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Abstract

We study the question of uniqueness of minimisers of the standard Ginzburg-Landau
functional for R

n-valued maps with a H1/2 ∩ L∞ boundary data that is non-negative
in a fixed direction e ∈ S

n−1. We link the question of uniqueness on the one hand
with the “escaping” phenomenon of minimizers, and on the other hand with a stability
condition for critical points of the Ginzburg-Landau functional. In particular, we show
that, when minimisers are not unique, they “escape” out of the range of the boundary
condition and the set of minimisers is generated from any of its elements using appro-
priate orthogonal transformations of Rn.
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This note is based on the article [3] of the authors and represents the talk of the first
author (Radu Ignat) given at the Workshop “Nonlinear Data: Theory and Algorithms”
in Oberwolfach, 22 April – 28 April 2018. It will be included in the volume Oberwolfach
Reports No. 20/2018 dedicated to that workshop.

Model. We consider the following Ginzburg-Landau type energy functional

Eε(u) =

∫
Ω

[1
2
|∇u|2 + 1

2ε2
W (1− |u|2)

]
dx,
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Toulouse, CNRS, UPS IMT, F-31062 Toulouse Cedex 9, France. Email: Radu.Ignat@math.univ-toulouse.fr

†Mathematical Institute and St Edmund Hall, University of Oxford, Andrew Wiles Building,
Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, United Kingdom. Email:
luc.nguyen@maths.ox.ac.uk

‡School of Mathematics, University of Bristol, University Walk, Bristol, BS8 1TW, United Kingdom.
Email: Valeriy.Slastikov@bristol.ac.uk

§IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Bizkaia, Spain.
¶BCAM, Basque Center for Applied Mathematics, Mazarredo 14, E48009 Bilbao, Bizkaia, Spain.

(azarnescu@bcamath.org)
‖“Simion Stoilow” Institute of the Romanian Academy, 21 Calea Griviţei, 010702 Bucharest, Romania.
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with ε > 0 being a fixed parameter, Ω ⊂ R
m (m ≥ 1) is a bounded domain (i.e., open

connected set) with smooth boundary ∂Ω and the potential W ∈ C1((−∞, 1];R+) satisfies

W (0) = 0, W (t) > 0 for all t ∈ (−∞, 1] \ {0}, W is strictly convex.

(The prototype of the nonlinear potential is W (t) = t2/2.) We focus on minimisers of the
energy Eε over the following set

A := {u ∈ H1(Ω;Rn) : u = ubd on ∂Ω}, n ≥ 1,

consisting of H1 maps with a given boundary data (in the sense of H1/2-trace on ∂Ω):

ubd ∈ H1/2 ∩ L∞(∂Ω;Rn).

The direct method in the calculus of variations yields existence of minimizers uε of Eε over
A for all range of ε > 0; moreover, any minimizer uε belongs to C1∩L∞(Ω;Rn) and satisfies
the system of PDEs

−∆uε =
1

ε2
uεW

′(1− |uε|2) distributionally in Ω. (0.1)

Aim. We are interested in the question of uniqueness (or its failure) for the minimisers of
Eε in A for all range of ε > 0. If ε is large (i.e., ε ≥ ε0 := (|W ′(1)|/λ1(Ω))

1/2 where λ1(Ω)
is the first eigenvalue of (−∆) on Ω with zero Dirichlet data), then Eε is strictly convex and
thus, there exists a unique solution uε ∈ A of (0.1) which is the minimizer of Eε over A . If
ε < ε0, the problem is more delicate and it was intensively studied in the last thirty years
(for details, see the references in [3]). We provide results for this problem in the special case
where the boundary data is non-negative in a (fixed) direction e ∈ S

n−1, i.e.,

ubd · e ≥ 0 Hm−1-a.e. in ∂Ω. (0.2)

Example 1. In the scalar case n = 1 with zero boundary data ubd = 0 on ∂Ω, if ε ≥ ε0,
then ũε = 0 is the unique solution of (0.1) in A (so, the unique minimizer of Eε over A ). If
ε < ε0, then there exists a unique positive solution uε ∈ A (i.e., uε > 0 in Ω) of (0.1) with
zero boundary data, see e.g. [1]; as a consequence of Theorems 0.1 and 0.3 (see below), we
have that uε and −uε are the only two minimizers of Eε over A and moreover, the trivial
solution ũε = 0 is unstable (i.e., the second variation of Eε at ũε is negative in a certain
direction).

Example 2. For m = 2 and n = 3, we consider the unit disk Ω ⊂ R
2 and the boundary

data carrying a given winding number k ∈ Z \ {0} on ∂Ω:

ubd(cosϕ, sinϕ) = (cos(kϕ), sin(kϕ), 0) ∈ S
1 × {0} ⊂ R

3, ∀ϕ ∈ [0, 2π).

