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Minimality of vortex solutions to Ginzburg–Landau

type systems for gradient fields in the unit ball in

dimension N ≥ 4

Radu Ignat∗, Mickael Nahon† and Luc Nguyen‡

Abstract

We prove that the degree-one vortex solution is the unique minimizer for the
Ginzburg–Landau functional for gradient fields (that is, the Aviles–Giga model) in
the unit ball BN in dimension N ≥ 4 and with respect to its boundary value. A
similar result is also proved for S

N -valued maps in the theory of micromagnetics.
Two methods are presented. The first method is an extension of the analogous
technique previously used to treat the unconstrained Ginzburg–Landau functional
in dimension N ≥ 7. The second method uses a symmetrization procedure for
gradient fields such that the L2-norm is invariant while the Lp-norm, 2 < p < ∞,
and the H1-norm are lowered.
Keywords: Minimality, vortex solutions, gradient fields, Ginzburg–Landau, Aviles–

Giga, Hardy’s inequality, symmetrization.
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1 Introduction

Let BN be the unit ball in RN . Consider the Ginzburg–Landau (GL) functional

EGL
ǫ [U ] =

ˆ

BN

[1
2

|∇U |2 +
1

2ǫ2
W (1 − |U |2)

]

dx,

where ǫ > 0, W (t) = t2

2
and U belongs to the set

AGL = {U ∈ H1(BN ,RN) : U(x) = x on ∂BN }.

The functional EGL
ǫ has a unique radially symmetric critical point in AGL of the form

Uǫ(x) = fǫ(r)
x

r
∈ AGL, r = |x|, (1.1)

where the profile fǫ is the unique solution to the ODE (see e.g. [24, 28])






−f ′′
ǫ (r) − N−1

r
f ′

ǫ(r) + N−1
r2 fǫ(r) = 1

ǫ2fǫ(r)W ′(1 − fǫ(r)2),

fǫ(0) = 0, fǫ(1) = 1.
(1.2)

Moreover fǫ > 0 and f ′
ǫ > 0 in (0, 1).

The map Uǫ in (1.1), called the (RN -valued) Ginzburg–Landau vortex solution of
topological degree one, can be considered as a regularization of the singular harmonic
map n : BN → SN−1 given by n(x) = x

|x|
for every x ∈ BN , which is the unique

minimizing SN−1-valued harmonic map forN ≥ 3 with respect to the boundary condition
n(x) = x on ∂BN (see Brezis, Coron and Lieb [9] and Lin [39]). The question about the
minimality of Uǫ for any ǫ > 0 was raised in dimension N = 2 in Bethuel, Brezis and
Hélein [6, Problem 10, page 139], and in higher dimensions in Brezis [8, Section 2]. It is
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not hard to see that, when ǫ is sufficiently large, EGL
ǫ is strictly convex and so Uǫ is the

unique bounded critical point of EGL
ǫ in AGL for every N ≥ 2 (see e.g. [6] or [32, Remark

3.3]). In dimension N = 2, Pacard and Rivière showed in [47] that, for small ǫ > 0, Uǫ

is the unique critical point of EGL
ǫ in AGL; however, whether uǫ is the unique minimizer

of EGL
ǫ for all ǫ > 0 remains an open question. In dimensions N ≥ 7, this question was

answered positively in recent works of Ignat, Nguyen, Slastikov and Zarnescu [31, 32]:
Uǫ is the unique minimizer of EGL

ǫ in AGL for every ǫ > 0. It is not known whether Uǫ

minimizes EGL
ǫ in AGL in dimensions 3 ≤ N ≤ 6 when ǫ is small. However, it is known

that for every ǫ > 0, Uǫ is a local minimizer of EGL
ǫ in AGL – for dimension N = 2, see

Mironescu [43] and also Lieb and Loss [38]; for dimension 3 ≤ N ≤ 6, see Ignat and
Nguyen [26].

We note also that, when the domain is the whole space RN instead, the minimality
(in the sense of De Giorgi) of the vortex solution is available: see Mironescu [44], Millot
and Pisante [42] and Pisante [48]. See also [12, 21, 22, 46] for studies on stability issues.

The main aim of this paper is to show that in dimensions 4 ≤ N ≤ 6 and for
every ǫ > 0, Uǫ is the unique minimizer of EGL

ǫ relative to the set of gradient field

configurations in AGL (this is often referred to as the Aviles–Giga model).

1.1 The Aviles–Giga model

Consider a general non-negative convex C2 potential W : (−∞, 1] → [0,∞) such that
W (0) = 0 and for every ǫ > 0, the Ginzburg–Landau energy EGL

ǫ (U) restricted to
gradient fields

U = ∇u ∈ H1(BN ,RN) such that U |∂BN = Id.

Within a suitable rescaling (i.e., ǫEGL
ǫ (∇u)), this is the so-called Aviles–Giga model

(introduced with the standard potential W (t) = t2/2).
Note that the (RN -valued) Ginzburg–Landau vortex solution Uǫ introduced in (1.1)

is a gradient field Uǫ = ∇uǫ for some radial function uǫ = uǫ(r) determined (up to a
constant) by u′

ǫ = fǫ in (0, 1) where fǫ is the unique solution in (1.2).
We prove the following result:

Theorem 1. Assume that 4 ≤ N ≤ 6 and W : (−∞, 1] → [0,∞) is a C2 non-negative
convex function such that W (0) = 0. For every ǫ > 0, the radially symmetric vortex
solution Uǫ in (1.1) is the unique minimizer of EGL

ǫ over the set of gradient fields {U =
∇u ∈ AGL}.

Note that the above result holds in dimension N ≥ 7 as a consequence of [31, 32]. We
expect the result holds also in dimension N ∈ {2, 3}. We mention here the work Lorent
[40, 41] and Lamy and Marconi [35] on stability of the vortex solution in dimension
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N = 2 and in the limit ǫ → 0 (for the Aviles–Giga model as well as other micromagnetic
models).

1.2 The S
N-valued Ginzburg–Landau model

We consider the following model:

EMM
η [M ] =

ˆ

BN

[1
2

|∇M |2 +
1

2η2
W̃ (M2

N+1)
]

dx

where η > 0 and M = (∇m,MN+1) is a unit-length vector field that is a gradient field
in the first N components belonging to

AMM = {M = (∇m,MN+1) ∈ H1(BN , SN ) : M(x) = (x, 0) on ∂BN }.

The non-negative potential W̃ : [0,∞) → [0,∞) is a C2 convex function such that
W̃ (0) = 0.

This model comes from micromagnetics where the order parameter M stands for the
magnetization in ferromagnetic materials (see [20])1, and also the Oseen-Frank theory
for nematic liquid crystals (see [1]). Considering radially symmetric critical points of
EMM

η in AMM , one is led to

Mη(x) = (f̃η(r)
x

r
, gη(r)) ∈ AMM (1.3)

where the radial profiles f̃η and gη satisfy

f̃ 2
η + g2

η = 1 in (0, 1), (1.4)

and the system of ODEs:

−f̃ ′′
η − N − 1

r
f̃ ′

η +
N − 1
r2

f̃η = λ(r)f̃η in (0, 1), (1.5)

−g′′
η − N − 1

r
g′

η = − 1
η2
W̃ ′(g2

η)gη + λ(r)gη in (0, 1), (1.6)

f̃η(1) = 1 and gη(1) = 0, (1.7)

where

λ(r) = (f̃ ′
η)2 +

N − 1
r2

f̃ 2
η + (g′

η)2 +
1
η2
W̃ ′(g2

η)g2
η (1.8)

1In dimension N = 2, EMM
η is the reduced energy functional in a certain thin-film ferromagnetic

regime (see e.g. [13, Section 4.5] or [25, Section 7]) where, after a rotation by π
2

in the first two
components of M , the condition ∇ × (M1, M2) = 0 is imposed in the space of admissible configurations
in AMM .
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is the Lagrange multiplier due to the unit length constraint in AMM . Note that indeed
the vortex solution Mη in (1.3) is of the form Mη = (∇mη,Mη,N+1) ∈ AMM for some
radial function mη = mη(r) determined (up to a constant) by m′

η = f̃η in (0, 1).
As proved in [26], the solutions to (1.3)–(1.7) satisfy the dichotomy: either f̃η(0) = 0

or f̃η(0) = 1. Furthermore, in the latter case, it holds that N ≥ 3 and (f̃η = 1, gη = 0)
in (0, 1), which corresponds to the equator map

M̄(x) := (
x

r
, 0).

In dimension N ≥ 7, M̄ is the unique minimizing harmonic map from BN into SN in
H1(BN , SN ) with with boundary condition (Id, 0) on ∂BN (Jäger and Kaul [34]; see also
Sandier and Shafrir [49] and [32, Example 1.6]); so M̄ is the unique minimizer of EMM

η

in AMM for every η > 0. Therefore, in the following, we focus on dimensions 2 ≤ N ≤ 6
and on escaping SN -valued radially symmetric vortex solutions

M±
η (x) = (f̃η(r)

x

r
,±gη(r)) with gη > 0 in (0, 1).

It was proved in Hang and Lin [23] in dimension N = 2 and [26] in dimension 3 ≤ N ≤ 6
that, for any η > 0, (1.3)–(1.7) has a unique escaping solution (f̃η, gη) with gη > 0 and
M±

η are locally minimizers for EMM
η . Moreover, f̃η(0) = 0, f̃η > 0, f̃ ′

η > 0 and g′
η < 0

in (0, 1). (See also [37] for a related work in the context of micromagnetic skyrmions in
R2.)

We prove the following result:

Theorem 2. Assume 4 ≤ N ≤ 6 and W̃ : [0,∞) → [0,∞) is a C2 non-negative
convex function such that W̃ (0) = 0. For every η > 0, EMM

η has exactly two minimizers
over the set {(∇m,MN+1) ∈ AMM} and they are given by the escaping vortex solutions
M±

η (x) = (f̃η(r)x
r
,±gη(r)) with gη > 0 in (0, 1). In particular, minimizers of EMM

η in
AMM are radially symmetric for every η > 0.

