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Minimality of vortex solutions to Ginzburg-Landau
type systems for gradient fields in the unit ball in
dimension N > 4

Radu Ignat*, Mickael Nahon' and Luc Nguyen?

Abstract

We prove that the degree-one vortex solution is the unique minimizer for the
Ginzburg-Landau functional for gradient fields (that is, the Aviles-Giga model) in
the unit ball BY in dimension N > 4 and with respect to its boundary value. A
similar result is also proved for SV-valued maps in the theory of micromagnetics.
Two methods are presented. The first method is an extension of the analogous
technique previously used to treat the unconstrained Ginzburg-Landau functional
in dimension N > 7. The second method uses a symmetrization procedure for
gradient fields such that the L?-norm is invariant while the LP-norm, 2 < p < oo,
and the H'-norm are lowered.
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NGy ity of 7 i dimension N < (2.1] a1

1 Introduction

Let BY be the unit ball in RY. Consider the Ginzburg-Landau (GL) functional

- [ [

where € > 0, W(t) = % and U belongs to the set

1
SIVUP + W@ —|Uf)|d

L = (U € HY(BY,R") : U(z) = z on 0BV }.
The functional ESL has a unique radially symmetric critical point in AL of the form
Ude) = fr) T € A%, 7 =1al, (L1)
where the profile f. is the unique solution to the ODE (see e.g. [24] 28])

—fe(r) = EHfUr) + BFHfe(r) = )W/ (1 = fo(r)?),

Moreover f. > 0 and f/ >0 in (0,1).

The map U, in (LI, called the (RY-valued) Ginzburg-Landau vortex solution of
topological degree one, can be considered as a regularization of the singular harmonic
map n : BY — SV~ given by n(z) = fa for every z € BN, which is the unique

(1.2)

minimizing S™ ~!-valued harmonic map for N > 3 with respect to the boundary condition
n(x) = x on BY (see Brezis, Coron and Lieb [9] and Lin [39]). The question about the
minimality of U, for any ¢ > 0 was raised in dimension N = 2 in Bethuel, Brezis and
Hélein [6, Problem 10, page 139], and in higher dimensions in Brezis [8, Section 2]. It is
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not hard to see that, when e is sufficiently large, ESL is strictly convex and so U, is the
unique bounded critical point of ES in AL for every N > 2 (see e.g. [6] or [32, Remark
3.3]). In dimension N = 2, Pacard and Riviere showed in [47] that, for small € > 0, U,
is the unique critical point of E¢L in A%L: however, whether u, is the unique minimizer
of ESL for all € > 0 remains an open question. In dimensions N > 7, this question was
answered positively in recent works of Ignat, Nguyen, Slastikov and Zarnescu [31} 32]:
U, is the unique minimizer of ES* in AL for every € > 0. It is not known whether U,
minimizes EEGL in A%L in dimensions 3 < N < 6 when ¢ is small. However, it is known
that for every € > 0, U, is a local minimizer of EL in AL — for dimension N = 2, see
Mironescu [43] and also Lieb and Loss [38]; for dimension 3 < N < 6, see Ignat and
Nguyen [26].

We note also that, when the domain is the whole space R” instead, the minimality
(in the sense of De Giorgi) of the vortex solution is available: see Mironescu [44], Millot
and Pisante [42] and Pisante [48]. See also [12} 211, 22} [46] for studies on stability issues.

The main aim of this paper is to show that in dimensions 4 < N < 6 and for
every € > 0, U, is the unique minimizer of ES% relative to the set of gradient field
configurations in A" (this is often referred to as the Aviles-Giga model).

1.1 The Aviles—Giga model

Consider a general non-negative convex C? potential W : (—oo, 1] — [0, 00) such that
W(0) = 0 and for every ¢ > 0, the Ginzburg-Landau energy ESL(U) restricted to
gradient fields

U=Vuc H(BY,RY) suchthat Ulypy = Id.

Within a suitable rescaling (i.e., eESF(Vu)), this is the so-called Aviles-Giga model
(introduced with the standard potential W (t) = ¢2/2).

Note that the (R¥-valued) Ginzburg-Landau vortex solution U, introduced in (L))
is a gradient field U, = Vu, for some radial function v, = u.(r) determined (up to a
constant) by u. = f, in (0,1) where f. is the unique solution in (L.2]).

We prove the following result:

Theorem 1. Assume that 4 < N <6 and W : (—oo, 1] — [0,00) is a C? non-negative
convez function such that W(0) = 0. For every € > 0, the radially symmetric vortex
solution U, in (1)) is the unique minimizer of ESL over the set of gradient fields {U =
Vu € AL}

Note that the above result holds in dimension N > 7 as a consequence of [31),32]. We
expect the result holds also in dimension N € {2,3}. We mention here the work Lorent
[40, 41] and Lamy and Marconi [35] on stability of the vortex solution in dimension



N = 2 and in the limit ¢ — 0 (for the Aviles—Giga model as well as other micromagnetic
models).

1.2 The SV-valued Ginzburg-Landau model

We consider the following model:

By - |

BN

1 , 1

where n > 0 and M = (Vm, My,4) is a unit-length vector field that is a gradient field
in the first N components belonging to

AMM — LN = (Vm, My4,) € HY(BY,SY) : M(z) = (2,0) on 0BV},

The non-negative potential W : [0,00) — [0,00) is a C? convex function such that
W(0) = 0.

This model comes from micromagnetics where the order parameter M stands for the
magnetization in ferromagnetic materials (see [20]), and also the Oseen-Frank theory

for nematic liquid crystals (see [I]). Considering radially symmetric critical points of
EYM in AMM one is led to

My(@) = (Jy(r) %, 9a(r)) € AM (1.3)

where the radial profiles fn and g, satisfy

fPrg2=1 i (0,1), (1.4)
and the system of ODEs:
- N-—-1-. N-—-1: ~
_f7/7 - , f7/7 + 2 fn = )‘(T)fn m (Oa 1)> (1'5)
" N -1 / 1 ! .
_gﬁ — . gn = —?W (9727)977 —+ >\(T>g77 mn (0, 1), (16)
f,(1) =1 and g,(1) = 0, (1.7)
where
F1\2 N -1 £2 7\2 1 712\ 2

n dimension N = 2, E,II‘/[ M is the reduced energy functional in a certain thin-film ferromagnetic
regime (see e.g. [L3| Section 4.5] or [25] Section 7]) where, after a rotation by 7 in the first two

components of M, the condition V x (M7, M3) = 0 is imposed in the space of admissible configurations
in AMM,



is the Lagrange multiplier due to the unit length constraint in AM* . Note that indeed
the vortex solution M, in (IL3) is of the form M, = (Vm,,, M, n+1) € AMM for some
radial function m,, = m,(r) determined (up to a constant) by m; = £y in (0,1).

As proved in [26], the solutions to (IL3)-(I7) satisfy the dichotomy: either f,(0) =0
or f,(0) = 1. Furthermore, in the latter case, it holds that N > 3 and (f, = 1,9, = 0)

in (0,1), which corresponds to the equator map

In dimension N > 7, M is the unique minimizing harmonic map from BY into SV in
H'(BY,S") with with boundary condition (Id,0) on 9BY (Jager and Kaul [34]; see also
Sandier and Shafrir [49] and [32, Example 1.6]); so M is the unique minimizer of E}
in AMM for every n > 0. Therefore, in the following, we focus on dimensions 2 < N < 6
and on escaping SN-valued radially symmetric vortex solutions

My (2) = (Fy(r) =, £g,(r)  with g, > 0in (0,1).

