$ is an orthogonal transformation keeping invariant the space $\mathbb{R}^{N} \times\left\{0_{\mathbb{R}^{M-N}}\right\}$; - if $\varepsilon \geq \varepsilon_{N}$, then the non-escaping radially symmetric vortex sheet solution $u_{\varepsilon}(x, z)=\left(f_{\varepsilon}(|x|) \frac{x}{|x|}, 0_{\mathbb{R}^{M-N}}\right), \forall x \in B^{N}, z \in(0,1)^{n}$ is the unique global minimizer; moreover, there are no bounded escaping solutions in this case.

We also discuss the problem of vortex sheet \mathbb{S}^{M-1}-valued harmonic maps.

Keywords: vortex, uniqueness, symmetry, minimizers, Ginzburg-Landau equation, harmonic maps.
MSC: 35A02, 35B06, 35J50.

Contents

1 Introduction and main results

1.1 Minimality of the \mathbb{R}^{N}-valued vortex sheet solution 2
1.2 Escaping \mathbb{R}^{M}-valued vortex sheet solutions when $M \geq N+1$
*Institut de Mathématiques de Toulouse \& Institut Universitaire de France, UMR 5219, Université de Toulouse, CNRS, UPS IMT, F-31062 Toulouse Cedex 9, France. Email: Radu.Ignat@math.univ-toulouse.fr
${ }^{\dagger}$ Department of Mathematics, Technical University of Cluj-Napoca, 400027 Cluj-Napoca, Romania. Email: rus.mircea@math.utcluj.ro

2 The non-escaping vortex sheet solution. Proof of Theorems 1 and 3 7
3 Properties of escaping vortex sheet solutions when $M \geq N+1$
3.1 Minimality of escaping vortex sheet solutions 11
3.2 Escaping radial profile . 14
3.3 Proof of Theorem 4. 16

A Appendix. Vortex sheet \mathbb{S}^{M-1}-valued harmonic maps in cylinders 17

1 Introduction and main results

In this paper, we consider the following Ginzburg-Landau type energy functional

$$
\begin{equation*}
E_{\varepsilon}(u)=\int_{\Omega}\left[\frac{1}{2}|\nabla u|^{2}+\frac{1}{2 \varepsilon^{2}} W\left(1-|u|^{2}\right)\right] d X, \tag{1}
\end{equation*}
$$

where $\varepsilon>0, X=(x, z) \in \Omega=B^{N} \times(0,1)^{n}$ is a cylinder shape domain with B^{N} the unit ball in $\mathbb{R}^{N}, n \geq 1, N \geq 2$ and the potential $W \in C^{2}((-\infty, 1] ; \mathbb{R})$ satisfies

$$
\begin{equation*}
W(0)=0, W(t)>0 \text { for all } t \in(-\infty, 1] \backslash\{0\} \text { and } W \text { is convex. } \tag{2}
\end{equation*}
$$

(The prototype potential is $W(t)=\frac{t^{2}}{2}$ for $t \leq 1$.) We investigate the global minimizers of the energy E_{ε} in the set of \mathbb{R}^{N}-valued maps:

$$
\mathscr{A}_{N}:=\left\{u \in H^{1}\left(\Omega ; \mathbb{R}^{N}\right): u(x, z)=x \text { for every } x \in \partial B^{N}=\mathbb{S}^{N-1}, z \in(0,1)^{n}\right\} .
$$

The boundary assumption $u(x, z)=x$ for every $x \in \mathbb{S}^{N-1}$ and every $z \in(0,1)^{n}$ is referred in the literature as the degree-one vortex boundary condition.

The direct method in the calculus of variations yields the existence of a global minimizer u_{ε} of E_{ε} over \mathscr{A}_{N} for all range of $\varepsilon>0$. Moreover, any minimizer u_{ε} satisfies $\left|u_{\varepsilon}\right| \leq 1$ in Ω, u_{ε} belongs to $C^{1}\left(\bar{\Omega} ; \mathbb{R}^{N}\right)$ and solves the system of PDEs (in the sense of distributions) with mixed Dirichlet-Neumann boundary conditions:

$$
\left\{\begin{array}{l}
-\Delta u_{\varepsilon}=\frac{1}{\varepsilon^{2}} u_{\varepsilon} W^{\prime}\left(1-\left|u_{\varepsilon}\right|^{2}\right) \quad \text { in } \Omega, \tag{3}\\
\frac{\partial u_{\varepsilon}}{\partial z}=0 \quad \text { on } B^{N} \times \partial(0,1)^{n}, \\
u(x, z)=x \quad \text { on } \partial B^{N} \times(0,1)^{n} .
\end{array}\right.
$$

1.1 Minimality of the \mathbb{R}^{N}-valued vortex sheet solution

The first goal of this paper is to prove the uniqueness and radial symmetry of the global minimizer of E_{ε} in \mathscr{A}_{N} for all $\varepsilon>0$ in dimensions $N \geq 7$ and $n \geq 1$. In fact, in these dimensions, we show that the global minimizer of E_{ε} in \mathscr{A}_{N} is unique and given by the following radially symmetric critical point of E_{ε} that is invariant in z : 1

$$
\begin{equation*}
u_{\varepsilon}(x, z)=f_{\varepsilon}(|x|) \frac{x}{|x|} \quad \text { for all } x \in B^{N} \text { and } z \in(0,1)^{n} \tag{4}
\end{equation*}
$$

[^0]where the radial profile $f_{\varepsilon}:[0,1] \rightarrow \mathbb{R}$ in $r=|x|$ is the unique solution to the ODE:
\[

$$
\begin{cases}-f_{\varepsilon}^{\prime \prime}-\frac{N-1}{r} f_{\varepsilon}^{\prime}+\frac{N-1}{r^{2}} f_{\varepsilon}=\frac{1}{\varepsilon^{2}} f_{\varepsilon} W^{\prime}\left(1-f_{\varepsilon}^{2}\right) & \text { for } r \in(0,1), \tag{5}\\ f_{\varepsilon}(0)=0, f_{\varepsilon}(1)=1\end{cases}
$$
\]

We recall that the unique radial profile f_{ε} satisfies $f_{\varepsilon}>0$ and $f_{\varepsilon}^{\prime}>0$ in $(0,1)$ (see e.g. [7, 9, 8]). Note that the zero set of u_{ε} is given by the n-dimensional vortex sheet $\left\{0_{\mathbb{R}^{N}}\right\} \times(0,1)^{n}$ in Ω (in particular, if $n=0$, it is a vortex point, while for $n=1$, it is a vortex filament); therefore, u_{ε} in (4) is called (radially symmetric) vortex sheet solution to the Ginzburg-Landau system (3)).

Theorem 1. Assume that W satisfies (2) and $n \geq 1$. If $N \geq 7$, then u_{ε} given in (4) is the unique global minimizer of E_{ε} in \mathscr{A}_{N} for every $\varepsilon>0$.

The proof is reminiscent of the works of Ignat-Nguyen-Slastikov-Zarnescu [12, 11] studying uniqueness and symmetry of minimizers of the Ginzburg-Landau functionals for \mathbb{R}^{M}-valued maps defined on smooth N-dimensional domains, where M is not necessarily equal to N. The idea is to analyze $E_{\varepsilon}(u)$ for an arbitrary map u and to exploit the convexity of W to lower estimate the excess energy w.r.t. $E_{\varepsilon}\left(u_{\varepsilon}\right)$ by a suitable quadratic energy functional depending on $u-u_{\varepsilon}$. This quadratic functional comes from the linearized PDE at u_{ε} and can be handled by a factorization argument. The positivity of the excess energy then follows by a Hardy-type inequality holding true only in high dimensions $N \geq 7$. This is similar to the result of Jäger and Kaul [14] on the minimality of the equator map for the harmonic map problem in dimension $N \geq 7$ that is proved using a certain inequality involving the sharp constant in the Hardy inequality.

We expect that our result remains valid in dimensions $2 \leq N \leq 6$:
Open problem 2. Assume that W satisfies (22), $n \geq 1$ and $2 \leq N \leq 6$. Is it true that for every $\varepsilon>0, u_{\varepsilon}$ given in (4) is the unique global minimizer of E_{ε} in \mathscr{A}_{N} ?

It is well known that the uniqueness of u_{ε} holds true for large enough $\varepsilon>0$ in any dimension $N \geq 2$. Indeed, denoting by λ_{1} the first eigenvalue of $-\Delta_{x}$ in B^{N} with zero Dirichlet boundary condition, then for any $\varepsilon>\sqrt{W^{\prime}(1) / \lambda_{1}}, E_{\varepsilon}$ is strictly convex in \mathscr{A}_{N} (see e.g., [1, Theorem VIII.7], [12, Remark 3.3]) and thus has a unique critical point in \mathscr{A}_{N} that is the global minimizer of our problem. We improve this result as follows: for the radial profile f_{ε} in (5), we denote by $\ell(\varepsilon)$ the first eigenvalue of the operator

$$
\begin{equation*}
L_{\varepsilon}=-\Delta_{x}-\frac{1}{\varepsilon^{2}} W^{\prime}\left(1-f_{\varepsilon}^{2}\right) \tag{6}
\end{equation*}
$$

acting on maps defined in B^{N} with zero Dirichlet boundary condition. It is proved in [8, Lemma 2.3] that if $2 \leq N \leq 6$ and $W \in C^{2}((-\infty, 1])$ satisfies (2), then the first eigenvalue $\ell(\varepsilon)$ is a continuous function in ε and there exists $\varepsilon_{N} \in(0, \infty)$ such that

$$
\begin{equation*}
\ell(\varepsilon)<0 \text { in }\left(0, \varepsilon_{N}\right), \quad \ell\left(\varepsilon_{N}\right)=0 \quad \text { and } \quad \ell(\varepsilon)>0 \text { in }\left(\varepsilon_{N}, \infty\right) \tag{7}
\end{equation*}
$$

Note that $0=\ell\left(\varepsilon_{N}\right)>\lambda_{1}-\frac{1}{\varepsilon_{N}^{2}} W^{\prime}(1)$ yielding

$$
\varepsilon_{N}<\sqrt{W^{\prime}(1) / \lambda_{1}} .
$$

Theorem 3. Assume that W satisfies (2), $n \geq 1$ and $2 \leq N \leq 6$. If $\varepsilon \geq \varepsilon_{N}$, then u_{ε} given in (4) is a global minimizer of E_{ε} in \mathscr{A}_{N}. Moreover, if either $\varepsilon>\varepsilon_{N}$, or $\left(\varepsilon=\varepsilon_{N}\right.$ and W is in addition strictly convex), then u_{ε} is the unique global minimizer of E_{ε} in \mathscr{A}_{N}.

The case $\varepsilon<\varepsilon_{N}$ is still not solved as stated in Open Problem 2. Let us summarize some known results:
I. The case of $n=0$ and $\Omega=B^{N}$ (we also discuss here the problem for $\Omega=\mathbb{R}^{N}$). In this case, the above question was raised in dimension $N=2$ for the disk $\Omega=B^{2}$ in the seminal book of Bethuel, Brezis and Hélein [1, Problem 10, page 139], and in general dimensions $N \geq 2$ and also for the blow-up limiting problem around the vortex point (when the domain Ω is the whole space \mathbb{R}^{N} and by rescaling, ε can be assumed equal to 1) in an article of Brezis [3, Section 2]. For sufficiently small $\varepsilon>0$ and for the disk domain $\Omega=B^{2}$, Pacard and Rivière [20, Theorem 10.2] showed that E_{ε} has a unique critical point in \mathscr{A}_{2} and so, it is given by the radially symmetric solution u_{ε} in (4) (for $n=0$). For $N \geq 7, \Omega=B^{N}$ and any $\varepsilon>0$, it is proved in [11] that E_{ε} has a unique minimizer in \mathscr{A}_{N} which is given by the radially symmetric solution u_{ε} in (4) (for $n=0$). For $2 \leq N \leq 6$ and $\Omega=B^{N}$, Ignat-Nguyen [8] proved that for any $\varepsilon>0, u_{\varepsilon}$ is a local minimizer of E_{ε} in \mathscr{A} (which is an extension of the result of Mironescu [18 in dimension $N=2$). Also, Mironescu [19] showed in dimension $N=2$ that, when B^{2} is replaced by \mathbb{R}^{2} and $\varepsilon=1$, a local minimizer of E_{ε} satisfying a degree-one boundary condition at infinity is unique (up to translation and suitable rotation). This was extended in dimension $N=3$ by Millot and Pisante [17] and in dimensions $N \geq 4$ by Pisante [21] in the case of the blow-up limiting problem on \mathbb{R}^{N} and $\varepsilon=1$. All these results (holding for $n=0$) are related to the study of the limit problem obtained by sending $\varepsilon \rightarrow 0$ when the Ginzburg-Landau problem on the unit ball 'converges' to the harmonic map problem from B^{N} into the unit sphere \mathbb{S}^{N-1}. For that harmonic map problem, the vortex boundary condition yields uniqueness of the minimizing harmonic \mathbb{S}^{N-1}-valued map $x \mapsto \frac{x}{|x|}$ if $N \geq 3$; this is proved by Brezis, Coron and Lieb [4] in dimension $N=3$ and by Lin [15] in any dimension $N \geq 3$; we also mention Jäger and Kaul [14] in dimension $N \geq 7$ for the equator map $x \in B^{N} \mapsto\left(\frac{x}{|x|}, 0\right) \in \mathbb{S}^{N}$.
II. The case of $n \geq 1$ and $\Omega=B^{N} \times(0,1)^{n}$. As we explain in Remark 6 below, for some $\varepsilon>0$, if the minimality of the radially symmetric solution u_{ε} in (4) holds in the case $n=0$ (so, for $\Omega=B^{N}$), then this implies the minimality of u_{ε} in $\Omega=B^{N} \times(0,1)^{n}$ also for every dimension $n \geq 1$. In particular, the result of Pacard-Rivière [20, Theorem 10.2] for $n=0$ and $N=2$ yields the minimality of u_{ε} in (4) defined in $B^{2} \times(0,1)^{n}$ for every $n \geq 1$ if $\varepsilon>0$ is sufficiently small. Also, the result of Ignat-Nguyen-Slastikov-Zarnescu [11, Theorem 1]