As in the case of the Aviles–Giga model, we expect the above result holds also in
dimension N ∈ {2, 3}.

1.3 The extended model

More generally, we consider a family of extended energy functionals Eǫ,η depending on
two positive parameters ǫ, η of which EGL

ǫ and EMM
η are limiting cases when η → 0 and

ǫ → 0, respectively:

Eǫ,η[U ] =
ˆ

BN

[1
2

|∇U |2 +
1

2ǫ2
W (1 − |U |2) +

1
2η2

W̃ (U2
N+1)

]

dx, ǫ, η > 0, (1.9)
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where U = (∇u, UN+1) : BN → RN+1 is a gradient field in the first N components and
belongs to

A = {U = (∇u, UN+1) ∈ H1(BN ,RN+1) : U(x) = (x, 0) on ∂BN }.

Here, W : (−∞, 1] → [0,∞) and W̃ : [0,∞) → [0,∞) are non-negative C2 convex
potentials such that W (0) = W̃ (0) = 0. We point out that these imply that W ′(0) = 0,
tW ′(t) ≥ 0 in (−∞, 1] \ {0}, and W̃ ′(t) ≥ 0 in [0,∞). However, we allow the possibility
that W or W̃ can be zero in a neighborhood of the origin.

Radially symmetric critical points of Eǫ,η in A take the form

Uǫ,η = (fǫ,η(r)
x

r
, gǫ,η(r)) ∈ A, (1.10)

where (fǫ,η, gǫ,η) satisfies the system of ODEs

− f ′′
ǫ,η − N − 1

r
f ′

ǫ,η +
N − 1
r2

fǫ,η =
1
ǫ2
W ′(1 − f 2

ǫ,η − g2
ǫ,η)fǫ,η, (1.11)

− g′′
ǫ,η − N − 1

r
g′

ǫ,η =
1
ǫ2
W ′(1 − f 2

ǫ,η − g2
ǫ,η)gǫ,η − 1

η2
W̃ ′(g2

ǫ,η)gǫ,η, (1.12)

fǫ,η(1) = 1 and gǫ,η(1) = 0. (1.13)

Note that the above implies fǫ,η(0) = 0 and g′
ǫ,η(0) = 0 (see [26, Lemma A.5]). Also, note

that the first N components of Uǫ,η(r) is a gradient field ∇ϕǫ,η for some radial function
ϕǫ,η(r) determined (up to a constant) by ϕ′

ǫ,η = fǫ,η in (0, 1).
In dimensions N ≥ 7, it follows from [31, 32] that the non-escaping vortex solution

Ūǫ(x) = (fǫ(r)
x

r
, 0)

is the unique global minimizer of Eǫ,η in A for every ǫ > 0 and η > 0. Therefore, in
the following, we focus on dimensions 2 ≤ N ≤ 6; we will analyse escaping radially
symmetric vortex solutions

U±
ǫ,η = (fǫ,η(r)

x

r
,±gǫ,η(r)), gǫ,η > 0 in (0, 1).

It is shown by [26] that such an escaping radially symmetric critical point Uǫ,η with
gǫ,η > 0 exists if and only if 2 ≤ N ≤ 6, W ′(1) > 0, 0 < ǫ < ǫ0 and η > η0(ǫ) for
some ǫ0 ∈ (0,∞) and a continuous non-decreasing function η0 : [0, ǫ0) → [0,∞) with
η0(0) = 0. In this case, it is the unique escaping solution of (1.10)–(1.13) with gǫ,η > 0
in (0, 1); moreover, we have fǫ,η(0) = 0, f 2

ǫ,η + g2
ǫ,η < 1, fǫ,η > 0, f ′

ǫ,η > 0, g′
ǫ,η < 0 in

(0, 1). See Section 1.4 and Figure 1 for more information.

We prove the following theorem:
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Theorem 3. Suppose 4 ≤ N ≤ 6 and W : (−∞, 1] → [0,∞) and W̃ : [0,∞) → [0,∞)
are C2 non-negative convex functions satisfying W (0) = W̃ (0) = 0. For every ǫ > 0, η >
0, we have the following dichotomy:

• Either the escaping radially symmetric vortex solutions U±
ǫ,η exist and they are the

only two minimizers of Eǫ,η in A,

• Or the escaping radially symmetric vortex solutions U±
ǫ,η do not exist and the non-

escaping vortex solution Ūǫ is the unique minimizer of Eǫ,η in A.

In particular, minimizers of Eǫ,η in A are always radially symmetric for every ǫ, η > 0.

To complete the picture, we recall facts from [26] on the escaping vs. non-escaping
phenomena. The escaping phenomenon is related to the loss of stability of the non-
escaping vortex solution Ūǫ. More precisely, consider the stability operator δ2Eǫ,η

δU2
N+1

at Ūǫ

along the N + 1 direction:

T̄ǫ,η = −∆ − 1
ǫ2
W ′(1 − f 2

ǫ ) +
1
η2
W̃ ′(0).

The first eigenvalue of T̄ǫ,η on H1
0 (BN ,R) takes the form ℓ(ǫ) + 1

η2 W̃
′(0) where ℓ(ǫ) is

the first eigenvalue of

Lǫ := −∆ − 1
ǫ2
W ′(1 − f 2

ǫ ). (1.14)

Then the

escaping vortex solutions U±
ǫ,η with gǫ,η > 0 exists if and only if ℓ(ǫ) +

1
η2
W̃ ′(0) < 0.

When N ≥ 7 or W ′(1) = 0, it holds always that ℓ(ǫ) > 0, hence escaping vortex solutions
do not exist. When 2 ≤ N ≤ 6 and W ′(1) > 0,

there exists ǫ0 > 0 such that ℓ(ǫ) > 0 for ǫ > ǫ0 and ℓ(ǫ) < 0 for 0 < ǫ < ǫ0.

Thus, in this case, the function η0(ǫ) mentioned above (so that escaping vortex solutions
exist if and only if 0 < ǫ < ǫ0 and η > η0(ǫ)) is given by

η0(ǫ) =

√
√
√
√W̃ ′(0)

|ℓ(ǫ)| for 0 < ǫ < ǫ0.

In Figure 1, we describe the dichotomy of escaping and non-escaping phenomena for
minimizers2 of Eǫ,η in radial symmetry in dimension 2 ≤ N ≤ 6. Theorem 3 asserts

7



Figure 1: Escaping vs. Non-escaping phenomenon in dimension 2 ≤ N ≤ 6.

ǫ

η

ǫ0

non-escaping
region

escaping
region

ǫ

η

ǫ0

non-escaping
region

escaping
region

ǫ

η

always
non-escaping

W ′(1) > 0 and W̃ ′(0) > 0. W ′(1) > 0 and W̃ ′(0) = 0. W ′(1) = 0.

that, in dimension 4 ≤ N ≤ 6, this picture remains valid in the larger set A of gradient
field configurations in the first N components.

For the case η = ∞ (that is the RN+1-valued Ginzburg–Landau model), we refer
the reader to the recent article Ignat and Rus [33]. For a similar bifurcation from non-
escaping to escaping phenomenon, see Bethuel, Brezis, Coleman and Hélein [5].

1.4 Ideas of the proofs

Theorems 1 and 2 will be obtained from Theorem 3 by taking the limits η → 0 or
ǫ → 0, respectively. For simplicity, instead of describing the proof of Theorem 3 (which
is the main result), we explain instead the strategy of the proof in the case η = 0, i.e.
Theorem 1 for the Aviles–Giga model. We will present two methods of proof. Roughly
speaking, the first method follows the strategy in [31, 32] adapted to the situation of
gradient field configurations, and the second method uses a symmetrization procedure.

Method 1

It was observed in [31, 32] that the convexity of the potential W implies the inequality

EGL
ǫ [Uǫ + V ] −EGL

ǫ [Uǫ] ≥ 1
2

ˆ

BN

LǫV · V dx =: Fǫ[V ] for V ∈ H1
0 (BN ,RN), (1.15)

where Lǫ is the operator defined in (1.14). Recall that in dimension N ≥ 7, the first
eigenvalue ℓ(ǫ) of Lǫ is positive, Fǫ[V ] > 0 for V ∈ H1

0 (BN ,RN) \ {0}, and hence, Uǫ is

2Recall from [26] that solutions of (1.11)-(1.13) satisfying gǫ,η > 0, when they exist, are minimizing
for Eǫ,η relatively to the set of radially symmetric configurations.
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the unique minimizer of EGL
ǫ in AGL. In dimension 2 ≤ N ≤ 6, one has ℓ(ǫ) < 0 for

ǫ < ǫ0, and so it is not clear from the above argument if Uǫ is a minimizer of EGL
ǫ in

AGL. However, in the current case of gradient field configurations (i.e. V = ∇v), we are
able to conclude in dimension N ≥ 4.

To appreciate the idea, consider the limit ǫ → 0 where Lǫ → −∆ − N−1
r2 =: L∗

as bounded linear operators from H1
0 (BN ,RN) into H−1(BN ,RN). Although L∗ is not

positive definite when N ≤ 6, we have the following inequality3 for gradient fields in
dimension N ≥ 4:

ˆ

BN

L∗(∇v) · (∇v) dx =
ˆ

BN

(

(∆v)2 − N − 1
r2

|∇v|2
)

dx ≥ 0 for v ∈ H2
0 (BN ,R),

i.e. L∗ is positive definite on the subspace of gradient fields in H1
0 (BN ,RN). This is a

consequence of the sharp Hardy inequality for gradient fields (see e.g. [2, 10, 19, 51]):

ˆ

RN

(∆v)2 dx ≥ cN

ˆ

RN

|∇v|2
r2

dx, for v ∈ H2
0 (BN ,R) where cN :=







N2

4
if N ≥ 5

3 if N = 4
25
36

if N = 3,

0 if N = 2.
(1.16)

For the general case ǫ > 0, we combine the above idea with the machineries in [31, 32]
and [26], based on the Hardy decomposition method.

Unfortunately, the above strategy does not work in dimension N = {2, 3} (for the
proof, see Appendix A):

Proposition 4. In dimension N ∈ {2, 3}, there exists a function v ∈ C2
c (BN \ {0}) ⊂

H2
0 (BN) such that Fǫ(∇v) < 0 when ǫ is sufficiently small.

