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Abstract

We study a variational model from micromagnetics involving a nonlocal Ginzburg-Landau

type energy for S
1-valued vector fields. These vector fields form domain walls, called Néel walls,

that correspond to one-dimensional transitions between two directions within the unit circle S
1.

Due to the nonlocality of the energy, a Néel wall is a two length scale object, comprising a core

and two logarithmically decaying tails. Our aim is to determine the energy differences leading to

repulsion or attraction between Néel walls. In contrast to the usual Ginzburg-Landau vortices,

we obtain a renormalised energy for Néel walls that shows both a tail-tail interaction and a

core-tail interaction. This is a novel feature for Ginzburg-Landau type energies that entails

attraction between Néel walls of the same sign and repulsion between Néel walls of opposite

signs.

Keywords: Néel walls, Ginzburg-Landau, nonlocal, renormalised energy, interaction, micro-

magnetics

1 Introduction

In this article, we analyse a variational model describing the formation of domain walls in ferromag-
netic thin films. These domain walls are called Néel walls and represent one-dimensional transition
layers connecting two directions of the magnetisation within the unit circle S

1. Due to dipolar effects,
the variational problem is strongly nonlocal and generates Néel walls with an interesting core-and-
tail structure. Our aim is to study the repulsive or attractive interaction between the domain walls
in terms of their energy. This interaction energy governs the location of the domain walls and is
analogous to the renormalised energy in Ginzburg-Landau type problems (see the seminal book [3]).
Although our analysis builds to some extent on the theory of Ginzburg-Landau vortices, our model
has novel features that have not been studied before. In contrast to the usual Ginzburg-Landau
vortices, we obtain a renormalised energy for Néel walls incorporating two types of interaction: a
tail-tail interaction and a core-tail interaction. This is due to the nonlocal character of the model
and the two distinct length scales of the core and the tails (of logarithmic decay). Moreover, Néel
walls of opposite signs repel each other and Néel walls of the same sign attract each other, whereas
Ginzburg-Landau vortices show the opposite behaviour. This observation is consistent with the
physical prediction (see [12, Section 3.6.(C)]). Furthermore, in typical Ginzburg-Landau systems,
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most of the energy is contained in the highest order term, whereas in our model, it is the lowest
order term that contains most of the energy. From a technical point of view, the lack of a quantised
Jacobian is an additional difficulty in the analysis of our model.

1.1 The model

The magnetisation We consider a one-dimensional model for transition layers (incorporating
several Néel walls) in the magnetisation of a thin ferromagnetic film. The magnetisation is repre-
sented by a continuous map

m : (−1, 1) → S
1.

More precisely, we can think of a ferromagnetic thin film of the shape (−1, 1)× (0, h)×R (with very
small thickness h > 0 in the x2-direction) and a magnetisation vector field M : (−1, 1)×(0, h)×R →
S2 of the form M(x1, x2, x3) = (m(x1), 0). Here, the non-dependence of M on x2 is a natural
assumption for a thin film, whereas the non-dependence on x3 represents a simplification of the
problem. (It implies that the walls appear in planes parallel to the x2x3-plane and we assume that
the magnetisation depends only on the normal direction x1.) The strip over x1 ∈ (−1, 1) does not
necessarily represent the whole ferromagnetic sample, but merely a region that contains the Néel
walls in question. The assumption that the third component M3 vanishes is consistent with the
fact that Néel walls correspond to an in-plane magnetisation. Another characteristic feature of Néel
walls is that the magnetisations on either side (represented by m(−1) and m(1) in our model) differ
by a vector parallel to the wall plane (in this case the x2-direction). Thus there exists a number
α ∈ (0, π) such that

m1(−1) = m1(1) = cosα. (1)

Moreover, we will sometimes assume that

m(−1) = m(1) = (cosα, sinα), (2)

so that a winding number can be defined.
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Figure 1: A magnetisation m = (m1,m2) of winding number −1 consisting of a positive Néel wall
of angle 2α and a negative Néel wall of angle 2(π − α) (right).

More precisely, since m is continuous, there exists a continuous function ϕ : (−1, 1) → R, called
a lifting of m, such that

m = (cosϕ, sinϕ) in (−1, 1)

and ϕ(−1) = α. If (2) holds, then the winding number (or topological degree) of m is defined as

deg(m) =
ϕ(1) − ϕ(−1)

2π
∈ Z.

The angle α ∈ (0, π) will stay fixed throughout this paper. (The case α ∈ {0, π} is geometrically
different and is not studied here.) However, our arguments do not require that m2(−1) = m2(1) =
sinα in principle and we will present our results in a wider generality, i.e., with m2(±1) ∈ {± sin θ}.
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The energy The energy for our model comprises two terms, called the exchange energy and the
magnetostatic energy (or stray-field energy), respectively. The exchange energy is modelled by the
following expression involving the L2-norm of the derivative m′:

ǫ

2

ˆ 1

−1

|m′|2 dx1 =
ǫ

2

ˆ 1

−1

(ϕ′)2 dx1 =
ǫ

2

ˆ 1

−1

(m′
1)

2

1 −m2
1

dx1.

Here ǫ > 0 is a ratio between a material constant called the exchange length and the length scale
of the thin film. (This is a model obtained after rescaling, i.e., the length scale of the ferromagnetic
sample has been set to unit size.) The number ǫ is assumed to be small, and we will eventually
study the limit ǫց 0.

We write x = (x1, x2) for a generic point in the upper half-plane R2
+ = R × (0,∞). In order to

compute the magnetostatic energy, we need to solve the boundary value problem1

∆u = 0 in R
2
+, (3)

∂u

∂x2
= −m′

1 on (−1, 1)× {0}, (4)

∂u

∂x2
= 0 on (−∞,−1)× {0} and on (1,∞) × {0}. (5)

Equivalently, if we extend m1 by the constant cosα on R \ (−1, 1), then
ˆ

R
2
+

∇u · ∇ζ dx =

ˆ ∞

−∞

m′
1ζ( · , 0) dx1 for every ζ ∈ C∞

0 (R2). (6)

Let Ẇ 1,2(R2) be the completion of C∞
0 (R2) with respect to the norm

‖ζ‖Ẇ 1,2(R2) = ‖∇ζ‖L2(R2).

(We sometimes abuse notation and treat elements of Ẇ 1,2(R2) as functions, even though the com-
pletion process identifies any two functions that differ by a constant.) For an open set Ω ⊂ R2, we
write Ẇ 1,2(Ω) for the set of all restrictions of functions in Ẇ 1,2(R2) to Ω and

‖ζ‖Ẇ 1,2(Ω) = ‖∇ζ‖L2(Ω).

By the Lax-Milgram theorem, solutions of (6) are unique in Ẇ 1,2(R2
+) (i.e., up to a constant). Thus

the quantity
1

2

ˆ

R
2
+

|∇u|2 dx

depends only on m1. This is the term representing the magnetostatic energy. It is worth remarking
that the solutions u of (3)–(5) in Ẇ 1,2(R2

+) have a limit for |x| → ∞. Indeed, if we extend u to R2

by even reflection, then we obtain a harmonic function near ∞ with finite Dirichlet energy, and it is
well-known that the limit exists at ∞. Then we normalise this constant and define U(m) (sometimes
also denoted U(m1)) to be the unique solution of (6) in Ẇ 1,2(R2

+) with

U(m) → 0 as |x| → ∞.

Moreover, in view of (6), using the extension of m1 by the constant cosα on R \ (−1, 1), we may
express the magnetostatic energy in terms of the homogeneous ‖ · ‖Ḣ1/2 -seminorm of m1 (see e.g.
[8, 13]):

1

2

ˆ

R
2
+

|∇U(m)|2 dx =
1

2

ˆ

R

∣

∣

∣

∣

∣

∣

∣

∣

∣

d

dx1

∣

∣

∣

∣

1/2

m1

∣

∣

∣

∣

∣

2

dx1. (7)

1Here, ∇u represents the stray-field associated to M , which is also invariant in the x3-direction.
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To summarise, we study the energy functional

Eǫ(m) =
ǫ

2

ˆ 1

−1

|m′|2 dx1 +
1

2

ˆ

R
2
+

|∇U(m)|2 dx

for m ∈ W 1,2
(

(−1, 1), S1
)

satisfying (1). We are interested in the behaviour of m and of its energy
Eǫ(m) as ǫց 0, especially under conditions that force the nucleation of several Néel walls.

Néel walls If we trace m from −1 to 1, we may well find that m winds around the circle S1 one
or several times. If that happens, then there necessarily exist two points a+, a− ∈ (−1, 1) such that
m1(a+) = 1 and m1(a−) = −1. But even if the topology of m is trivial (i.e., if deg(m) = 0), a
transition from (cosα, sinα) to (cosα,− sinα) may occur, giving rise to a point in between where
m1 reaches one of the values ±1. We think of any such transition as a Néel wall and we use these
points in order to track them. Obviously, it is possible form1 to attain ±1 when no proper transition
occurs, but from the energetics point of view, this makes no difference and we call this a Néel wall
anyway. We speak of a positive or negative Néel wall depending on the sign of m1 (see Figure 1).
We will see that a Néel wall has a two-length scale structure comprising a core of size δ = ǫ log 1

ǫ
around the transition point and two tails of size O(1), where m1 decays logarithmically to cosα
(see Theorem 22 below). The total change of the phase during the transition is called the rotation
angle of the Néel wall (which may be 0 by the above convention).2 For more physical background,
we refer to [12, 10].

We will assume in the following that there are certain points a1, . . . , aN ∈ (−1, 1) such that

−1 < a1 < · · · < aN < 1 (8)

and certain numbers d1, . . . , dN ∈ {−1, 1} such that

m1(an) = dn for n = 1, . . . , N. (9)

These points (an)1≤n≤N represent the positions of the Néel walls that we study, while (dn)1≤n≤N
indicate whether a Néel wall is positive or negative. We keep the number N of walls fixed throughout
the paper. Let

AN =
{

a = (a1, . . . , aN) ∈ (−1, 1)N with (8)
}

.

For a ∈ AN and d ∈ {±1}N , we consider the set

M(a, d) =
{

m ∈ W 1,2((−1, 1); S1) with (1) and (9)
}

.

Our aim is to answer the following question.

Question. For a given a ∈ AN and d ∈ {±1}N , what is the behaviour of

inf
M(a,d)

Eǫ as ǫց 0?

That is, if we prescribe Néel walls at the positions a1, . . . , aN with signs d1, . . . , dN , what energy
does it take to achieve such a configuration? We first note that a minimal configuration m always
exists and that its first component m1 is unique. (Obviously, |m2| is also unique, but the sign of
the m2 component can change between an and an+1 for two different minimisers.)

2When studying the interaction between a pair of walls, the physics literature (see [12]) distinguishes between
winding walls, which refers to a pair with the same rotation sense, and unwinding walls, which refers to a pair
with opposite rotation sense. Except for degenerate cases, a pair of Néel walls with opposite signs according to our
terminology corresponds to winding walls and a pair with the same sign corresponds to unwinding walls.
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Proposition 1. There exists a minimiser of infM(a,d)Eǫ for any ǫ > 0. Moreover, any minimiser
m is smooth on (−1, 1) \ {a1, . . . , aN} and has a unique m1-component.

Proof. The direct method in the calculus of variations yields a minimiser m of Eǫ in M(a, d). The
regularity of m is standard (see, e.g., [14]). The uniqueness of m1 follows from the strict convexity

of (7) and of the function (v, w) 7→ v2

1−w2 for (v, w) ∈ R × (−1, 1).

We look for an expansion of infM(a,d)Eǫ similar to [9], where it is shown that

inf
M(a,d)

Eǫ =

N
∑

n=1

π(dn − cosα)2

2 log 1
ǫ

+O

(

log log 1
ǫ

(

log 1
ǫ

)2

)

(10)

for ǫ > 0 small. Since this is not good enough to understand the interaction between domain walls,
we need to determine the second term in such an expansion completely and identify the third term
as well. This problem is analogous to finding the “renormalised energy” in Ginzburg-Landau type
problems, but in the context of Néel walls, it has remained open until now.

We give the answer to this question in Theorem 2. The key is to identify the contributions to the
renormalised energy coming from the interaction between two tails and between a core and a tail of
two different walls. It turns out that the above expansion is easier to understand when we replace
ǫ by δ = ǫ log 1

ǫ (recall that this is the typical length scale of the core of a Néel wall). The first
two terms of the expansion (10) are then united in a single leading order term in the expansion in
1/| log δ| (see (11) below). The next-to-leading order term corresponds to the renormalised energy.

1.2 Motivation

There are several reasons for asking the above question. First, we may want to study the positions of
Néel walls in equilibrium. Once we have determined the renormalised energy, we can find the likely
positions by minimising it. Second, we may want to study the dynamics of Néel walls (see, e.g.,
[4, 6]). The dynamics of the magnetisation is described by the Landau-Lifshitz-Gilbert equation,
which is derived from the micromagnetic energy through a variational principle. For reasons that
are explained below, understanding the asymptotic behaviour of the energy is expected to be a
key step towards deriving an effective motion law for the walls in the limit ǫ ց 0. A third reason
for studying these long range interactions is that we want to understand some phenomena in thin
ferromagnetic films where they matter, such as cross-tie walls. A cross-tie wall is a typical domain
wall that consists in an ensemble of Néel walls and micromagnetic vortices (similar to Ginzburg-
Landau vortices), see [9, 1, 29, 30]. It has an internal length scale, the size of which is not predicted
by any existing theory, and our analysis on the interaction energy of Néel walls could represent an
significant step forward here.

A related question concerns the analysis of general transition layersm carrying a winding number
when the location of the Néel walls is no longer prescribed. More precisely, suppose that the
lifting ϕ : (−1, 1) → R of m = (cosϕ, sinϕ) satisfies the boundary conditions ϕ(−1) = α and
ϕ(1) = 2ℓπ + α, so that we have winding number ℓ, i.e. ℓ = deg(m). Hence the magnetisation
performs ℓ full rotations, so that (2) is satisfied. Then by continuity, we necessarily have a certain
number of transitions between (cosα, sinα) and (cosα,− sinα).

Open problem. For a prescribed winding number and given suitable control of Eǫ(m), what can
we say about the profile of m and of the stray field potential U(m)?

As mentioned before, a prescribed degree ℓ will automatically give rise to certain Néel walls. But
it is not obvious, for example, that these Néel walls stay separate from one another (uniformly as
ǫ→ 0) and that one can rule out other transitions. In fact, it is an open question whether the lifting
of m is monotone even for minimisers (which would exclude unexpected transitions). However,
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assuming good control of the energy, we expect to have exactly 2ℓ transitions (corresponding to the
expected Néel walls) and no extraordinary behaviour of the magnetisation in between. For the stray
field energy, it is expected that the energy density concentrates at the walls. Such information would
be useful in the study of compactness properties in the appropriate function spaces, for example
with a view to Γ-convergence.

1.3 Main results

For any ǫ ∈ (0, 1
2 ], let

δ = ǫ log
1

ǫ

and define the metric ̺ on (−1, 1) by3

̺(b, c) =
|b− c|
1 − bc

∈ [0, 1) for b, c ∈ (−1, 1).

We have the following result, answering the question on page 4.

Theorem 2. There exists a function e : {±1} → R such that for any a ∈ AN and d ∈ {±1}N , the
following holds true. Let γn = dn − cosα for n = 1, . . . , N and let

W(a, d) =

N
∑

n=1

e(dn) −
π

2

N
∑

n=1

γ2
n log(2 − 2a2

n) −
π

2

N
∑

n=1

∑

k 6=n

γkγn log

(

1 +
√

1 − ̺(ak, an)2

̺(ak, an)

)

.

Then

W(a, d) = lim
ǫց0

(

(

log
1

δ

)2

inf
M(a,d)

Eǫ −
π

2
log

1

δ

N
∑

n=1

γ2
n

)

.