$$
\begin{aligned}
& { }^{2} \text { Indeed, if } v \in H_{0}^{1}\left(B^{N}\right) \text { is a first eigenfunction of } L_{\varepsilon_{N}} \text { in } B^{N} \text { such that }\|v\|_{L^{2}\left(B^{N}\right)}=1 \text { then } \\
& \qquad \lambda_{1} \leq \int_{B^{N}}\left|\nabla_{x} v\right|^{2} d x=\frac{1}{\varepsilon_{N}^{2}} \int_{B^{N}} W^{\prime}\left(1-f_{\varepsilon_{N}}^{2}\right) v^{2} d x<\frac{W^{\prime}(1)}{\varepsilon_{N}^{2}}
\end{aligned}
$$

because $\ell\left(\varepsilon_{N}\right)=0,0<f_{\varepsilon_{N}}<1$ in (0,1) and (2) implies $W^{\prime}(0)=0$ and $W^{\prime}(t)>0$ for $t \in(0,1]$.
for $n=0, N \geq 7$ and any $\varepsilon>0$ generalizes to dimension $n \geq 1$ for $\Omega=B^{N} \times(0,1)^{n}$ (see the proof of Theorem (1). We also mention the work of Sandier-Shafrir [24] where they treat the case of topologically trivial \mathbb{R}^{2}-valued solutions in the domain $\Omega=\mathbb{R}^{3}$ (see also [5, 22] for vortex filament solutions).

1.2 Escaping \mathbb{R}^{M}-valued vortex sheet solutions when $M \geq N+1$

In dimension $2 \leq N \leq 6$ and for $\varepsilon<\varepsilon_{N}$ given in (7), a different type of radially symmetric vortex sheet solution appears provided that the target space has dimension $M \geq N+1$. More precisely, we consider the energy functional E_{ε} in (1) over the set of \mathbb{R}^{M}-valued maps

$$
\begin{equation*}
\mathscr{A}:=\left\{u \in H^{1}\left(\Omega ; \mathbb{R}^{M}\right): u(x, z)=\left(x, 0_{\mathbb{R}^{M-N}}\right) \text { on } \partial B^{N}=\mathbb{S}^{N-1} \subset \mathbb{R}^{M}, z \in(0,1)^{n}\right\} . \tag{8}
\end{equation*}
$$

If $M \geq N+1$, the prototype of radially symmetric critical points of E_{ε} in \mathscr{A} has the following form (invariant in z-direction): 3

$$
\begin{equation*}
\tilde{u}_{\varepsilon}(x, z)=\left(\tilde{f}_{\varepsilon}(r) \frac{x}{|x|}, 0_{\mathbb{R}^{M-N-1}}, g_{\varepsilon}(r)\right) \in \mathscr{A}, \quad x \in B^{N}, z \in(0,1)^{n}, r=|x|, \tag{9}
\end{equation*}
$$

where $\left(\tilde{f}_{\varepsilon}, g_{\varepsilon}\right)$ satisfies the system of ODEs

$$
\begin{align*}
-\tilde{f}_{\varepsilon}^{\prime \prime}-\frac{N-1}{r} \tilde{f}_{\varepsilon}^{\prime}+\frac{N-1}{r^{2}} \tilde{f}_{\varepsilon} & =\frac{1}{\varepsilon^{2}} W^{\prime}\left(1-\tilde{f}_{\varepsilon}^{2}-g_{\varepsilon}^{2}\right) \tilde{f}_{\varepsilon} \quad \text { in }(0,1), \tag{10}\\
-g_{\varepsilon}^{\prime \prime}-\frac{N-1}{r} g_{\varepsilon}^{\prime} & =\frac{1}{\varepsilon^{2}} W^{\prime}\left(1-\tilde{f}_{\varepsilon}^{2}-g_{\varepsilon}^{2}\right) g_{\varepsilon} \quad \text { in }(0,1), \tag{11}\\
\tilde{f}_{\varepsilon}(1) & =1 \text { and } g_{\varepsilon}(1)=0 . \tag{12}
\end{align*}
$$

We distinguish two type of radial profiles:

- the non-escaping radial profile $\left(\tilde{f}_{\varepsilon}=f_{\varepsilon}, g_{\varepsilon}=0\right)$ with the unique radial profile f_{ε} given in (5) ; in this case, we say that $\tilde{u}_{\varepsilon}=\left(u_{\varepsilon}, 0_{\mathbb{R}^{M-N}}\right)$ is a non-escaping (radially symmetric) vortex sheet solution where u_{ε} is given in (4).
- the escaping radial profile $\left(\tilde{f}_{\varepsilon}, g_{\varepsilon}\right)$ with $g_{\varepsilon}>0$ in $(0,1)$; in this case, we call an escaping (radially symmetric) vortex sheet solution \tilde{u}_{ε} in (9). In this case, $\tilde{f}_{\varepsilon} \neq f_{\varepsilon}$ and obviously, $\left(\tilde{f}_{\varepsilon},-g_{\varepsilon}\right)$ is another radial profile to (9)-(12).

The properties of such radial profiles (e.g., existence, uniqueness, minimality, monotonicity) are analyzed in Theorem 9 below and are based on ideas developed by IgnatNguyen [8].

Our main result proves the radial symmetry of global minimizers of E_{ε} in \mathscr{A}. More precisely, the following dichotomy occurs at ε_{N} defined in (7): if $\varepsilon<\varepsilon_{N}$, then escaping radially symmetric vortex sheet solutions exist and determine (up to certain orthogonal transformations) the full set of global minimizers of E_{ε} in \mathscr{A}; if instead $\varepsilon \geq \varepsilon_{N}$, then the non-escaping radially symmetric vortex sheet solution is the unique global minimizer of E_{ε} in \mathscr{A} and no escaping radially symmetric vortex sheet solutions exist in this case.

[^1]Theorem 4. Let $n \geq 1,2 \leq N \leq 6, M \geq N+1$, $W \in C^{2}((-\infty, 1])$ satisfy (2) and be strictly convex. Consider $\varepsilon_{N} \in(0, \infty)$ such that $\ell\left(\varepsilon_{N}\right)=0$ in (7). Then there exists an escaping radially symmetric vortex sheet solution \tilde{u}_{ε} in (9) with $g_{\varepsilon}>0$ in $(0,1)$ if and only if $0<\varepsilon<\varepsilon_{N}$. Moreover,

1. if $0<\varepsilon<\varepsilon_{N}$, the escaping radially symmetric vortex sheet solution \tilde{u}_{ε} is a global minimizer of E_{ε} in \mathscr{A} and all global minimizers of E_{ε} in \mathscr{A} are radially symmetric given by $R \tilde{u}_{\varepsilon}$ where $R \in O(M)$ is an orthogonal transformation of \mathbb{R}^{M} satisfying $R p=p$ for all $p \in \mathbb{R}^{N} \times\left\{0_{\mathbb{R}^{M-N}}\right\}$. In this case, the non-escaping vortex sheet solution $\left(u_{\varepsilon}, 0_{\mathbb{R}^{M-N}}\right)$ in (4) is an unstable critical point of E_{ε} in \mathscr{A}.
2. if $\varepsilon \geq \varepsilon_{N}$, the non-escaping vortex sheet solution $\left(u_{\varepsilon}, 0_{\mathbb{R}^{M-N}}\right)$ in (4) is the unique global minimizer of E_{ε} in \mathscr{A}. Furthermore, there are no bounded critical points w_{ε} of E_{ε} in \mathscr{A} that escape in some direction $e \in \mathbb{S}^{M-1}$ (i.e., $w_{\varepsilon} \cdot e>0$ a.e. in Ω).

The result above holds also if $n=0$, i.e., $\Omega=B^{N}$ and the vortex sheets corresponding to the above solutions become vortex points (see Theorem [10). It generalizes [12, Theorem 1.1] that was proved in the case $N=2$ and $M=3$ (without identifying the meaning of the dichotomy parameter ε_{N} in (7)). The dichotomy in Theorem4 happens in dimensions $2 \leq N \leq 6$ because of the phenomenology occurring for the limit problem $\varepsilon \rightarrow 0$. More precisely, if $M \geq N+1$, then minimizing \mathbb{S}^{M-1}-valued harmonic maps in \mathscr{A} are smooth and escaping in a direction of \mathbb{S}^{M-1} provided that $N \leq 6$; if $N \geq 7$, then there is a unique minimizing \mathbb{S}^{M-1}-valued harmonic maps in \mathscr{A}, non-escaping and singular, the singular set being given by a vortex sheet of dimension n in Ω (see Theorem 11 in Appendix below). This suggests why in dimension $N \geq 7$ and for any $\varepsilon>0$, there is no escaping radially symmetric vortex sheet critical point \tilde{u}_{ε} of E_{ε} in \mathscr{A} while the non-escaping vortex sheet solution $\left(u_{\varepsilon}, 0_{\mathbb{R}^{M-N}}\right)$ is the unique global minimizer of E_{ε} in \mathscr{A} (see Theorem 5 and Remark 8 below).

The paper is meant to be self-contained and it is organized as follows. In Section 2, we prove the minimality and the uniqueness results for the non-escaping radially symmetric solution in Theorems 1 and 3 , this is done in a more general setting by considering the target dimension $M \geq N$ for the set of configurations \mathscr{A} instead of \mathscr{A}_{N}. Section 3 is devoted to characterize escaping vortex sheet solutions. First, we prove the minimality of such bounded solutions stated in Theorem 7 . Second, we prove existence, minimality and uniqueness results for the escaping radial profile in Theorem 9 Finally, we prove our main result on the dichotomy between escaping / non-escaping radially symmetric vortex sheet solutions in Theorem 4 In Appendix, we prove the corresponding dichotomy result for \mathbb{S}^{M-1}-valued harmonic maps in Theorem 11 which again is based on the minimality of escaping \mathbb{S}^{M-1}-valued harmonic maps in Theorem 12 .

Acknowledgment. R.I. is partially supported by the ANR projects ANR-21-CE40-0004 and ANR-22-CE40-0006-01. He also thanks for the hospitality of the Hausdorff Research Institute for Mathematics in Bonn during the trimester "Mathematics for Complex Materials".

2 The non-escaping vortex sheet solution. Proof of Theorems 1 and 3

Theorem 11 will be obtained as a consequence of a stronger result on the uniqueness of global minimizers of the \mathbb{R}^{M}-valued Ginzburg-Landau functional with $M \geq N \geq 7$. For that, we consider the energy functional E_{ε} in (11) over the set \mathscr{A} defined in (8). The aim is to prove the minimality and uniqueness of the vortex sheet solution $\left(u_{\varepsilon}, 0_{\mathbb{R}^{M-N}}\right)$ where u_{ε} given in (4) with the obvious identification $u_{\varepsilon} \equiv\left(u_{\varepsilon}, 0_{\mathbb{R}^{M-N}}\right)$ if $M=N$, following the ideas of Ignat-Nguyen-Slastikov-Zarnescu [12, 11].

Theorem 5. Assume that W satisfies (2) and $n \geq 1$. If $M \geq N \geq 7$, then for every $\varepsilon>0,\left(u_{\varepsilon}, 0_{\mathbb{R}^{M-N}}\right)$ given in (4) is the unique global minimizer of E_{ε} in \mathscr{A}.

Proof. To simplify notation, we identify

$$
\begin{equation*}
u_{\varepsilon} \equiv\left(u_{\varepsilon}, 0_{\mathbb{R}^{M-N}}\right) \quad \text { when } \quad M \geq N \tag{13}
\end{equation*}
$$

The proof will be done in several steps following the strategy in [12, Theorem 1.7], [11, Theorem 1]. First, for an arbitrary competitor $u_{\varepsilon}+v$, we consider the excess energy $E_{\varepsilon}\left(u_{\varepsilon}+v\right)-E_{\varepsilon}\left(u_{\varepsilon}\right)$ for the critical point u_{ε} defined in (4) and show a lower estimate by a quadratic energy functional $F_{\varepsilon}(v)$ coming from the operator L_{ε} in (6). Second, we show that $F_{\varepsilon}(v) \geq 0$ using the properties of the radial profile f_{ε} in (5) and a Hardy decomposition method; this proves in particular that u_{ε} is a global minimizer of E_{ε} over \mathscr{A}. Finally, by analyzing the zero excess energy states, we conclude to the uniqueness of the global minimizer u_{ε}.

