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Abstract

We study the symmetry of transition layers in Ginzburg-Landau type functionals for
divergence-free maps in N -dimensions. Namely, we determine a class of nonlinear poten-
tials such that the minimal transition layers in the periodic strip domain Ω = R×T

N−1

are one-dimensional where T = R/Z is the 1-torus. In particular, this class includes in
dimension N = 2 the nonlinear potentials w2 with w being an harmonic function or a
solution to the wave equation, while in dimension N > 2, this class contains a pertur-
bation of the standard Ginzburg-Landau potential as well as potentials having N + 1
zeros with prescribed transition cost between the zeros. For that, we develop a theory of
calibrations for divergence-free maps in dimension N (similar to the theory of entropies
for the Aviles-Giga model when N = 2). We also give a necessary condition for finite
energy configurations yielding the boundary condition in L2 and almost everywhere in
T
N−1 as x1 → ±∞.

Keywords: symmetry, De Giorgi conjecture, minimisers, calibrations, Ginzburg-Landau
system, divergence constraint, nonlinear Stokes equation.

This note represents the summary of the talk of the author given at the Workshop
“Calculus of Variations” in Oberwolfach, 2–8 August 2020 and is based on the articles [1, 2]
written in collaboration with Antonin Monteil. This report will be included in the volume
Oberwolfach Reports No. 22/2020 dedicated to that workshop.

Introduction. We analyse the symmetry of transition layers in some variational models
arising in physics where the order parameter is a vector field of vanishing divergence. We
develop a theory of calibrations in order to prove that one-dimensional transition layers are
the unique global minimisers in these models.

This question is similar to the famous De Giorgi conjecture for minimal surfaces: if
u : RN → R is a C2 solution to ∆u = dW

du (u) in R
N with W (u) = 1

4 (1 − u2)2 such that
−1 < u < 1 and ∂1u > 0 in R

N , then u is one-dimensional (1D) provided that N ≤ 8.
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After important contributions of Ghoussoub-Gui, Ambrosio-Cabré etc., Savin proved the
conjecture under the additional boundary condition

lim
x1→±∞u(x1, x

′) = ±1 for every x′ ∈ R
N−1. (1)

Finally, Del Pino-Kowalczyk-Wei gave a counter-example satisfying (1) for N ≥ 9. Lately,
an intensive research was developed for vector-valued solutions u : RN → R

d to the elliptic
system ∆u = ∇W (u) in R

N for potentials W : Rd → R+. The typical potential arising
in phase separation models (such as Bose-Einstein condensates with two components, i.e.,
d = 2) is W (u1, u2) =

1
2u

2
1u

2
2 + Λ(1 − |u|2)2 for Λ ≥ 0. Under certain boundary conditions,

one-dimensional symmetry of solutions has been shown provided monotonicity / growth /
stability conditions on solutions in certain dimensions N .

Periodic strip. In the following, we focus on the infinite strip domain

Ω = R× T
N−1

in x1 direction where T = R/Z is the flat torus. For d ≥ 1 and nonnegative continuous
potentials W : Rd → R+, we set the energy functional

E(u) =

∫
Ω

1

2
|∇u|2 +W (u) dx, u : Ω → R

d.

In this context, the boundary condition (1) becomes a necessary condition for finite energy
configurations:

Lemma 1 ([2]). Assume that W has a finite number of zeros and lim inf |u|→∞W (u) > 0. If

E(u) < ∞, then there exist two zeros u± ∈ R
d of W such that

lim
x1→±∞u(x1, ·) = u± in L2 and a.e. in T

N−1. (2)

Thus, for a.e. x′ ∈ T
N−1, x1 ∈ R �→ u(x1, x

′) represents a curve connecting u± in R
d

endowed with the singular metric gW = 2Wg0 where g0 is the Euclidean metric. Let

geodW (u−, u+) = inf

{∫ 1

−1

√
2W (γ(t)) |γ̇| dt : γ ∈ Lip(−1, 1), γ(±1) = u±

}
.

Corollary 2. If a minimal geodesic connecting two zeros u± of W in (Rd, gW ) exists, then
any global minimiser of E connecting u± is 1D, i.e., u = u(x1).

Proof. If u : Ω → R
d satisfies (2), we have:

E(u) =

∫
Ω

1

2
|∇′u|2 + 1

2
|∂1u|2 +W (u) dx ≥

∫
Ω

1

2
|∇′u|2 dx+ geodW (u−, u+). (3)

It proves that optimal 1D transition layers connecting u± are global minimisers; moreover,
if u is a global minimiser of E, then ∇′u = 0 a.e. in Ω, so u = u(x1).
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Our model. From now on, we assume that N = d and u : Ω → R
N is divergence-

free. This constraint is natural in certain asymptotic regimes in liquid crystals, elasticity,
ferromagnetism etc. In particular, if

ū(x1) =

∫
TN−1

u(x1, x
′) dx′

is the x′-average of u and E(u) < ∞, then ū is continuous with constant first compo-
nent, i.e., ū1 = a in R. Moreover, as in Lemma 1, if the set {W (a, ·) = 0} is finite and
lim infu1→a, |u′|→∞W (u1, u

′) > 0, then there are two zeros u± of W (a, ·) such that (2) holds

(see [2, Theorem 1.3]). We want to determine W : RN → R+ such that

inf
{
E(u) : u : Ω → R

N ,∇ · u = 0 with (2)
}

(4)

has only one-dimensional global minimisers.1 They satisfy the nonlinear Stokes system
−∆u+∇W (u) = ∇p for some pressure p (due to the constraint ∇ · u = 0).