In analogy to the theory of Ginzburg-Landau vortices, we call W(a, d) the renormalised energy
for the N walls placed at a = (a1, . . . aN) with signs d = (d1, . . . , dN ). As the theorem shows,
W(a, d) represents the next-to-leading order term in the expansion of infM(a,d)Eǫ in 1/| log δ|. If we
express these asymptotics in terms of ǫ, our result improves (10) by determining the precise second
and third coefficients:

inf
M(a,d)

Eǫ =
1

(

log 1
ǫ

)2

(

1

2

N
∑

n=1

π(dn − cosα)2
(

log
1

ǫ
+ log log

1

ǫ

)

+ W(a, d)

)

+ o

(

1
(

log 1
ǫ

)2

)

. (11)

We now briefly discuss how the above expression comes about. Suppose that for a given a ∈ AN ,
we study minimisers m of Eǫ in M(a, d). When ǫ is small, we expect to have a typical Néel wall
profile near each of the points a1, . . . , aN with the prescribed signs d1, . . . , dN , and the full transition
layer m is essentially a superposition of all of these. As discussed previously, we can think of a Néel
wall as consisting of two parts: a small core around an and two logarithmically decaying tails. In our
situation, the walls are confined in the relatively short interval (−1, 1) and each tail will interact with
the other walls and with the boundary as well. We can then account for the full energy infM(a,d)Eǫ
(at leading and next-to-leading order) as follows.

Core energy. The core of each wall requires a certain amount of energy, namely

e(1)
(

log 1
δ

)2 and
e(−1)
(

log 1
δ

)2

3We will not use the fact that ̺ is a metric, but if we want to verify it, we can use that ̺(Φd(b), Φd(c)) = ̺(b, c)
for the Möbius transforms Φd defined in (26) below for every d ∈ (−1, 1). For the triangle inequality, it then suffices
to show that ̺(c, 0) ≤ ̺(b, 0) + ̺(b, c) for b, c ∈ (−1, 1), which is not difficult.
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for a positive and a negative wall, respectively. The constants e(±1) are given in Definition 26
below as limits of a rescaled energy of the core profile as ǫ → 0. Then the sum accounts for
the term

∑N
n=1 e(dn)
(

log 1
δ

)2 .

This is the only term where we have a contribution from the exchange energy and it appears
only at next-to-leading order in the full energy. All the remaining terms below come from the
magnetostatic energy alone.

Tail energy. The two tails of the wall at an give rise to the energy

πγ2
n

2 log 1
δ

,

leading to a total of

π
∑N

n=1 γ
2
n

2 log 1
δ

.

This is the leading order term of the full energy.

Tail-boundary interaction. Moving a wall relative to the boundary points ±1 will deform the
tail profile, resulting in a change of the energy. This phenomenon gives rise to the energy

πγ2
n log(2 − 2a2

n)

2
(

log 1
δ

)2

for the wall at an. Summing up these contributions, we obtain

π

2
(

log 1
δ

)2

N
∑

n=1

γ2
n log(2 − 2a2

n).

(The sign here is not a mistake; it is the opposite of the sign of the corresponding expression
in Theorem 2.) This means that the tails are attracted by the boundary, in the sense that the
energy decreases if an approaches ±1.

Tail-tail interaction. There is an energy contribution coming from reinforcement or cancellation
between the stray fields generated by different walls. For the walls at ak and an with k 6= n,
this amounts to

πγkγn

2
(

log 1
δ

)2 log

(

1 +
√

1 − ̺(ak, an)2

̺(ak, an)

)

.

The total contribution is

π

2
(

log 1
δ

)2

N
∑

n=1

∑

k 6=n

γkγn log

(

1 +
√

1 − ̺(ak, an)2

̺(ak, an)

)

.

(Again we have the opposite sign relative to the above theorem.) A conclusion is that the tails
of two walls attract each other if they have opposite signs and repel each other if they have
the same sign.4

4This is because the function t 7→ 1+
√

1−t2

t
is decreasing on (0, 1).
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Tail-core interaction. Since the profile of a Néel wall decays only logarithmically, it will change
the turning angle of the neighbouring walls slightly. This has an effect on the energy as well
(at the next-to-leading order). Indeed, the tail of the wall at ak and the core of the wall at an
with k 6= n lead to a contribution of

− πγkγn
(

log 1
δ

)2 log

(

1 +
√

1 − ̺(ak, an)2

̺(ak, an)

)

.

We also have an interaction between the two tails of a wall and its own core: if k = n, then
we obtain the energy

−πγ
2
n log(2 − 2a2

n)
(

log 1
δ

)2 .

This gives a total of

− π
(

log 1
δ

)2

N
∑

n=1

(

γ2
n log(2 − 2a2

n) +
∑

k 6=n

γkγn log

(

1 +
√

1 − ̺(ak, an)2

̺(ak, an)

))

.

This is twice the size of the terms from the tail-boundary interaction and tail-tail interaction,
but with the opposite signs, resulting in a net repulsion between walls of opposite signs and
a net attraction between walls of the same sign. Furthermore, we have a net repulsion of the
walls by the boundary.

Notwithstanding the term ‘energy’ used in this description, strictly speaking, these are energy
differences and therefore some of them may be negative. All except one of these contributions occur
similarly in the theory of Ginzburg-Landau vortices. The core-tail interaction, on the other hand,
is new and more delicate to handle.

1.4 Physical relevance

Our result represents a rigorous proof of the physical prediction on the interaction energy between
Néel walls. Indeed, Hubert and Schäfer ([12, Section 3.6. (C)]) predict the following behaviour
in the case of a pair of Néel walls: “The extended tails of Néel walls lead to strong interactions
between them [...] The interactions become important as soon as the tail regions overlap. The sign
of the interaction depends on the wall rotation sense. Néel walls of opposite rotation sense (so-called
unwinding walls) attract each other because they generate opposite charges in their overlapping tails.
If they are not pinned, they can annihilate. Néel walls of equal rotation sense (winding walls) repel
each other.” (We recall that unwinding walls correspond—according to our definition in Section
1.1—to a pair of Néel walls with the same sign, while winding walls correspond to a pair of walls
with the opposite signs as in Figure 1.)

1.5 Comparison with a linear model

If we replace the exchange energy by the simpler expression

ǫ

2

ˆ 1

−1

(m′
1)

2 dx1,

then the energy functional, now given by

Ẽǫ(m1) =
ǫ

2

ˆ 1

−1

(m′
1)

2 dx1 +
1

2

ˆ

R
2
+

|∇U(m1)|2 dx, m1 : (−1, 1) → R,
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becomes a quadratic form and the Euler-Lagrange equation for its critical points becomes linear.
This functional has been used as a tool for studying the energy of Néel walls [9, 14]. Since the
exchange energy in Eǫ does not enter the expansion (10) at the leading order, we may expect good
approximations from the linear model involving the energy functional Ẽǫ. The exchange energy does
have an effect on the next-to-leading order term however, even though it is not through a direct
contribution but rather by changing the core width of a domain wall. For the linear model, the
core width of a domain wall is of order ǫ. Accordingly, for the functional Ẽǫ, the expansion that
corresponds to (10) is of the form

inf
m∈M(a,d)

Ẽǫ(m1) =

N
∑

n=1

π(dn − cosα)2

2 log 1
ǫ

+
W̃(a, d)
(

log 1
ǫ

)2 + o

(

1
(

log 1
ǫ

)2

)

as ǫց 0. Here, W̃ is nearly the same as the function W from Theorem 2, except that it may differ
by a number depending only on N and d. That is, there exists a function ẽ : {±1} → R such that

W̃(a, d) =

N
∑

n=1

ẽ(dn) − π

2

N
∑

n=1

γ2
n log(2 − 2a2

n) − π

2

N
∑

n=1

∑

k 6=n

γkγn log

(

1 +
√

1 − ̺(ak, an)2

̺(ak, an)

)

.

As for the full model, we may regard ẽ(±1) as the core energy of a transition of sign ±1. Our
analysis does not give an explicit expression, but for variational principles where the number and
signs of the Néel walls does not change, this part of the limiting energy is irrelevant.

The formula can be proved with the same arguments as in the proof of Theorem 2 below, although
the linearity allows a few shortcuts. Therefore, we do not give a separate proof but leave it to the
reader to make the necessary changes.

As a consequence, the linear model does not describe the interaction between Néel walls accu-
rately, but the discrepancy is easily corrected by adjusting the core width (i.e., replacing ǫ by δ).
Although we study only the energy of interacting Néel walls in this paper, the analogy to the theory
of Ginzburg-Landau vortices (see Sect. 1.6) suggests that the same may be true for the dynamics
of Néel walls. The simplified model may therefore be useful as a test case for future analysis, or,
with the necessary care and the appropriate corrections, even be used for quantitative predictions.

1.6 Comparison with Ginzburg-Landau vortices

The interaction between topological singularities has been intensively studied in the last two decades
in the context of Ginzburg-Landau problems. The work was pioneered by Bethuel, Brezis, and
Hélein [2, 3], and an overview of later developments can be found in a book by Sandier and Serfaty
[31]. These problems are designed to describe phenomena in superconductors and Bose-Einstein
condensates, and a simple model that captures some of the main features is based on the functionals

Gǫ(f) =

ˆ

Ω

(

1

2
|∇f |2 +

1

4ǫ2
(1 − |f |2)2

)

dx (12)

for a domain Ω ⊂ R
2 and a function f : Ω → R

2. We identify R
2 with C. Then in the limit ǫ ց 0,

the analysis in the aforementioned papers leads to a limiting function f : Ω → C of the form

f(z) = eiθ(z)
N
∏

n=1

(

z − an
|z − an|

)dn

for certain points a1, . . . , aN ∈ Ω, integers d1, . . . , dN ∈ Z\{0}, and a function θ : Ω → R. The
renormalised energy

lim inf
rց0

(

1

2

ˆ

Ω\
SN

n=1Br(an)

|∇f |2 dx− π log
1

r

N
∑

n=1

d2
n

)

9



appears in a result similar to Theorem 2 (together with an additional term describing the core en-
ergy). Here Br(a) stands for the open ball of radius r and centre a. We have topological singularities
at a1, . . . , an with vortex structures and with topological degrees d1, . . . , dn. These data are encoded
in the distributional Jacobian

J(f) =
1

2
curl(f⊥ · ∇f),

where f⊥ = (−f2, f1).
The renormalised energy gives information about the vortex positions in equilibrium, but it is

also important for their dynamics. Typically, if f evolves by a variational equation derived from Gǫ,
then on an appropriate time scale, the limiting motion law for the vortices (as ǫ ց 0) is described
by an analogous equation derived from the renormalised energy. This is true for gradient flows
[21, 20, 17], Schrödinger type equations [5, 23], as well as nonlinear wave equations [22, 16].

It has been observed before that certain phenomena from micromagnetics give rise to similar
models [11, 19, 18, 26, 27]. The connection to our model is less obvious, but can be seen once we
show that under assumptions such as in Theorem 2, we obtain a limiting function from the rescaled
stray field potential (log 1

δ )U(m) of the form

u∗a,d(x) = u∗(x) +

N
∑

n=1

γn

(

arctan

(

x2

x1 − an

)

− π(x1 − an)

2|x1 − an|

)

for some a ∈ AN and d ∈ {±1}N and a harmonic function u∗ : R2
+ → R that is smooth near

(−1, 1) × {0} (see Sect. 2 for details). Examining u∗a,d near the point (an, 0) ∈ R2, we see that it
behaves like the phase of a vortex in the upper half-plane, up to the constant γn. The expression

lim inf
rց0

(

1

2

ˆ

R
2
+\

SN
n=1Br(an,0)

|∇u∗a,d|2 dx− π

2
log

1

r

N
∑

n=1

γ2
n

)

also plays a role, although for our problem, it only accounts for a part of renormalised energy in
Theorem 2 (even after adding the core energy). In fact, a Néel wall at an behaves like a vortex
of “degree” γn in many respects, which is why the toolbox from the theory of Ginzburg-Landau
vortices is very useful for the analysis.

There are, however, significant differences to Ginzburg-Landau vortices as well. A Néel wall is a
two-length scale object, comprising a core and two tails, each with its own characteristic length. In
contrast, in the standard Ginzburg-Landau problem, a vortex has a single length scale characterising
its core and the renormalised energy between the vortices comes essentially from the interaction of
its out-of-core structure. For Néel walls, we have a renormalised energy consisting of two parts. The
interaction between the tails of two walls is similar to the interaction between Ginzburg-Landau
vortices and gives rise to the above expression. But in addition, we have an interaction between the
core of one wall and the tail of another, which is a novel feature for Ginzburg-Landau type systems.
This interaction is responsible for the fact that we have attraction for walls of the same sign and
repulsion in the case of opposite signs, whereas for Ginzburg-Landau vortices, we have attraction
for degrees of opposite signs and repulsion for degrees of the same sign. Finally, our “degree” γn
is not quantised in the same way as the degree of Ginzburg-Landau vortices. It does take only
two values (±1 − cosα), but these depend on the choice of the angle α and are not topological
invariants. As a consequence, the Jacobian becomes a much less powerful tool. To overcome these
difficulties, we use duality arguments and “logarithmically failing” interpolation inequalities (see
[7, 15]), Γ-convergence methods, and refined elliptic estimates.

In our model, the magnetostatic energy, being of order O(1/| log δ|), dominates the higher order
exchange energy (of order O(1/(log δ)2) for small values of ǫ. This is in contrast to most Ginzburg-
Landau systems, where the highest order term is dominant. This is the case for the functionals

10



Gǫ in (12), but also for similar models coming from micromagnetics. For example, the model for
boundary vortices studied by Kurzke [18] contains a term coming from the exchange energy and one
coming from the magnetostatic energy as well, but in the analysis, the roles of the two are reversed
relative to the model for Néel walls.

1.7 Notation

We now introduce some notation that we will use frequently throughout this paper. As mentioned
previously, we define δ = ǫ log 1

ǫ . This is the scale of the Néel walls’ typical core width.
If x0 ∈ R

2 and r > 0, then we write Br(x0) for the open ball in R
2 of radius r centred at

x0. Furthermore, we write B+
r (x0) = Br(x0) ∩ R2

+. For a set S ⊂ R2, we also use the notation
∂+S = ∂S ∩ R2

+.
For a vector ξ = (ξ1, ξ2) ∈ R2, we write ξ⊥ = (−ξ2, ξ1). If f : Ω → R is a function on a domain

Ω ⊂ R2 with gradient ∇f = ( ∂f∂x1
, ∂f∂x2

), then ∇⊥f = (− ∂f
∂x2

, ∂f∂x1
).

For a ∈ AN , we define

ρ(a) =
1

2
min{2a1 + 2, a2 − a1, . . . , aN − aN−1, 2 − 2aN}.

Thus this is a quantity that controls the distance between two points of a and the distance to the
boundary. For r > 0, also define

B∗
r (a) =

N
⋃

n=1

B+
r (an, 0)

and
Ωr(a) = R

2
+\B∗

r (a).

Given a function f : R2
+ → R with a well-defined trace on (−1, 1) × {0}, we often use the

shorthand notation f ′ for ∂f
∂x1

( · , 0) and

ˆ 1

−1

f dx1 =

ˆ 1

−1

f(x1, 0) dx1.

In addition to the space Ẇ 1,2(R2
+) introduced in Sect. 1.1, we also define Ẇ 1,2

∗ (R2
+; a) for a ∈ AN ,

which is the space of all u ∈ ⋂r>0 Ẇ
1,2(Ωr(a)) such that

sup
r>0

‖∇u‖2
L2(Ωr(a))

log
(

1
r + 2

) <∞.

If b ∈ (−1, 1) is a single point, then Ẇ 1,2
∗ (R2

+; b) is defined similarly.

2 The renormalised energy

When we study minimisers of Eǫ in M(a, d) and let ǫ tend to 0, then we expect the suitably rescaled
stray field potential to converge to a harmonic function with specific boundary data depending on
a and d. We compute this function here, in order to obtain the limiting magnetostatic energy. This
corresponds to the sum of the tail self-energies and the contributions of the core-tail, tail-tail, and
tail-boundary interactions. As a side product, we will also obtain information about the expected
logarithmic profile of the Néel walls.