Step 1: Excess energy. For any $v \in H_{0}^{1}\left(B^{N} \times \mathbb{R}^{n} ; \mathbb{R}^{M}\right)$, we have

$$
\begin{aligned}
E_{\varepsilon}\left(u_{\varepsilon}+v\right)-E_{\varepsilon}\left(u_{\varepsilon}\right)=\int_{\Omega} & {\left[\nabla u_{\varepsilon} \cdot \nabla v+\frac{1}{2}|\nabla v|^{2}\right] d x d z } \\
& +\frac{1}{2 \varepsilon^{2}} \int_{\Omega}\left[W\left(1-\left|u_{\varepsilon}+v\right|^{2}\right)-W\left(1-\left|u_{\varepsilon}\right|^{2}\right)\right] d x d z
\end{aligned}
$$

Note that for every $u \in \mathscr{A}, u_{\varepsilon}-u$ can be extended to $v \in H_{0}^{1}\left(B^{N} \times \mathbb{R}^{n} ; \mathbb{R}^{M}\right)$. In particular, $v(\cdot, z) \in H_{0}^{1}\left(B^{N}, \mathbb{R}^{M}\right)$ for a.e. $z \in(0,1)^{n}$. The convexity of W yields

$$
\begin{equation*}
W\left(1-\left|u_{\varepsilon}+v\right|^{2}\right)-W\left(1-\left|u_{\varepsilon}\right|^{2}\right) \geq-W^{\prime}\left(1-\left|u_{\varepsilon}\right|^{2}\right)\left(\left|u_{\varepsilon}+v\right|^{2}-\left|u_{\varepsilon}\right|^{2}\right) . \tag{14}
\end{equation*}
$$

Combining the above relations, we obtain the following lower bound for the excess energy:

$$
\begin{align*}
E_{\varepsilon}\left(u_{\varepsilon}+v\right)-E_{\varepsilon}\left(u_{\varepsilon}\right) \geq & \int_{\Omega}\left[\nabla u_{\varepsilon} \cdot \nabla v-\frac{1}{\varepsilon^{2}} W^{\prime}\left(1-f_{\varepsilon}^{2}\right) u_{\varepsilon} \cdot v\right] d x d z \\
& \quad+\int_{\Omega}\left[\frac{1}{2}|\nabla v|^{2}-\frac{1}{2 \varepsilon^{2}} W^{\prime}\left(1-f_{\varepsilon}^{2}\right)|v|^{2}\right] d x d z \\
= & \int_{\Omega} \frac{1}{2}\left|\nabla_{z} v\right|^{2} d x d z+\int_{(0,1)^{n}} \frac{1}{2} F_{\varepsilon}(v(\cdot, z)) d z, \tag{15}
\end{align*}
$$

where we used the PDE (3) and introduced the quadratic functional

$$
F_{\varepsilon}(\Psi)=\int_{B^{N}}\left[\left|\nabla_{x} \Psi\right|^{2}-\frac{1}{\varepsilon^{2}} W^{\prime}\left(1-f_{\varepsilon}^{2}\right)|\Psi|^{2}\right] d x
$$

for all $\Psi \in H_{0}^{1}\left(B^{N} ; \mathbb{R}^{M}\right)$. Note that the L^{2}-gradient of F_{ε} represents a part of the linearization of the PDE (3) at u_{ε} and it is given by the operator L_{ε} in (6). The rest of the proof is devoted to show that for $N \geq 3$:

$$
F_{\varepsilon}(\psi) \geq\left(\frac{(N-2)^{2}}{4}-(N-1)\right) \int_{B^{N}} \frac{\psi^{2}}{r^{2}} d x, \quad \forall \psi \in H_{0}^{1}\left(B^{N}\right)
$$

yielding the conclusion for $N \geq 7$ and also the inequality for the first eigenvalue $\ell(\varepsilon)$ of the operator L_{ε} in (6) in B^{N} : 4

$$
\ell(\varepsilon) \geq \frac{(N-2)^{2}}{4}-(N-1)>0, \quad \forall \varepsilon>0 \quad \text { and } \quad N \geq 7
$$

To keep the paper self-contained, we explain in the following the simple idea used in [12, 11].

Step 2: A factorization argument. As $f_{\varepsilon}>0$ is a smooth positive radial profile in $(0,1)$, we decompose every scalar test function $\psi \in C_{c}^{\infty}\left(B^{N} \backslash\{0\} ; \mathbb{R}\right)$ as follows

$$
\psi(x)=f_{\varepsilon}(r) w(x), \quad \forall x \in B^{N} \backslash\{0\}, r=|x|
$$

where $w \in C_{c}^{\infty}\left(B^{N} \backslash\{0\} ; \mathbb{R}\right)$. Integrating by parts (see e.g. [10, Lemma A.1]), we deduce:

$$
\begin{aligned}
F_{\varepsilon}(\psi)=\int_{B^{N}} L_{\varepsilon} \psi \cdot \psi d x & =\int_{B^{N}} w^{2}\left(L_{\varepsilon} f_{\varepsilon} \cdot f_{\varepsilon}\right) d x+\int_{B^{N}} f_{\varepsilon}^{2}\left|\nabla_{x} w\right|^{2} d x \\
& =\int_{B^{N}} f_{\varepsilon}^{2}\left(\left|\nabla_{x} w\right|^{2}-\frac{N-1}{r^{2}} w^{2}\right) d x
\end{aligned}
$$

because $L_{\varepsilon} f_{\varepsilon} \cdot f_{\varepsilon}=-\frac{N-1}{r^{2}} f_{\varepsilon}^{2}$ in B^{N} by (5). Furthermore, we decompose

$$
w=\varphi g \quad \text { in } \quad B^{N} \backslash\{0\}
$$

with $\varphi=|x|^{-\frac{N-2}{2}}$ satisfying

$$
-\Delta_{x} \varphi=\frac{(N-2)^{2}}{4|x|^{2}} \varphi \quad \text { in } \mathbb{R}^{N} \backslash\{0\}
$$

and $g \in C_{c}^{\infty}\left(B^{N} \backslash\{0\} ; \mathbb{R}\right)$. Then

$$
\left|\nabla_{x} w\right|^{2}=\left|\nabla_{x} g\right|^{2} \varphi^{2}+\left|\nabla_{x} \varphi\right|^{2} g^{2}+\frac{1}{2} \nabla_{x}\left(\varphi^{2}\right) \cdot \nabla_{x}\left(g^{2}\right)
$$

[^2]As $\left|\nabla_{x} \varphi\right|^{2}=\frac{(N-2)^{2}}{4|x|^{2}} \varphi^{2}$ and φ^{2} is harmonic in $B^{N} \backslash\{0\}$ (recall that $N \geq 7$), integration by parts yields

$$
\begin{align*}
F_{\varepsilon}(\psi) & =\int_{B^{N}} f_{\varepsilon}^{2}\left(\left|\nabla_{x} g\right|^{2} \varphi^{2}+\frac{(N-2)^{2}}{4 r^{2}} \varphi^{2} g^{2}-\frac{N-1}{r^{2}} \varphi^{2} g^{2}\right) d x-\frac{1}{2} \int_{B^{N}} \nabla_{x}\left(\varphi^{2}\right) \cdot \nabla_{x}\left(f_{\varepsilon}^{2}\right) g^{2} d x \\
& \geq \int_{B^{N}} f_{\varepsilon}^{2}\left|\nabla_{x} g\right|^{2} \varphi^{2} d x+\left(\frac{(N-2)^{2}}{4}-(N-1)\right) \int_{B^{N}} \frac{f_{\varepsilon}^{2}}{r^{2}} \varphi^{2} g^{2} d x \\
& \geq\left(\frac{(N-2)^{2}}{4}-(N-1)\right) \int_{B^{N}} \frac{\psi^{2}}{r^{2}} d x \geq 0 \tag{16}
\end{align*}
$$

where we used $N \geq 7$ and $\frac{1}{2} \nabla_{x}\left(\varphi^{2}\right) \cdot \nabla_{x}\left(f_{\varepsilon}^{2}\right)=2 \varphi \varphi^{\prime} f_{\varepsilon} f_{\varepsilon}^{\prime} \leq 0$ in $B^{N} \backslash\{0\}$ because $\varphi, f_{\varepsilon}, f_{\varepsilon}^{\prime}>$ 0 and $\varphi^{\prime}<0$ in $(0,1)$ (see e.g. [7, 9, 8]).

Step 3: We prove that $F_{\varepsilon}(\Psi) \geq 0$ for every $\Psi \in H_{0}^{1}\left(B^{N} ; \mathbb{R}^{M}\right) ;$ moreover, $F_{\varepsilon}(\Psi)=0$ if and only if $\Psi=0$. Let $\Psi \in H_{0}^{1}\left(B^{N} ; \mathbb{R}^{M}\right)$. As a point in \mathbb{R}^{N} has zero H^{1} capacity, a standard density argument implies the existence of a sequence $\Psi_{k} \in C_{c}^{\infty}\left(B^{N} \backslash\{0\} ; \mathbb{R}^{M}\right)$ such that $\Psi_{k} \rightarrow \Psi$ in $H^{1}\left(B^{N}, \mathbb{R}^{M}\right)$ and a.e. in B^{N}. On the one hand, by definition of F_{ε}, since $W^{\prime}\left(1-f_{\varepsilon}^{2}\right) \in L^{\infty}$, we deduce that $F_{\varepsilon}\left(\Psi_{k}\right) \rightarrow F_{\varepsilon}(\Psi)$ as $k \rightarrow \infty$. On the other hand, by (16) and Fatou's lemma, we deduce

$$
\begin{aligned}
\liminf _{k \rightarrow \infty} F_{\varepsilon}\left(\Psi_{k}\right) & \geq\left(\frac{(N-2)^{2}}{4}-(N-1)\right) \liminf _{k \rightarrow \infty} \int_{B^{N}} \frac{\left|\Psi_{k}\right|^{2}}{r^{2}} d x \\
& \geq\left(\frac{(N-2)^{2}}{4}-(N-1)\right) \int_{B^{N}} \frac{|\Psi|^{2}}{r^{2}} d x
\end{aligned}
$$

Therefore, we conclude that

$$
F_{\varepsilon}(\Psi) \geq\left(\frac{(N-2)^{2}}{4}-(N-1)\right) \int_{B^{N}} \frac{|\Psi|^{2}}{r^{2}} d x \geq 0, \quad \forall \Psi \in H_{0}^{1}\left(B^{N} ; \mathbb{R}^{M}\right)
$$

Moreover, $F_{\varepsilon}(\Psi)=0$ if and only if $\Psi=0$.
Step 4: Conclusion. By (15) and Step 3, we deduce that u_{ε} is a global minimizer of E_{ε} over \mathscr{A}. For uniqueness, assume that \hat{u}_{ε} is another global minimizer of E_{ε} over \mathscr{A}. If $v:=\hat{u}_{\varepsilon}-u_{\varepsilon}$, then v can be extended in $H_{0}^{1}\left(B^{N} \times \mathbb{R}^{n} ; \mathbb{R}^{M}\right)$ and by Steps 1 and 3 , we have that

$$
0=E_{\varepsilon}\left(\hat{u}_{\varepsilon}\right)-E_{\varepsilon}\left(u_{\varepsilon}\right) \geq \int_{\Omega} \frac{1}{2}\left|\nabla_{z} v\right|^{2} d x d z+\int_{(0,1)^{n}} \frac{1}{2} F_{\varepsilon}(v(\cdot, z)) d z \geq 0
$$

which yields $\nabla_{z} v=0$ a.e. in Ω and $F_{\varepsilon}(v(\cdot, z))=0$ for a.e. $z \in(0,1)^{n}$. In other words, $v=v(x)$ and Step 3 implies that $v=0$, i.e., $\hat{u}_{\varepsilon}=u_{\varepsilon}$ in Ω.

REMARK 6. Theorem 5 reveals the following fact: if for $n=0$ (i.e., $\Omega=B^{N}$) and some $\varepsilon>0$, a (radially symmetric) critical point $\hat{u}_{\varepsilon}: B^{N} \rightarrow \mathbb{R}^{M}$ of E_{ε} in \mathscr{A} is proved to be a global minimizer (and additionally, if one proves that it is the unique global minimizer), then for any dimensions $n \geq 1$ (i.e., $\Omega=B^{N} \times(0,1)^{n}$), this z-invariant solution \hat{u}_{ε} of (3)
in $B^{N} \times(0,1)^{n}$ is also a global minimizer (and additionally, it is the unique minimizer) of E_{ε} in \mathscr{A}. This is because for every $u: B^{N} \times(0,1)^{n} \rightarrow \mathbb{R}^{M}$ with $u \in \mathscr{A}$, then $u(\cdot, z)$ satisfies the degree-one vortex boundary condition on ∂B^{N} for every $z \in(0,1)^{n}$ yielding

$$
\begin{aligned}
E_{\varepsilon}(u) & =\int_{\Omega} \frac{1}{2}\left|\nabla_{z} u\right|^{2} d x d z+\int_{(0,1)^{n}} E_{\varepsilon}(u(\cdot, z)) d z \\
& \geq \int_{(0,1)^{n}} E_{\varepsilon}\left(\hat{u}_{\varepsilon}\right) d z=E_{\varepsilon}\left(\hat{u}_{\varepsilon}\right)
\end{aligned}
$$

the equality occurs only when u is z-invariant. Thus, if the uniqueness of the global minimizer \hat{u}_{ε} holds in B^{N} (i.e., $n=0$), then this yields uniqueness of the global minimizer \hat{u}_{ε} in $\Omega=B^{N} \times(0,1)^{n}$ (as a map independent of z-variable) for every $n \geq 1$.