It was proved in Hang and Lin [23] in dimension N = 2 and [20] in dimension 3 < N <6
that, for any 5 > 0, (L3)-(L1) has a unique escaping solution (f,, g,) with g, > 0 and
M, are locally minimizers for E}M". Moreover, f,(0) =0, f, >0, f) > 0 and g; <0
in (0,1). (See also [37] for a related work in the context of micromagnetic skyrmions in
R2.)

We prove the following result:

Theorem 2. Assume 4 < N < 6 and W : [0,00) — [0,00) is a C? non-negative
convex function such that W(0) = 0. For everyn > 0, E}™ has exactly two minimizers
over the set {(Vm, M) € AMMY and they are given by the escaping vortex solutions
My (x) = (fy(r)%, &g,(r)) with g, > 0 4n (0,1). In particular, minimizers of E)' in
AMM qre radially symmetric for every n > 0.

As in the case of the Aviles—Giga model, we expect the above result holds also in
dimension N € {2,3}.

1.3 The extended model

More generally, we consider a family of extended energy functionals E,, depending on
two positive parameters €,7 of which ES* and E)™ are limiting cases when 7 — 0 and
e — 0, respectively:

Eavl= [ |

1 1 1
g\VUF + oW - U?) + 2—7]2W(U12v+1) de, en>0,  (19)
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where U = (Vu,Unyq) : BY — RN¥*! is a gradient field in the first N components and
belongs to

A={U = (Vu,Uyns1) € HY(BY,R¥*™) : U(z) = (2,0) on 0B},

Here, W : (—00,1] — [0,00) and W : [0,00) — [0,00) are non-negative C? convex
potentials such that W (0) = W (0) = 0. We point out that these imply that W’(0) = 0,
tW'(t) > 0 in (—oo, 1]\ {0}, and W'(t) > 0 in [0, 00). However, we allow the possibility
that W or W can be zero in a neighborhood of the origin.

Radially symmetric critical points of E., in A take the form

x
Ueyy = (fs,n(r);age,n(r)) €A, (1.10)
where (fen, gen) satisfies the system of ODEs
N -1 N-—-1 1
- e/jn - Tfé,n + Tfé,n = ?W/(l - 277 - 93,77>f5777’ (111>
N -1 1 1 -
- ggﬂ] - Tg;n = 6_2W,(1 - 277 - g?,n)ge,n - ?W,(gin)gs,na (1'12)
fen(1) =1 and g.,(1) = 0. (1.13)

Note that the above implies f,(0) = 0 and g;, (0) = 0 (see [26, Lemma A.5]). Also, note
that the first N components of U ,(r) is a gradient field Vg, ,, for some radial function
Pen(r) determined (up to a constant) by ¢, = fe, in (0,1).

In dimensions N > 7, it follows from [31, [32] that the non-escaping vortex solution

is the unique global minimizer of E, in A for every € > 0 and n > 0. Therefore, in
the following, we focus on dimensions 2 < N < 6; we will analyse escaping radially
symmetric vortex solutions

x .
Ufn = (fem(r);, +9ey(1)),  gey > 0in (0,1).

It is shown by [26] that such an escaping radially symmetric critical point U, with
Geny > 0 exists if and only if 2 < N < 6, W/(1) > 0, 0 < € < ¢ and 1 > ny(e) for
some ¢y € (0,00) and a continuous non-decreasing function 7y : [0, €) — [0, 00) with
70(0) = 0. In this case, it is the unique escaping solution of (LI0)-(II3) with g, > 0
in (0,1); moreover, we have f.,(0) =0, f2, +g¢2, <1, fo, >0, f/, >0, 9., <0in
(0,1). See Section [I.4] and Figure [I] for more information.

We prove the following theorem:



Theorem 3. Suppose 4 < N <6 and W : (—o0,1] — [0,00) and W :[0,00) — [0,00)
are C? non-negative convex functions satisfying W(0) = W(0) = 0. For every e > 0,1 >
0, we have the following dichotomy:

o Fither the escaping radially symmetric vortex solutions Ufn exist and they are the
only two minimizers of E., in A,

o Or the escaping radially symmetric vortex solutions Ujfn do not exist and the non-
escaping vortex solution U, is the unique minimizer of E., in A.

In particular, minimizers of E., in A are always radially symmetric for every e,n > 0.

To complete the picture, we recall facts from [26] on the escaping vs. non-escaping
phenomena. The escaping phenomenon is related to the loss of stability of the non-

escaping vortex solution U,. More precisely, consider the stability operator §;’§E»" at U,
N+1
along the N + 1 direction:

_ 1 1 -
7@:-A-§Wﬂ—ﬁﬂqﬂww

The first eigenvalue of 7., on H}(B™,R) takes the form ¢(e) + 77%VNV’(O) where ((€) is
the first eigenvalue of

Lo
L:—A—gwa—ﬁy (1.14)
Then the

1
escaping vortex solutions Ujfn with g, > 0 exists if and only if £(e) + ?W/(O) < 0.

When N > 7 or W/(1) = 0, it holds always that ¢(e) > 0, hence escaping vortex solutions
do not exist. When 2 < N <6 and W’(1) > 0,

there exists ¢y > 0 such that ¢(e) > 0 for € > €y and £(¢) < 0 for 0 < € < €.

Thus, in this case, the function 7y(€) mentioned above (so that escaping vortex solutions
exist if and only if 0 < € < ¢y and 1 > 19(€)) is given by

w
no(€) = ol for 0 < e < €.

In Figure [, we describe the dichotomy of escaping and non-escaping phenomena for
minimizer of E, in radial symmetry in dimension 2 < N < 6. Theorem [3 asserts



Figure 1: Escaping vs. Non-escaping phenomenon in dimension 2 < N < 6.

U | U 7
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1y non-escaping non-escaping
|

' region region
W'(1) >0 and W’(0) >0.  W’(1) > 0 and W'(0) = 0. W'(1) = 0.

that, in dimension 4 < N < 6, this picture remains valid in the larger set A of gradient
field configurations in the first N components.

For the case n = oo (that is the R¥*!lvalued Ginzburg-Landau model), we refer
the reader to the recent article Ignat and Rus [33]. For a similar bifurcation from non-
escaping to escaping phenomenon, see Bethuel, Brezis, Coleman and Hélein [5].

1.4 Ideas of the proofs

Theorems [ and 2] will be obtained from Theorem [ by taking the limits  — 0 or
e — 0, respectively. For simplicity, instead of describing the proof of Theorem [B] (which
is the main result), we explain instead the strategy of the proof in the case n = 0, i.e.
Theorem [I] for the Aviles—Giga model. We will present two methods of proof. Roughly
speaking, the first method follows the strategy in [31, 32] adapted to the situation of
gradient field configurations, and the second method uses a symmetrization procedure.

Method 1

It was observed in [31} [32] that the convexity of the potential W implies the inequality
1
E°MU. + V] - ESH U] > 5/ LV -Vdr=:FJ[V]for Ve Hy(BY,RY), (1.15)
BN

where L. is the operator defined in (LI4). Recall that in dimension N > 7, the first
eigenvalue ¢(¢) of L. is positive, F.[V] > 0 for V € H}(BY,RY)\ {0}, and hence, U, is

ZRecall from [26] that solutions of (ILII))-(CI3) satisfying g., > 0, when they exist, are minimizing
for E. , relatively to the set of radially symmetric configurations.
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the unique minimizer of ES* in A9, In dimension 2 < N < 6, one has £(¢) < 0 for
€ < €, and so it is not clear from the above argument if U, is a minimizer of ESL in
ACL. However, in the current case of gradient field configurations (i.e. V = Vv), we are
able to conclude in dimension N > 4.