11



2.1 The limiting rescaled stray-field potential

Fix a ∈ AN and d ∈ {±1}N . We recall that

γn = dn − cosα for n = 1, . . . , N

and we denote

σn =
π

2

(

N
∑

k=n+1

γk −
n
∑

k=1

γk

)

, n = 0, . . . , N.

We look for a solution of the following boundary value problem:

∆u∗a,d = 0 in R
2
+, (13)

u∗a,d = σ0 on (−1, a1) × {0}, (14)

u∗a,d = σn on (an, an+1) for n = 1, . . . , N − 1, (15)

u∗a,d = σN on (aN , 1) × {0}, (16)

∂u∗a,d
∂x2

= 0 on (−∞,−1) × {0} and on (1,∞) × {0}. (17)

The boundary data are chosen so that we have a jump of size −πγn at an for n = 1, . . . , N . We also
require that u∗a,d ∈ Ẇ 1,2

∗ (R2
+; a) so that the boundary conditions make sense. However, the Dirichlet

energy cannot be finite on all of R2
+, since any solution u∗a,d will behave similarly to the function5

N
∑

n=1

γn

(

arctan

(

x2

x1 − an

)

− π(x1 − an)

2|x1 − an|

)

near the boundary (−1, 1)× {0} (see Proposition 5 below). But we can compensate by considering
the expression

E∗
a,d(u

∗
a,d) =

1

2
lim inf
rց0

(

ˆ

Ωr(a)

|∇u∗a,d|2 dx− π log
1

r

N
∑

n=1

γ2
n

)

, (18)

and this will be part of the limiting energy. We will see that the unique solution u∗a,d of (13)–(17)
is the minimizer of E∗

a,d and corresponds to the limit as ǫ ց 0 of the rescaled stray field potential

(log 1
δ )U(mǫ) associated to the magnetisation mǫ with walls at a1, . . . , aN with prescribed signs

d1, . . . , dN (see Proposition 5 and Theorem 22).
In order to solve (13)–(17), we first study the simpler problem

∆u = 0 in R
2
+, (19)

u =
π

2
on (−1, 0) × {0}, (20)

u = −π
2

on (0, 1) × {0}, (21)

∂u

∂x2
= 0 on (−∞,−1) × {0} and (1,∞) × {0}. (22)

We can obtain a solution u∗a,d of (13)–(17) by a linear combination of solutions to problems of the
type (19)–(22) (see Proposition 5).

5This function satisfies (13)–(16), but not (17). It does not belong to Ẇ
1,2
∗

(R2
+; a) due to its behaviour at ∞.
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We first construct an explicit solution, using the fact that harmonic functions remain harmonic
upon precomposition with a conformal map. We identify R2 with C. Consider the following domain
in the complex plane C:

S = {w1 + iw2 ∈ C : w1 > 0 and 0 < w2 < π} .

Also consider the conformal map F : S → R2
+ with

F (w) = − 1

coshw
, w ∈ S.

Extend F continuously to the boundary ∂S \ {πi2 }. Assuming that u solves (19)–(22), set

û = u ◦ F.

Then û solves the boundary value problem

∆û = 0 in S,

û =
π

2
on (0,∞),

û = −π
2

on πi+ (0,∞),

∂û

∂x1
= 0 on i(0, π).

This problem has an obvious solution,

û(w) =
π

2
− Imw,

with Imw = w2 for w = w1 + iw2. Thus we obtain a solution of (19)–(22) by

u(z) = û(F−1(z)) =
π

2
− ImF−1(z), z ∈ R

2
+,

which can be written as

u = Im f for f(z) =
πi

2
− F−1(z), z ∈ R

2
+, (23)

where f is an holomorphic function. Since lim|z|→∞ F−1(z) = πi
2 , we conclude that lim|x|→∞ u(x) =

0.

Proposition 3. The function u from (23) is the unique solution of (19)–(22) in Ẇ 1,2
∗ (R2

+; 0). It
satisfies |u| ≤ π

2 in R2
+ and lim|x|→∞ u(x) = 0. Moreover, it is odd in x1, that is, u(x1, x2) =

−u(−x1, x2) for every x ∈ R2
+. Furthermore, there exists a constant C such that

∣

∣

∣

∣

∇u(x) − x⊥

|x|2
∣

∣

∣

∣

≤ C|x| (24)

for all x ∈ B+
1/2(0).

Proof. It is clear from the construction that |u| ≤ π
2 and lim|x|→∞ u(x) = 0. Since the Dirichlet

energy is conformally invariant, we have
ˆ

R2
+\Br(0)

|∇u|2 dz =

ˆ

F−1(R2
+\Br(0))

|∇û|2 dw.
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Note that

| coshw|2 =
1

4

(

ew + e−w
) (

ew̄ + e−w̄
)

=
1

4

(

e2Rew + e−2Rew + e2i Imw + e−2i Imw
)

=
1

2
cosh(2 Rew) +

1

2
cos(2 Imw) for w ∈ C.

(25)

Thus

F−1(R2
+\Br(0)) ⊂

{

w ∈ S : Rew <
1

2
arcosh

(

2

r2
+ 1

)}

.

It follows that
ˆ

R
2
+\Br(0)

|∇u|2 dz ≤ π

2
arcosh

(

2

r2
+ 1

)

.

In particular, we have u ∈ Ẇ 1,2
∗ (R2

+; 0).

If ũ ∈ Ẇ 1,2
∗ (R2

+; 0) is another solution of (19)–(22), then the difference v = u − ũ belongs to

Ẇ 1,2
∗ (R2

+; 0) and thus to W 1,p(B+
1 (0)) ∩ Ẇ 1,2(R2

+\B1/2(0)) for any p ∈ [1, 2). Furthermore, it is

harmonic in R2
+ and satisfies v = 0 on (−1, 1) × {0} and ∂v

∂x2
= 0 on (−∞,−1) × {0} and on

(1,∞) × {0}. Standard regularity theory then implies that v ∈ Ẇ 1,2(R2
+), and with an integration

by parts, we obtain
ˆ

R
2
+

|∇v|2 dx = 0.

Hence u is the unique solution of (19)–(22) in Ẇ 1,2
∗ (R2

+; 0).
The odd symmetry of u is a consequence of the uniqueness, as x 7→ −u(−x1, x2) is another

solution of the boundary value problem.
Finally, we consider the function

ṽ(x) = u(x) − arctan

(

x2

x1

)

+
πx1

2|x1|
,

which is harmonic in R2
+ as well with ṽ = 0 on (−1, 1) × {0}. Invoking standard regularity theory

again, we conclude that ṽ ∈ C∞(B+
1/2(0)). By the odd symmetry, we have ∇ṽ(0) = 0. Hence we

obtain inequality (24).

Definition 4. For every b ∈ (−1, 1), we introduce the Möbius transform

Φb(z) =
z + b

1 + bz
, z ∈ C, (26)

and its inverse Φ−1
b = Φ−b. We also define ub : R2

+ → R by

ub = u ◦ Φ−b in R
2
+, (27)

which, by Proposition 3, is the unique solution of the boundary value problem

∆ub = 0 in R
2
+,

ub =
π

2
on (−1, b)× {0},

ub = −π
2

on (b, 1) × {0},
∂ub
∂x2

= 0 on (−∞,−1)× {0} and on (1,∞) × {0},

in the space Ẇ 1,2
∗ (R2

+; b).
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Now we can also construct a solution of (13)–(17) by superposition.

Proposition 5. The function u∗a,d, defined by

u∗a,d =

N
∑

n=1

γnuan , (28)

is the unique minimiser of E∗
a,d among all u ∈ Ẇ 1,2

∗ (R2
+; a) satisfying (14)–(16). Moreover, u∗a,d is

the unique solution of (13)–(17) in Ẇ 1,2
∗ (R2

+; a).

Proof. By Proposition 3, we know that u∗a,d ∈ Ẇ 1,2
∗ (R2

+; a), and it satisfies (14)–(16). Let u be

another function with these properties. Since u∗a,d is harmonic in R2
+, integration by parts leads to

ˆ

Ωr(a)

∣

∣∇u−∇u∗a,d
∣

∣

2
dx =

ˆ

Ωr(a)

|∇u|2 dx−
ˆ

Ωr(a)

|∇u∗a,d|2 dx− 2

ˆ

Ωr(a)

(

∇u−∇u∗a,d
)

· ∇u∗a,d dx

=

ˆ

Ωr(a)

|∇u|2 dx−
ˆ

Ωr(a)

|∇u∗a,d|2 dx− 2

ˆ

∂Ωr(a)

(

u− u∗a,d
)

ν · ∇u∗a,d dσ.

Using (24), we find that there exists a constant C such that for any n = 1, . . . , N and for x ∈
B+
ρ(a)(an, 0),

∣

∣

∣

∣

∂u∗a,d
∂x1

(x) +
γnx2

(x1 − an)2 + x2
2

∣

∣

∣

∣

+

∣

∣

∣

∣

∂u∗a,d
∂x2

(x) − γn(x1 − an)

(x1 − an)2 + x2
2

∣

∣

∣

∣

≤ C.

Hence the boundary integral will tend to 0 when we let r ց 0. Therefore,

E∗
a,d(u

∗
a,d) = E∗

a,d(u) −
1

2
lim
rց0

ˆ

Ωr(a)

∣

∣∇u−∇u∗a,d
∣

∣

2
dx.

The limit on the right hand side exists, because the quantity is monotone in r.
This implies that u∗a,d is the unique minimizer of E∗

a,d. The uniqueness of solutions of (13)–(17)
follows with the same arguments as for Proposition 3.

Remark 6. Since we have an explicit representation of u∗a,d, an easy computation shows that the
liminf in the definition of E∗

a,d(u
∗
a,d) is in fact a limit. By the preceding computation, the same holds

for E∗
a,d(u) for any u ∈ Ẇ 1,2

∗ (R2
+; a) satisfying (14)–(16).

2.2 The energy of the limiting rescaled stray field

Next we want to compute the energy E∗
a,d(u

∗
a,d) defined in (18). Since this depends only on a and

d, we use the abbreviation
W1(a, d) = E∗

a,d(u
∗
a,d).

This quantity corresponds to the tail-boundary and tail-tail interaction energy.

Proposition 7. If ̺ is the metric on (−1, 1) defined in Section 1.3, then

W1(a, d) =
π

2

N
∑

n=1

γ2
n log(2 − 2a2

n) +
π

2

∑

k 6=n

γkγn log

(

1 +
√

1 − ̺(ak, an)2

̺(ak, an)

)

. (29)

For the proof, we need the following two lemmas. First we compute the rescaled tail-tail inter-
action energy for two Néel walls located at two points b 6= c.
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Lemma 8. For all b, c ∈ (−1, 1) with b 6= c, if ub and uc are defined by (27), then

ˆ

R
2
+

∇ub · ∇uc dx = π log

(

1 +
√

1 − ̺(b, c)2

̺(b, c)

)

. (30)

Then we compute the rescaled tail self-energy together with the tail-boundary interaction of a
Néel wall located at a point b ∈ (−1, 1).

Lemma 9. There exists a constant C > 0 such that for every b ∈ (−1, 1) and r ∈ (0, 1 − |b|),
∣

∣

∣

∣

∣

ˆ

R
2
+\Br(b)

|∇ub|2 dx− π log

(

2 − 2b2

r

)

∣

∣

∣

∣

∣

≤ C

( |b|r
1 − b2

+
r2

(1 − b2 − |b|r)2
)

. (31)

In particular,

lim
rց0

(

ˆ

R
2
+\Br(b)

|∇ub|2 dx− π log
1

r

)

= π log(2 − 2b2).

Proof of Lemma 8. Using the definition of the Möbius transform Φb, it is easy to check that

Φb ◦ Φc = Φ b+c
1+bc

.

Set q = b−c
1−bc . Then |q| = ̺(b, c) and

ˆ

R
2
+

∇ub · ∇uc dx =

ˆ

R
2
+

∇u · ∇(uc ◦ Φb) dx

=

ˆ

R
2
+

∇u · ∇uq dx

= −PV

ˆ 1

−1

uq
∂u

∂x2
dx1

= −π
2

PV

ˆ q

−1

∂u

∂x2
dx1 +

π

2
PV

ˆ 1

q

∂u

∂x2
dx1.

In order to determine ∂u
∂x2

, we recall that the function f defined in (23) is holomorphic in R2
+. Hence

we have

f ′(z) =
∂u

∂x2
+ i

∂u

∂x1
, z ∈ R

2
+.

In particular,
∂u

∂x2
= Re f ′(z), z ∈ R

2
+.

Differentiating both sides of the equation

πi

2
− w = f(F (w)),

we calculate

f ′(F (w)) = − 1

F ′(w)
= −cosh2 w

sinhw
.

Let t ∈ (0, 1) and s = arcosh 1
t . Set w = s + iπ, so that F (w) = t. Then coshw = − 1

t and

sinhw = − sinh s = −
√
t−2 − 1. Hence

f ′(t) =
1

t
√

1 − t2
=

d

dt

(

log |t| − log
(

1 +
√

1 − t2
))

.
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That is,
∂u

∂x2
(x1, 0) =

d

dx1

(

log |x1| − log

(

1 +
√

1 − x2
1

))

, x1 ∈ (0, 1). (32)

By the odd symmetry of u in x1 (see Proposition 3), we have the same equality on (−1, 0) × {0}.
Thus

PV

ˆ q

−1

∂u

∂x2
dx1 = log |q| − log

(

1 +
√

1 − q2
)

and

PV

ˆ 1

q

∂u

∂x2
dx1 = − log |q| + log

(

1 +
√

1 − q2
)

,

where the principal value can be ignored for exactly one of these integrals because there is no
singularity. It follows that (30) holds.

Proof of Lemma 9. Let r ∈ (0, 1) and consider the integral

Ir =

ˆ

R
2
+\Br(0)

|∇u|2 dx.

In order to estimate Ir, we first study the image of R2
+\Br(0) under F−1 and then perform the

change of variables x = F (w) = −1/ cosh(w). Recall identity (25), which implies that

{

w ∈ S : Rew <
1

2
arcosh

(

2

r2
− 1

)}

⊂ F−1(R2
+\Br(0))

⊂
{

w ∈ S : Rew <
1

2
arcosh

(

2

r2
+ 1

)}

,

where S is the domain defined on page 13. Recalling the function û(w) = u(x) for x = F (w), we
see that

Ir =

ˆ

F−1(R2
+\Br(0))

|∇û|2 dw ∈
[

π

2
arcosh

(

2

r2
− 1

)

,
π

2
arcosh

(

2

r2
+ 1

)]

.

Thus
4

r2
− 2 ≤ e2Ir/π + e−2Ir/π ≤ 4

r2
+ 2.

As 0 < e−2Ir/π < 1, this means that

4

r2
− 3 ≤ e2Ir/π ≤ 4

r2
+ 2

and
π

2
log

(

4

r2
− 3

)

≤ Ir ≤
π

2
log

(

4

r2
+ 2

)

.

In particular, there exists a universal constant C1 > 0 such that
∣

∣

∣

∣

∣

ˆ

R
2
+\Br(0)

|∇u|2 dx− π log
2

r

∣

∣

∣

∣

∣

≤ C1r
2, r ∈ (0, 1). (33)

For b ∈ (−1, 1) and r ∈ (0, 1 − |b|), we have

ˆ

R
2
+\Br(b)

|∇ub|2 dx =

ˆ

R
2
+\Φ−b(B

+
r (b))

|∇u|2 dx.
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Thus we now examine the set Φ−b(B
+
r (b)). Since Φ−b is a Möbius transform, it maps the semicircle

∂+Br(b) to a semicircle, which contains the points

Φ−b(b− r) = − r

1 − b2 + br
< 0 and Φ−b(b + r) =

r

1 − b2 − br
> 0.

Since Φ−b(b) = 0, we obtain

B+
r/(1−b2+|b|r)(0) ⊂ Φ−b(B

+
r (b)) ⊂ B+

r/(1−b2−|b|r)(0).

It then follows from (33) that

π log
2

r
+ π log(1 − b2 − |b|r) − C1r

2

(1 − b2 − |b|r)2

≤
ˆ

R
2
+\Br(b)

|∇ub|2 dx

≤ π log
2

r
+ π log(1 − b2 + |b|r) +

C1r
2

(1 − b2 − |b|r)2 .