Method 2

As mentioned above, the second method of proof uses a symmetrization procedure. For
that, we use the spherical coordinates: for every x ∈ BN , we write x = rθ with r = |x|
and θ ∈ SN−1. For v ∈ H1(BN ,R), we associate the radial function v̌ = v̌(r) given by
the formula

v̌(r) = −
ˆ 1

r

( 

SN−1

|∇v(sθ)|2dσ(θ)
)1/2

ds ≤ 0, r ∈ (0, 1). (1.17)

One can think of this as a kind of rearrangement in the spherical harmonic decomposition
of v (see Section 3.2 for more detailed discussion).

We prove the following.
3Here H2

0 (BN ,R) is the closure of C∞

c (BN ,R) in H2(BN ,R). In particular, if v ∈ H2
0 (BN ,R), then

v and ∇v have zero trace on the boundary.
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Theorem 5. Let N ≥ 2, v ∈ H1(BN ,R) and v̌ be associated to v by (1.17). The
following conclusions hold.

(i) The map v 7→ v̌ is a Lipschitz continuous map from H1(BN ,R) into H1
0 (BN ,R).

Moreover,
ˆ

SN−1

|∇v̌(rθ)|2 dσ(θ) =
ˆ

SN−1

|∇v(rθ)|2 dσ(θ) for a.e. r ∈ (0, 1).

(ii) Let G : [0,∞) × [0,∞) → [0,∞) be continuous. If G is convex in the second
variable, then

ˆ

BN

G(r, |∇v̌|2) dx ≤
ˆ

BN

G(r, |∇v|2) dx.

In particular, for any 2 < p < ∞,
ˆ

BN

|∇v̌|p dx ≤
ˆ

BN

|∇v|p dx.

(iii) If v ∈ H1
0 (BN), i.e. if v = 0 on ∂BN and 1 ≤ p ≤ 2, then
ˆ

SN−1

|v̌(rθ)|p dσ(θ) ≥
ˆ

SN−1

|v(rθ)|p dσ(θ) for a.e. r ∈ (0, 1).

(iv) Assume in addition that v ∈ H2(BN ,R) with the boundary condition ∇v(x) = cx
on ∂BN for some constant c ∈ R. Then v̌ ∈ H2(BN ,R) and ∇v̌(x) = |c|x on
∂BN . If N ≥ 5, then

ˆ

BN

(∆v̌)2 dx ≤
ˆ

BN

(∆v)2 dx. (1.18)

If N ∈ {2, 3, 4}, (1.18) continues to hold provided that
´

SN−1 v(rθ)θ dσ(θ) = 0 for
a.e. r ∈ (0, 1). In either case, equality is attained if and only if v is radially
symmetric and |v′| = v̌′ in (0, 1).

To apply Theorem 5 to prove Theorem 1, we only need to note that for ∇u ∈ AGL,
by integrating by parts using ∇u(x) = x on ∂BN ,

ˆ

BN

|∇2u|2 dx =
ˆ

BN

(∆u)2 dx−
ˆ

SN−1

N∑

i,j=1

∂i∂ju(θ)(δij − θiθj)

︸ ︷︷ ︸

∇2u:(IN −θ⊗θ)

dσ(θ)

=
ˆ

BN

(∆u)2 dx−
ˆ

SN−1

[

(N − 1)∂ru(θ) + ∆SN−1u(θ)
]

dσ(θ)

=
ˆ

BN

(∆u)2 dx− (N − 1)|SN−1|.

10



(Here we have used the fact that IN −θ⊗θ is the projection onto the tangent hyperplane
TθS

N−1.) Therefore, in dimension N ≥ 5, Theorem 5 immediately implies that minimiz-
ers of EGL

ǫ in {U = ∇u ∈ AGL} are radially symmetric. Thanks to the characterization
of radially symmetric critical points in [26], Theorem 1 follows. Theorem 2 also follows
in a similar manner. For Theorem 3, we need an extra symmetrization for the UN+1

component; see Section 3.1.
In Theorem 5(iv), the requirement

´

SN−1 v(rθ)θ dσ(θ) = 0 in dimension N ∈ {2, 3, 4}
cannot simply be dropped due to existence of counter-examples. (For examples of sym-
metry breaking phenomena in the context of Hardy’s inequality for gradient fields in
dimension N ∈ {3, 4}, see e.g. [10].)

Our rearrangement is related to a vectorial rearrangement in Lieb and Loss [38]. For
V ∈ H1(BN ,RN), one associates the radially symmetric vector field V̌ defined by

V̌ (x) =

(
 

SN−1

|V (rθ)|2dσ(θ)

) 1

2 x

r
. (1.19)

It was shown in [38] that, provided V (x) = x on ∂BN and
´

SN−1 V (rθ)dσ(θ) = 0 for a.e.
r ∈ (0, 1),

ˆ

BN

|∇V̌ |2 dx ≤
ˆ

BN

|∇V |2 dx.

It is readily seen that if V = ∇v, then V̌ = ∇v̌. Thus, when N ∈ {2, 3, 4}, the conclusion
(1.18) in Theorem 5 can be deduced from the above result in [38].

Fewer rearrangement methods are known to prove symmetry of solutions of higher
order elliptic equations than for second order ones. This can be partly explained by the
absence of a maximum principle for higher order elliptic equations or systems, which
makes Schwarz symmetrization methods inapplicable in general. There are some ex-
ceptions, see for instance the two papers of Nadirashvili [45] and Talenti [50] where
it is shown by rearrangement arguments that minimizers of |{u 6=0}|2

´

R2 (∆u)2

´

R2 u2 are radially

symmetric.4

More recently, a rearrangement principle developed in Lenzmann and Sok [36] deals
with the radial symmetry of optimizers of Gagliardo–Nirenberg type inequalities of ar-
bitrarily high orders, as well as ground states of higher order non-linear Schrödinger
equations of the form

Lv + ωv = v|v|p−2 in R
N

where L is a certain pseudodifferential operator, ω > 0 and p ∈ (2, p∗) for some critical
exponent p∗ > 2 depending only on the dimension N and the operator L. The rear-
rangement principle here is based on Schwarz rearrangement of the Fourier transform:

4For other results on symmetry of solutions of higher order elliptic equations or systems which do
not use rearrangement inequalities, see e.g. [3, 11, 15, 18] and the references therein.
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any function v : RN → C is symmetrized as v♯ = F−1 [|F [v]|∗], where F is the Fourier
transform and w∗ designates the radially decreasing Schwarz rearrangement of w.

We make a comparison between the rearrangement v̌ in Theorem 5 and the rear-
rangement v♯ of [36] in the following table.

v̌ on BN v♯ on RN

L2-norm ‖v̌‖L2 ≥ ‖v‖L2 ‖v♯‖L2 = ‖v‖L2

Lp-norm, 1 ≤ p < 2 ‖v̌‖Lp ≥ ‖v‖Lp ?
Lp-norm, even integer p > 2 ? ‖v♯‖Lp ≥ ‖v‖Lp

Ḣ1-norm ‖∇v̌‖L2 = ‖∇v‖L2 ‖∇v♯‖L2 ≤ ‖∇v‖L2

Ẇ 1,p-norm, p > 2 ‖∇v̌‖Lp ≤ ‖∇v‖Lp ?
Ḣ2-norm ‖∆v̌‖L2 ≤ ‖∆v‖L2 ‖∆v♯‖L2 ≤ ‖∆v‖L2

Ḣs-norm, s > 0 ? ‖v♯‖Ḣs ≤ ‖v‖Ḣs

As an application Theorem 5, we consider the radial symmetry of ‘ground state’
solutions to the nonlinear eigenvalue problem







∆2v = λv + |v|p−2v on BN ,

v = ∂rv = 0 on ∂BN ,
(1.20)

where 1 ≤ p < 2. See Section 3.4.
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Bonn, funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) under Germany’s Excellence Strategy – EXC-2047/1 – 390685813, as part of the
Trimester Program on “Mathematics of Complex Materials”.

2 First proof of main results

2.1 Proof of Theorem 3

In this section we give the first proof of Theorem 3 based on the strategy in [31, 32] and
exploiting the additional structure of a gradient field for the first N -components of the
current admissible configurations.

Recall that ℓ(ǫ) is the first eigenvalue of the operator Lǫ = −∆ − 1
ǫ2W

′(1 − f 2
ǫ ) and

that the escaping radially symmetric critical points U±
ǫ,η with gǫ,η > 0 exist if and only

12



if W ′(1) > 0 and ℓ(ǫ) + 1
η2 W̃

′(0) < 0 (equivalently 0 < ǫ < ǫ0 and η > η0(ǫ)). For fixed
ǫ > 0, η > 0, we let

Φ =







U+
ǫ,η if W ′(1) > 0 and ℓ(ǫ) + 1

η2 W̃
′(0) < 0 (i.e. there is an escaping solution),

Ūǫ otherwise (i.e. there is no escaping solution),

and

(f, g) =







(fǫ,η, gǫ,η) if W ′(1) > 0 and ℓ(ǫ) + 1
η2 W̃

′(0) < 0,

(fǫ, 0) otherwise,

so that Φ(x) = (f(r)x
r
, g(r)).

We consider the differential operators Lǫ,η and Tǫ,η:

Lǫ,η = −∆ − 1
ǫ2
W ′(1 − f 2 − g2), Tǫ,η = −∆ − 1

ǫ2
W ′(1 − f 2 − g2) +

1
η2
W̃ ′(g2).

For any v ∈ H2
0(BN ,R), we let

Fǫ,η[∇v] =
ˆ

BN

(

(∆v)2 − 1
ǫ2
W ′(1 − f 2 − g2)|∇v|2

)

dx =
ˆ

BN

Lǫ,η(∇v) : (∇v) dx.

(2.1)
Note that

´

BN |∇2v|2 dx =
´

BN (∆v)2 dx since v ∈ H2
0 (BN). Note also that, in the non-

escaping case, Φ = Ūǫ, Lǫ,η = Lǫ, Tǫ,η = T̄ǫ,η and Fǫ,η = Fǫ introduced in sections 1.3
and 1.4.