Calibrations. Inspired by the beautiful paper of Jin-Kohn [3], our strategy is to construct
calibrations Φ : RN → R

N such that∫
Ω
∇ · [Φ(u)] dx ≤ E(u) for every u : Ω → R

N with ∇ · u = 0 and (2), (5)

and

there exists u∗ satisfying

∫
Ω
∇ · [Φ(u∗)] dx = E(u∗), ∇ · u∗ = 0 and (2). (6)

Note that (5) & (6) yield u∗ is a global minimiser in (4). The aim is to prove that u∗ is
1D and that the equality in (5) is achieved only for 1D vector fields u. Roughly speaking,
this is related with the equipartition of the energy density for any minimiser u in (4), i.e.,
1
2 |∇u|2 = W (u) in Ω.

Results for N = 2. The typical example is given by the Aviles-Giga model where W (u) =
1
4(1− |u|2)2; note that {W (a, ·) = 0} is a finite set 2 for every a ∈ R. Jin-Kohn proved that
optimal 1D transition layers are global minimizers in (4) (for the reverse implication, see
Theorem A below). Moreover, they proved for the potential Wδ(u) =

1
4 (1− δu22 −u21)

2 with
δ > 0 small enough that 1D transition layers are no longer global minimizers in (4). Our
main result is the following:

Theorem A ([1]). Assume that W = 1
2w

2 where w ∈ C2(R2) solves the Tricomi equation

∂11w(u)− f(u1)∂22w(u) = 0 for every point u = (u1, u2) ∈ R
2

with f ∈ C1(R) satisfying |f | ≤ 1. If u± = (a, u±2 ) are two zeros of W such that W (a, ·) > 0
in the interval (u−2 , u

+
2 ), then any minimizer u ∈ L∞ in (4) is 1D.

1Note that for divergence-free maps u, (3) holds if additionally u1 = a in Ω.
2Without the constraint ∇ · u = 0, no global minimisers of E exist when W (u) = 1

4
(1− |u|2)2 since two

zeros u± can be connected within the curve {W = 0}, so the infimum of E vanishes.
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The assumption u ∈ L∞ can be dropped out provided that |∇w(u)| ≤ Ceβ|u|2 for every
u ∈ R

2 for some C, β > 0. If f = 1, then w solves the wave equation (for example, the Aviles-
Giga potential). If f = −1, then w is an harmonic function, in particular, w(u) = u22 − u21.
If f = 1

δ with δ ≥ 1, we recover the potential Wδ (in a different regime of δ than in [3]).
The proof of Theorem A is based on constructing a calibration Φ such that

∇Φ(u) =

(
α(u) w(u)

f(u1)w(u) α(u)

)

for some function α.

Results for general N ≥ 2. We present two strategies to construct calibrations Φ. We
denote by Π0 (resp. Π+) the projection on traceless N ×N matrices (resp. the projection
on symmetric matrices). For divergence-free u : Ω → R

N , we have:

∇ · [Φ(u)] = ∇Φ(u) : Π0∇uT = Π0∇Φ(u) : ∇uT ≤ 1

2
(|∇u|2 + |Π0∇Φ(u)|2).

Strategy 1. We impose that |Π0∇Φ(u)|2 ≤ 2W (u) for every u ∈ R
N . In particular,

(5) holds. This strategy yields the following result (see [1, Theorem 2.11]): Assume that
X = {x0, . . . , xN} is an affine basis in R

N and ρ is a (prescribed) metric on X. Then there
exists a potential W such that X = {W = 0}, ρ = geodW on X ×X and any minimiser of
(4) connecting u± ∈ X in a periodic strip in direction ν ⊥ (u+ − u−) is 1D. The proof is
based on the calibration Φ = ϕν where ϕ ∈ Lip(RN ) satisfies |ϕ(u+)− ϕ(u−)| = ρ(u+, u−)
for every u± ∈ X, yielding the potential W = 1

2 |∇ϕ|2.
Strategy 2. We impose that ∇Φ(u) is symmetric and |Π0∇Φ(u)|2 ≤ 4W (u) for every
u ∈ R

N (the constant 4 is crucial here). Then for divergence-free u,

∇ · [Φ(u)] = Π0∇Φ(u) : ∇uT = Π0∇Φ(u) : Π+∇uT ≤ |Π+∇u|2 + 1

4
|Π0∇Φ(u)|2.

It yields (5) since ‖∇u‖2L2(Ω) = 2‖Π+∇u‖2L2(Ω) (see [1, Proposition 4.12]). This strategy

yields a class of potentials W for which (4) has only 1D global minimisers (see [1, Theo-
rem 2.10]). The proof is based on calibrations such that ∇Φ = ∇2Ψ with Ψ solving the wave
equation in any directions xi and xj, i.e., ∂iiΨ = ∂jjΨ in R

N ; the potential is then given by
W = 1

2

∑
i<j |∂jΦi|2. In particular, we recover the following extension of the Aviles-Giga

potential in dimension N ≥ 3: W (u) = 1
4 (1 − |u|2)2 + |u′′|2(u21 + u22) corresponding to

Ψ(u) = −u1u2√
2
(
u2
1+u2

2
3 + |u′′|2 − 1) for every u = (u1, u2, u

′′) ∈ R
N with u′′ = (u3, . . . , uN ).

Perspective. Motivated by micromagnetics, a future problem is to extend this study for
divergence-free vector fields u satisfying the nonconvex constraint |u| = 1.
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