To appreciate the idea, consider the limit ¢ — 0 where L, — —A — NT = = L,
as bounded linear operators from H}(BY,R"Y) into H~}(BY,R"). Although L, is not
positive definite when N < 6, we have the following inequalit for gradient fields in
dimension N > 4:

/ Lo(V0) - (Vo) dz = / ((20)? - i 1|vv|2) de > 0 for v € HX(BY,R),
BN BN T

i.e. L, is positive definite on the subspace of gradient fields in H}(BY RY). This is a
consequence of the sharp Hardy inequality for gradient fields (see e.g. [2} [10] 19, [51]):

NifN>5
5 |Vol? 2/ ON )3 ifN=4
/RN(AU) dx > CN/RN = dx, for v e Hj(B",R) where cy := n Ny
0 if N =2.

(1.16)

For the general case ¢ > 0, we combine the above idea with the machineries in [31 [32]
and [26], based on the Hardy decomposition method.

Unfortunately, the above strategy does not work in dimension N = {2,3} (for the
proof, see Appendix [Al):

Proposition 4. In dimension N € {2,3}, there exists a function v € C*(BY \ {0}) C
HZ(BN) such that F.(Vv) < 0 when € is sufficiently small.

Method 2

As mentioned above, the second method of proof uses a symmetrization procedure. For
that, we use the spherical coordinates: for every xz € BY, we write x = rf with r = |z|
and § € S¥~L. For v € HY(BY,R), we associate the radial function ¥ = ¥(r) given by
the formula

B(r) = — /Tl (]éN |Vv(s€)|2da(9))1/2 ds <0, re(0,1). (1.17)

One can think of this as a kind of rearrangement in the spherical harmonic decomposition
of v (see Section B2l for more detailed discussion).
We prove the following.

3Here HZ(BY,R) is the closure of C>*(BY,R) in H?(BY R). In particular, if v € HZ(B",R), then
v and Vv have zero trace on the boundary.



Theorem 5. Let N > 2, v € H'(BY,R) and ¥ be associated to v by (LIT). The
following conclusions hold.

(i) The map v — ¥ is a Lipschitz continuous map from H'(BN R) into H(BY,R).
Moreover,

/S VRO do(6) = /S VUGB do(6) for ae. € (0,1)

(ii) Let G : [0,00) x [0,00) — [0,00) be continuous. If G is convex in the second
variable, then

G(r, |V dz < / G(r, |Vo]?) dx.
BN BN

In particular, for any 2 < p < oo,

/ |Vol|P de < / |VolP da.
BN BN
(iii) If v € H}(BY), i.e. ifv=0 on OBY and 1 < p <2, then

/ 5(r0)|? dor(8) > / W(rO)[P do(6) for a.e. 1 € (0,1).
gN-1 gN-1
(iv) Assume in addition that v € H*(BY,R) with the boundary condition Vv(x) = cx

on OBYN for some constant ¢ € R. Then v € H*(BY,R) and Vo(z) = |c|x on
OBN. If N > 5, then
/ (AD)* dx g/ (Av)? da. (1.18)
BN

BN

If N € {2,3,4}, (II8) continues to hold provided that [y, v(r8)8do(0) =0 for
a.e. T € (0,1). In either case, equality is attained if and only if v is radially
symmetric and |v'| =" in (0,1).

To apply Theorem [ to prove Theorem [I, we only need to note that for Vu € AL,
by integrating by parts using Vu(z) = z on 0BY,

N
2 12 5 _ 2 5. 9. 0.0,
/BN |Voul® dx = /BN(Au) dx . ZZ 0;0;u(0)(0;; — 6;0;) do(0)

7]:1

V2u:(In—06)

— /BN(Au)2 dr — /SNl {(N — 1)0,u(0) + A§N71U(9):| do(60)

_ /BN(AU)2dx _ (V= 1)sYY.
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(Here we have used the fact that Iy —0#®8 is the projection onto the tangent hyperplane
Tp,SN=1.) Therefore, in dimension N > 5, Theorem [§l immediately implies that minimiz-
ers of ESL in {U = Vu € A%} are radially symmetric. Thanks to the characterization
of radially symmetric critical points in [26], Theorem [ follows. Theorem [2] also follows
in a similar manner. For Theorem [B] we need an extra symmetrization for the Uy,
component; see Section 3.1l

In Theorem [Bl(iv), the requirement [y, v(r6)6 do(f) = 0 in dimension N € {2,3, 4}
cannot simply be dropped due to existence of counter-examples. (For examples of sym-
metry breaking phenomena in the context of Hardy’s inequality for gradient fields in
dimension N € {3,4}, see e.g. [10].)

Our rearrangement is related to a vectorial rearrangement in Lieb and Loss [38]. For
V e HY(BY,RY), one associates the radially symmetric vector field V defined by

D=

T

V(z) = <]£N |V(7’9)|2da(9)> — (1.19)

It was shown in [38] that, provided V() = 2 on dBY and [,y_, V(r6)do(0) = 0 for a.e.

r € (0,1),
/ VT2 da g/ YV dz.
BN BN

It is readily seen that if V = Vv, then V = V#&. Thus, when N € {2, 3,4}, the conclusion
(LI8) in Theorem [l can be deduced from the above result in [3§].

Fewer rearrangement methods are known to prove symmetry of solutions of higher
order elliptic equations than for second order ones. This can be partly explained by the
absence of a maximum principle for higher order elliptic equations or systems, which
makes Schwarz symmetrization methods inapplicable in general. There are some ex-
ceptions, see for instance the two papers of Nadirashvili [45] and Talenti [50] where
£ {02 oo (Au)?

-[]R2 u?

it is shown by rearrangement arguments that minimizers o are radially

symmetric
More recently, a rearrangement principle developed in Lenzmann and Sok [36] deals
with the radial symmetry of optimizers of Gagliardo—Nirenberg type inequalities of ar-
bitrarily high orders, as well as ground states of higher order non-linear Schrodinger
equations of the form
Lv +wv = v|v[P~? in RY

where L is a certain pseudodifferential operator, w > 0 and p € (2, p*) for some critical
exponent p* > 2 depending only on the dimension N and the operator L. The rear-
rangement principle here is based on Schwarz rearrangement of the Fourier transform:

4For other results on symmetry of solutions of higher order elliptic equations or systems which do
not use rearrangement inequalities, see e.g. [3], [IT] [I5] (18] and the references therein.
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any function v : RY — C is symmetrized as v* = F~1[|F[v]|*], where F is the Fourier
transform and w* designates the radially decreasing Schwarz rearrangement of w.

We make a comparison between the rearrangement v in Theorem [Bl and the rear-
rangement v* of [36] in the following table.

v on BN vf on RY
L?-norm 19|z > [|v]lz2 [0¥ ]2 = [Jv]l.2
LP-norm, 1 <p <2 10|l e > [|v]| e ?
LP-norm, even integer p > 2 ? 0% e > (v zr
__H'-norm Vo[l = [[Vollez | [[VO* ]2 < [[Vo]lLe
WtP-norm, p > 2 VO] p < [V 10 ?
_ H%norm [AG[ 2 < JAv[[r2 | [[AH]] 2 < [[Av]].2
H?-norm, s > 0 ? ||Uﬁ| e < vl g

As an application Theorem [, we consider the radial symmetry of ‘ground state’
solutions to the nonlinear eigenvalue problem

{A% = \v + |[v[P~%v on BY, (1.20)

v=0,v=0ondB",
where 1 < p < 2. See Section [3.4]
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2 First proof of main results

2.1 Proof of Theorem [3

In this section we give the first proof of Theorem [B] based on the strategy in [31], 32] and
exploiting the additional structure of a gradient field for the first N-components of the
current admissible configurations.