As in [31, 32], the starting point of the proof is the following consequence of the
convexity of W and W̃ :

Lemma 6. For any v ∈ H2
0 (BN ,R) and p ∈ H1

0 (BN ,R),

Eǫ,η

[

Φ + (∇v, p)
]

− Eǫ,η[Φ] ≥ 1
2
Fǫ,η[∇v] +

1
2

ˆ

BN

Tǫ,ηp · p dx.

Proof. We have

Eǫ,η

[

Φ + (∇v, p)
]

−Eǫ,η[Φ] =
1
2

ˆ

BN

{

2∇Φ : ∇(∇v, p) + |∇2v|2 + |∇p|2

+
1
ǫ2

[W (1 − |Φ + (∇v, p)|2) −W (1 − |Φ|2)]

+
1
η2

[W̃ ((g + p)2) − W̃ (g2)]
}

dx. (2.2)
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By the convexity of W and W̃ , we have

W (1 − |Φ + (∇v, p)|2) −W (1 − |Φ|2) ≥ W ′(1 − |Φ|2)
(

|Φ|2 − |Φ + (∇v, p)|2
)

= −W ′(1 − |Φ|2)
(

2Φ · (∇v, p) + |∇v|2 + p2
)

W̃ ((g + p)2) − W̃ (g2) ≥ W̃ ′(g2)
(

(g + p)2 − g2
)

= W̃ ′(g2)
(

2gp+ p2
)

.

Since Φ is a critical point of E, we also have
ˆ

BN

{

∇Φ : ∇(∇v, p) − 1
ǫ2
W ′(1 − |Φ|2)Φ · (∇v, p) +

1
η2
W̃ ′(g2)gp

}

dx = 0.

Inserting the last two estimates into (2.2) we arrive at

Eǫ,η [Φ + (∇v, p)] − Eǫ,η[Φ]

≥ 1
2

ˆ

BN

(

|∇2v|2 + |∇p|2 − 1
ǫ2
W ′(1 − f 2 − g2)

(

|∇v|2 + p2
)

+
1
η2
W̃ ′(g2)p2

)

dx,

which is precisely the conclusion.

We will frequently make use of the following Hardy decomposition:

Lemma 7 ([29, Lemma A.1]). Let A : BN → RN×N be a C1 non-negative semi-definite
symmetric form, i.e. A(x)ξ ·ξ ≥ 0 for every x ∈ BN and ξ ∈ RN . We define the operator

L := −∇ · (A∇)

and consider a smooth positive function ψ : BN → R. Then for every u ∈ C∞
c (BN ,R),

we have the following Hardy decomposition:
ˆ

BN

Lu · u dx =
ˆ

BN

ψ2A(x)∇(
u

ψ
) · ∇(

u

ψ
) dx+

ˆ

BN

u2

ψ2
Lψ · ψ dx.

Before moving on with the proof, let us make a simple observation on the non-
negativity of Tǫ,η.

Lemma 8. The first eigenvalue of Tǫ,η on H1
0 (BN ,R) is

(

ℓ(ǫ) + 1
η2 W̃

′(0)
)

+
and the

corresponding first eigenspace of Tǫ,η

• coincides with the first eigenspace of Lǫ when ℓ(ǫ)+ 1
η2 W̃

′(0) ≥ 0 (i.e. when g ≡ 0),
and
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• is generated by g when ℓ(ǫ) + 1
η2 W̃

′(0) < 0 (i.e. when g > 0).

In particular Tǫ,η is non-negative semi-definite on H1
0 (BN ,R) and

ˆ

BN

Tǫ,ηp · p dx ≥
ˆ

BN

[

h2
∣
∣
∣
∣∇(

p

h
)
∣
∣
∣
∣

2

+

(

ℓ(ǫ) +
1
η2
W̃ ′(0)

)

+

p2
]

dx ≥ 0,

where h is any first eigenfunction of Tǫ,η.

Proof. Recall that, by [26, Theorem 2.4] on escaping and non-escaping critical points of
Eǫ,η, when g ≡ 0, we have ℓ(ǫ) + 1

η2 W̃
′(0) ≥ 0, while, when g > 0, ℓ(ǫ) + 1

η2 W̃
′(0) < 0.

The first bullet point is then clear as Tǫ,η = Lǫ + 1
η2 W̃

′(0) and the first eigenvalue of Lǫ

is ℓ(ǫ). When g > 0, we have
Tǫ,ηg = 0,

and so g must be a first eigenfunction of Tǫ,η and the first eigenvalue of Tǫ,η must be zero.
The second bullet point follows. The last assertion follows from the Hardy decomposition
Lemma 7 with the decomposition p = h p

h
.

The last ingredient for the proof of Theorem 3 is:

Proposition 9. Suppose N ≥ 4. For any v ∈ H2
0 (BN ,R) we have

Fǫ,η[∇v] ≥ (N − 2)2

4

ˆ

BN

(∂rv)2

r2
dx+

(

N2

2
− 2N

)
ˆ

BN

|∇v|2 − (∂rv)2

r2
dx ≥ 0.

Remark 10. Note that for general V ∈ H1
0 (BN ,RN) which is not necessarily a gradient

field, it was shown in [31, 32] in dimension N ≥ 7 that Fǫ,η[V ] = Fǫ[V ] ≥ 0.

Before giving the proof of the above proposition, let us prove Theorem 3.

First proof of Theorem 3. Indeed, as N ≥ 4, we have by Proposition 9 that Fǫ,η[∇v] ≥ 0
for every v ∈ H2

0 (BN ,R) with equality if and only if ∂rv = 0 a.e., which implies v = 0.
Therefore, by Lemmas 6 and 8, Φ is a minimizer of our problem. If Φ̃ is another
minimizer of Eǫ,η, then Eǫ,η[Φ̃] = Eǫ,η[Φ]. By Lemmas 6, 8 and Proposition 9, this is
possible only if Φ̃ − Φ = (0, h) for some h in the first eigenspace of Tǫ,η, which is radially
symmetric (because Tǫ,η is radially symmetric). We thus have that Φ̃ is a radially
symmetric minimizer of Eǫ,η. [26, Therorem 2.4] then gives the desired uniqueness for
minimizer(s).

Proof of Proposition 9. It is enough to prove the estimate for v ∈ C∞
c (BN \ {0},R).

The general case follows from Fatou’s lemma and the density of C∞
c (BN \ {0},R) in

H2
0 (BN ,R) (note N ≥ 4).
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We denote by (φk)k∈N an orthonormal basis of L2(SN−1) given by eigenfunctions of
the Laplace-Beltrami operator on the unit sphere, meaning that for any k ∈ N we have

−∆SN−1φk = λkφk

where 0 = λ0 < N − 1 = λ1 = . . . = λN < 2N = λN+1 ≤ · · · −→ +∞. In particular we
have

ˆ

SN−1

φkφl dσ(θ) = δkl and
ˆ

SN−1

∇SN−1φk · ∇SN−1φl dσ(θ) = λkδkl. (2.3)

Consider the decomposition of v in spherical harmonics: we write

v(rθ) =
∑

k≥0

vk(r)φk(θ) for r ∈ (0, 1), θ ∈ S
N−1

where vk ∈ C∞
c ((0, 1),R). We have

∇v =
∑

k≥0

(

v′
kφk

x

r
+

1
r
vk∇SN−1φk

)

, ∆v =
∑

k≥0

(

v′′
k +

N − 1
r

v′
k − λk

r2
vk

)

φk.

Using the orthogonality relations (2.3) and the identities
ˆ 1

0

rN−2v′′
kv

′
k dr = −N − 2

2

ˆ 1

0

rN−3(v′
k)2 dr,

ˆ 1

0

rN−4v′
kvk dr = −N − 4

2

ˆ 1

0

rN−5v2
k dr for k ≥ 1,

ˆ 1

0

rN−3v′′
kvk dr =

ˆ 1

0

[

− rN−3(v′
k)2 +

(N − 3)(N − 4)
2

rN−5v2
k

]

dr for k ≥ 1,

we get

ˆ

BN

(∆v)2dx =
∑

k≥0

ˆ

BN

(

v′′
k +

N − 1
r

v′
k − λk

r2
vk

)2

φ2
kdx

=
∑

k≥0

ˆ 1

0

(

rN−1(v′′
k)2 + (N − 1 + 2λk)rN−3(v′

k)2 + λk(λk + 2N − 8))rN−5v2
k

)

dr,

(2.4)

and
ˆ

BN

W ′(1 − f 2 − g2)|∇v|2dx =
∑

k≥0

ˆ 1

0

W ′(1 − f 2 − g2)
(

rN−1(v′
k)2 + λkr

N−3v2
k

)

dr.
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Inserting these into (2.1), we split Fǫ,η into three terms as follows:

Fǫ,η[∇v] =
∑

k≥0

{ˆ 1

0

rN−1
(

(v′′
k)2 − 1

ǫ2
W ′(1 − f 2 − g2)(v′

k)2
)

dr

︸ ︷︷ ︸

Ik

+
ˆ 1

0

λkr
N−1

(

r−2(v′
k)2 − 1

ǫ2
W ′(1 − f 2 − g2)r−2v2

k

)

dr

︸ ︷︷ ︸

IIk

+
ˆ 1

0

(

(N − 1 + λk)rN−3(v′
k)2 + λk(λk + 2N − 8)rN−5v2

k

)

dr

︸ ︷︷ ︸

IIIk

}

.

For terms Ik and IIk we will apply the Hardy decomposition Lemma 7 using

Lǫ,ηf = −N − 1
r2

f.

More precisely, for any function w ∈ C∞
c (BN ,R) we have the identity

ˆ

BN

Lǫ,η(fw) · (fw) dx =
ˆ

BN

(

f 2|∇w|2 + w2Lǫ,ηf · f
)

dx

=
ˆ

BN

f 2
(

|∇w|2 − N − 1
r2

w2
)

dx. (2.5)

• Estimate of Ik: For the first term we use the decomposition v′
k = f

v′
k

f
, i.e.

w = v′
k

f
∈ C∞

c (BN \ {0},R) in (2.5):

Ik =
ˆ 1

0

rN−1Lǫ,η(v′
k) · (v′

k)dr =
ˆ 1

0

[

rN−1f 2

∣
∣
∣
∣
∣

(

v′
k

f

)′∣∣
∣
∣
∣

2

− (N − 1)rN−3(v′
k)2
]

dr.