Proof of Theorem 园. We prove the result in the more general setting of \mathbb{R}^{M}-valued maps u belonging to \mathscr{A} for $M \geq N$ using the same identification (13). By Step 1 in the proof of Theorem 5 (see (15)), the excess energy is estimated for every $v \in H_{0}^{1}\left(B^{N} \times \mathbb{R}^{n} ; \mathbb{R}^{M}\right)$:

$$
E_{\varepsilon}\left(u_{\varepsilon}+v\right)-E_{\varepsilon}\left(u_{\varepsilon}\right) \geq \int_{\Omega} \frac{1}{2}\left|\nabla_{z} v\right|^{2} d x d z+\frac{1}{2} \int_{(0,1)^{n}}<L_{\varepsilon} v(\cdot, z), v(\cdot, z)>d z
$$

where L_{ε} is the operator in (6) and $\langle\cdot, \cdot\rangle$ denotes the duality pairing $\left(H^{-1}, H_{0}^{1}\right)$ in B^{N}. If $\varepsilon \geq \varepsilon_{N}$, then $\ell(\varepsilon) \geq 0$ (by [8, Lemma 2.3]) and therefore, 5

$$
\begin{equation*}
<L_{\varepsilon} v(\cdot, z), v(\cdot, z)>\geq \ell(\varepsilon)\|v(\cdot, z)\|_{L^{2}\left(B^{N}\right)}^{2} \geq 0 \quad \text { for a.e. } z \in(0,1)^{n} \tag{17}
\end{equation*}
$$

where we used that $v(\cdot, z) \in H_{0}^{1}\left(B^{N} ; \mathbb{R}^{M}\right)$ for a.e. $z \in(0,1)^{n}$. Thus, u_{ε} is a minimizer of E_{ε} over \mathscr{A}. It remains to prove uniqueness of the global minimizer. For that, if \hat{u}_{ε} is another global minimizer of E_{ε} over \mathscr{A}, setting $v:=\hat{u}_{\varepsilon}-u_{\varepsilon}$, then v can be extended in $H_{0}^{1}\left(B^{N} \times \mathbb{R}^{n} ; \mathbb{R}^{M}\right)$ and

$$
\begin{equation*}
0=E_{\varepsilon}\left(\hat{u}_{\varepsilon}\right)-E_{\varepsilon}\left(u_{\varepsilon}\right) \geq \int_{\Omega} \frac{1}{2}\left|\nabla_{z} v\right|^{2} d x d z+\frac{\ell(\varepsilon)}{2} \int_{(0,1)^{n}} \int_{B^{N}}|v(x, z)|^{2} d x d z \geq 0 \tag{18}
\end{equation*}
$$

because $\ell(\varepsilon) \geq 0$ for $\varepsilon \geq \varepsilon_{N}$. Thus, equality holds in the above inequalities.
Case 1: $\varepsilon>\varepsilon_{N}$. In this case, $\ell(\varepsilon)>0$ and we conclude that $v=0$ in Ω, i.e., $\hat{u}_{\varepsilon}=u_{\varepsilon}$ in Ω.

[^3]Case 2: $\varepsilon=\varepsilon_{N}$ and W is in addition strictly convex. In this case, $\ell(\varepsilon)=0$ and by (18), v is invariant in z, i.e., $v=v(x)$ and equality holds in (17) and in (15), thus, equality holds in (14). Note that by footnote 5 the equality in (17) holds if and only if $v=\lambda \psi$ for some $\lambda \in \mathbb{R}^{M}$, where $\psi=\psi(r)$ is a radial first eigenfunction of L_{ε} in B^{N} with zero Dirichlet data, in particular $\psi>0$ in $[0,1)$ and $\psi(1)=0$. Also, by the strict convexity of W, the equality (14) is achieved if and only if $\left|u_{\varepsilon}+v\right|=\left|u_{\varepsilon}\right|$ a.e. in Ω, that is, $|v|^{2}+2 v \cdot u_{\varepsilon}=0$ a.e. in B^{N}. It yields

$$
\begin{equation*}
|\lambda|^{2} \psi^{2}+2 f_{\varepsilon}(|x|)\left(\frac{x}{|x|}, 0_{\mathbb{R}^{M-N}}\right) \cdot \lambda \psi=0 \quad \text { for every } x \in B^{N} \tag{19}
\end{equation*}
$$

Dividing by ψ in B^{N}, the continuity up to the boundary ∂B^{N} leads to $2 f_{\varepsilon}(|x|)\left(x, 0_{\mathbb{R}^{M-N}}\right)$. $\lambda=0$ for every $x \in \partial B^{N}$ since $\psi=0$ on ∂B^{N}. As $f_{\varepsilon}(1)=1$, it follows that the first N components of λ vanish. Coming back to (19), we conclude that $|\lambda|^{2} \psi^{2}=0$ in B^{N}, i.e., $\lambda=0$ and so, $v=0$ and $\hat{u}_{\varepsilon}=u_{\varepsilon}$ in Ω.

3 Properties of escaping vortex sheet solutions when $M \geq$ $N+1$

3.1 Minimality of escaping vortex sheet solutions

In this section, we require the additional assumption of strict convexity of W in order to determine the set of global minimizers of E_{ε} over \mathscr{A} in (8). However, W is assumed to be only C^{1} not C^{2}. We prove that every bounded solution to (3) escaping in some direction is a global minimizer of E_{ε} over \mathscr{A}; moreover, such global minimizer is unique up to an orthogonal transformation of \mathbb{R}^{M} keeping invariant the space $\mathbb{R}^{N} \times\left\{0_{\mathbb{R}^{M-N}}\right\}$.

ThEOREM 7. We consider the dimensions $n \geq 1$ and $M>N \geq 2$, the potential $W \in$ $C^{1}((-\infty, 1], \mathbb{R})$ satisfying (2) and an escaping direction $e \in \mathbb{S}^{M-1}$. Fix any $\varepsilon>0$ and let $w_{\varepsilon} \in H^{1} \cap L^{\infty}\left(\Omega, \mathbb{R}^{M}\right)$ be a critical point of the energy E_{ε} in the set \mathscr{A} which is positive in the direction e inside Ω :

$$
\begin{equation*}
w_{\varepsilon} \cdot e>0 \text { a.e. in } \Omega . \tag{20}
\end{equation*}
$$

Then w_{ε} is a global minimizer of E_{ε} in \mathscr{A}. If in addition W is strictly convex, then all minimizers of E_{ε} in \mathscr{A} are given by $R w_{\varepsilon}$ where $R \in O(M)$ is an orthogonal transformation of \mathbb{R}^{M} satisfying $R p=p$ for all $p \in \mathbb{R}^{N} \times\left\{0_{\mathbb{R}^{M-N}}\right\}$.

This result is reminiscent from [12, Theorem 1.3]. However, it doesn't apply directly as the domain Ω is not smooth here and the boundary condition is a mixed DirichletNeumann condition (w.r.t. Dirichlet boundary condition in [12]).

Proof. In the following, we denote the variable $X=(x, z) \in \Omega=B^{N} \times(0,1)^{n}$. As a critical point of E_{ε} in the set $\mathscr{A}, w_{\varepsilon}: \Omega \rightarrow \mathbb{R}^{M}$ satisfies

$$
\left\{\begin{array}{l}
-\Delta w_{\varepsilon}=\frac{1}{\varepsilon^{2}} w_{\varepsilon} W^{\prime}\left(1-\left|w_{\varepsilon}\right|^{2}\right) \quad \text { in } \Omega \tag{21}\\
\frac{\partial w_{\varepsilon}}{\partial z}=0 \quad \text { on } B^{N} \times \partial(0,1)^{n} \\
w_{\varepsilon}(x, z)=\left(x, 0_{\mathbb{R}^{M-N}}\right) \quad \text { on } \partial B^{N} \times(0,1)^{n}
\end{array}\right.
$$

In particular, $\Delta w_{\varepsilon} \in L^{\infty}(\Omega)$ (as W^{\prime} is continuous and $w_{\varepsilon} \in L^{\infty}(\Omega)$); then standard elliptic regularity for the mixed boundary conditions in (21) yields $w_{\varepsilon} \in C^{1}\left(\bar{\Omega}, \mathbb{R}^{M}\right)$. Thus, (20) implies $w_{\varepsilon} \cdot e \geq 0$ in $\bar{\Omega}$ and the vortex boundary condition in \mathscr{A} implies that e is orthogonal to $\mathbb{R}^{N} \times\left\{0_{\mathbb{R}^{M-N}}\right\}$. By the invariance of the energy and the vortex boundary condition under the transformation $w_{\varepsilon}(X) \mapsto R w_{\varepsilon}(X)$ for any $R \in O(M)$ satisfying $R p=p$ for all $p \in \mathbb{R}^{N} \times\left\{0_{\mathbb{R}^{M-N}}\right\}$, we know that $R w_{\varepsilon}$ is also a critical point of E_{ε} over \mathscr{A}; thus, we can assume that

$$
\begin{equation*}
e:=e_{M}=(0, \ldots, 0,1) \in \mathbb{R}^{M} \tag{22}
\end{equation*}
$$

We prove the result in several steps.
Step 1: Excess energy. By Step 1 in the proof of Theorem [5 we have for any $v \in$ $H_{0}^{1}\left(B^{N} \times \mathbb{R}^{n}, \mathbb{R}^{M}\right)$:

$$
\begin{equation*}
E_{\varepsilon}\left(w_{\varepsilon}+v\right)-E_{\varepsilon}\left(w_{\varepsilon}\right) \geq \int_{\Omega}\left[\frac{1}{2}|\nabla v|^{2}-\frac{1}{2 \varepsilon^{2}} W^{\prime}\left(1-\left|w_{\varepsilon}\right|^{2}\right)|v|^{2}\right] d X=: \frac{1}{2} G_{\varepsilon}(v) \tag{23}
\end{equation*}
$$

(note that $G_{\varepsilon}(v)$ is larger than the integration of $F_{\varepsilon}(v)$ in (15) over $(0,1)^{n}$ as it contains also the integration of $\left|\nabla_{z} v\right|^{2}$). If in addition W is strictly convex, then equality holds above if and only if $\left|w_{\varepsilon}(X)+v(X)\right|=\left|w_{\varepsilon}(X)\right|$ a.e. $X \in \Omega$ (by (144).

Step 2: Global minimality of w_{ε}. It is enough to show that the quadratic energy $G_{\varepsilon}(v)$ defined in (23) is nonnegative for any $v \in H_{0}^{1}\left(B^{N} \times \mathbb{R}^{n}, \mathbb{R}^{M}\right)$. Denoting the M-component of w_{ε} by $\phi:=w_{\varepsilon} \cdot e_{M}$, we know that $\phi \in C^{1}(\bar{\Omega}), \phi \geq 0$ in Ω (by (20)) and satisfies the Euler-Lagrange equation in the sense of distributions:

$$
\left\{\begin{array}{l}
-\Delta \phi-\frac{1}{\varepsilon^{2}} W^{\prime}\left(1-\left|w_{\varepsilon}\right|^{2}\right) \phi=0 \text { in } \Omega, \tag{24}\\
\phi=0 \text { on } \partial B^{N} \times(0,1)^{n}, \\
\frac{\partial \phi}{\partial z}=0 \text { on } B^{N} \times \partial(0,1)^{n} .
\end{array}\right.
$$

Note that by strong maximum principle, $\phi>0$ in Ω (as ϕ cannot be identically 0 in Ω by (201). Moreover, Hopf's lemma yields $\phi>0$ on $B^{N} \times \partial(0,1)^{n}$ as $\frac{\partial \phi}{\partial z}$ vanishes there. Now, for any smooth map $v \in C_{c}^{\infty}\left(B^{N} \times \mathbb{R}^{n} ; \mathbb{R}^{M}\right)$, we can define $\Psi=\frac{v}{\phi} \in C^{1}\left(\bar{\Omega} ; \mathbb{R}^{M}\right)$ with $\Psi=0$ in a neighborhood of $\partial B^{N} \times(0,1)^{n}$ and integration by parts yields for every component $v_{j}=\phi \Psi_{j}$ with $1 \leq j \leq M$ (as in [10, Lemma A.1.]):

$$
\begin{aligned}
G_{\varepsilon}\left(v_{j}\right) & =\int_{\Omega}\left[\left|\nabla v_{j}\right|^{2}-\frac{1}{\varepsilon^{2}} W^{\prime}\left(1-\left|w_{\varepsilon}\right|^{2}\right) \phi \cdot \phi \Psi_{j}^{2}\right] d X \\
& \stackrel{\text { (24) }}{=} \int_{\Omega}\left[\left|\nabla\left(\phi \Psi_{j}\right)\right|^{2}-\nabla \phi \cdot \nabla\left(\phi \Psi_{j}^{2}\right)\right] d X=\int_{\Omega} \phi^{2}\left|\nabla \Psi_{j}\right|^{2} d X .
\end{aligned}
$$

As G_{ε} is continuous in strong $H^{1}(\Omega)$ topology (since $\left.W^{\prime}\left(1-\left|w_{\varepsilon}\right|^{2}\right) \in L^{\infty}(\Omega)\right)$, by density of $C_{c}^{\infty}\left(B^{N} \times \mathbb{R}^{n} ; \mathbb{R}^{M}\right)$ in $H_{0}^{1}\left(B^{N} \times \mathbb{R}^{n} ; \mathbb{R}^{M}\right)$, Fatou's lemma yields

$$
G_{\varepsilon}(v) \geq \int_{\Omega} \phi^{2}\left|\nabla\left(\frac{v}{\phi}\right)\right|^{2} d X \geq 0, \quad \forall v \in H_{0}^{1}\left(B^{N} \times \mathbb{R}^{n} ; \mathbb{R}^{M}\right)
$$

As a consequence of (23), we deduce that w_{ε} is a minimizer of E_{ε} over \mathscr{A}. Moreover, $G_{\varepsilon}(v)=0$ if and only if there exists a (constant) vector $\lambda \in \mathbb{R}^{M}$ such that $v=\lambda \phi$ for a.e. $x \in \Omega$.