Recall that {(e) is the first eigenvalue of the operator L = —A — 5W’(1 — f2) and
that the escaping radially symmetric critical points Ujfn with g, > 0 exist if and only
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if W/(1) > 0 and £(¢) + U%VNV’(O) < 0 (equivalently 0 < € < €y and n > ny(¢)). For fixed
e>0,7>0, we let

o — {({:n if W/(1) > 0 and ¢(¢) + U%VT/’(O) < 0 (i.e. there is an escaping solution),

U.  otherwise (i.e. there is no escaping solution),

and
(f.q) = (fem Gem) i W/(1) > 0 and £(e) + £W'(0) < 0,
9= (fe,0) otherwise,

so that ®(x) = (()%,g(r)).
We consider the differential operators L., and T ,:

1 1 1.
Ley=—-A—3W(l- fP=q), T.,=-A- W= f2=a)+ ﬁW’(gz)-

For any v € H3(BY,R), we let

F.,[Vu] = / <(Av)2—12W’(1— f2—g2)|Vv|2) d = / Lo, (Vo): (Vo) da.
BN € BN
(2.1)

Note that [,y |V*0|*dx = [,x(Av)? dx since v € HF(B"). Note also that, in the non-
escaping case, ® = U, Ley=0L,1T.,= 75,77 and F,, = F, introduced in sections
and [L4

As in [31], B2], the starting point of the proof is the following consequence of the
convexity of W and W:

Lemma 6. For any v € H3(BY,R) and p € H}(B",R),
1 1
Eeo[® + (Vo,p)| = Beol®] = 2P, (V0] + - / T.p-pd.
2 2 BN
Proof. We have

1
Eep|®+ (Vv,p)| — Eey[®] = 5/ {2V<I> : V(Vo,p) + V20 + | Vp|?

BN

+ Eiz[W(l —|® + (Vo,p)]*) = W(L— |®*)]
0 ((g+ ) = Wi} o 22)
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By the convexity of W and W, we have
W (1 =@+ (Vo,p)[*) = W(1 = [@]*) > W(1 - [®) (|0 — @ + (Vo,p) )
= —W'(1—|2P) (20 (Vv,p) +|Vof* + p*)
W(lg+p)?) = W) =W ((g+p)° - o°)
= W'(g%) (200 + 7).

Since ® is a critical point of F, we also have
1 1 -~
| {70 V(00 = SW = 0R)8 (Vo) + (g} dn o
BN

Inserting the last two estimates into (2.2]) we arrive at

Een[®+ (Vo,p)] — Ecy[®]
1 2 12 o 1o, 2 2 2, .2 Loz o9y o
> 5 [ (I 19 = W 2 ) (0P 4 ) 4 )
which is precisely the conclusion. O
We will frequently make use of the following Hardy decomposition:

Lemma 7 ([29, Lemma A.1]). Let A: BY — RY*Y e a C! non-negative semi-definite
symmetric form, i.e. A(x)¢-€ >0 for everyx € BY and € € RY. We define the operator

L:=-V-(AV)

and consider a smooth positive function 1 : BN — R. Then for every u € C°(BY,R),
we have the following Hardy decomposition:

wdr= [ g2 4y g L.
/BNLu udx /BNw A(x)V(w) V(¢)dx+/BN szw Y dx.

Before moving on with the proof, let us make a simple observation on the non-
negativity of Tt ,,.

Lemma 8. The first eigenvalue of T., on H}(BY,R) is (ﬁ(e) + niﬂ;f/’(()))Jr and the
corresponding first eigenspace of T, ,

o coincides with the first eigenspace of L. when £(E)+U%W’(O) >0 (i.e. wheng=0),
and

14



* is generated by g when ((€) + U%VNV’(O) <0 (i.e. when g>0).

In particular T,,, is non-negative semi-definite on Hj(BY ,R) and

[ Toppde= [
BN BN

where h is any first eigenfunction of T, ,,.

v

. dx >0,

+ (f(e) + %VV'(O)) P>

+

Proof. Recall that, by [26, Theorem 2.4] on escaping and non-escaping critical points of
E.,, when g = 0, we have £(e) + #W’(O) > 0, while, when g > 0, £(¢) + 77%VT/’(O) < 0.
The first bullet point is then clear as T, = L. + n%W’ (0) and the first eigenvalue of L,
is ¢(€). When g > 0, we have

Te,ng - Oa

and so g must be a first eigenfunction of T¢ ,, and the first eigenvalue of T, ,, must be zero.
The second bullet point follows. The last assertion follows from the Hardy decomposition
Lemma [7] with the decomposition p = h?. O

The last ingredient for the proof of Theorem [3 is:

Proposition 9. Suppose N > 4. For any v € HZ(BY,R) we have

_ 9)2 2 2 2 2
F,,[Vv] > v —2) / Or) 4o 4 (ﬂ - 2N> / Vol = (00) 1 s 0.
BN BN

4 72 2 r2 -

Remark 10. Note that for general V- € H}(BY,RYN) which is not necessarily a gradient
field, it was shown in [31, [32] in dimension N > 7 that F,,[V]|= F.[V] > 0.

Before giving the proof of the above proposition, let us prove Theorem [3|

First proof of Theorem[3. Indeed, as N > 4, we have by Proposition@that F,[Vv] > 0
for every v € HZ(BY,R) with equality if and only if 8,v = 0 a.e., which implies v = 0.
Therefore, by Lemmas [l and B, @ is a minimizer of our problem. If ® is another
minimizer of E.,, then E,[®] = E.,[®]. By Lemmas B B and Proposition [ this is
possible only if & —® = (0, h) for some h in the first eigenspace of Tt ,,, which is radially
symmetric (because T, is radially symmetric). We thus have that d is a radially
symmetric minimizer of E,,. [26, Therorem 2.4] then gives the desired uniqueness for

minimizer(s). O

Proof of Proposition[d. Tt is enough to prove the estimate for v € C(BY \ {0}, R).
The general case follows from Fatou’s lemma and the density of C°(BY \ {0},R) in
HZ(BY R) (note N > 4).