We let ζ(r) = r− N−2

2 so that, when seen as a radial function in RN \ {0}, ζ verifies

−∇ · (f 2∇ζ) = −f 2∆ζ − 2ff ′ζ ′ =
(N − 2)2

4r2
f 2ζ − 2ff ′ζ ′ ≥ (N − 2)2

4r2
f 2ζ,

since ζ ′ < 0 and f, f ′ > 0 in (0, 1). By the Hardy decomposition Lemma 7 for the
operator ∇ · (f 2∇) and the decomposition v′

k

f
= ζ

v′
k

fζ
, we thus have

Ik ≥
ˆ 1

0

rN−1



f 2ζ2

∣
∣
∣
∣
∣

(

v′
k

fζ

)′∣∣
∣
∣
∣

2

+

(

(N − 2)2

4
− (N − 1)

)

rN−3(v′
k)2



 dr. (2.6)
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• Estimate of IIk: First notice the elementary identity

ˆ 1

0

rN−3(v′
k)2dr =

ˆ 1

0

(

rN−1
((

vk

r

)′ )2

+ 2rN−4vkv
′
k − rN−5v2

k

)

dr

=
ˆ 1

0

(

rN−1
((

vk

r

)′ )2

− (N − 3)rN−5v2
k

)

dr

so

IIk = λk

ˆ 1

0

(

rN−1Lǫ,η(
vk

r
) · (

vk

r
) − (N − 3)rN−5v2

k

)

dr.

This time we use the decomposition vk

r
= f vk

rf
(i.e. w = vk

rf
in (2.5)) to obtain

IIk = λk

ˆ 1

0



rN−1f 2

∣
∣
∣
∣
∣

(

vk

rf

)′∣∣
∣
∣
∣

2

− 2(N − 2)rN−5v2
k



 dr.

By the Hardy decomposition Lemma 7 for the operator ∇ · (f 2∇) and the decom-
position vk

rf
= ζ vk

rfζ
as above we get the estimate

IIk ≥ λk

ˆ 1

0



rN−1f 2ζ2

∣
∣
∣
∣
∣

(

vk

rfζ

)′∣∣
∣
∣
∣

2

+

(

(N − 2)2

4
− 2(N − 2)

)

rN−5v2
k



 dr. (2.7)

• Estimate of IIIk: For the last term we simply apply the Hardy inequality once:
for any v ∈ C∞

c ((0, 1),R),
´ 1

0
rN−3(v′)2dr ≥ (N−4)2

4

´ 1

0
rN−5v2dr. This gives

IIIk ≥
ˆ 1

0

(

(N − 1)rN−3(v′
k)2 + λk

(

λk + 2N − 8 +
(N − 4)2

4

)

rN−5v2
k

)

dr. (2.8)

Summing the estimates (2.6), (2.7), (2.8) we get

Fǫ,η[∇v] ≥
∑

k≥0

ˆ 1

0

(

(N − 2)2

4
rN−3(v′

k)2 + λk

(

N2

2
− 3N + 1 + λk

)

rN−5v2
k

)

dr

≥
∑

k≥0

ˆ 1

0

(

(N − 2)2

4
rN−3(v′

k)2 + λk

(

N2

2
− 2N

)

rN−5v2
k

)

dr since λ2
k ≥ (N − 1)λk

=
(N − 2)2

4

ˆ

BN

(∂rv)2

r2
dx+

(

N2

2
− 2N

)
ˆ

BN

|∇v|2 − (∂rv)2

r2
dx.

The result is proved.
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2.2 Proof of Theorems 1 and 2

Theorem 1 for the Aviles–Giga model is a simple consequence of Theorem 3 for the
extended model.

Proof of Theorem 1. Fix ǫ > 0. Pick any convex C2 function W̃ : [0,∞) → [0,∞) with
W̃ (0) = 0 and W̃ ′(0) > 0, e.g. W̃ (t) = t. By [26], there exists a small η > 0 such that
Eǫ,η has no escaping radially symmetric critical points. By Theorem 3, Ūǫ = (Uǫ, 0) is
the unique minimizer of Eǫ,η in A. It follows that

EGL
ǫ [∇u] = Eǫ,η[(∇u, 0)] ≥ Eǫ,η[Ūǫ] = Eǫ[Uǫ] for all ∇u ∈ AGL.

This means that Uǫ is a minimizer of EGL
ǫ in {∇u ∈ AGL}. Conversely, if ∇ũ is a

minimizer of EGL
ǫ in {∇u ∈ AGL}, then

Eǫ,η[(∇ũ, 0)] = EGL
ǫ [∇ũ] = EGL

ǫ [Uǫ] = Eǫ,η[Ūǫ],

i.e. (∇ũ, 0) is also a minimizer of Eǫ,η in A. By Theorem 3, ∇ũ = Uǫ as desired.

We next prove Theorem 2 for the SN -valued Ginzburg–Landau model.

Proof of Theorem 2. Set W (t) = t2 and fix some η > 0. As 4 ≤ N ≤ 6 and W ′(1) > 0,
we know by [26] that for ǫ > 0 small enough, there exists a unique escaping radially
symmetric critical point of the form

Uǫ,η = (fǫ,η(r)
x

r
, gǫ,η(r)) ∈ A, gǫ,η > 0 in (0, 1)

of the energy Eǫ,η. Pick an arbitrary M = (∇m,MN+1) ∈ AMM (in particular, |M | = 1)
and set

(∇vǫ,η, pǫ,η) := M − Uǫ,η.

Then by Section 2, we know that

EMM
η [M ] = Eǫ,η

[

Uǫ,η + (∇vǫ,η, pǫ,η)
]

≥ Eǫ,η[Uǫ,η] +
1
2
Fǫ,η[∇vǫ,η] +

1
2

ˆ

BN

Tǫ,ηpǫ,η · pǫ,η dx

with

Fǫ,η[∇vǫ,η] ≥ (N − 2)2

4

ˆ

BN

(∂rvǫ,η)2

r2
dx+

(

N2

2
− 2N

)
ˆ

BN

|∇SN−1vǫ,η|2
r4

dx,

ˆ

BN

Tǫ,ηpǫ,η · pǫ,η dx ≥
ˆ

BN

g2
ǫ,η

∣
∣
∣
∣∇
(pǫ,η

gǫ,η

)
∣
∣
∣
∣

2

dx.
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By [26, Remark 2.17], for a subsequence ǫ → 0, we have that Uǫ,η → M+
η in H1(BN)

(in particular, ∇Uǫ,η → ∇M+
η and Uǫ,η → M+

η a.e. in BN) and Eǫ,η(Uǫ,η) → EMM
η [M+

η ]
where M+

η = (f̃η
x
r
, gη) is the unique escaping radially symmetric critical point of EMM

η

with gη > 0 in (0, 1). Therefore,

(∇vǫ,η, pǫ,η) → M −M+
η =: (∇ṽη, p̃η)

in H1(BN) and a.e. in BN as well as ∇(∇vǫ,η, pǫ,η) → ∇(∇ṽη, p̃η) a.e. in BN for a
subsequence ǫ → 0. By Fatou’s lemma, it follows for a subsequence ǫ → 0:

EMM
η [M ] = EMM

η [M+
η + (∇ṽη, p̃η)]

≥ EMM
η [M+

η ] +
1
2

ˆ

BN

g2
η

∣
∣
∣
∣∇
( p̃η

gη

)
∣
∣
∣
∣

2

dx

+
(N − 2)2

8

ˆ

BN

(∂r ṽη)2

r2
+

1
2

(

N2

2
− 2N

)
ˆ

BN

|∇SN−1 ṽη|2
r4

.

We conclude to the minimality of M+
η . If M is another minimizer, within the above

notations, then EMM
η [M ] = EMM

η [M+
η ] and so ∂r ṽη = 0 in BN yielding ṽη = 0 (as ṽη = 0

on ∂BN ); also, p̃η = αgη for some constant α ∈ R. Since |M | = 1 and M = (0, p̃η) +Mη,
we deduce that (p̃η + gη)2 = g2

η yielding α = 0 or −2, i.e. M = M+
η or M = M−

η .

3 Symmetrization and second proof of main results

in dimension N ≥ 5

3.1 A symmetrization of scalar functions

In this section, we consider a spherical average rearrangement which is probably known
to the experts. See e.g. [52, Chapter 1, Section 9] for a similar rearrangement in the
context of the Laplace operator. Let 1 ≤ q < ∞. For a function g ∈ Lq(BN ,R), define
a radial symmetrization ǧ of g by

ǧ(r) =
{  

SN−1

|g(rθ)|q dσ(θ)
}1/q

≥ 0, r ∈ (0, 1). (3.1)

When q = 2, we can also think of this as a rearrangement in the spherical harmonic
decomposition of g.

Theorem 11. Let N ≥ 2, 1 ≤ q < ∞, g ∈ Lq(BN ,R) and ǧ be associated to g by (3.1).
We have the following conclusions.
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(i) The map g 7→ ǧ is a 1-Lipschitz continuous map from Lq(BN ,R) into itself:

‖ǧ − ȟ‖Lq(BN ,R) ≤ ‖g − h‖Lq(BN ,R).

Moreover,
´

SN−1 |ǧ(rθ)|q dσ(θ) =
´

SN−1 |g(rθ)|q dσ(θ) for a.e. r ∈ (0, 1).

(ii) Let G : [0,∞) × [0,∞) → [0,∞) be continuous. If G is convex in the second
variable, then

ˆ

BN

G(r, |ǧ(x)|q) dx ≤
ˆ

BN

G(r, |g(x)|q) dx.

In particular, for any q < p < ∞,
ˆ

BN

|ǧ|p dx ≤
ˆ

BN

|g|p dx.