Hence (31) holds.

Proof of Proposition 7. The formula follows directly from the definition of W1, the definition (18)
of E∗

a,d, Proposition 5, and the last two lemmas.

2.3 The rescaled tail profile

Since u∗a,d is the expected limit of the rescaled stray field potential, assuming that condition (4) will
be preserved in the limit, we can derive an expected profile µ∗

a,d for the rescaled first component of
the tails of the Néel walls.

Using the unique solution u of the problem (19)–(22), we first define the logarithmically rescaled
tail profiles

µ(x1) := −PV

ˆ x1

−1

∂u

∂x2
(t, 0) dt

(32)
= log

(

1 +
√

1 − x2
1

)

− log |x1|, x1 ∈ (−1, 1) \ {0}, (34)

and

µb(x1) := µ ◦ Φ−b(x1) = µ

(

x1 − b

1 − bx1

)

, x1 ∈ (−1, 1) \ {b}. (35)

Then for ub = u ◦ Φ−b, we find ∂ub

∂x2
= ∂u

∂x2
Φ′

−b = −µ′
b on (−1, b) × {0} and (b, 1) × {0}, using the

conformality of Φ−b and the fact that Φ′
−b is real on (−1, b) × {0} and on (b, 1) × {0}. If we define

µ∗
a,d =

N
∑

n=1

γnµan , x1 ∈ (−1, 1) \ {a1, . . . , aN},

then we also have

∂u∗a,d
∂x2

= −(µ∗
a,d)

′ on (−1, 1)× {0} except at the singularities ak, k = 1, . . . , N .

Note that

µan(ak) = µak
(an) = log

(

1 +
√

1 − ̺(an, ak)2

̺(an, ak)

)

, n 6= k.

We need to examine the behaviour of µ∗
a,d near the points an, as this will be important for

determining the energy of the tail-core interaction.
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Proposition 10. Set

λn = γn log(2 − 2a2
n) +

∑

k 6=n

γkµak
(an)

for n = 1, . . . , N . Then there exists a constant C = C(a) > 0 such that
∣

∣

∣

∣

µ∗
a,d(an ± r) − λn − γn log

1

r

∣

∣

∣

∣

≤ Cr (36)

for any r ∈ (0, ρ(a)] and any n = 1, . . . , N .

Proof. First we study µb again for a fixed b. Obviously, for c ∈ (−1, 1) with b 6= c, this function is
smooth at c, and therefore there exists a constant C1 > 0, depending only on b and c, such that

|µb(c± r) − µb(c)| ≤ C1r

for any sufficiently small r > 0. We also have, by (34) and (35), the formula

µb(b± r) = log

(

1 +

√

1 − r2

(1 − b2 ∓ br)2

)

+ log(1 − b2 ∓ br) + log
1

r
.

Thus there exists a constant C2 = C2(b) such that
∣

∣

∣

∣

µb(b± r) − log(2 − 2b2) − log
1

r

∣

∣

∣

∣

≤ C2r

for r ∈ (0, 1 − |b|). If we sum up for b = ak, k = 1, . . . , N , then the conclusion follows.

We will prove in Section 6.2 that the function

cosα+
µ∗
a,d

log 1
δ

gives an approximation for the profile of the first component m1,ǫ for a minimiser mǫ of Eǫ over
M(a, d). In a standard Néel wall with rotation angle 2α (or 2π − 2α), the function m1,ǫ would be
required to make a transition from cosα to 1 (or −1) and back. If we superimpose several Néel
walls, then this is no longer true. Instead, in an interval (an − r, an + r), up to a small error, m1,ǫ

is now required, by (36), to make a transition from

cosα+
λn + γn log 1

r

log 1
δ

to ±1 and back. We discount the term involving log 1
r , as it will be cancelled by a similar term

elsewhere. The contribution of the remaining term to the energy (to leading order, rescaled by
(log δ)2) is then −πγnλn near the point an (see Remark 19 below). Thus in total, we have a
correction term of the form

W2(a, d) = −π
N
∑

n=1

γnλn = −π
N
∑

n=1



γ2
n log(2 − 2a2

n) +
∑

k 6=n

γnγkµak
(an)



 .

Using the above explicit expression for µak
(an), we find

W2(a, d) = −π
N
∑

n=1

γ2
n log(2 − 2a2

n) − π
N
∑

n=1

∑

k 6=n

γkγn log

(

1 +
√

1 − ̺(ak, an)2

̺(ak, an)

)

.
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This corresponds to the sum of the tail-core interactions described in Section 1.3. Note that

W2(a, d) = −2W1(a, d).

We finally define W (a, d) := W1(a, d) +W2(a, d). That is,

W (a, d) = −π
2

N
∑

n=1

γ2
n log(2 − 2a2

n) −
π

2

N
∑

n=1

∑

k 6=n

γkγn log

(

1 +
√

1 − ̺(ak, an)2

̺(ak, an)

)

.

3 The Euler-Lagrange equation

Since we study the number infM(a,d)Eǫ for a given a ∈ AN and d ∈ {±1}N , it is useful to consider
minimisers of Eǫ in M(a, d) (see Proposition 1). The problem gives rise to an Euler-Lagrange
equation, which is most easily expressed in terms of the continuous function ϕ : (−1, 1) → R with
ϕ(−1) = α and m = (cosϕ, sinϕ) ∈ W 1,2((−1, 1), S1). Let u = U(m) be the function defined on
page 3. Then the equation is

ǫϕ′′(x1) =
∂u

∂x1
(x1, 0) sinϕ(x1) for x1 ∈ (−1, 1)\{a1, . . . , aN}. (37)

For the derivation of (37), let ζ ∈ C∞
0 (−1, 1) with ζ(ak) = 0 for k = 1, . . . , N be an infinitesimal

variation of m1. Then

d

dt

∣

∣

∣

∣

t=0

(

1

2

ˆ

R
2
+

|∇U(m1 + tζ)|2 dx
)

=

ˆ

R
2
+

∇U(m1) · ∇U(ζ) dx

(6)
=

ˆ 1

−1

ζ′U(m1) dx1 = −
ˆ 1

−1

ζ
∂u

∂x1
dx1.

Equation (37) is now obtained with the usual computations.
We use the abbreviation u′ for the derivative of the trace of u with respect to (−1, 1) × {0}.

Then we have the following shorthand form of (37):

ǫϕ′′ = u′ sinϕ on (−1, 1)\{a1, . . . , aN}.

We now analyse this equation. More precisely, we prove an interior W 2,2-estimate for solutions of
(37) and we prove a Pohozaev identity. As a consequence, we eventually find that the exchange
energy in the core of a Néel wall is of order O(1/(log δ)2).

3.1 An interior W
2,2-estimate

We have the following interior W 2,2-estimate for a solution of the Euler-Lagrange equation and for
the corresponding stray field potential. This estimate will be used in Theorem 22 below in order to
find the specific profile of the Néel wall.

Lemma 11. Let 0 ≤ r < r′ < R′ < R. There exists a constant C > 0 (depending only on r′ − r
and R − R′) such that the following holds true. Let ǫ > 0 and set I = (−R,−r) ∪ (r,R). Suppose
that the functions u ∈W 1,2(B+

R (0) \Br(0)) and ϕ ∈W 1,2(I) solve the system

∆u = 0 in B+
R(0) \Br(0),

∂u

∂x2
= ϕ′ sinϕ on I × {0},

ǫϕ′′ = u′ sinϕ in I.
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Further suppose that sinϕ 6= 0 in I. Then

ˆ

B+

R′ (0)\Br′ (0)

|∇2u|2 dx+ ǫ

ˆ

(−R′,−r′)∪(r′,R′)

(

(ϕ′′)2 + (ϕ′)4(1 + cot2 ϕ)

)

dx1

≤ C

(

ǫ

ˆ

I

(ϕ′)2 dx1 +

ˆ

B+
R(0)\Br(0)

|∇u|2 dx
)

.

Proof. We first note that ϕ is smooth on I (see [14]) and therefore u is smooth in B+
R (0) \Br(0) up

to the boundary I × {0}. Consider the function v = ∂u
∂x1

on B+
R(0) \Br(0). We have

v =
ǫϕ′′

sinϕ
and

∂v

∂x2
= − ∂2

∂x2
1

(

cosϕ
)

on I × {0}.

Let η ∈ C∞
0 (B+

R (0) \Br(0)). Since v is harmonic in B+
R(0) \Br(0), integration by parts yields

ˆ

B+
R(0)

η2|∇v|2 dx =

ˆ

I

η2v
d2

dx2
1

(cosϕ) dx1 − 2

ˆ

B+
R(0)

ηv∇η · ∇v dx

= −ǫ
ˆ

I

η2 ϕ′′

sinϕ

(

ϕ′′ sinϕ+ (ϕ′)2 cosϕ
)

dx1 − 2

ˆ

B+
R(0)

ηv∇η · ∇v dx

= −ǫ
ˆ

I

η2(ϕ′′)2 dx1 − ǫ

ˆ

I

η2

(

(ϕ′)3
)′

3
cotϕdx1 − 2

ˆ

B+
R(0)

ηv∇η · ∇v dx

= −ǫ
ˆ

I

η2(ϕ′′)2 dx1 −
ǫ

3

ˆ

I

η2(ϕ′)4(1 + cot2 ϕ) dx1 +
2ǫ

3

ˆ

I

ηη′(ϕ′)3 cotϕdx1

− 2

ˆ

B+
R(0)

ηv∇η · ∇v dx.

By Young’s inequality,
ˆ

I

ηη′(ϕ′)3 cotϕdx1 ≤ 1

4

ˆ

I

η2(ϕ′)4 cot2 ϕdx1 +

ˆ

I

(η′)2(ϕ′)2 dx1

and

−
ˆ

B+
R(0)

ηv∇η · ∇v dx ≤ 1

4

ˆ

B+
R(0)

η2|∇v|2 dx+

ˆ

B+
R(0)

|∇η|2v2 dx.

Therefore,
ˆ

B+
R(0)

η2|∇v|2 dx+ǫ
ˆ

I

η2
(

(ϕ′′)2 + (ϕ′)4(1 + cot2 ϕ)
)

dx1 (38)

≤ 12

ˆ

B+
R(0)

v2|∇η|2 dx+ 4ǫ

ˆ

I

(η′)2(ϕ′)2 dx1.

As u is harmonic, we observe that that

∂2u

∂x2
2

= − ∂v

∂x1
,

so that
1

2
|∇2u|2 =

∣

∣

∣

∣

∂v

∂x1

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂v

∂x2

∣

∣

∣

∣

2

in B+
R(0) \Br(0).

Choosing suitable cut-off functions η, we can now easily derive the desired inequality.
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3.2 A Pohozaev identity

As in the theory of Ginzburg-Landau vortices, a variant of the identity due to Pohozaev [28] is useful
for our problem. For a function u : B+

1 (0) → R, we use the notation

∂ρu =
x

|x| · ∇u.

Lemma 12. Let ǫ > 0. Suppose that the functions u ∈W 1,2(B+
1 (0)) and ϕ ∈W 1,2(−1, 1) solve the

system

∆u = 0 in B+
1 (0), (39)

∂u

∂x2
= ϕ′ sinϕ on (−1, 1)× {0}, (40)

ǫϕ′′ = u′ sinϕ in (−1, 0) and (0, 1). (41)

Then for any r ∈ (0, 1),

ǫ

ˆ r

−r

(ϕ′)2 dx1 = rǫ(ϕ′(r))2 + rǫ(ϕ′(−r))2 + r

ˆ

∂+Br(0)

(

|∇u|2 − 2 (∂ρu)
2
)

dσ.

Proof. As u is harmonic, we calculate

div

(

1

2
|∇u|2x− (x · ∇u)∇u

)

= 0 in B+
1 (0).

For any r, s ∈ (0, 1) with s < r, it follows that

0 =

ˆ

∂+Br(0)

(r

2
|∇u|2 − r (∂ρu)

2
)

dσ −
ˆ

∂+Bs(0)

(s

2
|∇u|2 − s (∂ρu)

2
)

dσ

+

ˆ −s

−r

x1
∂u

∂x1

∂u

∂x2
dx1 +

ˆ r

s

x1
∂u

∂x1

∂u

∂x2
dx1.

Using (40) and (41), we compute

ˆ −s

−r

x1
∂u

∂x1

∂u

∂x2
dx1 = ǫ

ˆ −s

−r

x1ϕ
′′ϕ′ dx1 =

ǫ

2

ˆ −s

−r

x1
d

dx1
(ϕ′)2 dx1

=
ǫr

2
(ϕ′(−r))2 − ǫs

2
(ϕ′(−s))2 − ǫ

2

ˆ −s

−r

(ϕ′)2 dx1.

Similarly,
ˆ r

s

x1
∂u

∂x1

∂u

∂x2
dx1 =

ǫr

2
(ϕ′(r))2 − ǫs

2
(ϕ′(s))2 − ǫ

2

ˆ r

s

(ϕ′)2 dx1.

Hence

ǫ

2

ˆ −s

−r

(ϕ′)2 dx1+
ǫ

2

ˆ r

s

(ϕ′)2 dx1 =
r

2

(

ǫ(ϕ′(r))2 + ǫ(ϕ′(−r))2 +

ˆ

∂+Br(0)

(

|∇u|2 − 2 (∂ρu)
2
)

dσ

)

− s

2

(

ǫ(ϕ′(s))2 + ǫ(ϕ′(−s))2 +

ˆ

∂+Bs(0)

(

|∇u|2 − 2 (∂ρu)
2
)

dσ

)

.
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Since ϕ′ ∈ L2(−1, 1) and |∇u| ∈ L2(B+
1 (0)), there exists a sequence sk ց 0 such that

sk

(

ǫ(ϕ′(sk))
2 + ǫ(ϕ′(−sk))2 +

ˆ

∂+Bsk
(0)

|∇u|2 dσ
)

→ 0.

Therefore, we obtain the desired identity.

As a consequence, we obtain the following estimate, which implies that the exchange energy in
the core of a Néel wall is of order O(1/(log δ)2).

Lemma 13. Suppose that ǫ ∈ (0, 1
2 ] and the functions u ∈W 1,2(B+

1 (0)) and ϕ ∈ W 1,2(−1, 1) solve
the system (39)–(41). Let

F =
ǫ

2

ˆ 1

−1

(ϕ′)2 dx1 +
1

2

ˆ

B+
1 (0)

|∇u|2 dx.

Then
ǫ

2

ˆ δ

−δ

(ϕ′)2 dx1 ≤ F

log 1
δ

. (42)

If ϕ(0) ∈ πZ, then
ˆ δ

−δ

sin2 ϕdx1 ≤ 8δF. (43)

Proof. It follows from Lemma 12 that

ǫ

2

ˆ 1

δ

1

r

ˆ r

−r

(ϕ′)2 dx1 dr ≤ F.

Thus there exists an r ∈ (δ, 1] such that

ǫ

2

ˆ r

−r

(ϕ′)2 dx1 ≤ F

log 1
δ

.

Inequality (42) then follows immediately.
For the second inequality, we note that for |x1| ≤ δ,

| sinϕ(x1)| =

∣

∣

∣

∣

ˆ x1

0

ϕ′(t) cosϕ(t) dt

∣

∣

∣

∣

≤
(

|x1|
ˆ x1

0

(ϕ′)2 dt

)1/2

≤
√

2δF

ǫ log 1
δ

≤ 2
√
F .

(Here we use that fact that log 1
ǫ ≤ 2 log 1

δ for 0 < ǫ ≤ 1.) Thus (43) follows immediately as well.

Later we will prove estimates similar to (42) and (43) even without making use of the Euler-
Lagrange equation, but assuming suitable control of the energy instead (see Theorem 28 and Remark
30).