15



We denote by (¢)reny an orthonormal basis of L2(SV~!) given by eigenfunctions of
the Laplace-Beltrami operator on the unit sphere, meaning that for any k£ € N we have

—Agn-10 = A0k

where 0 = \g < N—1=X\ =... = Ay < 2N = Ay < -+ — +00. In particular we
have

(bkgbl da(@) = 5kl and / VSquﬁk : VSNfl ¢l da(@) = >\k5kl (23)
SN-1

§N-1

Consider the decomposition of v in spherical harmonics: we write

= v(r)gx(0) for r € (0,1),6 € SN

k>0

where v € C°((0,1),R). We have

, 1
Vo = Z <’Uk¢k§ + ;'UngNlQSk) , Av = Z

k>0 k>0

N -1 A
<vg + vaﬁ — T—§Uk> O,

Using the orthogonality relations (2.3]) and the identities

1 1
N -2
/ V= %gv;dr———/ V73 (v )2 dr,
0 2 Jo

1
/ N4 v dr = —u/ rN =502 dr for k> 1,
0 2 0
! ! N —3)(N —4
/ V730 dr—/ |:—TN_3(U;€)2+( 3)2( )N52d7’f0rk>1
0 0
we get
N -1 ?
/ (Av)’de =) vy + vy, — )\k ¢rdx
BN k>0 BN r 7“
1
=23 (rN—l(vg)2 + (N = 1+ 22V 3 (0)? + AN + 2N = 8))rV—° ,3) dr,
k>0+0
(2.4)
and

W 2 PV = 5 [ W ) (P )
k>0

BN

16



Inserting these into (2.1I), we split F, , into three terms as follows:

Palwe) = { [ (0 = Swa - = et?) an

k>0

I
! 1
/ NprV ! (7“_2(21];)2 — e_QW/(l — 2= 221]3) dr
0
1,

+/01 ((V = 1+ AP 3(0h)? + Al + 28V — 8)rN =207 dr}

11,
For terms I, and II; we will apply the Hardy decomposition Lemma [7] using

N -1
72

Enf— f

More precisely, for any function w € C°(B™,R) we have the identity
| Lattw) (fwyds = [ (PIV0P 0Lyt f) do
BN BN
N -1
:/ f? (\vwﬁ — Tw2> dz. (2.5)
BN T

o Estimate of I;: For the first term we use the decomposition v, = f%, ie.

w="%€Cx(BY\ {0},R) in [ZI):
(5)

1 1
Iy = / TN_ILE,U(U;f) ) (U;f)d/r = / [TN_lfz
0 0
We let ((r) =77"2 so that, when seen as a radial function in R \ {0}, ¢ verifies

2

(N - l)rN_?’(v];)ﬂdr.

2

(N 2) (N —2)?

4r2

V(Y = =PAC=2f I = 5= PO = 2f [/ = 5 7,

since ' < 0 and f, f/ > 0in (0,1). By the Hardy decomposmon Lemma [7] for the
operator V - (f?V) and the decomp081t10n Ve CfC’ we thus have

Iy > /01 rN (f2§2 <;—Z> 2 + (M — (N - 1)) rN—?’(u,;)?) dr.  (2.6)
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o Estimate of II;: First notice the elementary identity

[ sarae [ (o () rartua o)
OIS

= [ (P () () = (7 - 3

r

SO

Uk

This time we use the decomposition 2 = f& (i.e. w = & in (Z.5)) to obtain

s ()
0 r

By the Hardy decomposition Lemma [7 for the operator V - (f2V) and the decom-
pos1tlon C as above we get the estimate

HkZ)\k/Ol(le2<2<fC>, +<M—2(N—2)> N52)dr (2.7)

4
o Estimate of IIIj: For the last term we simply apply the Hardy inequality once:
for any v € C2°((0,1), fo N=3 () 2dr > (N-4) 4 f rN=5v2dr. This gives

—2(N —2)r? 2)dr

IIIkz/()l((N—l) N=3 ()2 +A,€<A,€+2N—8+M>ﬂv b )dr (2.8)

Summing the estimates (2.6), (2.7), (2.8) we get

VAN —2)? N2
Fey[Vo] > > (% N=3 ()2 +)\k<7—3N+1+)\k>TN 5 2>dr

k>07/0

LN —2)2 N?
> <7( 1 L s 4, (——2N>7~N‘5vi> dr since A > (N — 1)\

k>00 2
N —2 2 N2 2 _ 2
LSSy N N =
4 BN 7“ 2 BN T2
The result is proved. 0
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2.2 Proof of Theorems [I] and

Theorem [I] for the Aviles—Giga model is a simple consequence of Theorem [3 for the
extended model.

Proof of Theorem[. Fix e > 0. Pick any convex C? function W : [0, 00) — [0, 00) with
W(0) = 0 and W’'(0) > 0, e.g. W (t) =t. By [26], there exists a small > 0 such that
E., has no escaping radially symmetric critical points. By Theorem [3] U. = (U, 0) is
the unique minimizer of E., in A. It follows that

ESL[Vu] = E_,[(Vu,0)] > E.,[U] = EJU/] for all Vu € A%,

This means that U, is a minimizer of E“L in {Vu € A%F}. Conversely, if Vi is a
minimizer of ESL in {Vu € AYL}, then

Eéﬂ?[(vav 0)] = EEGL[VQ] = EEGL[UE] = Ee,n[Ue]a
i.e. (V1,0) is also a minimizer of E,, in A. By Theorem B, Vi = U, as desired. O

We next prove Theorem [ for the SV-valued Ginzburg-Landau model.

Proof of Theorem[d. Set W (t) = t* and fix some n > 0. As 4 < N < 6 and W’(1) > 0,
we know by [26] that for € > 0 small enough, there exists a unique escaping radially
symmetric critical point of the form

X .
Uy = (fe,n(r);,ge,n(r)) €A, go,>0in(0,1)

of the energy E.,. Pick an arbitrary M = (Vm, My41) € AMM (in particular, |[M| = 1)
and set
(Ve Den) := M = Uey.

Then by Section 2] we know that
E1J7V[M[M] = Ee,n [Ue,n + (V'Ue,mpe,n)}

1 1
> EcplUeq] + 5 Fey[Vves] + 2 /N TenPen - Peydz
B

2
with
(N—2)2/ (OrVen)? N? / |Vsn-10,,|?
F. [V, ] > ) ge 4+ (22 Zon Vesv=benl” g0
Pen |
TerDen * Peydr > 2 \V(E)| da.
/BN 777p i pﬂ? x_/‘;Ngg’n (gﬁ’n) o
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By [26, Remark 2.17], for a subsequence € — 0, we have that U., — M, in H'(B")
(in particular, VU, — VM, and U, — M a.e. in BY) and E.,(U,) — E}M[M]]
where M;’ = ( fn%> gn) is the unique escaping radially symmetric critical point of Eé”M
with g, > 0 in (0, 1). Therefore,

(Ve Pe) = M — M" = (Vy, py)

in HY(BY) and a.e. in BY as well as V(Vve,,pe,) = V(V0,,5,) ae in BY for a
subsequence € — 0. By Fatou’s lemma, it follows for a subsequence ¢ — 0:

EyMM) = By MY+ (Voy, py)]

1 p
MM 2
> E) [M;]+§/3Ng,7v(g—:)

+(1\1—2)2/ O 1N / |Vna,
8 BN T2 2 2 BN T4 .

We conclude to the minimality of M;r . If M is another minimizer, within the above
notations, then EMY[M] = E)™[M}] and so 0,7, = 0 in BY yielding @, = 0 (as o, = 0
on OBN); also, p, = ag, for some constant o € R. Since |M| =1 and M = (0,p,) + M,,
we deduce that (p, + g,)* = g7 yielding o = 0 or =2, i.e. M = M;¥ or M = M,. O

2
dx

3 Symmetrization and second proof of main results
in dimension N > 5

3.1 A symmetrization of scalar functions

In this section, we consider a spherical average rearrangement which is probably known
to the experts. See e.g. [52, Chapter 1, Section 9] for a similar rearrangement in the
context of the Laplace operator. Let 1 < ¢ < oo. For a function g € LY(BY,R), define
a radial symmetrization ¢ of g by

i) = { f_ latorae} " 20, re ) (3.1)

When ¢ = 2, we can also think of this as a rearrangement in the spherical harmonic
decomposition of g.