(iii) Assume in addition that g ∈ W 1,q(BN ,R). Then ǧ ∈ W 1,q(BN ,R) and
ˆ

BN

|∇ǧ|q dx ≤
ˆ

BN

|∇g|q dx. (3.2)

Equality is attained if and only if g is radially symmetric and |g| = ǧ in (0, 1).

Proof. Proof of (i): From the definition of the radial function ǧ(x) = ǧ(r) we have

ˆ

SN−1

|ǧ(rθ)|q dσ(θ) =
ˆ

SN−1

|g(rθ)|qdσ(θ) for a.e. r ∈ (0, 1),

which implies ǧ ∈ Lq(BN). Also, by the reverse triangle inequality, we have for g, h ∈
Lq(BN ) that

‖ǧ − ȟ‖q
Lq(BN ) = |SN−1|

ˆ 1

0

|ǧ(r) − ȟ(r)|q rN−1 dr

=
ˆ 1

0

∣
∣
∣‖g(r·)‖Lq(SN−1) − ‖h(r·)‖Lq(SN−1)

∣
∣
∣

q
rN−1 dr

≤
ˆ 1

0

‖g(r·) − h(r·)‖q
Lq(SN−1) r

N−1 dr = ‖g − h‖q
Lq(BN ).

Therefore g 7→ ǧ is a 1-Lipschitz continuous map on Lq(BN).
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Proof of (ii): By Jensen inequality,

 

SN−1

G(r, |ǧ(rθ)|q) dσ(θ) = G

(

r,

 

SN−1

|ǧ(rθ)|q dσ(θ)

)

= G

(

r,

 

SN−1

|g(rθ)|q dσ(θ)

)

≤
 

SN−1

G(r, |g(rθ)|q) dσ(θ).

Integrating in r gives the second bullet point. In particular, with G(r, s) = sp/q with
p > q, we see that the Lp-norm of ǧ is no more than that of g.

Proof of (iii): Consider first the case g belongs to C∞(B̄N), which is a dense subset of
W 1,q(BN). For technical reasons, we introduce, for µ > 0,

ǧµ(r) =
{  

SN−1

(g(rθ)2 + µ)q/2 dσ(θ)
}1/q

≥ µ1/2, r ∈ (0, 1).

Note that ǧµ → ǧ in Lq(BN ) as µ → 0. We have, by Hölder’s inequality,

|ǧµ(r)|q−1|ǧ′
µ(r)| ≤

 

Sn−1

(g(rθ)2 + µ)(q−1)/2|∂rg(rθ)| dσ(θ)

≤ |ǧµ(r)|q−1
{  

Sn−1

|∂rg(rθ)|q dσ(θ)
}1/q

.

As ǧµ ≥ µ1/2 > 0, this implies
 

SN−1

|∇ǧµ(rθ)|q dσ(θ) = |ǧ′
µ(r)|q ≤

 

SN−1

|∂rg(rθ)|q dσ(θ).

Integrating over r ∈ (0, 1) gives
ˆ

BN

|∇ǧµ|q dx ≤
ˆ

BN

|∂rg|qdx.

This implies ǧµ is bounded in W 1,q(BN) and hence converges weakly to ǧ in W 1,q(BN)
as µ → 0. Hence

ˆ

BN

|∇ǧ|q dx ≤
ˆ

BN

|∂rg|qdx, (3.3)

which proves (3.2) for g ∈ C∞(B̄N).
Suppose now g ∈ W 1,q(BN). Pick {g(j)} ⊂ C∞(B̄N) such that g(j) → g in W 1,q(BN).

By (i), ǧ(j) → ǧ in Lq(BN). Also, by (3.3),
ˆ

BN

|∇ǧ(j)|q dx ≤
ˆ

BN

|∂rg(j)|qdx. (3.4)
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This implies that ǧ(j) is bounded in W 1,q(BN ) and hence converges weakly in W 1,q(BN)
to ǧ. Sending j → ∞ we see that (3.3) remains valid for g ∈ W 1,q(BN), which proves
(3.2). Moreover, equality holds in (3.2) if and only if |∇g| = |∂rg| a.e., i.e. g is radially
symmetric.

3.2 A symmetrization of gradient fields and proof of Theorem

5

Recall the symmetrization v̌ for a function v ∈ H1(BN ,R) is given by the formula (1.17):

v̌(r) = −
ˆ 1

r

{  

SN−1

|∇v(sθ)|2dσ(θ)
}1/2

ds ≤ 0, r ∈ (0, 1).

We will use the following density result.

Lemma 12. For N ≥ 2, the set S of functions in C∞(B̄N) which are constant in
a neighborhood of the origin is dense in H2(BN ). Moreover, if v ∈ H2(BN) verifies
´

SN−1 v(rθ)θdσ(θ) = 0 for almost every r ∈ (0, 1), then its approximation sequence in S
may be chosen with the same property.

Proof. It is well known that C∞(B̄N ) is dense in H2(BN). Thus, to show that S is dense
in H2(BN ), we only need to show that a given v ∈ C∞(B̄N) can be approximated by a
sequence of functions in S. In the proof, C denotes a constant that can change between
lines but depends only on the dimension N . Pick a cut-off function ϕ ∈ C∞(R) with
ϕ ≡ 1 in (−∞, 1/2], ϕ ≡ 0 in [1,∞). For j ≥ 10 and x ∈ BN , let

ϕ(j)(x) =







ϕ(j|x|) if N ≥ 3,

1 − ϕ(
ln ln 1

|x|

2 ln ln j
) if N = 2.

Note that ϕ(j)(x) = 0 for |x| ≥ 1
j

and ϕ(j)(x) = 1 when |x| is small enough. Define

v(j) = v(0)ϕ(j) + v(1 − ϕ(j)) = v − (v − v0)ϕ(j) ∈ S, j ≥ 1.

We estimate

|v(x) − v(0)| ≤ ‖∇v‖L∞(BN )|x|,
‖ϕ(j)‖L2(BN ) ≤ Cj−N/2,

‖∇ϕ(j)‖L2(BN ) + ‖r∇2ϕ(j)‖L2(BN ) ≤ CωN(j) with ωN(j) =







Cj−(N−2)/2 if N ≥ 3,
C

(ln j ln ln j)1/2 if N = 2.
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We thus have

‖(v − v(0))ϕ(j)‖L2(BN ) ≤ Cj−N/2‖v‖L∞(BN ),

‖∇[(v − v(0))ϕ(j)]‖L2(BN ) ≤ Cj−N/2‖∇v‖L∞(BN ) + CωN(j)‖v‖L∞(BN ),

‖∇2[(v − v(0))ϕ(j)]‖L2(BN ) ≤ Cj−N/2‖∇2v‖L∞(BN ) + CωN(j)‖∇v‖L∞(BN ).

Clearly, these estimates imply that v(j) → v in H2(BN). We have proved that S is dense
in H2(BN)

Now suppose v ∈ H2(BN ) and
´

SN−1 v(rθ)θdσ(θ) = 0. Let v(j) ∈ S be such that
v(j) → v in H2(BN). Define ṽ(j)(rθ) = v(j)(rθ) − ∑N

k=1 v(j),k(r)φk(θ) where v(j),k(r) =
´

SN−1 v(j)(rθ)φk(θ)dσ(θ). It is clear that
´

SN−1 ṽ(j)(rθ)θdσ(θ) = 0. Since v(j) is constant
near 0, v(j),k is supported away from 0, and so ṽ(j) ∈ S. Finally, since the map w ∈
H2(BN) 7→ (rθ 7→ wk(r)φk(θ)) is continuous in H2(BN) and vk ≡ 0 for k = 1, . . . , N we
have

lim
j→∞

‖ṽ(j) − v‖H2(BN ) ≤ lim
j→∞

‖v(j) − v‖H2(BN ) + lim
j→∞

∥
∥
∥
∥

N∑

k=1

v(j),k(r)φk(θ)
∥
∥
∥
∥

H2(BN )
= 0.

The proof is complete.

Proof of Theorem 5. Proof of (i): By Cauchy-Schwarz’ inequality,

v̌(r)2 =
{ˆ 1

r

[ 

SN−1

|∇v(sθ)|2dσ(θ)
]1/2

ds
}2

≤
{ ˆ 1

r

s1−Nds
}{ ˆ 1

r

sN−1

 

SN−1

|∇v(sθ)|2dσ(θ) ds
}

.

Hence v̌(r) is well-defined and finite in (0, 1); in fact, |v̌(r)| ≤ CNr
− N−2

2 ‖∇v‖L2(BN ) for

N ≥ 3 (resp. |v̌(r)| ≤ C
√

log(1/r)‖∇v‖L2(B2) when N = 2). In particular, v̌ ∈ L2(BN).
Moreover, by the definition of v̌ we have

´

SN−1 |∇v̌(r, θ)|2 dσ(θ) =
´

SN−1 |∇v(rθ)|2dσ(θ)
for a.e. r ∈ (0, 1). As v̌(1) = 0, these imply that v̌ ∈ H1

0 (BN).
As in the proof of (i) in Theorem 11, the map ∇v 7→ ∇v̌ is a 1-Lipschitz continuous

map from L2(BN ,RN) into itself. By Poincaré’s inequality, the map v 7→ v̌ is a Lipschitz
continuous map from H1(BN ) into H1

0 (BN).

Proof of (ii): This is similar to that in the proof of Theorem 11 and is omitted.

Proof of (iii): By density and (i), it suffices to consider v ∈ C∞
c (BN).

Let A(r) =
ffl

SN−1 |v(rθ)|p dσ(θ). We have, by Hölder’s inequality

|A′(r)| ≤ p

 

SN−1

|v(rθ)|p−1|∂rv(rθ)| dσ ≤ p
{  

SN−1

|v(rθ)|2(p−1) dσ
}1/2

v̌′(r)

≤ pA(r)
p−1

p v̌′(r),
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where we have used 2(p− 1) ≤ p when 1 ≤ p ≤ 2.
Fix some µ > 0. Then | d

dr
(µ+ A(r))1/p| ≤ v̌′(r). This together with A(1) = 0 (since

v = 0 on ∂BN ) implies

(µ+ A(r))1/p ≤ µ1/p +
ˆ 1

r

v̌′(r) dr = µ1/p − v̌(r) = µ1/p + |v̌(r)|.