Step 3: Set of global minimizers. From now on, we assume that W is strictly convex and denote $w_{\varepsilon}=\left(w_{\varepsilon, 1}, \ldots, w_{\varepsilon, M}\right)$. Note that the map

$$
\begin{equation*}
\tilde{w}_{\varepsilon}:=\left(w_{\varepsilon, 1}, \ldots, w_{\varepsilon, N}, 0_{\mathbb{R}^{M-N-1}}, \sqrt{w_{\varepsilon, N+1}^{2}+\cdots+w_{\varepsilon, M}^{2}}\right) \tag{25}
\end{equation*}
$$

belongs to $\mathscr{A},\left|\tilde{w}_{\varepsilon}\right|=\left|w_{\varepsilon}\right|$ and $\left|\nabla \tilde{w}_{\varepsilon}\right| \leq\left|\nabla w_{\varepsilon}\right|$ in Ω, so $E_{\varepsilon}\left(w_{\varepsilon}\right) \geq E_{\varepsilon}\left(\tilde{w}_{\varepsilon}\right)$ and

$$
\sqrt{w_{\varepsilon, N+1}^{2}+\cdots+w_{\varepsilon, M}^{2}} \geq w_{\varepsilon, M}=\phi>0 \quad \text { in } \quad \Omega
$$

Hence, \tilde{w}_{ε} is a minimizer of E_{ε} on \mathscr{A} (as w_{ε} minimizes E_{ε} over \mathscr{A} by Step 2). Therefore, up to interchanging w_{ε} and \tilde{w}_{ε}, we may assume

$$
\left\{\begin{array}{l}
w_{\varepsilon, N+1}=\cdots=w_{\varepsilon, M-1} \equiv 0 \text { in } \Omega \\
w_{\varepsilon, M}=\phi \stackrel{20}{>} 0 \text { in } \Omega
\end{array}\right.
$$

We now consider another minimizer U_{ε} of E_{ε} over \mathscr{A} and denote $v:=U_{\varepsilon}-w_{\varepsilon} \in H_{0}^{1}\left(B^{N} \times\right.$ $\left.\mathbb{R}^{n} ; \mathbb{R}^{M}\right)$ after a suitable extension. From Steps 1 and 2 we know that $E_{\varepsilon}\left(U_{\varepsilon}\right)=E_{\varepsilon}(v+$ $\left.w_{\varepsilon}\right)=E_{\varepsilon}\left(w_{\varepsilon}\right), G_{\varepsilon}(v)=0,\left|v+w_{\varepsilon}\right|=\left|w_{\varepsilon}\right|$ a.e. in Ω and $v=\lambda \phi$ for some $\lambda=\left(\lambda_{1}, \ldots, \lambda_{M}\right) \in$ \mathbb{R}^{M} where we recall that $\phi=w_{\varepsilon} \cdot e_{M}$. By continuity of w_{ε} and ϕ, the relation $\left|v+w_{\varepsilon}\right|=\left|w_{\varepsilon}\right|$ a.e. in Ω implies $2 w_{\varepsilon} \cdot v+|v|^{2}=0$ everywhere in Ω. Since $v=\lambda \phi$, dividing by $\phi>0$ in Ω, we obtain

$$
\begin{equation*}
2 \lambda \cdot w_{\varepsilon}+\phi|\lambda|^{2}=0 \text { in } \Omega \tag{26}
\end{equation*}
$$

and by continuity, the equality holds also on $\partial \Omega$. As for every $(x, z) \in \partial B^{N} \times(0,1)^{n}$, $\phi(x, z)=0$ and $w_{\varepsilon}(x, z)=\left(x, 0_{\mathbb{R}^{M-N}}\right)$, we deduce that $\lambda \cdot\left(x, 0_{\mathbb{R}^{M-N}}\right)=0$ for every $x \in \partial B^{N}$. It follows that $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{N}=0$ and therefore, recalling that $w_{\varepsilon, N+1}=$ $\cdots=w_{\varepsilon, M-1}=0$ in Ω, we have by (26):

$$
2 \lambda_{M} \phi+\left(\lambda_{N+1}^{2}+\cdots+\lambda_{M}^{2}\right) \phi=0 \text { in } \Omega
$$

As $\phi>0$ in Ω, we obtain

$$
\lambda_{N+1}^{2}+\cdots+\lambda_{M-1}^{2}+\left(\lambda_{M}+1\right)^{2}=1
$$

hence we can find $R \in O(M)$ such that $R p=p$ for all $p \in \mathbb{R}^{N} \times\left\{0_{\mathbb{R}^{M-N}}\right\}$ and

$$
R e_{M}=\left(0, \ldots, 0, \lambda_{N+1}, \ldots, \lambda_{M-1}, \lambda_{M}+1\right)
$$

This implies $U_{\varepsilon}=w_{\varepsilon}+v=w_{\varepsilon}+\lambda \phi=R w_{\varepsilon}$ as required. The converse statement is obvious: if w_{ε} is a minimizer of E_{ε} over \mathscr{A} and $R \in O(M)$ is a transformation fixing all points of $\mathbb{R}^{N} \times\left\{0_{\mathbb{R}^{M-N}}\right\}$, then $R w_{\varepsilon}$ is also a minimizer of E_{ε} over \mathscr{A} (because E_{ε} and the boundary condition in \mathscr{A} are invariant under such orthogonal transformation R).

Remark 8. Note that if $n \geq 1, M>N \geq 7$ and W satisfies (2) (not necessarily strictly convex), then there are no bounded critical points of the energy E_{ε} in the set \mathscr{A} escaping in a direction $e \in \mathbb{S}^{M-1}$. Indeed, if such an escaping critical point of E_{ε} in \mathscr{A} exists, then by Theorem 7 , this solution would be a global minimizer of E_{ε} in \mathscr{A} which is a contradiction with the uniqueness of the global minimizer $\left(u_{\varepsilon}, 0_{\mathbb{R}^{M-N}}\right)$ in (4) (that is non-escaping) proved in Theorem 5 .

3.2 Escaping radial profile

Let $M \geq N+1$. We give a necessary and sufficient condition for the existence of an escaping radial profile $\left(\tilde{f}_{\varepsilon}, g_{\varepsilon}>0\right)$ in $(0,1)$ to the system (9)-(12); we also prove uniqueness, minimality and monotonicity of the escaping radial profile. For that, in the context of E_{ε} defined over \mathscr{A}, we introduce the functional

$$
\begin{aligned}
I_{\varepsilon}(f, g) & =\frac{1}{\left|\mathbb{S}^{N-1}\right|} E_{\varepsilon}\left(\left(f(r) \frac{x}{|x|}, 0_{\mathbb{R}^{M-N-1}}, g(r)\right)\right) \\
& =\frac{1}{2} \int_{0}^{1}\left[\left(f^{\prime}\right)^{2}+\left(g^{\prime}\right)^{2}+\frac{N-1}{r^{2}} f^{2}+\frac{1}{\varepsilon^{2}} W\left(1-f^{2}-g^{2}\right)\right] r^{N-1} d r
\end{aligned}
$$

where (f, g) belongs to

$$
\begin{equation*}
\mathscr{B}=\left\{(f, g): r^{\frac{N-1}{2}} f^{\prime}, r^{\frac{N-3}{2}} f, r^{\frac{N-1}{2}} g^{\prime}, r^{\frac{N-1}{2}} g \in L^{2}(0,1), f(1)=1, g(1)=0\right\} . \tag{27}
\end{equation*}
$$

The following result is reminiscent from Ignat-Nguyen [8, Theorem 2.4] (for $\tilde{W} \equiv 0$). The proof of [8, Theorem 2.4] is rather complicated (as it is proved for some general potentials \tilde{W}). We present here a simple proof that works in our context:

Theorem 9. Let $2 \leq N \leq 6, M \geq N+1, W \in C^{2}((-\infty, 1])$ satisfy (2) and be strictly convex. Consider $\varepsilon_{N} \in(0, \infty)$ in (7) such that $\ell\left(\varepsilon_{N}\right)=0$. Then the system (19)-(12) has an escaping radial profile $\left(\tilde{f}_{\varepsilon}, g_{\varepsilon}\right)$ with $g_{\varepsilon}>0$ in $(0,1)$ if and only if $0<\varepsilon<\varepsilon_{N}$. Moreover, in the case $0<\varepsilon<\varepsilon_{N}$,

1. ($\left.\tilde{f}_{\varepsilon}, g_{\varepsilon}>0\right)$ is the unique escaping radial profile of (91) -(12) and $\frac{\tilde{f}_{\varepsilon}}{r}, g_{\varepsilon} \in C^{2}([0,1])$, $\tilde{f}_{\varepsilon}^{2}+g_{\varepsilon}^{2}<1, \tilde{f}_{\varepsilon}>0, \tilde{f}_{\varepsilon}^{\prime}>0, g_{\varepsilon}^{\prime}<0$ in $(0,1)$;
2. there are exactly two minimizers of I_{ε} in \mathscr{B} given by $\left(\tilde{f}_{\varepsilon}, \pm g_{\varepsilon}\right)$;
3. the non-escaping radial profile $\left(f_{\varepsilon}, 0\right)$ is an unstable critical point of I_{ε} in \mathscr{B} where f_{ε} is the unique radial profile in (5).

Recall that for $\varepsilon \geq \varepsilon_{N}$, the non-escaping radial profile $\left(f_{\varepsilon}, 0\right)$ is the unique global minimizer of I_{ε} in \mathscr{B} (by Theorem 3 whose proof yields the minimality of $\left(u_{\varepsilon}, 0_{\mathbb{R}^{M-N}}\right)$ of E_{ε} in $\left.\mathscr{A}\right)$.

Proof of Theorem 9. First, we focus on the existence of escaping radial profiles of (91)-(12). Note that the direct method in calculus of variations implies that I_{ε} admits a minimizer
$\left(\tilde{f}_{\varepsilon}, g_{\varepsilon}\right) \in \mathscr{B}$. Since $\left(\tilde{f}_{\varepsilon}, g_{\varepsilon}\right) \in \mathscr{B},\left(\tilde{f}_{\varepsilon}, g_{\varepsilon}\right) \in C((0,1])$. It follows that $\left(\tilde{f}_{\varepsilon}, g_{\varepsilon}\right)$ satisfies (10)-(12) in the weak sense, and so $\tilde{f}_{\varepsilon}, g_{\varepsilon} \in C^{2}((0,1])$. Since $\left(\left|\tilde{f}_{\varepsilon}\right|,\left|g_{\varepsilon}\right|\right)$ is also a minimizer of I_{ε} in \mathscr{B}, the above argument also shows that $\left|\tilde{f}_{\varepsilon}\right|,\left|g_{\varepsilon}\right| \in C^{2}((0,1])$ satisfies (10)-(12). Since $\left|\tilde{f}_{\varepsilon}\right|,\left|g_{\varepsilon}\right| \geq 0$ and $\tilde{f}_{\varepsilon}(1)=1$, the strong maximum principle yields $\left|\tilde{f}_{\varepsilon}\right|>0$ in $(0,1)$, and either $\left|g_{\varepsilon}\right|>0$ in $(0,1)$ or $g_{\varepsilon} \equiv 0$ in $(0,1)$. It follows that $\tilde{f}_{\varepsilon}>0$ in $(0,1)$, and there are three alternatives: $g_{\varepsilon}>0$ in $(0,1), g_{\varepsilon}<0$ in $(0,1)$ or $g_{\varepsilon} \equiv 0$ in $(0,1)$. Clearly, when $g_{\varepsilon} \equiv 0, \tilde{f}_{\varepsilon}$ is equal to the unique radial profile f_{ε} in (5). By considering $\left(\tilde{f}_{\varepsilon},-g_{\varepsilon}\right)$ instead of $\left(\tilde{f}_{\varepsilon}, g_{\varepsilon}\right)$ if necessary, we assume in the sequel that $g_{\varepsilon} \geq 0$.

Claim: if $0<\varepsilon<\varepsilon_{N}$, then $g_{\varepsilon}>0$ in $(0,1)$ and $\left(f_{\varepsilon}, 0\right)$ is an unstable critical point of I_{ε} in \mathscr{B}.