Theorem 11. Let N > 2,1 < g < o0, g € LYBY,R) and § be associated to g by ([B3.1)).
We have the following conclusions.
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7 e map g +— g 1S a 1-Lipscnitz continuous map jrom , mto tself:
) Th g+ § is a 1-Lipschit ti Li(BN R) into itsel

15 = All o~ ry < lg = 2l ooy -
Moreover, [ov_|§(r0)|?do(0) = [ov-1 |g(r0)|?do(0) for a.e. € (0,1).

(ii) Let G : [0,00) x [0,00) — [0,00) be continuous. If G is convez in the second
variable, then

[ coliids< [ gl

In particular, for any g < p < 0o,
[ Japdr< [ g
BN BN
111) Assume wn addition that g € ' ,R). en g € ’ , an
i) A in addition th Wha(BN R). Then g € WH4(BN R d

/ IVgl?de < / |Vg|?dz. (3.2)
BN BN
Equality is attained if and only if g is radially symmetric and |g| = g in (0, 1).

Proof. Proof of (i): From the definition of the radial function §(x) = §(r) we have

/SNI 1g(r0)|?do(8) = /SNl lg(r0)|%do(0) for a.e. r € (0,1),

which implies § € L4(BY). Also, by the reverse triangle inequality, we have for g, h €
Li(BY) that

1
19— bl g, = 1571 / 19(r) — Rl P dr
1
-/ MQ(T')HLQ o = ()1

/ 9(m) = Ar) g1y 7L dr = llg = Bll L,

q _
rNldr

Therefore g — § is a 1-Lipschitz continuous map on L?(BY).
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Proof of (ii): By Jensen inequality,

Clr, |3(r8) 1) do (6) = G ( / |§<re>wo—<e>)

§N-1 N-1

~c(nf, lotora®) < £ conlsor o),

Integrating in 7 gives the second bullet point. In particular, with G(r,s) = s?/¢ with
p > ¢, we see that the LP-norm of § is no more than that of g.

Proof of (iii): Consider first the case g belongs to C>®(B"), which is a dense subset of
Wh4(BYN). For technical reasons, we introduce, for p > 0,

i) = { f (0007 + 2 an0)} " 20, re o)

Note that g, — ¢ in LY(BY) as u — 0. We have, by Holder’s inequality,

BOIG0N < £ (907 + )T 109(r6)] do(6)

< { £ seopase)

As g, > p*/? > 0, this implies

F o a0l do(o) 17,00 < f  [org(r0)do(o)

SN-1

Integrating over r € (0, 1) gives

/|V§H|qu§/ |0,g|%dx.
BN BN

This implies g, is bounded in W'4(BY) and hence converges weakly to g in Wh¢(B")

as it — 0. Hence
[ warar< [ ol (33)
BN BN

which proves ([3.2)) for g € C>(BY). )
Suppose now g € Wh4(BY). Pick {g(;} C C>(B") such that g(;) — g in W4(B").
By (i), gy — § in LY(BY). Also, by (B3,
/ Vgt de < / 109 |*dz. (3.4)
BN BN
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This implies that §;) is bounded in W4(BY) and hence converges weakly in Wh(BY)
to . Sending j — oo we see that (B3] remains valid for g € W14(BY), which proves
[32). Moreover, equality holds in (32)) if and only if |Vg| = |0,¢| a.e., i.e. g is radially
symmetric. ]

3.2 A symmetrization of gradient fields and proof of Theorem

Recall the symmetrization ¢ for a function v € H*(BY,R) is given by the formula (LI7):

9(r) = — /Tl { ]éNl |Vv(s€)|2da(9)}l/2 ds <0, re(0,1).

We will use the following density result.

Lemma 12. For N > 2, the set S of functions in C®(BY) which are constant in
a neighborhood of the origin is dense in H*(BY). Moreover, if v € H?*(BY) verifies
Jon—1 v(r0)0do(0) = 0 for almost every r € (0,1), then its approzimation sequence in S
may be chosen with the same property.

Proof. Tt is well known that C>°(B") is dense in H?(B"). Thus, to show that S is dense
in H?(B"), we only need to show that a given v € C*(B") can be approximated by a
sequence of functions in S. In the proof, C' denotes a constant that can change between
lines but depends only on the dimension N. Pick a cut-off function ¢ € C*°(R) with
p=1in (—00,1/2], p =0 in [1,00). For j > 10 and = € BY, let

e(jlz]) if N > 3,
(j)(x) = lnlnﬁ .
1= o(opm;) HN=2

Note that ¢;)(z) = 0 for |z| > % and ¢(;)(r) = 1 when |z| is small enough. Define

vy = v(0)py +v(l—9p) =v—(v—rw)py €S, j=1
We estimate
[v(z) = v(0)] < ||Vl pm ],

leglL2syy < N2,

o , Cj—IN=2/2if N > 3,
Vol + ||7“V2§0(j)||L2(BN) < Cw(j) with wy(j) = c N 9
(Injlnlnj)1/2 1 e
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We thus have

(v — v(0) )l 2avy < C 2|0l ooy,
V(v = v(0) )]l z2sny < Ci N2Vl poe(pny + Cwn (G)]|0] oo (i),
IV2[(v — v(0))ep]llz2ery < Cj_N/2||V2UHL°°(BN) + Cwy ()] V]| Lo B3y,

Clearly, these estimates imply that v(;, — v in H*(B"). We have proved that S is dense
in H?(BY)

Now suppose v € H*(BY) and [gyv_, v(rf)0do(f) = 0. Let vy € S be such that
vy — v in H*(BY). Define ;) (rf) = vy)(rf) — S vi)x(r)de(f) where vy i(r) =
Jon—1 v) (10) P (0)do(0). Tt is clear that [oy_, 0(;)(rf)0do(6) = 0. Since vy is constant
near 0, v(;), is supported away from 0, and so ?(;) € S. Finally, since the map w €
H2(BY) = (rf — wy(r)¢r(9)) is continuous in H2(BY) and vy, =0 for k=1,..., N we
have

N
lim [[5g) = vllazey) < Jim flog) = vllmey) + lin ;U(j),k(r)%(@)‘ T 0.
The proof is complete. O

Proof of Theorem[3. Proof of (i): By Cauchy-Schwarz’ inequality,

B(r)? = { / 1 [ ]ém |Vv(s€)|2da(9)]l/2 ds}2
< {/Tl sl_Nds}{ /Tl st ]éNl |Vu(s6)|*do(6) ds}.

Hence 0(r) is well-defined and finite in (0, 1); in fact, |0(r)| < CN’I’_¥||V’U||L2(BN) for

N >3 (vesp. |0(r)] < C\/log(1/r)||Vv| 12(2) when N = 2). In particular, v € L*(BY).
Moreover, by the definition of ¥ we have [y, [VO(r,0)|*do(8) = [on_1 [Vu(r8)[*do(6)
for a.e. 7 € (0,1). As ¥(1) = 0, these imply that v € H}(BY).

As in the proof of (i) in Theorem [II the map Vv +— Vv is a 1-Lipschitz continuous
map from L*(BY,RY) into itself. By Poincaré’s inequality, the map v — © is a Lipschitz
continuous map from H'(B") into H}(BY).

Proof of (ii): This is similar to that in the proof of Theorem [II] and is omitted.