4 The core

In this section, we study what happens near a single Néel wall, rescaled to unit size. Several technical
difficulties arise in the analysis of the local behaviour of the magnetization, due to the nonlocal nature
of the magnetostatic energy. For this reason, we first introduce a modified energy functional where
the stray field is considered on a half ball (instead of R2

+) with a Neumann boundary condition.
We prove energy estimates (upper and lower bounds) for this modified functional together with
statements about its behaviour under small perturbations of the boundary data. The analysis of
the minimisers of this functional is essential because it yields good approximation results for the
Néel wall profile (see Theorem 22) and for the core energy (see Theorem 25).
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4.1 A modified functional

For γ ∈ (0, 2), we define the convex set

Mγ = {µ ∈W 1,2(−1, 1) : µ(0) = 1, µ(±1) ≤ 1 − γ}.

We think of µ as the first component of the magnetisation near a Néel wall with transition angle
2 arccos(1 − γ). For µ ∈Mγ , consider the convex set

W 1,2
µ (B+

1 (0)) = {w ∈ W 1,2(B+
1 (0)) : w(x1, 0) = µ(x1) for x1 ∈ (−1, 1) and w ≤ 1 − γ on ∂+B1(0)}.

Clearly W 1,2
µ (B+

1 (0)) 6= ∅ and there exists a unique function where the infimum

inf
w∈W 1,2

µ (B+
1 (0))

ˆ

B+
1 (0)

|∇w|2 dx

is attained, owing to the strict convexity of the Dirichlet functional.
Now we define the following modified energy functional for µ ∈Mγ :

Eγǫ (µ) =
ǫ

2

ˆ 1

−1

(µ′)2

1 − µ2
dx1 +

1

2
inf

w∈W 1,2
µ (B+

1 (0))

ˆ

B+
1 (0)

|∇w|2 dx.

Proposition 14. The functional Eγǫ admits a unique minimizer µ ∈ Mγ, which satisfies µ(±1) =
1 − γ and 1 ≥ µ ≥ 1 − γ in (−1, 1). Moreover, if v ∈W 1,2

µ (B+
1 (0)) is the unique function with

ˆ

B+
1 (0)

|∇v|2 dx = inf
w∈W 1,2

µ (B+
1 (0))

ˆ

B+
1 (0)

|∇w|2 dx,

then 1 − γ ≤ v ≤ 1 in B+
1 (0) and v is the unique solution in W 1,2(B+

1 (0)) of the boundary value
problem

∆v = 0 in B+
1 (0), (44)

v(x1, 0) = µ(x1) for x1 ∈ (−1, 1), (45)

v = 1 − γ on ∂+B1(0). (46)

Proof. The direct method of the calculus of variations leads to existence of a minimizer µ ∈Mγ of
Eγǫ . Moreover, if µ ∈Mγ is a minimiser of Eγǫ , then using a simple cut-off argument at 1−γ and 1, we
see that µ(±1) = 1−γ and 1 ≥ µ ≥ 1−γ in (−1, 1). This implies that the corresponding minimizer
v of the Dirichlet energy satisfies 1 − γ ≤ v ≤ 1 in B+

1 (0) and solves (44)–(46). Obviously, this

boundary value problem has a unique solution in W 1,2(B+
1 (0)). Since the function (x1, x2) 7→ x2

1

1−x2
2
,

for (x1, x2) ∈ R × (−1, 1), is strictly convex, we deduce that Eγǫ admits in fact a unique minimizer
µ ∈Mγ .

Let µ ∈ Mγ be the minimizer of Eγǫ and v be the solution of (44)–(46). Since curl∇⊥v = 0,
there exists a function u ∈W 1,2(B+

1 (0)) with ∇⊥v = −∇u. This is then a solution of

∆u = 0 in B+
1 (0), (47)

∂u

∂x2
= −µ′ on (−1, 1)× {0}, (48)

x · ∇u = 0 on ∂B+
1 (0). (49)

Note that u is determined uniquely up to a constant by these conditions. On the other hand,
given a function u ∈ W 1,2(B+

1 (0)) satisfying (47)–(49), we can reconstruct a corresponding function
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v ∈ W 1,2
µ (B+

1 (0)) with ∇⊥v = −∇u. It follows that the minimiser µ of Eγǫ automatically minimises
the quantity

ǫ

2

ˆ 1

−1

(µ′)2

1 − µ2
dx1 +

1

2

ˆ

B+
1 (0)

|∇u|2 dx,

where u is determined (up to a constant) by (47)–(49). Since µ plays the role of the first component
of the magnetisation near a Néel wall, then u roughly corresponds to a stray-field potential associated
to µ in B+

1 (0).
The Euler-Lagrange equation for the minimiser of Eγǫ is therefore

ǫϕ′′ = u′ sinϕ in (−1, 0) and (0, 1) (50)

for any continuous function ϕ : (−1, 1) → R with µ = cosϕ, similarly to Section 3.

4.2 Energy estimates

We first prove the following preliminary estimate with a direct construction. This result is similar
to [7] (see also [13]).

Proposition 15. Let β ∈ (0, 1). Then there exists a constant C0 > 0 (depending on β) such that
for every γ ∈ (β, 2 − β) and every ǫ ∈ (0, 1

2 ],

inf
Mγ

Eγǫ ≤ πγ2

2 log 1
δ

+
C0

(

log 1
δ

)2 .

Proof. Consider the function µ : (−1, 1) → [1 − γ, 1] given by

µ(x1) = 1 − γ
log(x2

1 + δ2) − log δ2

log(1 + δ2) − log δ2
∈ [1 − γ, 1] for x1 ∈ (−1, 1).

Then 1 + µ ≥ 2 − γ and thus

1 − (µ(x1))
2 ≥ γ(2 − γ)

log(x2
1 + δ2) − log δ2

log(1 + δ2) − log δ2
.

Therefore,

ˆ 1

−1

(µ′)2

1 − µ2
dx1 ≤ 2γ2

γ(2 − γ) log
√

1
δ2 + 1

ˆ 1

−1

x2
1

(x2
1 + δ2)2 log

(

x2
1

δ2 + 1
) dx1

≤ 2γ2

δγ(2 − γ) log
√

1
δ2 + 1

ˆ ∞

−∞

t2

(t2 + 1)2 log(t2 + 1)
dt.

Define w : B+
1 (0) → R by

w(r cos θ, r sin θ) = µ(r)

for 0 < r ≤ 1 and 0 < θ < π. Then

ˆ

B+
1 (0)

|∇w|2 dx =
πγ2

(

log
√

1
δ2 + 1

)2

ˆ 1

0

r3

(r2 + δ2)2
dr

=
πγ2

2
(

log
√

1
δ2 + 1

)2

ˆ 1+δ2

δ2

t− δ2

t2
dt ≤ πγ2

log
√

1
δ2 + 1

.
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Hence

Eγǫ (µ) ≤ πγ2

2 log
√

1
δ2 + 1

+
γ2

γ(2 − γ) log 1
ǫ log

√

1
δ2 + 1

ˆ ∞

−∞

t2

(t2 + 1)2 log(t2 + 1)
dt,

which implies the statement of the proposition.

We can match the leading order term in this inequality with an estimate from below. Moreover,
we obtain more information about the behaviour of the minimiser µ of Eγǫ : in particular, we have a
uniform Ẇ 1,2-estimate for the difference between the rescaled stray field potential u log 1

δ (associated
to µ via (47)–(49)) and the map

(x1, x2) 7→ γ

(

arctan

(

x2

x1

)

− πx1

2|x1|

)

, (x1, x2) ∈ B+
1 (0).

First, however, we need some information on the regularity of solutions of the Euler-Lagrange
equation, especially at the boundary.

Lemma 16. Let γ ∈ (0, 2). Suppose that ϕ ∈ W 1,2(−1, 1) with cosϕ(−1) = cosϕ(1) = 1 − γ.
Further suppose that u ∈W 1,2(B+

1 (0)) is a function such that (47)–(50) are satisfied for µ = cosϕ.
Then ∇u is continuous in B+

1 (0) and has a continuous extension to ∂B+
1 (0)\{0}.

Proof. Let µ̃ = cosϕ− 1 + γ and consider the extension of u to R2
+ and of µ̃ to R given by

u(x) = u

(

x

|x|2
)

for x ∈ R
2
+ with |x| > 1

and

µ̃(x1) = −µ̃
(

1

x1

)

for x1 ∈ (−∞,−1) ∪ (1,∞).

Then we have ∆u = 0 in R
2
+ and ∂u

∂x2
= −µ̃′ on R × {0}. Since µ̃′ ∈ L2

loc(R), we conclude

that u′( · , 0) ∈ Lploc(R) for any p ∈ [1, 2) with standard regularity theory. Thus by (50), we have
ϕ′′ ∈ Lp(−1, 1), and it follows that µ̃′ is Hölder continuous on [−1,−r] ∪ [r, 1] for every r ∈ (0, 1).
The extension is then locally Hölder continuous in R\{0}, and using standard regularity theory once
more, we conclude that ∇u is continuous away from 0.

Theorem 17. For any β ∈ (0, 1), there exists a constant C > 0 (depending on β) such that the
following holds true for every ǫ ∈ (0, 1

2 ]. Suppose that γ ∈ (β, 2 − β) and µ ∈ Mγ is the minimiser
of Eγǫ . Then

∣

∣

∣

∣

Eγǫ (µ) − πγ2

2 log 1
δ

∣

∣

∣

∣

≤ C
(

log 1
δ

)2 . (51)

Let u ∈W 1,2(B+
1 (0)) be the solution of (47)–(49). Then

ǫ

ˆ 1

−1

(µ′)2

1 − µ2
dx1 +

ˆ

B+
1 (0)\Bδ(0)

∣

∣

∣

∣

∇u(x) − γx⊥

|x|2 log 1
δ

∣

∣

∣

∣

2

dx+

ˆ

Bδ(0)

|∇u|2 dx ≤ C
(

log 1
δ

)2 (52)

and
ˆ

∂+B1(0)

|∇u|2 dσ ≤ C
(

log 1
δ

)2 . (53)
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Proof. We already know, by Proposition 15, that there exists a constant C0 > 0, depending only on
β, such that

Eγǫ (µ) ≤ πγ2

2 log 1
δ

+
C0

(

log 1
δ

)2 . (54)

We want to prove an estimate from below of the same order. To this end, we choose some ϕ ∈
W 1,2(−1, 1) with µ = cosϕ. Consider the function ξ : B+

1 (0) → R, defined in polar coordinates by

ξ(r cos θ, r sin θ) =



















γ(θ − π/2)

log 1
δ

if r ≥ δ,

γr(θ − π/2)

δ log 1
δ

if 0 < r < δ.

According to Proposition 14, we have

γ2π

log 1
δ

=
γπ

2 log 1
δ

(
ˆ 0

−1

µ′ dx1 −
ˆ 1

0

µ′ dx1

)

=

ˆ 1

−1

ξ(x1, 0)µ′(x1) dx1 −
ˆ δ

−δ

(

γπx1

2|x1| log 1
δ

+ ξ(x1, 0)

)

µ′(x1) dx1.

Using Lemma 13 and (54), we find a constant C1 = C1(β) such that

∣

∣

∣

∣

∣

ˆ δ

−δ

(

γπx1

2|x1| log 1
δ

+ ξ(x1, 0)

)

µ′(x1) dx1

∣

∣

∣

∣

∣

≤ γπ

2 log 1
δ

ˆ δ

−δ

|ϕ′|| sinϕ| dx1 ≤ C1
(

log 1
δ

)2 .

Moreover, by (47)–(49), we have

ˆ 1

−1

ξ(x1, 0)µ′(x1) dx1= −
ˆ

(−1,1)×{0}

ξ
∂u

∂x2
dx1 =

ˆ

B+
1 (0)

∇ξ · ∇u dx.

Combining these estimates, we obtain

ˆ

B+
1 (0)

∇ξ · ∇u dx ≥ γ2π

log 1
δ

− C1
(

log 1
δ

)2 . (55)

We compute

|∇ξ|2 =
γ2

δ2(log δ)2

(

1 + (θ − π

2
)2
)

if r < δ

and

|∇ξ|2 =
γ2

r2
(

log 1
δ

)2 if r > δ.

This implies

ˆ

B+
1 (0)

|∇ξ|2 dx =
γ2π

log 1
δ

+
γ2π

(

log 1
δ

)2

(

1

2
+
π2

24

)

≤ γ2π

log 1
δ

+
γ2π

(

log 1
δ

)2 .

Hence, by (54) and (55),

ˆ

B+
1 (0)

|∇u−∇ξ|2 dx ≤ 2Eγǫ (µ) − γ2π

log 1
δ

+
2C1 + πγ2

(

log 1
δ

)2 ≤ C2
(

log 1
δ

)2 ,
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where C2 = 2C0 + 2C1 + πγ2. It follows in particular that

ˆ

B+
δ (0)

|∇u|2 dx ≤ 2

ˆ

B+
δ (0)

|∇u−∇ξ|2 dx+ 2

ˆ

B+
δ (0)

|∇ξ|2 dx ≤ 2C2 + 2πγ2

(

log 1
δ

)2

and
ˆ

B+
1 (0)\Bδ(0)

∣

∣

∣

∣

∇u(x) − γx⊥

|x|2 log 1
δ

∣

∣

∣

∣

2

dx ≤ C2
(

log 1
δ

)2 ,

since ∇ξ = γx⊥

|x|2 log 1
δ

if r > δ. Furthermore, we have

ˆ

B+
1 (0)

|∇u|2 dx =

ˆ

B+
1 (0)

|∇u −∇ξ|2 dx−
ˆ

B+
1 (0)

|∇ξ|2 dx+ 2

ˆ

B+
1 (0)

∇ξ · ∇u dx

≥ γ2π

log 1
δ

− γ2π + 2C1
(

log 1
δ

)2 .

If we combine this with (54), then we obtain

ǫ

ˆ 1

−1

(µ′)2

1 − µ2
dx1 ≤ 2Eγǫ (µ) −

ˆ

B+
1 (0)

|∇u|2 dx ≤ 2C0 + 2C1 + γ2π
(

log 1
δ

)2 .

Thus we have proved inequalities (51) and (52).
Finally, we apply Lemma 12 and let r ր 1. Then by Lemma 16, we obtain (53).

4.3 Behaviour under small perturbations

Next we want to understand how the number infMγ E
γ
ǫ changes when we vary γ, and how the

energy changes when we perturb the boundary condition (49). In particular, we prove the following
statements.

Proposition 18. Let β ∈ (0, 1). There exists a constant C(β) > 0 such that for all γ1, γ2 ∈ (β, 2−β)
and every ǫ ∈ (0, 1

2 ],

inf
Mγ2

Eγ2ǫ − πγ2
2

2 log 1
δ

≤ inf
Mγ1

Eγ1ǫ − πγ2
1

2 log 1
δ

+
C|γ2 − γ1|
(

log 1
δ

)2 .

In other words, the function

g : (0, 1) → R, γ 7→ inf
Mγ

Eγǫ − πγ2

2 log 1
δ

, (56)

is locally Lipschitz continuous with Lipschitz constant of order O(1/(log δ)2).

Proof. First note that it suffices to prove the inequality when |γ2 − γ1| is small, for otherwise it
follows from Theorem 17.

Let µ1 ∈ Mγ1 be the minimiser of Eγ1ǫ and let v1 ∈ W 1,2(B+
1 (0)) be the corresponding solution

of (44)–(46) in Proposition 14. Define

µ2 =
γ2

γ1
(µ1 − 1) + 1

and
v2 =

γ2

γ1
(v1 − 1) + 1.
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Then µ2 ∈Mγ2 and v2 is the unique solution of (44)–(46) associated to µ2, so that, by Proposition 14,

Eγ2ǫ (µ2) =
ǫ

2

ˆ 1

−1

(µ′
2)

2

1 − µ2
2

dx1 +
1

2

ˆ

B+
1 (0)

|∇v2|2 dx.

We have

1 + µ2 =
γ2

γ1
(1 + µ1) +

2(γ1 − γ2)

γ1

and
1 − µ2 =

γ2

γ1
(1 − µ1).

Hence

(µ′
2)

2

1 − µ2
2

=

(µ′
1)2

1−µ2
1

1 + 2(γ1−γ2)
γ2(1+µ1)

.