Proof of Claim: We define the second variation of I_{ε} at $\left(f_{\varepsilon}, 0\right)$ as

$$
\begin{aligned}
Q_{\varepsilon}(\alpha, \beta) & =\left.\frac{d^{2}}{d t^{2}}\right|_{t=0} I_{\varepsilon}\left(\left(f_{\varepsilon}, 0\right)+t(\alpha, \beta)\right) \\
& =\int_{B^{N}}\left[L_{\varepsilon} \alpha \cdot \alpha+L_{\varepsilon} \beta \cdot \beta+\frac{N-1}{r^{2}} \alpha^{2}+\frac{2}{\varepsilon^{2}} W^{\prime \prime}\left(1-f_{\varepsilon}^{2}\right) f_{\varepsilon}^{2} \alpha^{2}\right] d x
\end{aligned}
$$

for $\alpha, \beta \in C_{c}^{\infty}((0,1))$ which extends by density to the Hilbert space

$$
\mathscr{H}=\left\{(\alpha, \beta):\left(f_{\varepsilon}+\alpha, \beta\right) \in \mathscr{B}\right\} \text { with the norm } \quad\|(\alpha, \beta)\|_{\mathscr{H}}:=\left\|\left(\alpha \frac{x}{|x|}, \beta\right)\right\|_{H^{1}\left(B^{N}, \mathbb{R}^{N+1}\right)} .
$$

As $\varepsilon \in\left(0, \varepsilon_{N}\right)$, we have $\ell(\varepsilon)<0$ by (7). Taking $\beta \in H_{0}^{1}\left(B^{N}\right)$ to be any first eigenfunction of L_{ε} in B^{N}, which is radially symmetric, we have $r^{\frac{N-1}{2}} \beta^{\prime}, r^{\frac{N-1}{2}} \beta \in L^{2}(0,1), \beta(1)=0$ and

$$
Q_{\varepsilon}(0, \beta)=\int_{B^{N}} L_{\varepsilon} \beta \cdot \beta d x=\ell(\varepsilon) \int_{B^{N}} \beta^{2} d x<0 .
$$

So, $\left(f_{\varepsilon}, 0\right)$ is an unstable critical point of I_{ε} in \mathscr{B} if $\varepsilon<\varepsilon_{N}$. In particular, $\left(f_{\varepsilon}, 0\right)$ is not minimizing I_{ε} in \mathscr{B} and therefore, by the above construction of the minimizer $\left(\tilde{f}_{\varepsilon}, g_{\varepsilon}\right)$ of I_{ε} in \mathscr{B}, we deduce that $g_{\varepsilon}>0$. This proves the above Claim.

Moreover, by [8, Lemmas 2.7 and A.5, Proposition 2.9] (for $\tilde{W} \equiv 0$), we deduce that $\frac{\tilde{f}_{\varepsilon}}{r}, g_{\varepsilon} \in C^{2}([0,1]), \tilde{f}_{\varepsilon}^{2}+g_{\varepsilon}^{2}<1, \tilde{f}_{\varepsilon}^{\prime}>0$ and $g_{\varepsilon}^{\prime}<0$ in $(0,1)$.

To conclude, we distinguish two cases:
Case 1: if $\varepsilon \in\left(0, \varepsilon_{N}\right)$, Claim yields the existence of an escaping radial profile $\left(\tilde{f}_{\varepsilon}, g_{\varepsilon}>0\right)$. By [8, Lemmas 2.7], every escaping radial profile ($\tilde{f}_{\varepsilon}, g_{\varepsilon}>0$) is bounded (i.e., $\tilde{f}_{\varepsilon}^{2}+g_{\varepsilon}^{2}<1$ in $(0,1)$) and therefore, by Theorem 7 , the corresponding (bounded) escaping critical point \tilde{u}_{ε} in (9) is a global minimizer of E_{ε} over \mathscr{A} and the set of minimizers of E_{ε} over \mathscr{A} is then given by $\left\{R \tilde{u}_{\varepsilon}: R \in O(M), R p=p, \forall p \in \mathbb{R}^{N} \times\left\{0_{\mathbb{R}^{M-N}}\right\}\right\}$. Therefore, $\left(\tilde{f}_{\varepsilon}, \pm g_{\varepsilon}\right)$ are the only two minimizers of I_{ε} in \mathscr{B}. In particular, this proves the uniqueness of the escaping radial profile ($\tilde{f}_{\varepsilon}, g_{\varepsilon}>0$).
Case 2: if $\varepsilon \geq \varepsilon_{N}$, by the proof of Theorem 3, the non-escaping vortex sheet solution $u_{\varepsilon}(x) \equiv\left(f_{\varepsilon}(|x|) \frac{x}{|x|}, 0_{\mathbb{R}^{M-N}}\right)$ (by (13)) is the unique minimizer of E_{ε} over \mathscr{A}. In particular, $\left(f_{\varepsilon}, 0\right)$ is the unique minimizer of I_{ε} in \mathscr{B}, i.e., in the above construction of the minimizer
$\left(\tilde{f}_{\varepsilon}, g_{\varepsilon}\right)$ of I_{ε} in \mathscr{B}, we have $\tilde{f}_{\varepsilon}=f_{\varepsilon}$ and $g_{\varepsilon}=0$ in $(0,1)$. We claim that no escaping radial profile $\left(\hat{f}_{\varepsilon}, \hat{g}_{\varepsilon}>0\right)$ exists if $\varepsilon \geq \varepsilon_{N}$. Assume by contradiction that such an escaping radial profile ($\hat{f}_{\varepsilon}, \hat{g}_{\varepsilon}>0$) exists. The same argument presented in Case 1 would imply that $\left(\hat{f}_{\varepsilon}, \hat{g}_{\varepsilon}>0\right)$ is a minimizer of I_{ε} in \mathscr{B} which contradicts the uniqueness of the global minimizer $\left(f_{\varepsilon}, 0\right)$.

3.3 Proof of Theorem 4

We now prove the main result:
Proof of Theorem 囵 By Theorem 日, the existence of an escaping radially symmetric solution \tilde{u}_{ε} in (9) is equivalent to $\varepsilon \in\left(0, \varepsilon_{N}\right)$. Moreover, in that case, the escaping radial profile ($\tilde{f}_{\varepsilon}, g_{\varepsilon}>0$) is unique and bounded, i.e., $\tilde{f}_{\varepsilon}^{2}+g_{\varepsilon}^{2}<1$ in $(0,1)$.
Case 1: if $\varepsilon \in\left(0, \varepsilon_{N}\right)$, Theorem 7 implies that the (bounded) escaping radially symmetric critical point \tilde{u}_{ε} in (9) is a global minimizer of E_{ε} over \mathscr{A} and every minimizer of E_{ε} over \mathscr{A} has the form $R \tilde{u}_{\varepsilon}$ for some orthogonal transformation $R \in O(M)$ keeping invariant the space $\mathbb{R}^{N} \times\left\{0_{\mathbb{R}^{M-N}}\right\}$. Moreover, by Theorem 9 , the non-escaping radial profile $\left(f_{\varepsilon}, 0\right)$ is proved to be an unstable critical point of I_{ε} in \mathscr{B}, so the non-escaping vortex sheet solution $\left(u_{\varepsilon}, 0_{\mathbb{R}^{M-N}}\right)$ is an unstable critical point of E_{ε} in \mathscr{A}.
Case 2: if $\varepsilon \geq \varepsilon_{N}$, the proof of Theorem 3implies that the non-escaping radially symmetric vortex sheet solution $u_{\varepsilon}(x) \equiv\left(f_{\varepsilon}(|x|) \frac{x}{|x|}, 0_{\mathbb{R}^{M-N}}\right)$ (by (131)) is the unique minimizer of E_{ε} over \mathscr{A}. In this case, there is no bounded critical point w_{ε} of E_{ε} over \mathscr{A} that escapes in some direction $e \in \mathbb{S}^{M-1}$; indeed, if such (bounded) escaping solution w_{ε} satisfying (20) exists, then Theorem 7 would imply that w_{ε} is a global minimizer of E_{ε} over \mathscr{A} which contradicts that the non-escaping vortex sheet solution u_{ε} is the unique global minimizer of E_{ε} over \mathscr{A}.

Theorem 4 holds also for the "degenerate" dimension $n=0$. In this case, $\Omega=B^{N}$ and vortex sheets are vortex points,

$$
\begin{gathered}
E_{\varepsilon}(u)=\int_{B^{N}}\left[\frac{1}{2}|\nabla u|^{2}+\frac{1}{2 \varepsilon^{2}} W\left(1-|u|^{2}\right)\right] d x, \\
\mathscr{A}:=\left\{u \in H^{1}\left(B^{N} ; \mathbb{R}^{M}\right): u(x)=\left(x, 0_{\mathbb{R}^{M-N}}\right) \text { on } \partial B^{N}=\mathbb{S}^{N-1}\right\}
\end{gathered}
$$

and radially symmetric vortex critical points of E_{ε} in \mathscr{A} have the corresponding form in (9):

$$
\begin{equation*}
\tilde{u}_{\varepsilon}(x)=\left(\tilde{f}_{\varepsilon}(r) \frac{x}{|x|}, 0_{\mathbb{R}^{M-N-1}}, g_{\varepsilon}(r)\right) \in \mathscr{A}, \quad x \in B^{N}, r=|x|, \tag{28}
\end{equation*}
$$

where the radial profiles $\left(\tilde{f}_{\varepsilon}, g_{\varepsilon}\right)$ satisfy the system (10)-(12) and are described in Theorem [9, the non-escaping radially symmetric vortex solution is given here by

$$
\begin{equation*}
u_{\varepsilon}(x)=\left(f_{\varepsilon}(|x|) \frac{x}{|x|}, 0_{\mathbb{R}^{M-N}}\right) \quad \text { for all } x \in B^{N}, \tag{29}
\end{equation*}
$$

where the radial profile f_{ε} is the unique solution to (5). We obtain the following result which generalizes [12, Theorem 1.1] that was proved in the case $N=2$ and $M=3$ (without identifying the meaning of the dichotomy parameter ε_{N} in (7)).

Theorem 10. Let $2 \leq N \leq 6, M \geq N+1, \Omega=B^{N}$, $W \in C^{2}((-\infty, 1])$ satisfy (2]) and be strictly convex. Consider $\varepsilon_{N} \in(0, \infty)$ such that $\ell\left(\varepsilon_{N}\right)=0$ in (7). Then there exists an escaping radially symmetric vortex solution \tilde{u}_{ε} in (28) with the radial profile $\left(\tilde{f}_{\varepsilon}, g_{\varepsilon}>0\right)$ given in Theorem 0 if and only if $0<\varepsilon<\varepsilon_{N}$. Moreover,

1. if $0<\varepsilon<\varepsilon_{N}, \tilde{u}_{\varepsilon}$ is a global minimizer of E_{ε} in \mathscr{A} and all global minimizers of E_{ε} in \mathscr{A} are radially symmetric given by $R \tilde{u}_{\varepsilon}$ where $R \in O(M)$ is an orthogonal transformation of \mathbb{R}^{M} satisfying $R p=p$ for all $p \in \mathbb{R}^{N} \times\left\{0_{\mathbb{R}^{M-N}}\right\}$. In this case, the non-escaping vortex solution u_{ε} in (29) is an unstable critical point of E_{ε} in \mathscr{A}.
2. if $\varepsilon \geq \varepsilon_{N}$, the non-escaping vortex solution u_{ε} in (29) is the unique global minimizer of E_{ε} in \mathscr{A}. Furthermore, there are no bounded critical points w_{ε} of E_{ε} in \mathscr{A} that escape in a direction $e \in \mathbb{S}^{M-1}$, i.e., $w_{\varepsilon} \cdot e>0$ a.e. in Ω.