Proof of (iii): By density and (i), it suffices to consider v € C>*(B™Y).
Let A(r) = fov_i [0(r0)|P do(6). We have, by Hélder’s inequality

1/2

<o f P oatoldo<p{ £ ooy} )

<p AT ¥ (r),
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where we have used 2(p — 1) < p when 1 < p < 2.
Fix some g > 0. Then | (u+ A(r))"/?| < /(r). This together with A(1) = 0 (since
v =0 on BY) implies

1
(1 + AP < @7 4 / () dr = 1P~ 5(r) = 1 4 ().

Sending p — 0, we get the conclusion.

Proof of (iv): Without loss of generality, we can assume that v = 0 on dB" (since, on

OBY, Vu(z) = cz is normal to 9BY). Let (¢;)5%, be an orthonormal basis of L*(SV~!)
consisting of eigenfunctions of the Laplace-Beltrami operator on S¥~! corresponding to

eigenvalues 0 = \g < N —1=X = ... = Ay < 2N = Ay11 < ... = 0. We decompose
v(rf) = vp(r)or(f) where vg(r) = / v(r)pr(0) do(0).
=0 SN-1

Note that v, € H2.(0,1), and

@) = 3 [ + et (35)

k=0
o [l N -1 A 2
/ (Av)de =3 [ N1 (UIZ + vy, — —I;Uk) dr. (3.6)
BN k=00 r T
Note also that our hypotheses give in the case N € {3,4} that v; = ... =vy = 0.

We first prove inequality (I.I8]) when v belongs to the set S defined in Lemma 21
Then vy € C*([0, 1]), v is constant near 0, vy € C°((0,1]) for k > 1,

vo(1) = 0,v5(1) = ¢ and v(1) = vy (1) =0 for k > 1.
This implies Vo(x) = |c|x on 9BY (recall that, by definition, ¢’ > 0 in (0,1)). Also,

1 N 2 62 ifk—o
N—=2_ 1/ N 3 9

dr = ——— dr +
Ar Ukvk 2 /0 ( ) {O lfkfz]_’

1 N—4 1
/ N4U;€de’f‘_—7/ N52drf0rk>1
0 0

2
! ! N —3)(N —4
/ N= 3vgvkdr:/ |:—7”N_3(U]/€)2+( 3)2< ) rN 7502 dr for k> 1.
0 0
Inserting the above identities in (B.6]), we obtain
> [ 22 + N —1 Ae(Ak +2(N — 4
/ (Av)*dz = (N-1)*+>_ [ V! [(vg)2—l——k il 5 ()2 + e + 4( ))v,z dr.
BN k=00 r r

(3.7)
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Next, note that, when v € S, the right hand side of ([B.H) is a smooth non-negative
function and so ¥’ is Lipschitz continuous. Applying [B.1) to v, we get

N -1

r2

/BN(A{))? dr = (N — 1) + /01 N1 [wn)z X (@i)?] dr. (3.8)

To continue, we need to estimate ©”. For technical reasons, we consider for u > 0 a
regularized version of :

)\ 1/2
Uy, = {N+Z[ i}} > 2,

Clearly ¥;, is smooth and %, — ¥’ pointwise in (0, 1) as y — 0. Now, for some #; € R to
be chosen later, we have by (B.3]) that

y .- Ak Ak
|U/H //| — ]E) [Uévgﬁ-ﬁvkvé Tgvz]
> t 1 A=t A
< lopleg] + | 32 [tk 0t + ) + Son( P — 2y
k=1 T r T T
Ne o] 1/? te 1 A\ —t A 1/2
< o + 3 [ —vz} 0+ )+ (b — S|

1/2
<ol Efoee ot 5 )

Since ¥, > p'/? > 0, this implies

" 1 A —tg Ak 1/2
LARRE |2+Z[vk+— O (e = S| )

This implies that {27} is bounded in W"*°((0, 1)) and converges weakly* in W'>((0,1))
to v’ as u — 0 (since ¥, — ¢ pointwise), and

1 A\ —t A 1/2
12 o 55 o+ - )
k T
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Returning to (B.8)), we get

/BN(AT))M:): < (N - 1)Cz+/01 N-1 {@g)u %(Uéﬂ o

00 1
Nl Tk 2 LA =t / Ak 2 N-1, 2 (N_l))‘k 2
i =l A d
+kz::1 i r [(vk—i-rzvk) +)\k( p— 7‘2Uk) + = (vg,) i | dr
1 J—
— (N - 1)+ / ] (O A
0
> 1 _ A_l()\k — tk)z —2t, + N —1
#3 [rofy — (v,
2A(N = 2) + 12 + 6 (N — 4)?
Recalling (3.7)), we get
00 1 oy Lg2 4
/ (Av)? do — / (A8 dr > S rN—l[A’“ M Tt A g2
BN BN k=140 r
A — AN — 87 — (N — 4)?
+ Ck k 5 at )v,ﬂ dr. (3.9)
r

Case 1: If N > 5, we choose t;, = 0, and using the sharp Hardy inequality fol rN=3(v)2 dr >
% fol rN=5v2 dr to obtain from (3.3) the inequality
e’} 1
/ (Av)dz > / (A2 de + 3 Mes / PN52 dr, (3.10)
BN BN =1 0
where, for £k > 1,
N —4)?
sk:)\k+%—4>0 (since A, > N —12>4).

Inequality (LI8) thus follows.
Case 2: If N € {2,3,4}, recall that our hypotheses give v; = ... = vy = 0. We
choose t;, = (2 —v/5)\; in ([B3) so that the term involving vj, vanishes, and arrive again

at (BI0) but with

o if 1< k<N,
T VB - 2)dh + (N —4)2) —4 itk >N+ 1.

As A\ > 2N for k> N + 1, we have
sp> (V5 —2)(N? +16) —4 > 20V/5 —44 > 0 for N € {2,3,4},k > N + 1.
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Inequality (LIR) thus follows from (3.I0).
Consider now the general case v € H*(B"). By Lemma 2l we can select {v;} C S

such that v(;) — v in H*(B") as j — oo. Moreover, in case N € {2,3,4}, it holds also
that [y, v(;)(r0)0 do(f) = 0. By Fubini’s theorem, after passing to a subsequence, we
have (v(;))r — vi a.e. in (0,1) for the spherical harmonic coefficients of v(;) and v. Also,
by (i), Vi) — Vo in L2(BY,RY). Since v(;) € S, we have by (B.10)

00 1
/ (Avg))? do > / (Ad)) P dr+ )\ksk/ N5 (v dr (3.11)
BN BN k=1 0

This implies that {9(;)} is bounded in H?*(BY). As Vi) — Vo in L*(BY,RY), this
implies Ad;) converges weakly in L?(B"Y) to A¥; in particular, v € H*(BY). Sending
j — oo in (BII), using the convergence of v to v in H*(BY) on the left hand side,
the weak convergence of Ad;) to Av in L*(BY) and Fatou’s lemma for the infinite sum
on the right hand side, we see that (3.I0) remains valid for v € H?(BY). This proves
(LIR) for v € H?(BY). Also, equality occurs in (ILIR) if and only if v, = 0 for all k > 1,
meaning v is radially symmetric and |[v'| = ¢ in (0, 1). O

3.3 Second proof of Theorems [1, 2] and [3] in dimension N > 5

Second proof of Theorem[dl in dimension N > 5. As s — W (1 —s) is convex, we deduce
from Theorem [l that

ECLVu] > EC*[Va) for all Vu € AE,

where equality holds if and only if u is radially symmetric. In particular, if Vu € A%F
is a minimizer of £ among gradient field configurations in AL, then so is Vi with
ESL[Vu] = ESE[Va] and hence u is radially symmetric. The conclusion then follows

from [26, Theorem 2.1] on the uniqueness of radially symmetric critical point of ESL in
AL, O

Second proof of Theorem[2 in dimension N > 5. Observe that if (Vm, My,,) € AMM
and if 7 denotes the symmetrization of m by (LI7) and My, denotes the symmetriza-
tion of My, by (BI), then (Vi, Myy1) € AMM because

Vi (r) + My (r)? =][

gN-1

(IVm(r6) + M3, (r6) ) do(6) = 1.