Under the assumptions of the proposition, we have β < γ1, γ2 < 2−β and β < 1+µ1 ≤ 2 throughout
(−1, 1). Therefore, we have a constant C1 = C1(β) such that

1

1 + 2(γ1−γ2)
γ2(1+µ1)

≤ γ2
2

γ2
1

+ C1|γ2 − γ1|,

provided that |γ2 − γ1| is small enough.
We now have

Eγ2ǫ (µ2) ≤
(

γ2
2

γ2
1

+ C1|γ2 − γ1|
)

ǫ

2

ˆ 1

−1

(µ′
1)

2

1 − µ2
1

dx1 +
γ2
2

2γ2
1

ˆ

B1
+(0)

|∇v1|2 dx.

Combining this with (51) and (52), we obtain the inequality

g(γ2) ≤ g(γ1) +
γ2
2 − γ2

1

γ2
1

g(γ1) +
C2|γ1 − γ2|
(

log 1
δ

)2

for a constant C2 = C2(β) by Theorem 17, where g is the function defined in (56). Finally, we know
that

g(γ1) ≤
C3

(

log 1
δ

)2

for another constant C3 depending only on β (by Theorem 17 again). Hence we obtain the desired
inequality.

Remark 19. Recall the discussion in Section 2.3. Consider a Néel wall at the point an such that
m1 makes a transition from 1 − γn to 1 and back. If we modify the wall, changing γn to γn − ζn
with ζn = λn

log 1
δ

, then the change of the energy (to leading order, rescaled by (log δ)2) is

(

log
1

δ

)2(

inf
Mγn−ζn

Eγn−ζn
ǫ − inf

Mγn

Eγn
ǫ

)

= −πγnλn + o(1) as ǫց 0.

This is the phenomenon that leads to the core-tail interaction term in the renormalised energy.
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Lemma 20. Let C0 > 0, β ∈ (0, 1) and q > 2. Then there exists a constant C > 0 (depending only
on C0, β and q) such that for any γ ∈ (β, 2 − β), any ǫ ∈ (0, 1

2 ], and any η ∈ (0, C0), the following

holds true. Suppose that µ ∈ Mγ and u ∈ W 1,2(B+
1 (0)) with ∆u = 0 in B+

1 (0) and ∂u
∂x2

= −µ′ on
(−1, 1) × {0}. Suppose further that

‖x · ∇u‖Lq(∂+B1(0)) ≤
η

log 1
δ

and
∥

∥

∥

∥

∇u− γx⊥

|x|2 log 1
δ

∥

∥

∥

∥

L2(B+
1 (0)\Bδ(0))

+ ‖∇u‖L2(B+
δ (0)) ≤

C0

log 1
δ

. (57)

Then
ǫ

2

ˆ 1

−1

(µ′)2

1 − µ2
dx1 +

1

2

ˆ

B+
1 (0)

|∇u|2 dx ≥ inf
Mγ

Eγǫ − Cη
(

log 1
δ

)2 .

Proof. Consider the function w̃ ∈ W 1,2(B+
1 (0)) with ∇w̃ = ∇⊥u and w̃(x1, 0) = µ(x1) for x1 ∈

(−1, 1). Let Sθ = {(cos t, sin t) : t ∈ (0, θ)} for 0 < θ < π
2 . Note that

w̃(cos θ, sin θ) − µ(1) =

ˆ

Sθ

x · ∇u dσ ≤ θ1−1/qη

log 1
δ

, θ ∈ (0,
π

2
).

Similarly, we find that

w̃(− cos θ, sin θ) − µ(−1) ≤ θ1−1/qη

log 1
δ

, θ ∈ (0,
π

2
).

Thus if we define

g(x) =
2ηx

1−1/q
2

log 1
δ

and
w = w̃ − g,

then we have that w ≤ max{µ(±1)} ≤ 1 − γ on ∂B+
1 (0) (because 2 sin θ ≥ θ for θ ∈ (0, π2 )).

Moreover, w ∈W 1,2
µ (B+

1 (0)). Indeed, we have

ˆ

B+
1 (0)

|∇w|2 dx =

ˆ

B+
1 (0)

|∇u|2 dx+ 2

ˆ

B+
1 (0)

∇u · ∇⊥g dx +

ˆ

B+
1 (0)

|∇g|2 dx.

For any p ∈ [1, q), we have a constant C1 = C1(p) such that

‖∇g‖Lp(B+
1 (0)) ≤

C1η

log 1
δ

.

For p > 2, inequality (57) gives another constant C2 = C2(p, C0) such that

‖∇u‖Lp/(p−1)(B+
1 (0)) ≤

C2

log 1
δ

.

We conclude, using Hölder’s inequality, that

ˆ

B+
1 (0)

∇u · ∇⊥g dx ≤ C1C2η
(

log 1
δ

)2 ,
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using some fixed p ∈ (2, q). Therefore,
ˆ

B+
1 (0)

|∇w|2 dx ≤
ˆ

B+
1 (0)

|∇u|2 dx+
C3η

(

log 1
δ

)2

for a number C3 > 0 that depends only on q and C0. Now the statement of the lemma follows.

Corollary 21. Let β ∈ (0, 2
3 ), C0 > 0, and q > 2. Then there exists a constant C > 0 such that

for any γ ∈ (2β, 2− 2β), any ǫ ∈ (0, 1
2 ], any η ∈ (0, C0), and any ζ ∈ (−C0, C0), the following holds

true. Suppose that µ ∈ W 1,2(−1, 1) with µ(±1) ≤ 1− γ + ζ
log 1

δ

and µ(0) = 1. Let u ∈ W 1,2(B+
1 (0))

be a function with ∆u = 0 in B+
1 (0) and ∂u

∂x2
= −µ′ on (−1, 1) × {0}. Suppose that

‖x · ∇u‖Lq(∂+B1(0)) ≤
η

log 1
δ

and
∥

∥

∥

∥

∇u− γx⊥

|x|2 log 1
δ

∥

∥

∥

∥

L2(B+
1 (0)\Bδ(0))

+ ‖∇u‖L2(B+
δ (0)) ≤

C0

log 1
δ

.

Then
ǫ

2

ˆ 1

−1

(µ′)2

1 − µ2
dx1 +

1

2

ˆ

B+
1 (0)

|∇u|2 dx ≥ inf
Mγ

Eγǫ − πγζ + Cη
(

log 1
δ

)2 − C
(

log 1
δ

)3 .

Proof. Set γ̃ = ζ/ log 1
δ . We have µ ∈Mγ−γ̃ , thus for ǫ small enough, we can first apply Lemma 20

for γ − γ̃ ∈ (β, 2 − β) instead of γ. We obtain

ǫ

2

ˆ 1

−1

(µ′)2

1 − µ2
dx1 +

1

2

ˆ

B+
1 (0)

|∇u|2 dx ≥ inf
Mγ−γ̃

Eγ−γ̃ǫ − C1η
(

log 1
δ

)2

for a constant C1 = C1(β,C0, q). From Proposition 18, it follows that

inf
Mγ−γ̃

Eγ−γ̃ǫ − inf
Mγ

Eγǫ ≥ − πγζ
(

log 1
δ

)2 − C2
(

log 1
δ

)3

for another constant C2 = C2(β,C0). Now it suffices to combine these estimates.

4.4 The profile near the core

Minimisers of Eγǫ give a good approximation of the behaviour of Néel walls near the core. When we
let ǫց 0, then, after renormalisation, we have convergence of those minimisers to a specific profile.
More precisely, we have the following.

Theorem 22. For ǫ ∈ (0, 1
2 ] and γ ∈ (0, 2), let µǫ ∈ Mγ be the minimiser of Eγǫ . Let uǫ be the

corresponding solution of (47)–(49) with
ˆ

B+
1 (0)\B1/2(0)

uǫ dx = 0. (58)

Suppose that 0 < r < R < 1. Then, as ǫց 0,

uǫ(x) log
1

δ
⇀ γ

(

arctan

(

x2

x1

)

− πx1

2|x1|

)

weakly in W 2,2(B+
R (0)\Br(0))

and

(µǫ(x1) − 1 + γ) log
1

δ
→ γ log

1

|x1|
strongly in W 1,2((−R,−r) ∪ (r,R)).
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Remark 23. For a related problem (concerning Néel walls in the presence of an anisotropy but
without the confinement to an interval), Melcher [24, 25] proved similar results on the profile of
Néel walls (with methods different from ours).

The proof of Theorem 22 relies on Lemma 11. Therefore, we first need to show that the as-
sumption sinϕǫ 6= 0 in that lemma is satisfied for a function ϕǫ with µǫ = cosϕǫ, at least away
from x1 = 0, for sufficiently small values of ǫ. Because we will use this result in a slightly different
context as well, we formulate it more generally.

Lemma 24. There exists a constant C > 0 such that the following holds true. Suppose that Ω ⊂ R2
+

is a Lipschitz domain with (−1, 1) × {0} ⊂ ∂Ω and let ν be the outer normal vector on ∂Ω. Let
ǫ ∈ (0, 1

2 ]. Suppose that µ ∈W 1,2(−1, 1) and let u ∈ W 1,2(Ω) be a solution of

∆u = 0 in Ω,

∂u

∂x2
= −µ′ on (−1, 1)× {0},

ν · ∇u = 0 on ∂Ω\((−1, 1)× {0}).

Let x1 ∈ (δ − 1, 1 − δ) and set

Σ =
(

B+
δ (x1, 0) ∩ Ω

)

∪
{

y ∈ Ω ∩B+
2 (0) : y2 ≥ |y1 − x1| or |y| ∈ (3

2 , 2)
}

.

Then

|µ(x1) − µ(−1)| ≤ C

(

log
1

δ

ˆ

Σ

|∇u|2 dx
)1/2

+ C

(

log
1

δ

ˆ x1+δ

x1−δ

ǫ(µ′)2 dt

)1/2

.

Proof. Define

ψ(t) =











1 if t ≤ x1 − δ,
x1−t
2δ + 1

2 if x1 − δ < t < x1 + δ,

0 if t ≥ x1 + δ.

Furthermore, let

η(θ) =











0 if θ ≤ π
4 ,

2θ
π − 1

2 if π
4 < θ < 3π

4 ,

1 if θ ≥ 3π
4 ,

and define χ̃ : R2
+ → R by

χ̃(x1 + r cos θ, r sin θ) = (1 − η(θ))ψ(x1 + r) + η(θ)ψ(x1 − r).

Finally, let

χ(x) =











χ̃(x) if |x| ≤ 3
2 ,

2(2 − |x|)χ̃(x) if 3
2 < |x| < 2,

0 if |x| ≥ 2.

Then Ω ∩ supp∇χ ⊂ Σ and
ˆ

R
2
+

|∇χ|2 dx ≤ C1 log
1

δ

for some universal constant C1.
We have

µ(x1) − µ(−1) =

ˆ x1

−1

µ′(t) dt.
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Moreover,

∣

∣

∣

∣

ˆ x1

−1

µ′(t) dt−
ˆ 1

−1

χ(t, 0)µ′(t) dt

∣

∣

∣

∣

≤
ˆ x1+δ

x1−δ

|µ′| dt

≤
(

2δ

ˆ x1+δ

x1−δ

(µ′)2 dx

)1/2

.

Using the boundary value problem for u, we find that

∣

∣

∣

∣

ˆ 1

−1

χ(t, 0)µ′(t) dt

∣

∣

∣

∣

=

∣

∣

∣

∣

ˆ

Ω

∇χ · ∇u dx
∣

∣

∣

∣

≤
(

C1 log
1

δ

ˆ

Σ

|∇u|2 dx
)1/2

.

Combining these estimates, we obtain the desired inequality.

Proof of Theorem 22. We choose ϕǫ : (−1, 1) → [0, π) such that ϕǫ(0) = 0 and µǫ = cosϕǫ. Using
Theorem 17 and Lemma 24 (applied for Ω = B+

1 (0)), we see that for any r,R ∈ (0, 1) and any
sufficiently small β > 0, we have |µǫ − 1 + γ| < β and | sinϕǫ| ≥ β in (−R,−r) ∪ (r,R) if ǫ > 0 is
small enough. Therefore, we can apply Lemma 11 in (−R,−r) and in (r,R).

By Theorem 17, the Poincaré inequality, and (58), the functions uǫ log 1
δ are uniformly bounded

in the space W 1,2(B+
1 (0)\Br(0)) for all r > 0. Hence, by Lemma 11, they are uniformly bounded

in W 2,2(B+
R (0)\Br(0)) whenever 0 < r < R < 1. Hence there exists a sequence ǫk → 0 as k → ∞

such that we have weak convergence

uǫk log
1

δk
⇀ w

in W 2,2(B+
R (0)\Br(0)) for all r,R ∈ (0, 1), where δk = ǫk log 1

ǫk
. The limit

w ∈
⋂

0<r<R<1

W 2,2(B+
R (0)\Br(0))

is harmonic in B+
1 (0) and satisfies the boundary condition x · ∇w = 0 on ∂+B1(0). According to

Lemma 11, we also have

lim sup
k→∞

(

(

log
1

δk

)2

ǫk

ˆ R

r

(ϕ′′
ǫk)2 dx1

)

<∞.

It follows from (50) that

lim sup
k→∞







(

log 1
δk

)2

ǫk

ˆ R

r

(u′ǫk)2 dx1






<∞.

Thus w is constant on (0, 1) × {0}, and we can prove the same on (−1, 0)× {0}.
Define

w̃(x) = w(x) − γ

(

arctan

(

x2

x1

)

− πx1

2|x1|

)

, x ∈ B+
1 (0).

Since
ˆ

B+
1 (0)

∣

∣

∣

∣

∇w − γx⊥

|x|2
∣

∣

∣

∣

2

dx <∞

by Theorem 17, it follows that w̃ ∈ W 1,2(B+
1 (0)). We conclude that w̃( · , 0) ∈ H1/2(−1, 1). More-

over, the trace w̃( · , 0) is constant on (−1, 0) and on (0, 1). But H1/2(−1, 1) does not allow any
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jumps; hence w̃( · , 0) is in fact constant on (−1, 1). We also have ∆w̃ = 0 in B+
1 (0) and x · ∇w̃ = 0

on ∂+B1(0). Thus it follows that w̃ is constant in B+
1 (0). Because of (58), we have w̃ = 0. That is,

w(x) = γ

(

arctan

(

x2

x1

)

− πx1

2|x1|

)

in B+
1 (0).

As the limit is thus independent of the sequence ǫk, this implies the first claim.
We have

log
1

δ

∂uǫ
∂x2

(x1, 0) → γ

x1

strongly in L2(−R,−r) and in L2(r,R). But since µ′
ǫ = − ∂uǫ

∂x2
, it follows that (µǫ − 1 + γ) log 1

δ

converges strongly in W 1,2(−R,−r) to λ− − γ log |x1| and in W 1,2(r,R) and to λ+ − γ log |x1| for
two constants λ−, λ+ ∈ [−∞,∞]. It remains to determine these constants.

Choose a function χ ∈ C∞
0 (B1(−1, 0)) with (−1, 0) 6∈ supp∇χ. Then

lim
ǫց0

(

log
1

δ

ˆ

B+
1 (0)

∇χ · ∇uǫ dx
)

= γ

ˆ

B+
1 (0)

∇χ · x
⊥

|x|2 dx = −γ
ˆ 1

−1

χ(x1)

x1
dx1.

On the other hand,

ˆ

B+
1 (0)

∇χ · ∇uǫ dx =

ˆ 1

−1

µ′
ǫχdx1 = −

ˆ 1

−1

(µǫ − 1 + γ)χ′ dx1

by an integration by parts. Hence

lim
ǫց0

(

log
1

δ

ˆ

B+
1 (0)

∇χ · ∇uǫ dx
)

=

ˆ 1

−1

(γ log |x1| − λ−)χ′ dx1

= χ(−1, 0)λ− − γ

ˆ 1

−1

χ(x1)

x1
dx1,

and we obtain λ− = 0. Similarly we show that λ+ = 0.

4.5 The core energy

We can now determine the values of the function e in Theorem 2, albeit not explicitly. They arise
as the limits in the following result for γ± = 1 ∓ cosα.