Sending µ → 0, we get the conclusion.

Proof of (iv): Without loss of generality, we can assume that v = 0 on ∂BN (since, on
∂BN , ∇v(x) = cx is normal to ∂BN ). Let (φk)∞

k=0 be an orthonormal basis of L2(SN−1)
consisting of eigenfunctions of the Laplace-Beltrami operator on SN−1 corresponding to
eigenvalues 0 = λ0 < N − 1 = λ1 = . . . = λN < 2N = λN+1 ≤ . . . → ∞. We decompose

v(rθ) =
∞∑

k=0

vk(r)φk(θ) where vk(r) =
ˆ

SN−1

v(rθ)φk(θ) dσ(θ).

Note that vk ∈ H2
loc(0, 1), and

(v̌′)2 =
∞∑

k=0

[

(v′
k)2 +

λk

r2
v2

k

]

, (3.5)

ˆ

BN

(∆v)2 dx =
∞∑

k=0

ˆ 1

0

rN−1
(

v′′
k +

N − 1
r

v′
k − λk

r2
vk

)2

dr. (3.6)

Note also that our hypotheses give in the case N ∈ {3, 4} that v1 = . . . = vN = 0.
We first prove inequality (1.18) when v belongs to the set S defined in Lemma 12.

Then v0 ∈ C∞([0, 1]), v0 is constant near 0, vk ∈ C∞
c ((0, 1]) for k ≥ 1,

v0(1) = 0, v′
0(1) = c and vk(1) = v′

k(1) = 0 for k ≥ 1.

This implies ∇v̌(x) = |c|x on ∂BN (recall that, by definition, v̌′ ≥ 0 in (0, 1)). Also,
ˆ 1

0

rN−2v′′
kv

′
k dr = −N − 2

2

ˆ 1

0

rN−3(v′
k)2 dr +







c2

2
if k = 0,

0 if k ≥ 1,
ˆ 1

0

rN−4v′
kvk dr = −N − 4

2

ˆ 1

0

rN−5v2
k dr for k ≥ 1,

ˆ 1

0

rN−3v′′
kvk dr =

ˆ 1

0

[

− rN−3(v′
k)2 +

(N − 3)(N − 4)
2

rN−5v2
k

]

dr for k ≥ 1.

Inserting the above identities in (3.6), we obtain
ˆ

BN

(∆v)2 dx = (N−1)c2+
∞∑

k=0

ˆ 1

0

rN−1
[

(v′′
k)2+

2λk +N − 1
r2

(v′
k)2+

λk(λk + 2(N − 4))
r4

v2
k

]

dr.

(3.7)
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Next, note that, when v ∈ S, the right hand side of (3.5) is a smooth non-negative
function and so v̌′ is Lipschitz continuous. Applying (3.7) to v̌, we get

ˆ

BN

(∆v̌)2 dx = (N − 1)c2 +
ˆ 1

0

rN−1
[

(v̌′′)2 +
N − 1
r2

(v̌′)2
]

dr. (3.8)

To continue, we need to estimate v̌′′. For technical reasons, we consider for µ > 0 a
regularized version of v̌:

v̌′
µ =

{

µ+
∞∑

k=0

[

(v′
k)2 +

λk

r2
v2

k

]}1/2

≥ µ1/2.

Clearly v̌′
µ is smooth and v̌′

µ → v̌′ pointwise in (0, 1) as µ → 0. Now, for some tk ∈ R to
be chosen later, we have by (3.5) that

|v̌′
µ||v̌′′

µ| =
∣
∣
∣
∣

∞∑

k=0

[

v′
kv

′′
k +

λk

r2
vkv

′
k − λk

r3
v2

k

]∣
∣
∣
∣

≤ |v′
0||v′′

0 | +
∣
∣
∣
∣

∞∑

k=1

[

v′
k(v′′

k +
tk
r2
vk) +

1
r
vk(

λk − tk
r

v′
k − λk

r2
vk)
]∣
∣
∣
∣

≤ |v′
0||v′′

0 | +
∞∑

k=1

[

(v′
k)2 +

λk

r2
v2

k

]1/2[

(v′′
k +

tk
r2
vk)2 +

1
λk

(
λk − tk
r

v′
k − λk

r2
vk)2

]1/2

≤ |v̌′
µ|
{

|v′′
0 |2 +

∞∑

k=1

[

(v′′
k +

tk
r2
vk)2 +

1
λk

(
λk − tk

r
v′

k − λk

r2
vk)2

]}1/2

.

Since v̌′
µ ≥ µ1/2 > 0, this implies

|v̌′′
µ| ≤

{

|v′′
0 |2 +

∞∑

k=1

[

(v′′
k +

tk
r2
vk)2 +

1
λk

(
λk − tk

r
v′

k − λk

r2
vk)2

]}1/2

.

This implies that {v̌′
µ} is bounded in W 1,∞((0, 1)) and converges weakly* in W 1,∞((0, 1))

to v̌′ as µ → 0 (since v̌′
µ → v̌′ pointwise), and

|v̌′′| ≤
{

|v′′
0 |2 +

∞∑

k=1

[

(v′′
k +

tk
r2
vk)2 +

1
λk

(
λk − tk
r

v′
k − λk

r2
vk)2

]}1/2

.
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Returning to (3.8), we get
ˆ

BN

(∆v̌)2 dx ≤ (N − 1)c2 +
ˆ 1

0

rN−1
[

(v′′
0)2 +

N − 1
r2

(v′
0)

2
]

dr

+
∞∑

k=1

ˆ 1

0

rN−1
[

(v′′
k +

tk
r2
vk)2 +

1
λk

(
λk − tk
r

v′
k − λk

r2
vk)2 +

N − 1
r2

(v′
k)2 +

(N − 1)λk

r4
v2

k

]

dr

= (N − 1)c2 +
ˆ 1

0

rN−1
[

(v′′
0)2 +

N − 1
r2

(v′
0)

2
]

dr

+
∞∑

k=1

ˆ 1

0

rN−1
[

(v′′
k)2 +

λ−1
k (λk − tk)2 − 2tk +N − 1

r2
(v′

k)2

+
2λk(N − 2) + t2k + tk(N − 4)2

r4
v2

k

]

dr.

Recalling (3.7), we get
ˆ

BN

(∆v)2 dx−
ˆ

BN

(∆v̌)2 dx ≥
∞∑

k=1

ˆ 1

0

rN−1
[
λk − λ−1

k t2k + 4tk
r2

(v′
k)2

+
λ2

k − 4λk − t2k − tk(N − 4)2

r4
v2

k

]

dr. (3.9)

Case 1: IfN ≥ 5, we choose tk = 0, and using the sharp Hardy inequality
´ 1

0
rN−3(v′

k)2 dr ≥
(N−4)2

4

´ 1

0
rN−5v2

k dr to obtain from (3.9) the inequality
ˆ

BN

(∆v)2 dx ≥
ˆ

BN

(∆v̌)2 dx+
∞∑

k=1

λksk

ˆ 1

0

rN−5v2
k dr, (3.10)

where, for k ≥ 1,

sk = λk +
(N − 4)2

4
− 4 > 0 (since λk ≥ N − 1 ≥ 4).

Inequality (1.18) thus follows.
Case 2: If N ∈ {2, 3, 4}, recall that our hypotheses give v1 = . . . = vN = 0. We

choose tk = (2 −
√

5)λk in (3.9) so that the term involving v′
k vanishes, and arrive again

at (3.10) but with

sk =







0 if 1 ≤ k ≤ N,

(
√

5 − 2)(4λk + (N − 4)2) − 4 if k ≥ N + 1.

As λk ≥ 2N for k ≥ N + 1, we have

sk ≥ (
√

5 − 2)(N2 + 16) − 4 ≥ 20
√

5 − 44 > 0 for N ∈ {2, 3, 4}, k ≥ N + 1.

27



Inequality (1.18) thus follows from (3.10).
Consider now the general case v ∈ H2(BN). By Lemma 12 we can select {v(j)} ⊂ S

such that v(j) → v in H2(BN) as j → ∞. Moreover, in case N ∈ {2, 3, 4}, it holds also
that

´

SN−1 v(j)(rθ)θ dσ(θ) = 0. By Fubini’s theorem, after passing to a subsequence, we
have (v(j))k → vk a.e. in (0, 1) for the spherical harmonic coefficients of v(j) and v. Also,
by (i), ∇v̌(j) → ∇v̌ in L2(BN ,RN). Since v(j) ∈ S, we have by (3.10)

ˆ

BN

(∆v(j))2 dx ≥
ˆ

BN

(∆v̌(j))2 dx+
∞∑

k=1

λksk

ˆ 1

0

rN−5(v(j))2
k dr. (3.11)

This implies that {v̌(j)} is bounded in H2(BN ). As ∇v̌(j) → ∇v̌ in L2(BN ,RN), this
implies ∆v̌(j) converges weakly in L2(BN ) to ∆v̌; in particular, v̌ ∈ H2(BN). Sending
j → ∞ in (3.11), using the convergence of v(j) to v in H2(BN) on the left hand side,
the weak convergence of ∆v̌(j) to ∆v̌ in L2(BN ) and Fatou’s lemma for the infinite sum
on the right hand side, we see that (3.10) remains valid for v ∈ H2(BN). This proves
(1.18) for v ∈ H2(BN). Also, equality occurs in (1.18) if and only if vk = 0 for all k ≥ 1,
meaning v is radially symmetric and |v′| = v̌′ in (0, 1).

3.3 Second proof of Theorems 1, 2 and 3 in dimension N ≥ 5

Second proof of Theorem 1 in dimension N ≥ 5. As s 7→ W (1−s) is convex, we deduce
from Theorem 5 that

EGL
ǫ [∇u] ≥ EGL

ǫ [∇ǔ] for all ∇u ∈ AGL,

where equality holds if and only if u is radially symmetric. In particular, if ∇u ∈ AGL

is a minimizer of EGL
ǫ among gradient field configurations in AGL, then so is ∇ǔ with

EGL
ǫ [∇u] = EGL

ǫ [∇ǔ] and hence u is radially symmetric. The conclusion then follows
from [26, Theorem 2.1] on the uniqueness of radially symmetric critical point of EGL

ǫ in
AGL.