Thus, by Theorems [l and I}, if (Vm, My41) € AMY is a minimizer of E)™ in AMM,
the (Vin, My4,) is also a minimizer of EYM in AMM and (Vm, My4,) is radially
symmetric. The conclusion then follows from [26, Theorem 2.6] on the classification
of radially symmetric minimizers of E}"". O
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Second proof of Theorem[3 in dimension N > 5. Let U = (Vuv,g) € A be a minimizer
of E., in A. Define the symmetrization v and § of v and g as in the previous two
sections with ¢ = 2, and let U = (V©, §). By Theorems [l and [[1] we have

/S VIO da(6) = /S V)P do(0) for e v € (0,1),

/SNl g(r0)*do(9) = / g(r)*do(#) for a.e. r € (0,1),

SN-1

W(g?%) do < W(g®) de,

BN SN-1

/B (A0)dr < /B (Av)dr.

The first two identities and the convexity of W give

WL [0F) ) do(®) = W( £ (1= [0F)(r8) do(0))

§N-1 §N-1

—w(f, Q- WReOd®) < £ WO U6 doo).

SN-1

These estimates together implies that E, ,[U] < E.,[U] and so U is also a minimizer of

E., in A with E_,[U] = E.,[U]. Returning to the equality cases in Theorems [§ and [T}
we have that v and ¢ are radially symmetric, i.e. U is a radially symmetric minimizer
of E.,. The conclusion follows from [26, Theorem 2.4] on the classification of radially
symmetric minimizer of F,,. U

3.4 Symmetry for solutions to a nonlinear eigenvalue problem
For d > 0,1 <p<2and X € R, consider the energy functional

1 A
Jv] = §||AU||%2(BN) - §||U||2L2(BN)

on the set
Spa = {v € H(BY): [vll o) = d}.

Let A1 (A?) denote the first eigenvalue of the bi-Laplacian in H3(B”Y). When A < A\;(A?),
after adjusting by a scaling factor to remove the Lagrange multiplier, minimizers of J
on S, 4 correspond to solutions of the elliptic problem (L20):

A%y = \v + |v[P~%0 on BY,
v=0w=0ondB".
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(For A > A\1(A?), the partial differential equation is different, namely

A2y { (B if A = A\ (A2),
M= i A > A (A?),

and we do not consider these cases here for simplicity.)

Problem (L20)) has been studied by many authors and a summary of known results
would go beyond the scope of the present paper. We refer the reader to e.g. [4] [7, 14
16l 17, 36] and the references therein.

We prove:

Corollary 13. Let N > 5 and 1 < p < 2. For A < M\ (A?), minimizers of J over
Sp.a are radially symmetric, do not change sign and are either radially non-decreasing
or radially non-increasing.

Proof. Note that as A < A\;(A?), J is coercive on HZ(BY). By the compactness embed-
ding theorem, J has a minimizer over S, 4.
Let v be a minimizer of J over S, 4; in particular, J[v] > 0. By Theorem [, we have

AV L2gvy < ||Av| L2y,
|0/ sy > (U]l Leeayy = d, (3.12)
9] L2y > ||Vl 2By
Let
v = po where 1 = dHTV)HZ?}(BN) <1

so that v € S, 4. We compute, keeping in mind that p <1,

Tl = 2000 S i) < Tl

where for the last inequality we use the fact that J[v] > 0. It follows that v is also a
minimizer of J over S, 4, which in turn implies J[0] = J[v] and all inequalities in (B.12))
are saturated. Appealing to the equality case in Theorem [Bl(iv), we see that v is radially
symmetric and v = |v'].

It remains to prove that v and 0,v do not change sign. Indeed, we have

(e = o)~ o0l = | [y < [ wolas= [ ds=1o)

As ||0]|r2(pry = ||v|| L2y, it follows that equality is attained in the above inequality,
i.e. v’ does not change sign. As v(1) = 0, it follows also that v does not change sign. [
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A The negativity of F. in dimension N € {2, 3}
We now give the proof of Proposition [ on the negativity of F, in dimension N € {2, 3}.

Proof of Proposition[f]. We follow ideas from e.g. the proof of [26, Lemma 2.3|, [27,
Proposition 4.1}, [30, Theorem 1.7]. The main task is to show that there exists v €
C2(BN \ {0}) such thati

N -1

r2

F[Vo] = /BN [(Avﬁ - Vo2 de < 0. (A1)

Supposing for the moment that such a v has been found, we proceed to show that
F.[Vv] < 0 for this particular v and for sufficiently small ¢ > 0. Indeed, using the
Hardy decomposition Lemma [7] with the decomposition Vv = fev—:, noting that Af, =

N fe— _512 W'(1 — f2)f., we find
V 2 \V4 2
U) N1y } dz.

rivi = [, 2] -5

Since f. — 1in CL.(B™ \ {0}) and v € C3(B™ \ {0}, we deduce that

h_r)% F.[Vv] = /

BN

v

N -1
V] — ——|V|*

- dx = F,[Vv] < 0,

which gives the conclusion.
It remains to find v € C3(BY\ {0}) satisfying (A:1]). The proof of Theorem [§ suggests
the ansatz .
1

v(z) = a(r)—.

”
We are thus led to searching for a € C3((0, 1)) such that

1
[
0

®Note that C2(BY \ {0}) is not a dense subspace of HZ(B") in dimension N € {2,3}, hence the
existence of such v does not follow immediately from the sharpness of the Hardy inequality (ILIG]).

2N —1) (e, 2N = DN = 4)

2
a”| dr < 0.
r2 ra

(a//)2 +
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N—-4

We decompose a(r) = r~"z b(r) and compute

! ! —4 N —2)(N —4) \2
/ T’N_l(a”)2d7“:/ 7’3<b”— N b,—l—( )( )b> dr
0

0 r 4r2
[ (o GRS, e V2R,

16r
1 : N 432
N-=3( /\2 _ o
/07“ (a') dr—/o 7’<b o b> dr
1 2
_ N2 (N_4) 2)
—/0 (r(b) +74r b ) dr
We thus need to find b € C>((0,1)) such that

! 2 - N —4)(N3+ 12N — 1
/ (P2 + ) + WD 6)b2> dr<0.  (A2)
0 T

To this end, we fix a cut-off function ¢ € C°([0,00)) with ¢ = 1in [0,1/4], ¢ =0 in
[1/2,00). For j > 20 large to be fixed, we let

80(7’) 1f7°21/8>
b(’/’)—{gp(lnln%) 1f0<7”<1/8

4Inlnyj

Then, for some constant C' independent of j, we have

1 1/4 ,
/ —b2drz/ ar
1
/ (P2 + ) dr < C.
0
Therefore, as (N — 4)(N3 4+ 12N — 16) < 0 for N € {2,3}, we can select a sufficiently
large j so that (A.2)) is satisfied. O
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