Theorem 25. For any γ ∈ (0, 2), the limit

eγ = lim
ǫց0

(

(

log
1

δ

)2

inf
Mγ

Eγǫ − πγ2

2
log

1

δ

)

exists.

Definition 26. The function e : {±1} → R is defined by

e(−1) = e1+cosα and e(1) = e1−cosα.

Proof of Theorem 25. Define

f(ǫ) =

(

log
1

δ

)2

inf
Mγ

Eγǫ − πγ2

2
log

1

δ
.
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Fix ǫ > 0 small enough and choose a number R ∈ (1, 1
δ ). Let µ ∈ Mγ be the minimiser of Eγǫ and

let v ∈ W 1,2(B+
1 (0)) be the solution of (44)–(46). Define

µ̃(x1) =























γ log 1
|x1|

log 1
δ

+ 1 − γ if 1
R ≤ |x1| < 1,

(

1 − logR

log 1
δ

)

µ(Rx1) +
logR

log 1
δ

if |x1| ≤ 1
R ,

and

ṽ(x) =























γ log 1
|x|

log 1
δ

+ 1 − γ if 1
R ≤ |x| < 1,

(

1 − logR

log 1
δ

)

v(Rx) +
logR

log 1
δ

if |x| ≤ 1
R .

Then we have µ̃ ∈Mγ and ṽ ∈W 1,2
µ̃ (B+

1 (0)). Moreover, by Proposition 14,

1 + µ̃(x1) ≥ 1 + µ(Rx1) ≥ 2 − γ > 0

and

1 − µ̃(x1) =

(

1 − logR

log 1
δ

)

(1 − µ(Rx1)) > 0

for |x1| ≤ 1
R . Therefore, we compute

ǫ

R

ˆ 1/R

−1/R

(µ̃′)2

1 − µ̃2
dx1 ≤

(

1 − logR

log 1
δ

)

ǫ

ˆ 1

−1

(µ′)2

1 − µ2
dx1.

Furthermore,
ˆ

B+
1/R

(0)

|∇ṽ|2 dx =

(

1 − logR

log 1
δ

)2 ˆ

B+
1 (0))

|∇v|2 dx.

We also observe that for x1 ∈ [−1,− 1
R ) ∪ ( 1

R , 1],

1 − µ̃2 = γ

(

1 −
log 1

|x1|

log 1
δ

)(

2 − γ +
γ log 1

|x1|

log 1
δ

)

≥ γ(2 − γ)

(

1 −
log 1

|x1|

log 1
δ

)

.

Hence

ˆ

(−1,−1/R)∪(1/R,1)

(µ̃′)2

1 − µ̃2
dx1 ≤ 2γ

(2 − γ) log 1
δ

ˆ 1

1/R

dx1

x2
1

(

log 1
δ − log 1

x1

)

=
2γ

(2 − γ) log 1
δ

ˆ R

1

ds

log 1
δ − log s

.

Define

g(R) =
γ

(2 − γ) log 1
δ

ˆ R

1

ds

log 1
δ − log s

.

Finally, we compute
ˆ

B+
1 (0)\B1/R(0)

|∇ṽ|2 dx =
πγ2 logR
(

log 1
δ

)2 .
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Let

ǫ̃ = ǫ̃(R) =
ǫ

R

(

1 − logR

log 1
δ

)

< ǫ.

Then we have

Eγǫ̃ (µ̃) ≤ ǫ̃

2

ˆ 1

−1

(µ̃′)2

1 − µ̃2
dx1 +

1

2

ˆ

B+
1 (0)

|∇ṽ|2 dx

≤
(

1 − logR

log 1
δ

)2

Eγǫ (µ) +
ǫg(R)

R

(

1 − logR

log 1
δ

)

+
πγ2 logR

2
(

log 1
δ

)2 .

It follows that

f(ǫ̃) ≤
(

log
1

δ̃

)2
(

(

1 − logR

log 1
δ

)2

Eγǫ (µ) +
ǫg(R)

R

(

1 − logR

log 1
δ

)

+
πγ2 logR

2
(

log 1
δ

)2

)

− πγ2

2
log

1

δ̃
,

where δ̃ = ǫ̃ log 1
ǫ̃ . Since we have equality for R = 1, we can use this inequality to estimate the

left-hand superdifferential

f ′
−(ǫ) = lim inf

sրǫ

f(s) − f(ǫ)

s− ǫ
.

Indeed, note first that
dǫ̃

dR

∣

∣

∣

∣

R=1

= −ǫ
(

1 +
1

log 1
δ

)

and
dδ̃

dR

∣

∣

∣

∣

∣

R=1

= ǫ

(

1 − log
1

ǫ

)(

1 +
1

log 1
δ

)

.

The above inequality therefore implies that for all ǫ ∈ (0, e−2],

−ǫ
(

1 +
1

log 1
δ

)

f ′
−(ǫ) ≤ 2

(

log 1
δ

log 1
ǫ

(

log
1

ǫ
− 1

)(

1 +
1

log 1
δ

)

− log
1

δ

)

Eγǫ (µ)

+
γǫ

2 − γ
+
πγ2

2
+

πγ2

2 log 1
ǫ

(

1 − log
1

ǫ

)(

1 +
1

log 1
δ

)

=

(

log log
1

ǫ
− 1

)(

2Eγǫ (µ)

log 1
ǫ

− πγ2

2 log 1
ǫ log 1

δ

)

+
ǫγ

2 − γ

≤ C log log 1
ǫ

(

log 1
ǫ

)2

for a constant C = C(γ) by Proposition 15. Hence

f ′
−(ǫ) ≥ −C log log 1

ǫ

ǫ
(

log 1
ǫ

)2 .

Note that
ˆ e−2

0

log log 1
ǫ

ǫ
(

log 1
ǫ

)2 dǫ <∞.

Thus if we denote
eγ = lim inf

ǫց0
f(ǫ),
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then for any η > 0 we can find a number ǫ0 > 0 such that

f(ǫ0) ≤ eγ +
η

2

and at the same time,
ˆ ǫ0

ǫ

f ′
−(s) ds ≥ −η

2

for any ǫ ∈ (0, ǫ0]. It then follows that

f(ǫ) ≤ f(ǫ0) −
ˆ ǫ0

ǫ

f ′
−(s) ds ≤ eγ + η.

Hence we have in fact
eγ = lim

ǫց0
f(ǫ),

as required.

5 Several walls

We now consider a given a ∈ AN and d ∈ {±1}N and we study magnetisations m ∈ M(a, d). In
particular, we want to estimate infM(a,d)Eǫ and derive some inequalities for the magnetisation and
the stray field in terms of the energy excess

Eǫ(m) − inf
M(a,d)

Eǫ.

5.1 Upper bound for the minimal energy

The purpose of this section is to prove the following upper bound for the energy by a direct con-
struction. It is a generalization of Proposition 15 to configurations with several walls a ∈ AN .

Proposition 27. For every R ∈ (0, 1] there exists a constant C0 > 0 such that for all ǫ ∈ (0, 1
2 ],

a ∈ AN with ρ(a) ≥ R, and d ∈ {±1}N , the inequality

inf
M(a,d)

Eǫ ≤
π

2 log 1
δ

N
∑

n=1

(dn − cosα)2 +
C0

(

log 1
δ

)2

holds true.

Proof. We will in fact prove a more explicit estimate, showing that there exists an m ∈ M(a, d)
with

Eǫ(m) ≤
∑N

n=1(dn − cosα)2

2 log
√

R2

δ2 + 1

(

π +
2

sin2 α log 1
ǫ

ˆ ∞

−∞

t2

(t2 + 1)2 log(t2 + 1)
dt

)

. (59)

This will clearly imply the statement of the proposition. The proof is similar to the proof of
Proposition 15. Let γn = dn − cosα. Define

f(x1) =
log(x2

1 + δ2) − log(R2 + δ2)

log δ2 − log(R2 + δ2)

and m1 : (−1, 1) → [−1, 1], given by

m1(x1) =

{

cosα+ γnf(x1 − an) if x1 ∈ (an −R, an +R) for n = 1, . . . , N ,

cosα else.
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Then there exists a function m2 : (−1, 1) → [−1, 1] such that m = (m1,m2) ∈ M(a, d). Suppose
that x1 ∈ (an −R, an +R). If dn = −1, then 1 −m1(x1) ≥ 1 − cosα and

1 +m1(x1) = (1 + cosα) (1 − f(x1 − an)) .

If dn = 1, then 1 +m1(x1) ≥ 1 + cosα and

1 −m1(x1) = (1 − cosα) (1 − f(x1 − an)) .

In both cases,
1 − (m1(x1))

2 ≥ sin2 α (1 − f(x1 − an)) .

Thus as in the proof of Proposition 15, we can estimate

ˆ an+R

an−R

|m′|2 dx1 ≤ 2γ2
n

sin2 α log
√

R2

δ2 + 1

ˆ R

−R

x2
1

(x2
1 + δ2)2 log

(

x2
1

δ2 + 1
) dx1

≤ 2γ2
n

δ sin2 α log
√

R2

δ2 + 1

ˆ ∞

−∞

t2

(t2 + 1)2 log(t2 + 1)
dt.

Summing over n, we find

ˆ 1

−1

|m′|2 dt ≤ 2
∑N
n=1 γ

2
n

δ sin2 α log
√

R2

δ2 + 1

ˆ ∞

−∞

t2

(t2 + 1)2 log(t2 + 1)
dt.

Now consider the function u = U(m) as defined on page 3. Since curl∇⊥u = 0, there exists a
function v ∈ Ẇ 1,2(R2

+) such that ∇v = ∇⊥u in R2
+. Since this means that v′ = m′

1 on (−1, 1)×{0},
we can choose v such that v = m1−cosα on (−1, 1)×{0}. Then we also have v = 0 on (−∞,−1)×{0}
and on (1,∞) × {0}, and of course ∆v = 0 in R

2
+. Furthermore, the function has finite Dirichlet

energy, and it follows that it is the unique minimiser of the Dirichlet energy under these boundary
conditions.

Define w : R2
+ → R by

w(an + r cos θ, r sin θ) = m1(an + r) − cosα for 0 < r ≤ R and 0 ≤ θ ≤ π, n = 1, . . . , N,

while w = 0 in ΩR(a). Then we compute, similarly to the proof of Proposition 15, that

ˆ

B+
R(an,0)

|∇w|2 dx =
πγ2

n
(

log
√

R2

δ2 + 1

)2

ˆ R

0

r3

(r2 + δ2)2
dr

=
πγ2

n

2

(

log
√

R2

δ2 + 1

)2

ˆ R2+δ2

δ2

r − δ2

r2
dr ≤ πγ2

n

log
√

R2

δ2 + 1
.

Hence
ˆ

R
2
+

|∇w|2 dx ≤ π
∑N
n=1 γ

2
n

log
√

R2

δ2 + 1
.

In particular
ˆ

R
2
+

|∇u|2 dx =

ˆ

R
2
+

|∇v|2 dx ≤
ˆ

R
2
+

|∇w|2 dx ≤ π
∑N
n=1 γ

2
n

log
√

R2

δ2 + 1
.

If we combine these inequalities, then we obtain (59).
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5.2 Stray field estimates

The following is the main result of this section and one of the key ingredients for the proof of

Theorem 2. We recall the function u∗a,d from Section 2, solving ∆u∗a,d = 0 in R2
+ and

∂u∗
a,d

∂x2
= 0 on

(−∞,−1)×{0} and (1,∞)×{0}, and with a piecewise constant trace on (−1, 1)×{0} given by the
values

σn =
π

2

(

N
∑

k=n+1

(dk − cosα) −
n
∑

k=1

(dk − cosα)

)

.

It has the property that for n = 1, . . . , N , the function

x 7→ u∗a,d(x) − (dn − cosα)

(

arctan

(

x2

x1 − an

)

− π(x1 − an)

2|x1 − an|

)

is harmonic in B+
ρ(a)(an, 0) and constant on (an− ρ(a), an+ ρ(a))×{0}. Standard elliptic estimates

then imply that this function is smooth near (an, 0). In view of the energy estimates (30) and (31),
we can make more quantitative statements as well: if ρ(a) ≥ R > 0, then

∣

∣

∣

∣

∂u∗a,d
∂x1

(x) +
(dn − cosα)x2

(x1 − an)2 + x2
2

∣

∣

∣

∣

+

∣

∣

∣

∣

∂u∗a,d
∂x2

(x) − (dn − cosα)(x1 − an)

(x1 − an)2 + x2
2

∣

∣

∣

∣

≤ C (60)

for x ∈ B+
ρ(a)(an, 0), where C = C(α,N,R).

Theorem 28. For any R ∈ (0, 1
2 ] and C0 > 0, there exists a constant C1 > 0 such the following

holds true. Let a ∈ AN with ρ(a) ≥ R and d ∈ {±1}N . Set

Γ =
N
∑

n=1

(dn − cosα)2.

Suppose that ǫ ∈ (0, 1
2 ] with δ ≤ R and m ∈M(a, d) with

Eǫ(m) ≤ πΓ

2 log 1
δ

+
C0

(

log 1
δ

)2 . (61)

Let u = U(m) be the function defined on page 3. Then

ˆ

Ωδ(a)

∣

∣

∣

∣

∇u−
∇u∗a,d
log 1

δ

∣

∣

∣

∣

2

dx ≤ C1
(

log 1
δ

)2 (62)

and
ˆ

Ωδ(a)

|∇u|2 dx ≥ πΓ

log 1
δ

− C1
(

log 1
δ

)2 . (63)

This statement is somewhat similar to Theorem 17. The main difference, apart from the fact that
we consider several Néel walls here, is that we only assume a suitable bound for the energy, whereas
in Theorem 17, we study minimisers. Before we prove the theorem, we establish the following
auxiliary result.

Lemma 29. Let s > 0 and µ ∈W 1,2(−s, s). If µ(0) = 1 and |µ| ≤ 1, then

ˆ s

−s

|µ′| dx1 ≤ 2s

ˆ s

−s

(µ′)2

1 − µ2
dx1.
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Proof. By the Cauchy-Schwarz inequality, we have

ˆ s

−s

|µ′| dx1 ≤
(
ˆ s

−s

(µ′)2

1 − µ2
dx1

)1/2(ˆ s

−s

(1 − µ2) dx1

)1/2

. (64)

Since µ(0) = 1, any x1 ∈ (−s, s) will satisfy

1 − (µ(x1))
2 = −2

ˆ x1

0

µ(t)µ′(t) dt

≤ 2

∣

∣

∣

∣

ˆ x1

0

(µ′)2

1 − µ2
dt

∣

∣

∣

∣

1/2 ∣
∣

∣

∣

ˆ x1

0

µ2(1 − µ2) dt

∣

∣

∣

∣

1/2

.

Integrating over (−s, s), recalling that |µ| ≤ 1, and using the Cauchy-Schwarz inequality, we obtain

ˆ s

−s

(1 − µ2) dx1 ≤ 2

(
ˆ s

−s

∣

∣

∣

∣

ˆ x1

0

(µ′)2

1 − µ2
dt

∣

∣

∣

∣

dx1

)1/2(ˆ s

−s

∣

∣

∣

∣

ˆ x1

0

(1 − µ2) dt

∣

∣

∣

∣

dx1

)1/2

≤ 2s

(
ˆ s

−s

(µ′)2

1 − µ2
dx1

)1/2 (ˆ s

−s

(1 − µ2) dx1

)1/2

,

which leads to
ˆ s

−s

(1 − µ2) dx1 ≤ 4s2
ˆ s

−s

(µ′)2

1 − µ2
dx1.

Combining this with (64), we obtain the desired inequality.