Second proof of Theorem 2 in dimension N ≥ 5. Observe that if (∇m,MN+1) ∈ AMM

and if m̌ denotes the symmetrization of m by (1.17) and M̌N+1 denotes the symmetriza-
tion of MN+1 by (3.1), then (∇m̌, M̌N+1) ∈ AMM because

|∇m̌|2(r) + M̌N+1(r)2 =
 

SN−1

(

|∇m|2(rθ) +M2
N+1(rθ)

)

dσ(θ) = 1.

Thus, by Theorems 5 and 11, if (∇m,MN+1) ∈ AMM is a minimizer of EMM
η in AMM ,

the (∇m̌, M̌N+1) is also a minimizer of EMM
η in AMM and (∇m,MN+1) is radially

symmetric. The conclusion then follows from [26, Theorem 2.6] on the classification
of radially symmetric minimizers of EMM

η .
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Second proof of Theorem 3 in dimension N ≥ 5. Let U = (∇v, g) ∈ A be a minimizer
of Eǫ,η in A. Define the symmetrization v̌ and ǧ of v and g as in the previous two
sections with q = 2, and let Ǔ = (∇v̌, ǧ). By Theorems 5 and 11, we have

ˆ

SN−1

|∇v̌(rθ)|2 dσ(θ) =
ˆ

SN−1

|∇v(rθ)|2 dσ(θ) for a.e. r ∈ (0, 1),
ˆ

SN−1

ǧ(rθ)2 dσ(θ) =
ˆ

SN−1

g(rθ)2 dσ(θ) for a.e. r ∈ (0, 1),
ˆ

BN

W̃ (ǧ2) dx ≤
ˆ

SN−1

W̃ (g2) dx,
ˆ

BN

(∆v̌)2 dx ≤
ˆ

BN

(∆v)2 dx.

The first two identities and the convexity of W give
 

SN−1

W (1 − |Ǔ |2)(rθ) dσ(θ) = W
( 

SN−1

(1 − |Ǔ |2)(rθ) dσ(θ)
)

= W
(  

SN−1

(1 − |U |2)(rθ) dσ(θ)
)

≤
 

SN−1

W (1 − |U |2)(rθ) dσ(θ).

These estimates together implies that Eǫ,η[Ǔ ] ≤ Eǫ,η[U ] and so Ǔ is also a minimizer of
Eǫ,η in A with Eǫ,η[Ǔ ] = Eǫ,η[U ]. Returning to the equality cases in Theorems 5 and 11,
we have that v and g are radially symmetric, i.e. U is a radially symmetric minimizer
of Eǫ,η. The conclusion follows from [26, Theorem 2.4] on the classification of radially
symmetric minimizer of Eǫ,η.

3.4 Symmetry for solutions to a nonlinear eigenvalue problem

For d > 0, 1 ≤ p < 2 and λ ∈ R, consider the energy functional

J [v] =
1
2

‖∆v‖2
L2(BN ) − λ

2
‖v‖2

L2(BN )

on the set
Sp,d =

{

v ∈ H2
0 (BN) : ‖v‖Lp(BN ) = d

}

.

Let λ1(∆2) denote the first eigenvalue of the bi-Laplacian in H2
0 (BN). When λ < λ1(∆2),

after adjusting by a scaling factor to remove the Lagrange multiplier, minimizers of J
on Sp,d correspond to solutions of the elliptic problem (1.20):







∆2v = λv + |v|p−2v on BN ,

v = ∂rv = 0 on ∂BN .
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(For λ ≥ λ1(∆2), the partial differential equation is different, namely

∆2v =







λ1(∆2)v if λ = λ1(∆2),

λv − |v|p−2v if λ > λ1(∆2),

and we do not consider these cases here for simplicity.)
Problem (1.20) has been studied by many authors and a summary of known results

would go beyond the scope of the present paper. We refer the reader to e.g. [4, 7, 14,
16, 17, 36] and the references therein.

We prove:

Corollary 13. Let N ≥ 5 and 1 ≤ p < 2. For λ < λ1(∆2), minimizers of J over
Sp,d are radially symmetric, do not change sign and are either radially non-decreasing
or radially non-increasing.

Proof. Note that as λ < λ1(∆2), J is coercive on H2
0 (BN ). By the compactness embed-

ding theorem, J has a minimizer over Sp,d.
Let v be a minimizer of J over Sp,d; in particular, J [v] ≥ 0. By Theorem 5, we have







‖∆v̌‖L2(BN ) ≤ ‖∆v‖L2(BN ),

‖v̌‖Lp(BN ) ≥ ‖v‖Lp(BN ) = d,

‖v̌‖L2(BN ) ≥ ‖v‖L2(BN ).

(3.12)

Let

v̄ = µv̌ where µ = d‖v̌‖−1
Lp(BN )

(3.12)

≤ 1

so that v̄ ∈ Sp,d. We compute, keeping in mind that µ ≤ 1,

J [v̄] = µ2J [v̌]
(3.12)

≤ µ2J [v] ≤ J [v],

where for the last inequality we use the fact that J [v] ≥ 0. It follows that v̄ is also a
minimizer of J over Sp,d, which in turn implies J [v̌] = J [v] and all inequalities in (3.12)
are saturated. Appealing to the equality case in Theorem 5(iv), we see that v is radially
symmetric and v̌′ = |v′|.

It remains to prove that v and ∂rv do not change sign. Indeed, we have

|v(r)| = |v(r) − v(1)| =
∣
∣
∣
∣

ˆ 1

r

v′(s) ds
∣
∣
∣
∣ ≤

ˆ 1

r

|v′(s)| ds =
ˆ 1

r

v̌′(s) ds = |v̌(r)|.

As ‖v̌‖L2(BN ) = ‖v‖L2(BN ), it follows that equality is attained in the above inequality,
i.e. v′ does not change sign. As v(1) = 0, it follows also that v does not change sign.
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A The negativity of Fǫ in dimension N ∈ {2, 3}
We now give the proof of Proposition 4 on the negativity of Fǫ in dimension N ∈ {2, 3}.

Proof of Proposition 4. We follow ideas from e.g. the proof of [26, Lemma 2.3], [27,
Proposition 4.1], [30, Theorem 1.7]. The main task is to show that there exists v ∈
C2

c (BN \ {0}) such that5

F∗[∇v] :=
ˆ

BN

[

(∆v)2 − N − 1
r2

|∇v|2
]

dx < 0. (A.1)

Supposing for the moment that such a v has been found, we proceed to show that
Fǫ[∇v] < 0 for this particular v and for sufficiently small ǫ > 0. Indeed, using the
Hardy decomposition Lemma 7 with the decomposition ∇v = fǫ

∇v
fǫ

, noting that ∆fǫ =
N−1

r2 fǫ − 1
ǫ2W

′(1 − f 2
ǫ )fǫ, we find

Fǫ[∇v] =
ˆ

BN

f 2
ǫ

[∣
∣
∣
∣∇
(∇v
fǫ

)
∣
∣
∣
∣

2

− N − 1
r2

|∇v|2
f 2

ǫ

]

dx.

Since fǫ → 1 in C1
loc(B

N \ {0}) and v ∈ C2
c (BN \ {0}, we deduce that

lim
ǫ→0

Fǫ[∇v] =
ˆ

BN

[

|∇2v|2 − N − 1
r2

|∇v|2
]

dx = F∗[∇v] < 0,

which gives the conclusion.
It remains to find v ∈ C2

c (BN \{0}) satisfying (A.1). The proof of Theorem 5 suggests
the ansatz

v(x) = a(r)
x1

r
.

We are thus led to searching for a ∈ C2
c ((0, 1)) such that

ˆ 1

0

rN−1
[

(a′′)2 +
2(N − 1)

r2
(a′)2 +

2(N − 1)(N − 4)
r4

a2
]

dr < 0.

5Note that C2
c (BN \ {0}) is not a dense subspace of H2

0 (BN ) in dimension N ∈ {2, 3}, hence the
existence of such v does not follow immediately from the sharpness of the Hardy inequality (1.16).
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We decompose a(r) = r− N−4

2 b(r) and compute

ˆ 1

0

rN−1(a′′)2 dr =
ˆ 1

0

r3
(

b′′ − N − 4
r

b′ +
(N − 2)(N − 4)

4r2
b
)2

dr

=
ˆ 1

0

(

r3(b′′)2 +
(N − 2)(N − 4)

2
r(b′)2 +

(N − 2)2(N − 4)2

16r
b2
)

dr,

ˆ 1

0

rN−3(a′)2 dr =
ˆ 1

0

r
(

b′ − N − 4
2r

b
)2

dr

=
ˆ 1

0

(

r(b′)2 +
(N − 4)2

4r
b2
)

dr

We thus need to find b ∈ C2
c ((0, 1)) such that

ˆ 1

0

(

r3(b′′)2 +
N2 − 2N + 4

2
r(b′)2 +

(N − 4)(N3 + 12N − 16)
16r

b2
)

dr < 0. (A.2)

To this end, we fix a cut-off function ϕ ∈ C∞
c ([0,∞)) with ϕ ≡ 1 in [0, 1/4], ϕ ≡ 0 in

[1/2,∞). For j > 20 large to be fixed, we let

b(r) =







ϕ(r) if r ≥ 1/8,

ϕ
(

ln ln 1

r

4 ln ln j

)

if 0 < r < 1/8.

Then, for some constant C independent of j, we have

ˆ 1

0

1
r
b2 dr ≥

ˆ 1/4

1/j

dr

r
= ln

j

4
,

ˆ 1

0

(

r3(b′′)2 + r(b′)2
)

dr ≤ C.

Therefore, as (N − 4)(N3 + 12N − 16) < 0 for N ∈ {2, 3}, we can select a sufficiently
large j so that (A.2) is satisfied.
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