(Note that ubd satisfies (0.2) in the vertical direction e3.) As a consequence of Theorem 0.1
(see below), there exists εk > 0 such that
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a) if ε ≥ εk, the unique minimizer of Eε over A is given by

ũε := f̃ε(r)(cos(kϕ), sin(kϕ), 0), r ∈ (0, 1), ϕ ∈ [0, 2π),

where the radial profile f̃ε is the unique solution of the ODE (see e.g. [2]){
−f̃ ′′

ε − 1
r f̃

′
ε +

k2

r2 f̃ε =
1
ε2 f̃εW

′(1− f̃2
ε ) in (0, 1),

f̃ε(0) = 0, f̃ε(1) = 1;

b) if ε < εk, then Eε admits exactly two minimizers u±ε over A that have the form

u±ε := fε(r)(cos(kϕ), sin(kϕ), 0) ± gε(r)(0, 0, 1), gε(r) > 0, r ∈ (0, 1), ϕ ∈ [0, 2π),

where the couple (fε, gε) of radial profiles is the unique solution of the system


−f ′′
ε − 1

rf
′
ε +

k2

r2
fε =

1
ε2
fεW

′(1− f2
ε − g2ε) in (0, 1),

−g′′ε − 1
r g

′
ε =

1
ε2
gεW

′(1− f2
ε − g2ε) in (0, 1),

fε ≥ 0, gε > 0 in (0, 1),

fε(0) = 0, fε(1) = 1, g′ε(0) = 0, gε(1) = 0.

Moreover, the solution ũε of (0.1) (given at point a) above) is unstable if ε < εk.

These examples suggest the following phenomenology: if V = Spanubd(∂Ω) has co-
dimension ≥ 1 in R

n, then non-uniqueness of minimizers of Eε over A is equivalent with
the existence of “escaping” solutions uε ∈ A of (0.1) (i.e., uε(Ω) �⊂ V ). This is highlighted
by the following result:

Theorem 0.1 ([3]). Let uε ∈ H1 ∩ L∞(Ω;Rn) be an “escaping” critical point of the energy
Eε over A such that uε · e > 0 a.e. in Ω in some direction e ∈ S

n−1 for some ε > 0. Then
uε is a minimiser of Eε over A and we have the following dichotomy:
a) If ubd(x0) · e > 0 for some Lebesgue point x0 ∈ ∂Ω, then uε is the unique minimiser of
Eε over A .
b) If ubd(x) · e = 0 for Hm−1-a.e. x ∈ ∂Ω, then all minimisers of Eε in A are given
by Ruε where R ∈ O(n) is an orthogonal transformation of Rn satisfying Rx = x for all
x ∈ Spanubd(∂Ω).

Using the above theorem, we prove the following result which completely characterises
uniqueness and its failure for minimisers of the energy Eε over A under the assumption
(0.2) for the boundary data ubd.

Theorem 0.2 ([3]). Let ε > 0. If (0.2) holds in direction e ∈ S
n−1 and V = Spanubd(∂Ω),

then there exists a unique minimiser uε of the energy Eε over A unless both following
conditions hold:

i) ubd(x) · e = 0 Hm−1-a.e. x ∈ ∂Ω,
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ii) the functional Eε restricted to the set

Ares := {u ∈ A : u(x) ∈ Span(V ∪ {e}) a.e. in Ω}
has an “escaping” minimiser ǔε with ũε(Ω) �⊂ V .

Moreover, if uniqueness of minimisers of Eε in A does not hold, then all minimisers of Eε

in A are given by Rǔε where R ∈ O(n) is an orthogonal transformation of Rn satisfying
Rx = x for all x ∈ V .

The “escaping” phenomenon is closely related to stability properties of critical points if
codimRn(V ) ≥ 1 with V = Spanubd(∂Ω). Indeed, by Theorem 0.1, every “escaping” critical
point uε of Eε over A is in fact a minimiser and there are multiple minimisers as one can
reflect uε about the orthogonal space to the escaping direction (so, non-uniqueness holds
in this case). On the contrary, we show in the following that for a “non-escaping” critical
point uε of Eε over A (i.e., uε(Ω) ⊂ V ), its stability is equivalent with its minimality and
therefore, by Theorem 0.2, uε is the unique minimiser.

Theorem 0.3 ([3]). Assume that V = Spanubd(∂Ω) ⊂ e⊥ = {v ∈ R
n : v · e = 0} for a

direction e ∈ S
n−1. For any fixed ε > 0, if uε is a bounded critical point of Eε in A confined

in e⊥, i.e., uε ∈ L∞(Ω; e⊥) and uε is stable in direction e, i.e.,

d2

dt2
∣∣
t=0

Eε(uε + tϕe) =

∫
Ω

[
|∇ϕ|2 − 1

ε2
W ′(1− |uε|2)ϕ2

]
dx ≥ 0 for all ϕ ∈ H1

0 (Ω),

then uε is a minimiser of Eε in A . Moreover, if uε is “non-escaping”, i.e., uε(Ω) ⊂ V ,
then uε is the unique minimiser of Eε in A .

Our results hold true also for the harmonic map problem, thus covering the well-known
result of Sandier and Shafrir [4] on the uniqueness of minimising harmonic maps into a
closed hemisphere. In fact, our argument does not assume the smoothness of boundary
data and does not use the regularity theory of minimising harmonic maps, which appears
to play a role in the argument of [4].
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