The proof follows by the same argument used for Theorem 4, the main difference is that in the ball $\Omega=B^{N}$, a critical point w_{ε} of E_{ε} in \mathscr{A} satisfies the PDE system with Dirichlet boundary condition (instead of the mixed Dirichlet-Neumann condition in (21)):

$$
\begin{aligned}
-\Delta w_{\varepsilon} & =\frac{1}{\varepsilon^{2}} w_{\varepsilon} W^{\prime}\left(1-\left|w_{\varepsilon}\right|^{2}\right) \quad \text { in } B^{N}, \\
w_{\varepsilon}(x) & =\left(x, 0_{\mathbb{R}^{M-N}}\right) \quad \text { on } \partial B^{N} .
\end{aligned}
$$

A Appendix. Vortex sheet \mathbb{S}^{M-1}-valued harmonic maps in cylinders

In dimensions $M>N \geq 2$ and $n \geq 1$, for the cylinder shape domain $\Omega=B^{N} \times(0,1)^{n}$, we consider the harmonic map problem for \mathbb{S}^{M-1}-valued maps $u \in H^{1}\left(\Omega ; \mathbb{S}^{M-1}\right) \cap \mathscr{A}$ associated to the Dirichlet energy

$$
E(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x d z
$$

Any critical point $u: \Omega \rightarrow \mathbb{S}^{M-1}$ of this problem satisfies

$$
\left\{\begin{array}{l}
-\Delta u=u|\nabla u|^{2} \quad \text { in } \Omega, \tag{30}\\
\frac{\partial u}{\partial z}=0 \quad \text { on } B^{N} \times \partial(0,1)^{n}, \\
u(x, z)=\left(x, 0_{\mathbb{R}^{M-N}}\right) \quad \text { on } \partial B^{N} \times(0,1)^{n} .
\end{array}\right.
$$

We will focus on radially symmetric vortex sheet \mathbb{S}^{M-1}-valued harmonic maps having the following form (invariant in z-direction):

$$
\begin{equation*}
u(x, z)=\left(f(r) \frac{x}{|x|}, 0_{\mathbb{R}^{M-N-1}}, g(r)\right) \in \mathscr{A}, \quad x \in B^{N}, z \in(0,1)^{n}, r=|x| \tag{31}
\end{equation*}
$$

where the radial profile (f, g) satisfies

$$
\begin{equation*}
f^{2}+g^{2}=1 \quad \text { in } \quad(0,1) \tag{32}
\end{equation*}
$$

and the system of ODEs:

$$
\begin{align*}
-f^{\prime \prime}-\frac{N-1}{r} f^{\prime}+\frac{N-1}{r^{2}} f & =\Gamma(r) f \quad \text { in } \quad(0,1), \tag{33}\\
-g^{\prime \prime}-\frac{N-1}{r} g^{\prime} & =\Gamma(r) g \quad \text { in } \quad(0,1), \tag{34}\\
f(1) & =1 \text { and } g(1)=0, \tag{35}
\end{align*}
$$

where

$$
\Gamma(r)=\left(f^{\prime}\right)^{2}+\frac{N-1}{r^{2}} f^{2}+\left(g^{\prime}\right)^{2}
$$

is the Lagrange multiplier due to the unit length constraint in (32). As for the GinzburgLandau system, we distinguish two type of radial profiles:

- the non-escaping radial profile ($\bar{f} \equiv 1, \bar{g} \equiv 0$) yielding the non-escaping (radially symmetric) vortex sheet \mathbb{S}^{M-1}-valued harmonic map (also called "equator" map):

$$
\begin{equation*}
\bar{u}(x, z)=\left(\frac{x}{|x|}, 0_{\mathbb{R}^{M-N}}\right) \quad x \in B^{N}, z \in(0,1)^{n} . \tag{36}
\end{equation*}
$$

Note that \bar{u} is singular and the singular set of this map is the vortex sheet $\left\{0_{\mathbb{R}^{M-N}}\right\} \times(0,1)^{n}$ of dimension n in Ω. Also, observe that $\bar{u} \in H^{1}\left(\Omega, \mathbb{S}^{M-1}\right)$ if and only if $N \geq 3$.

- the escaping radial profile (f, g) with $g>0$ in $(0,1)$; in this case, it holds $f(0)=0$, $g(0)=1$ and we say that u in (31) is an escaping (radially symmetric) vortex sheet \mathbb{S}^{M-1} valued harmonic map. Note that u is smooth for every dimension $M>N \geq 2$ and $n \geq 1$ and the zero set of $\left(u_{1}, \ldots, u_{N}\right)$ is the vortex sheet $\left\{0_{\mathbb{R}^{M-N}}\right\} \times(0,1)^{n}$ of dimension n in Ω. Obviously, $(f,-g<0)$ is another radial profile satisfying (32)-(35)).

The properties of such radial profiles are proved in [14] (see also [8, Theorem 2.6] for $\tilde{W} \equiv 0$ in those notations). More precisely,
(a) If $N \geq 7$, the non-escaping radial profile $(\bar{f} \equiv 1, \bar{g} \equiv 0)$ is the unique minimizer of
$I(f, g)=\frac{1}{\left|\mathbb{S}^{N-1}\right|} E\left(\left(f(r) \frac{x}{|x|}, 0_{\mathbb{R}^{M-N-1}}, g(r)\right)\right)=\frac{1}{2} \int_{0}^{1}\left[\left(f^{\prime}\right)^{2}+\left(g^{\prime}\right)^{2}+\frac{N-1}{r^{2}} f^{2}\right] r^{N-1} d r$,
where (f, g) belongs to $\mathscr{B} \cap\left\{(f, g): f^{2}+g^{2}=1\right\}$ with \mathscr{B} defined in (27). Moreover, the system (32)-(35) has no escaping radial profile (f, g) with $g>0$ in $(0,1)$.
(b) If $2 \leq N \leq 6$, then there exists a unique escaping radial profile (f, g) with $g>0$ satisfying (32)-(35). Moreover, $(f, \pm g)$ are the only two global minimizers of I in $\mathscr{B} \cap\left\{(f, g): f^{2}+g^{2}=1\right\}, \frac{f}{r}, g \in C^{\infty}([0,1]), f(0)=0, g(0)=1, f>0, f^{\prime}>0$ and $g^{\prime}<0$ in $(0,1)$. In addition, for $3 \leq N \leq 6$, the non-escaping solution ($\bar{f} \equiv 1, \bar{g} \equiv 0$) is an unstable critical point of I in $\mathscr{B} \cap\left\{(f, g): f^{2}+g^{2}=1\right\}, 6^{6}$

[^4]There is a large number of articles studying existence, uniqueness, regularity and stability of radially symmetric \mathbb{S}^{M-1}-valued harmonic maps (e.g., [13, 14, 25, 26, 23, 16, [12]). We summarize here the main result for our problem in the cylinder shape domain $\Omega=B^{N} \times(0,1)^{n}$: if $N \leq 6$, then minimizing \mathbb{S}^{M-1}-valued harmonic maps in \mathscr{A} are smooth, radially symmetric and escaping in one-direction; if $N \geq 7$, then there is a unique minimizing \mathbb{S}^{M-1}-valued harmonic map in \mathscr{A} which is singular and given by the equator $\operatorname{map} \bar{u}$ in (36). 7

Theorem 11. Let $n \geq 1, N \geq 2, M \geq N+1$ and $\Omega=B^{N} \times(0,1)^{n}$. Then

1. if $2 \leq N \leq 6$, then the escaping radially symmetric vortex sheet solution u in (31) with $g>0$ is a minimizing \mathbb{S}^{M-1}-valued harmonic map in \mathscr{A} and all minimizing \mathbb{S}^{M-1}-valued harmonic maps in \mathscr{A} are smooth radially symmetric given by $R u$ where $R \in O(M)$ satisfies $R p=p$ for all $p \in \mathbb{R}^{N} \times\left\{0_{\mathbb{R}^{M-N}}\right\}$. In this case, the equator map \bar{u} in (36) is an unstable \mathbb{S}^{M-1}-valued harmonic map in \mathscr{A}.
2. if $N \geq 7$, the non-escaping vortex sheet solution \bar{u} in (36) is the unique minimizing \mathbb{S}^{M-1}-valued harmonic map in \mathscr{A}. Moreover, there is no \mathbb{S}^{M-1}-valued harmonic map w in \mathscr{A} escaping in a direction $e \in \mathbb{S}^{M-1}$, i.e., $w \cdot e>0$ a.e. in Ω.

The main ingredient is the following result yielding minimality of escaping \mathbb{S}^{M-1}-valued harmonic maps. This is reminiscent from Sandier-Shafrir [23] (see also [12, Theorem 1.5]).

THEOREM 12. Let $n \geq 1, M>N \geq 2$ and $\Omega=B^{N} \times(0,1)^{n}$. Assume that $w \in$ $\mathscr{A} \cap H^{1}\left(\Omega, \mathbb{S}^{M-1}\right)$ is a \mathbb{S}^{M-1}-valued harmonic map satisfying (30) and

$$
\begin{equation*}
w \cdot e>0 \text { a.e. in } \Omega \tag{37}
\end{equation*}
$$

in an escaping direction $e \in \mathbb{S}^{M-1}$. Then w is a minimizing \mathbb{S}^{M-1}-valued harmonic map in \mathscr{A} and all minimizing \mathbb{S}^{M-1}-valued harmonic maps in \mathscr{A} are of the form $R w$ where $R \in$ $O(M)$ is an orthogonal transformation of \mathbb{R}^{M} satisfying $R p=p$ for all $p \in \mathbb{R}^{N} \times\left\{0_{\mathbb{R}^{M-N}}\right\}$.

Proof of Theorem [12. We give here a simple proof based on the argument in [12] that avoids the regularity results used in 23 . By the $H^{1 / 2}$-trace theorem applied for $w \in$ $H^{1}\left(\Omega, \mathbb{S}^{M-1}\right)$, (37) implies that $w \cdot e \geq 0$ on $\partial B^{N} \times(0,1)^{n}$. Combined with the vortex boundary condition in (30), we deduce that the escaping direction e has to be orthogonal to $\mathbb{R}^{N} \times\left\{0_{\mathbb{R}^{M-N}}\right\}$ and up to a rotation, we can assume that $e=e_{M}$ (as in (22)). Then $\phi=w \cdot e_{M}>0$ a.e. in Ω satisfies

$$
\begin{equation*}
-\Delta \phi=|\nabla w|^{2} \phi \text { in } \Omega, \frac{\partial \phi}{\partial z}=0 \text { on } B^{N} \times \partial(0,1)^{n}, \phi=0 \text { on } \partial B^{N} \times(0,1)^{n} . \tag{38}
\end{equation*}
$$

We consider configurations $\sqrt{8} \tilde{w}=w+v: \Omega \rightarrow \mathbb{S}^{M-1}$ with $v \in H_{0}^{1}\left(B^{N} \times \mathbb{R}^{n}, \mathbb{R}^{M}\right)$ (in particular, $|v| \leq 2$ in Ω). Then

$$
\begin{equation*}
2 w \cdot v+|v|^{2}=0 \quad \text { a.e. in } \Omega \tag{39}
\end{equation*}
$$

[^5]Using (30) and (39), we obtain

$$
2 \int_{\Omega} \nabla w \cdot \nabla v=2 \int_{\Omega}|\nabla w|^{2} w \cdot v d x=-\int_{\Omega}|\nabla w|^{2}|v|^{2} d x,
$$

yielding ${ }^{9}$

$$
\begin{equation*}
\int_{\Omega}|\nabla(w+v)|^{2} d x-\int_{\Omega}|\nabla w|^{2} d x=\int_{\Omega}|\nabla v|^{2}-|\nabla w|^{2}|v|^{2} d x=: Q(v) . \tag{40}
\end{equation*}
$$

To show that w is minimizing, we prove that $Q(v) \geq 0$ for all $v \in H_{0}^{1}\left(B^{N} \times \mathbb{R}^{n}, \mathbb{R}^{M}\right) \cap$ $L^{\infty}\left(\Omega ; \mathbb{R}^{M}\right)$ (note that this is a class larger than what we need, as we do not require that v satisfy the pointwise constraint (39)). For that, we take an arbitrary map $\tilde{v} \in$ $C_{c}^{\infty}\left(B^{N} \times \mathbb{R}^{n}, \mathbb{R}^{M}\right)$ of support ω and decompose it as $\tilde{v}=\phi \Psi$ in Ω. This decomposition makes sense as $\phi \geq \delta>0$ in $\omega \cap \Omega$ for some $\delta>0$ (which may depend on ω). Indeed, by (37) and (38), ϕ is a superharmonic function (i.e., $-\Delta \phi \geq 0$ in Ω) that belongs to $H^{1}(\Omega)$. As $\frac{\partial \phi}{\partial z}=0$ on $B^{N} \times \partial(0,1)^{n}$, ϕ can be extended by even mirror symmetry to the domain $\tilde{\Omega}=B^{N} \times(-1,2)^{n}$ so that ϕ is superharmonic in $\tilde{\Omega}$. Thus, the weak Harnack inequality (see e.g. [6, Theorem 8.18]) implies that on the compact set $\omega \cap \Omega$ in $\tilde{\Omega}$, we have $\phi \geq \delta>0$ for some δ. So, $\tilde{v}=\phi \Psi$ in Ω with $\Psi=\left(\Psi_{1}, \ldots, \Psi_{M}\right) \in H^{1} \cap L^{\infty}\left(\Omega ; \mathbb{R}^{M}\right)$ vanishing in a neighborhood of $\partial B^{N} \times(0,1)^{n}$. Then integration by parts yields for $1 \leq j \leq M$:

$$
\begin{aligned}
Q\left(\tilde{v}_{j}\right) & =\int_{\Omega}\left|\nabla \tilde{v}_{j}\right|^{2}-|\nabla w|^{2} \phi \cdot \phi \Psi_{j}^{2} d x \\
& \stackrel{(38)}{=} \int_{\Omega}\left|\nabla\left(\phi \Psi_{j}\right)\right|^{2}-\nabla \phi \cdot \nabla\left(\phi \Psi_{j}^{2}\right) d x=\int_{\Omega} \phi^{2}\left|\nabla \Psi_{j}\right|^{2} d x \geq 0
\end{aligned}
$$

for all $\tilde{v} \in C_{c}^{\infty}\left(B^{N} \times \mathbb{R}^{n}, \mathbb{R}^{M}\right)$. Then for every $v \in H_{0}^{1}\left(B^{N} \times \mathbb{R}^{n}, \mathbb{R}^{M}\right) \cap L^{\infty}\left(\Omega ; \mathbb{R}^{M}\right)$, there exists a sequence $\tilde{v}^{k} \in C_{c}^{\infty}\left(B^{N} \times \mathbb{R}^{n}, \mathbb{R}^{M}\right)$ such that $\tilde{v}^{k} \rightarrow v$ and $\nabla \tilde{v}^{k} \rightarrow \nabla v$ in L^{2} and a.e. in $B^{N} \times \mathbb{R}^{n}$ and $\left|\tilde{v}^{k}\right| \leq\|v\|_{L^{\infty}(\Omega)}+1$ in Ω for every k. In particular, by dominated convergence theorem, we have $Q\left(\tilde{v}^{k}\right) \rightarrow Q(v)$ thanks to (40). Thus, we deduce that for every compact $\omega \subset \tilde{\Omega}=B^{N} \times(-1,2)^{n}$,

$$
Q(v)=\lim _{k \rightarrow \infty} Q\left(\tilde{v}^{k}\right) \geq \liminf _{k \rightarrow \infty} \int_{\omega \cap \Omega} \phi^{2}\left|\nabla\left(\frac{\tilde{v}^{k}}{\phi}\right)\right|^{2} d x \geq \int_{\omega \cap \Omega} \phi^{2}\left|\nabla\left(\frac{v}{\phi}\right)\right|^{2} d x \geq 0
$$

where we used Fatou's lemma. In particular, w is a minimizing \mathbb{S}^{M-1}-valued harmonic map by (40) and $Q(v)=0$ yields the existence of a vector $\lambda \in \mathbb{R}^{M}$ such that $v=\lambda \phi$ a.e. in Ω. Then the classification of the minimizing \mathbb{S}^{M-1}-valued harmonic maps follows by (39) as in the Step 3 of the proof of Theorem 7.

Proof of Theorem 11. 1. This part concerning the dimension $2 \leq N \leq 6$ follows from Theorem 12 and the instability of the radial profile (1,0) for I in $\mathscr{B} \cap\left\{(f, g): f^{2}+g^{2}=1\right\}$ as explained above.

[^6]2. This part for dimension $N \geq 7$ follows the ideas in [14]. More precisely, calling $X=(x, z)$ the variable in Ω, we have as in the proof of Theorem 12 for every $v \in$ $H_{0}^{1}\left(B^{N} \times \mathbb{R}^{n}, \mathbb{R}^{M}\right)$ with $|v+\bar{u}|=1$ in Ω :
\[

$$
\begin{aligned}
\int_{\Omega}|\nabla(\bar{u}+v)|^{2} d X- & \int_{\Omega}|\nabla \bar{u}|^{2} d X=\int_{\Omega}\left(|\nabla v|^{2}-|\nabla \bar{u}|^{2}|v|^{2}\right) d X \\
& =\int_{\Omega}\left|\nabla_{z} v\right|^{2} d X+\int_{(0,1)^{n}} d z \int_{B^{N}}\left(\left|\nabla_{x} v\right|^{2}-\frac{N-1}{|x|^{2}}|v|^{2}\right) d x \\
& \geq \int_{\Omega}\left|\nabla_{z} v\right|^{2} d X+\left(\frac{(N-2)^{2}}{4}-(N-1)\right) \int_{\Omega} \frac{|v|^{2}}{|x|^{2}} d X \geq 0
\end{aligned}
$$
\]

where we used the Hardy inequality for $v(\cdot, z) \in H_{0}^{1}\left(B^{N}, \mathbb{R}^{M}\right)$ for a.e. $z \in(0,1)^{n}$. This proves that \bar{u} is the unique minimizing \mathbb{S}^{M-1}-valued harmonic map in \mathscr{A}. Combined with Theorem 12, we conclude that there is no escaping \mathbb{S}^{M-1}-valued harmonic map w in \mathscr{A}.

References

[1] F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau vortices, Progress in Nonlinear Differential Equations and their Applications, 13. Birkhäuser Boston Inc., Boston, MA, 1994.
[2] F. Bethuel, H. Brezis, B.D. Coleman and F. Hélein, Bifurcation analysis of minimizing harmonic maps describing the equilibrium of nematic phases between cylinders, Arch. Rational Mech. Anal. 118 (1992), 149-168.
[3] H. Brezis, Symmetry in nonlinear PDEs, In Differential equations: La Pietra 1996 (Florence), vol. 65 of Proc. Sympos. Pure Math. Amer. Math. Soc., Providence, RI, 1999, pp. 1-12.
[4] H. Brezis, J.-M. Coron and E. H. Lieb, Harmonic maps with defects, Comm. Math. Phys. 107, 4 (1986), 649-705.
[5] J. Dávila, M. del Pino, M. Medina and R. Rodiac, Interacting helical vortex filaments in the three-dimensional Ginzburg-Landau equation, J. Eur. Math. Soc. (JEMS) 24 (2022), 4143-4199.
[6] D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second order, 2nd ed, Springer, Berlin Heidelberg, 2001.
[7] R.-M. Hervé and M. Hervé, Etude qualitative des solutions réelles d'une équation différentielle liée à l'équation de Ginzburg-Landau, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994), pp. 427-440.
[8] R. Ignat and L. Nguyen, Local minimality of \mathbb{R}^{N}-valued and \mathbb{S}^{N}-valued GinzburgLandau vortex solutions in the unit ball B^{N}, arXiv:2111.07669, accepted in Ann. Inst. H. Poincaré Anal. Non Linéaire, 2023.
[9] R. Ignat, L. Nguyen, V. Slastikov and A. Zarnescu, Uniqueness results for an ODE related to a generalized Ginzburg-Landau model for liquid crystals, SIAM J. Math. Anal. 46 (2014), pp. 3390-3425.
[10] R. Ignat, L. Nguyen, V. Slastikov and A. Zarnescu, Stability of the melting hedgehog in the Landau-de Gennes theory of nematic liquid crystals, Arch. Ration. Mech. Anal. 215, 2 (2015), 633-673.
[11] R. Ignat, L. Nguyen, V. Slastikov and A. Zarnescu, Uniqueness of degree-one Ginzburg-Landau vortex in the unit ball in dimensions $N \geq 7$, C. R. Math. Acad. Sci. Paris 356 (2018), 922-926.
[12] R. Ignat, L. Nguyen, V. Slastikov and A. Zarnescu, On the uniqueness of minimisers of Ginzburg-Landau functionals, Ann. Sci. Éc. Norm. Supér. 53 (2020), 589-613.
[13] W. Jager and H. Kaul, Uniqueness and stability of harmonic maps and their Jacobi fields, Manuscripta Math. 28, 1-3 (1979), 269-291.
[14] W. Jager and H. Kaul, Rotationally symmetric harmonic maps from a ball into a sphere and the regularity problem for weak solutions of elliptic systems, J. Reine Angew. Math. 343 (1983), 146-161.
[15] F.-H., Lin, A remark on the map $x /|x|$, C. R. Acad. Sci. Paris Sér. I Math. 305, 12 (1987), 529-531.
[16] F.-H. Lin and C.Y. Wang, Stable stationary harmonic maps to spheres, Acta Math. Sin. (Engl. Ser.) 22 (2006), 319-330.
[17] V. Millot and A. Pisante, Symmetry of local minimizers for the three-dimensional Ginzburg-Landau functional, J. Eur. Math. Soc. (JEMS) 12, 5 (2010), 1069-1096.
[18] P. Mironescu, On the stability of radial solutions of the Ginzburg-Landau equation, J. Funct. Anal. 130 (1995), 334-344.
[19] P. Mironescu, Les minimiseurs locaux pour l'équation de Ginzburg-Landau sont à symétrie radiale, C. R. Acad. Sci. Paris Sér. I Math. 323, 6 (1996), 593-598.
[20] F. Pacard and T. Rivière, Linear and nonlinear aspects of vortices, vol. 39 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston, Inc., Boston, MA, 2000. The Ginzburg-Landau model.
[21] A. Pisante, Two results on the equivariant Ginzburg-Landau vortex in arbitrary dimension, J. Funct. Anal. 260, 3 (2011), 892-905.
[22] E. Sandier, Ginzburg-Landau minimizers from \mathbb{R}^{n+1} to \mathbb{R}^{n} and minimal connections, Indiana Univ. Math. J. 50 (2001), 1807-1844.
[23] E. Sandier and I. Shafrir, On the uniqueness of minimizing harmonic maps to a closed hemisphere, Calc. Var. Partial Differential Equations 2, 1 (1994), 113-122.
[24] E. Sandier and I. Shafrir, Small energy Ginzburg-Landau minimizers in \mathbb{R}^{3}, J. Funct. Anal. 272, 9 (2017), 3946-3964.
[25] R. Schoen and K. Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps, J. Differential Geom. 18, 2 (1983), 253-268.
[26] R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps, J. Differential Geometry 17 (1982), 307-335.

[^0]: ${ }^{1}$ If $n=0$ and $N \geq 2$, then $S O(N)$ induces a group action on \mathscr{A}_{N} given by $u(x) \mapsto R^{-1} u(R x)$ for every $x \in B^{N}, R \in S O(N)$ and $u \in \mathscr{A}_{N}$ under which the energy E_{ε} and the vortex boundary condition are invariant. Then every bounded critical point of E_{ε} in \mathscr{A}_{N} that is invariant under this $S O(N)$ group action has the form (4), see e.g. [8, Lemma A.4].

[^1]: ${ }^{3}$ If $M=N+1$, then $\tilde{u}_{\varepsilon}(x, z)=\left(\tilde{f}_{\varepsilon}(r) \frac{x}{|x|}, g_{\varepsilon}(r)\right)$ for every $x \in B^{N}$ and $z \in(0,1)^{n}$. In fact, if $n=0$ (so, for $\Omega=B^{N}$), every bounded critical point of E_{ε} in \mathscr{A} that is invariant under the action of a special group (isomorphic to $S O(N)$) has the form of \tilde{u}_{ε}, see [8, Definition A.1, Lemma A.5].

[^2]: ${ }^{4}$ Observe the difference between dimension $N \geq 7$ and the case of dimension $2 \leq N \leq 6$ where we have $\ell(\varepsilon)<0$ for $\varepsilon<\varepsilon_{N}$ in (7); moreover, if $N \leq 6$, then $\ell(\varepsilon)$ blows up as $-\frac{1}{\varepsilon^{2}}$ as $\varepsilon \rightarrow 0$ (see [8, Lemma 2.3]).

[^3]: ${ }^{5}$ Indeed, for a scalar function $v \in C_{c}^{\infty}\left(B^{N} \backslash\{0\}, \mathbb{R}\right)$, if $\psi=\psi(r)>0$ is a radial first eigenfunction of L_{ε} in B^{N} with zero Dirichlet data, i.e., $L_{\varepsilon} \psi=\ell(\varepsilon) \psi$ in B^{N}, then the duality pairing $\left(H^{-1}, H_{0}^{1}\right)$ term in B^{N} writes (see e.g. [10, Lemma A.1]):

 $$
 <L_{\varepsilon} v, v>=\int_{B^{N}} \psi^{2}\left|\nabla\left(\frac{v}{\psi}\right)\right|^{2} d x+\int_{B^{N}}\left(\frac{v}{\psi}\right)^{2} L_{\varepsilon} \psi \cdot \psi d x=\int_{B^{N}} \psi^{2}\left|\nabla\left(\frac{v}{\psi}\right)\right|^{2} d x+\ell(\varepsilon)\|v\|_{L^{2}\left(B^{N}\right)}^{2} .
 $$

 By a density argument, Fatou's lemma yields for every scalar function $v \in H_{0}^{1}\left(B^{N}, \mathbb{R}\right)$,

 $$
 <L_{\varepsilon} v, v>\geq \int_{B^{N}} \psi^{2}\left|\nabla\left(\frac{v}{\psi}\right)\right|^{2} d x+\ell(\varepsilon)\|v\|_{L^{2}\left(B^{N}\right)}^{2} .
 $$

[^4]: ${ }^{6}$ For $N=2,(1,0) \notin \mathscr{B}$; however, we can define the second variation of I at $(1,0)$ along directions $(0, q)$ compactly supported in $(0,1)$:

 $$
 Q(0, q)=\int_{0}^{1}\left[\left(q^{\prime}\right)^{2}-\frac{N-1}{r^{2}} q^{2}\right] r^{N-1} d r
 $$

 and one can prove the existence of $q \in \operatorname{Lip}_{c}(0,1)$ such that $Q(0, q)<0$ (see e.g. [8] Remark 2.16]).

[^5]: ${ }^{7}$ We mention the paper of Bethuel-Brezis-Coleman-Hélein [2] about a similar phenomenology in a domain $\Omega=\left(B^{2} \backslash B_{\rho}\right) \times(0,1) \subset \mathbb{R}^{3}$ where $B_{\rho} \subset \mathbb{R}^{2}$ is the disk centered at 0 of radius ρ.
 ${ }^{8}$ Note that for any $\tilde{w} \in \mathscr{A} \cap H^{1}\left(\Omega, \mathbb{S}^{M-1}\right)$, the map $\tilde{w}-w$ has an extension in $H_{0}^{1}\left(B^{N} \times \mathbb{R}^{n}, \mathbb{R}^{M}\right)$.

[^6]: ${ }^{9}$ Note that the functional Q represents the second variation of E at w, but here the map v is not necessarily orthogonal to w.