Proof of Theorem 28. It is clear that it suffices to prove the inequalities for small values of ǫ. We
modify the functions u∗a,d as follows: for a fixed s ∈ (0, R], let ξs ∈ Ẇ 1,2(R2

+) be such that

ξs(x) =
u∗a,d(x)

log 1
δ

for x ∈ Ωs(a) and

ξs(an + r cos θ, r sin θ) =
ru∗a,d(an + s cos θ, s sin θ)

s log 1
δ

+
(

1 − r

s

) σn−1 + σn

2 log 1
δ

for 0 < r < s, 0 < θ < π, and n = 1, . . . , N . Then we have

ˆ

R
2
+

|∇ξs|2 dx ≤ πΓ log 1
s + C1

(

log 1
δ

)2 (65)

for a constant C1 = C1(α,N,R) > 0. This follows from (30), (31), and (60).
We observe that

πΓ

log 1
δ

=

ˆ 1

−1

u∗a,d(x1, 0)

log 1
δ

m′
1(x1) dx1

=

ˆ 1

−1

ξs(x1, 0)m′
1(x1) dx1 −

ˆ 1

−1

(

ξs(x1, 0) −
u∗a,d(x1, 0)

log 1
δ

)

m′
1(x1) dx1

=

ˆ

R
2
+

∇ξs · ∇u dx−
ˆ 1

−1

(

ξs(x1, 0) −
u∗a,d(x1, 0)

log 1
δ

)

m′
1(x1) dx1.
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We have a constant C2 = C2(α,N,R) > 0 such that

∣

∣

∣

∣

ˆ 1

−1

(

ξs(x1, 0) −
u∗a,d(x1, 0)

log 1
δ

)

m′
1(x1) dx1

∣

∣

∣

∣

≤ C2

log 1
δ

N
∑

n=1

ˆ an+s

an−s

|m′
1| dx1.

Thus by Lemma 29,
∣

∣

∣

∣

ˆ 1

−1

(

ξs(x1, 0) −
u∗a,d(x1, 0)

log 1
δ

)

m′
1(x1) dx1

∣

∣

∣

∣

≤ 2C2s

ǫ log 1
δ

(

2Eǫ(m) − ‖∇u‖2
L2(R2

+)

)

.

We conclude that

πΓ

log 1
δ

≤ 2C2s

ǫ log 1
δ

(

2Eǫ(m) − ‖∇u‖2
L2(R2

+)

)

+

ˆ

R
2
+

∇ξs · ∇u dx. (66)

Using the Cauchy-Schwarz inequality and (65), we obtain

πΓ

log 1
δ

≤ 2C2s

ǫ log 1
δ

(

2Eǫ(m) − ‖∇u‖2
L2(R2

+)

)

+

√

πΓ log 1
s + C1

log 1
δ

‖∇u‖L2(R2
+). (67)

We want to use this inequality to prove (63) first. For this purpose, we choose s ∈ (0, R] such
that

‖∇u‖2
L2(R2

+) =
πΓ

log 1
s

− 2C1
(

log 1
s

)2 . (68)

This is possible whenever ǫ is sufficiently small because of (61). Then (67) and (61) imply

πΓ

log 1
δ

≤ 2C2s

ǫ log 1
δ

(

πΓ

log 1
δ

− πΓ

log 1
s

+
2C0

(

log 1
δ

)2 +
2C1

(

log 1
s

)2

)

+

√

π2Γ2
(

log 1
s

)2 − C1πΓ log 1
s − 2C2

1

log 1
δ log 1

s

≤ 2C2s

ǫ log 1
δ

(

πΓ

log 1
δ

− πΓ

log 1
s

+
2C0

(

log 1
δ

)2 +
2C1

(

log 1
s

)2

)

+
πΓ

log 1
δ

(

1 − C1

2πΓ log 1
s

− C2
1

π2Γ2
(

log 1
s

)2

)

,

because
√

1 − β ≤ 1 − β
2 for β ∈ (0, 1). That is,

C1

2πΓ
+

C2
1

π2Γ2 log 1
s

≤ 2C2s

ǫ log 1
δ

(

log
1

s
− log

1

δ
+

2C0 log 1
s

πΓ log 1
δ

+
2C1 log 1

δ

πΓ log 1
s

)

.

In particular, there exist certain constants C3, C4, C5, C6, all of them positive and depending only
on α, N , C0, and R, such that

C3 +
C4

log 1
s

≤ s

δ

(

log
δ

s
+
C5 log 1

s

log 1
δ

+
C6 log 1

δ

log 1
s

)

. (69)

We want to use this inequality to show that there exists a constant C7 = C7(α,R,N,C0) > 0 such
that C7s ≥ δ. Then (63) follows immediately from (68), because the right hand side is increasing
in s when log 1

s ≥ 4C1/(πΓ), which is the case for ǫ small due to (61).

To this end, let c = min{1, C3

4C6
}. We distinguish three cases.
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Case 1. If s ≥ cδ, then the claim is obvious.

Case 2. If s < cδ and

s log
1

s
≥ C3

2C5
δ log

1

δ
,

then it follows that s ≥ δ2, provided that ǫ is small enough. (Otherwise we would have an
immediate contradiction to the assumptions for this case.) Hence log 1

s ≤ 2 log 1
δ and

s ≥ C3δ

4C5
.

Case 3. If s < cδ and

s log
1

s
<

C3

2C5
δ log

1

δ
,

then we obtain
C3

2
+

C4

log 1
s

≤ s

δ

(

log
δ

s
+
C6 log 1

δ

log 1
s

)

from (69). We also have log 1
s > log 1

δ (since c ≤ 1). Hence

s log 1
δ

δ log 1
s

≤ c ≤ C3

4C6
.

Hence
C3

4
≤ s

δ
log

δ

s
,

which implies the claim.

This concludes the proof of (63).
Now we go back to inequality (66) and use it for s = δ in order to prove (62). Since we now have

(63), the inequality implies that
ˆ

R
2
+

∇ξδ · ∇u dx ≥ πΓ

log 1
δ

− C8
(

log 1
δ

)2 (70)

for a constant C8 = C8(α,N,C0, R). Hence
ˆ

R
2
+

|∇u−∇ξδ|2 dx ≤ 2Eǫ(m) − 2

ˆ

R
2
+

∇ξδ · ∇u dx+

ˆ

R
2
+

|∇ξδ|2 dx

≤ 2C0 + 2C8 + C1
(

log 1
δ

)2

by (61), (65) and (70). Since ξδ coincides with u∗a,d/ log 1
δ in Ωδ(a), this finally implies (62).

Remark 30. Once we have (61) and (63) in Theorem 28, we can also derive the inequalities

ǫ

ˆ 1

−1

(ϕ′)2 dx1 ≤ C
(

log 1
δ

)2 and

ˆ an+δ

an−δ

sin2 ϕdx1 ≤ Cδ

log 1
δ

for a lifting ϕ of m and for n = 1, . . . , N , where C = C(α,N,R,C0). The first inequality is an
immediate consequence of (61) and (63), and the second follows with the same arguments as in the
proof of Lemma 13. These estimates are similar to (42) and (43), but now we know that they hold
true for non-minimizing configurations (under the energy control (61)) and the Pohozaev identity
previously used for the proof of (42) and (43) is no longer needed.
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Remark 31. Inequalities (61) and (63) further imply that

ˆ

B∗
δ (a)

|∇u|2 dx ≤ 2C0 + C1
(

log 1
δ

)2 .

If we combine this estimate with (62), then we also obtain

ˆ

B∗
r (a)

|∇u|2 dx ≤ 1
(

log 1
δ

)2

(

2C0 + 3C1 + 2

ˆ

B∗
r (a)\B∗

δ (a)

|∇u∗a,d|2 dx
)

for any r > 0. Furthermore, since u∗a,d is known quite explicitly, the last integral is typically not too
difficult to estimate.

6 Proof of the main result

We now prove Theorem 2. To this end, fix a ∈ AN and d ∈ {±1}N . Set γn = dn − cosα for
n = 1, . . . , N and

Γ =

N
∑

n=1

γ2
n.

Furthermore, set γ± = 1∓cosα and recall Definition 26, which introduces the function e : {±1} → R

with

e(±1) = lim
ǫց0

(

(

log
1

δ

)2

inf
Mγ±

Eγ±ǫ − πγ2
±

2
log

1

δ

)

.

We divide the identity from Theorem 2 into two inequalities, which are proved in Section 6.2 and
Section 6.3, respectively, after some preparation. Throughout the proof, we indiscriminately write
C for various positive constants that depend only on α, N , a, d, and occasionally on the exponents
of Lp-spaces appearing in the context (always denoted by p or q).

6.1 Preparation

Define

w0(x) = arctan

(

x2

x1

)

− πx1

2|x1|
for x ∈ R2

+. Recall the functions

u∗a,d =
N
∑

n=1

γnuan and µ∗
a,d =

N
∑

n=1

γnµan

from Section 2. Consider a number r ∈ (0, ρ(a)]. For n = 1, . . . , N , let

λn = γn log(2 − 2a2
n) +

∑

k 6=n

γkµak
(an)

again and recall estimate (36), which implies that

∣

∣

∣

∣

µ∗
a,d(x1) − λn − γn log

1

|x1 − an|

∣

∣

∣

∣

≤ Cr (71)
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for x1 ∈ [an − r, an + r]. Also define

ωn =
∑

k 6=n

γkuak
(an).

Then
|u∗a,d(x) − ωn − γnw0(x1 − an, x2)| ≤ Cr in Br(an, 0) (72)

and
|∇u∗a,d(x) − γn∇w0(x1 − an, x2)| ≤ C in Br(an, 0) (73)

for 1 ≤ n ≤ N , because u∗a,d(x) − ωn − γnw0(x1 − an, x2) is a smooth function that vanishes at
(an, 0).

We now study how δ changes when we replace ǫ by ǫ/r for a number r ∈ (ǫ, 1], since we will have
to rescale the magnetisation about the centres of the Néel walls. We have

log
( ǫ

r
log

r

ǫ

)

= log δ − log r + log

(

1 − log r

log ǫ

)

.

Since log(1 − ξ) ≤ −ξ for ξ ∈ (0, 1), we obtain

log
( ǫ

r
log

r

ǫ

)

≤ log δ − log r − log r

log ǫ
. (74)

Similarly, if ǫ is sufficiently small (for a fixed r), then

log
( ǫ

r
log

r

ǫ

)

≥ log δ − log r − 2 log r

log ǫ
. (75)

6.2 A lower bound for the interaction energy

The purpose of this section is to prove the inequality

lim inf
ǫց0

(

(

log
1

δ

)2

inf
M(a,d)

Eǫ −
πΓ

2
log

1

δ

)

≥
N
∑

n=1

e(dn) +W (a, d) (76)

for the function W defined at the end of Section 2, which amounts to half of the statement of
Theorem 2.

First step: use minimisers Clearly it is sufficient to consider functions mǫ ∈ W 1,2((−1, 1); S1)
that minimise Eǫ in M(a, d). Then

lim sup
ǫց0

(

(

log
1

δ

)2

Eǫ(mǫ) −
πΓ

2
log

1

δ

)

<∞ (77)

by Proposition 27.

Second step: prove convergence away from the walls This part of the proof is similar to
the proof of Theorem 22. Let ϕǫ ∈ W 1,2(−1, 1) such that mǫ = (cosϕǫ, sinϕǫ). Define uǫ = U(mǫ)
and vǫ = uǫ log 1

δ . Then by Theorem 28, we have a sequence ǫk ց 0 such that vǫk ⇀ v weakly in

Ẇ 1,2(Ωr(a)) for every r > 0 for some function

v ∈ u∗a,d + Ẇ 1,2(R2
+).
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In fact, for any fixed r > 0, owing to Lemma 24 (with Ω = R2
+), Theorem 28, and Remark 30, there

exists a number β > 0 (depending on r) such that | sinϕǫ| ≥ β at distance at least r away from
−1, a1, . . . , aN , 1 for ǫ small enough. For r,R > 0, define Σr,R(a) = (Ωr(a) ∩ B+

R(0))\(Br(−1, 0) ∪
Br(1, 0)). Then we can use Lemma 11 and standard elliptic estimates to obtain uniform estimates
in W 2,2(Σr,R(a)) for any r,R > 0 and any sufficiently small ǫ. Therefore, we even have vǫk ⇀ v
weakly in W 2,2(Σr,R(a)) for all r,R > 0. Furthermore, we have vǫk → v uniformly in R2

+\B2(0) by
standard estimates for the Laplace equation. It follows that lim|x|→∞ v(x) = 0.

Obviously ∆v = 0 in R2
+ and ∂v

∂x2
= 0 on (−1,−∞) × {0} and on (1,∞) × {0}. By Lemma 11,

we also have

lim sup
ǫց0

(

(

log
1

δ

)2

ǫ

ˆ an+1−r

an+r

(ϕ′′
ǫ )

2 dx1

)

<∞

for n = 1, . . . , N − 1 and any r > 0, and we have similar inequalities in (r − 1, a1 − r) and in
(aN + r, 1 − r). Since

u′ǫ = ǫϕ′′
ǫ / sinϕǫ

by (37), we conclude that v( · , 0) is locally constant in (−1, 1)\{a1, . . . , aN}. But there is only one
function in the space u∗a,d+ Ẇ 1,2(R2

+) with these properties (which can be seen with the arguments
from the proof of Theorem 22), and thus we have

v = u∗a,d in R
2
+.

Since ∂vǫ

∂x2
( · , 0) = −m′

1ǫ log 1
δ on (−1, 1)\{a1, . . . , aN}, it also follows that there exists a sequence

ǫk ց 0 such that

(m1ǫk − cosα) log
1

δk
→ ν

locally uniformly in (−1, 1)\{a1, . . . , aN} for a function ν : (−1, 1) → [−∞,∞] such that µ∗
a,d − ν is

locally constant in (−1, 1)\{a1, . . . , aN}, where δk = ǫk log 1
ǫk

. With the same arguments as in the
proof of Theorem 22, we show that ν = µ∗

a,d and

(m1ǫ − cosα) log
1

δ
→ µ∗

a,d locally uniformly in (−1, 1)\{a1, . . . , aN}.

Now for any r ∈ (0, ρ(a)], we have

ˆ

Ωr(a)

|∇u∗a,d|2 dx ≤ lim inf
ǫց0

ˆ

Ωr(a)

|∇vǫ|2 dx = lim inf
ǫց0

(

(

log
1

δ

)2 ˆ

Ωr(a)

|∇uǫ|2 dx
)

. (78)

Furthermore, by (71), we have

∣

∣

∣

∣

m1ǫ(an ± r) − cosα− γn log 1
r + λn

log 1
δ

∣

∣

∣

∣

≤ Cr

log 1
δ

+
o(1)

log 1
δ

. (79)

Here and subsequently, we use the notation o(1) for any quantity that converges to 0 as ǫց 0, with
a rate of convergence possibly depending on r.

Third step: rescale the cores Fix n ∈ {1, . . . , N} and r ∈ (0, ρ(a)], and define the functions
m̃ǫ : (−1, 1) → S1 and ũǫ : R2

+ → R and the number ǫ̃ by

m̃ǫ(x1) = mǫ(rx1 + an),

ũǫ(x) = uǫ(rx1 + an, rx2),

ǫ̃ =
ǫ

r
.
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Then we have

ǫ̃

ˆ 1

−1

|m̃′
ǫ|2 dx1 = ǫ

ˆ an+r

an−r

|m′
ǫ|2 dx1 (80)

and
ˆ

B+
1 (0)

|∇ũǫ|2 dx =

ˆ

B+
r (an,0)

|∇uǫ|2 dx. (81)

Moreover, if we denote ũ∗(x) = u∗a,d(rx1 + an, rx2) and ṽǫ = ũǫ log 1
δ , then by the observations in

the second step, we have ṽǫ − ũ∗ ⇀ 0 weakly in W 2,2(B+
1 (0)\B1/2(0)). In particular, if we fix a

number q > 2, then we have strong convergence of the boundary data in W 1,q(∂+B+
1 (0)). Because

of (73), we have
‖x · ∇ũ∗(x)‖L∞(∂+B1(0)) ≤ Cr.

Hence

‖x · ∇ũǫ‖Lq(∂+B1(0)) ≤
Cr + o(1)

log 1
δ

.

From Theorem 28, Remark 31, and inequality (73), we also obtain the inequality

∥

∥

∥

∥

∇ũǫ −
γnx

⊥

|x|2 log 1
δ

∥

∥

∥

∥

L2(B+
1 (0)\Bδ̃(0))

+ ‖∇ũǫ‖L2(B+

δ̃
(0)) ≤

C

log 1
δ

,

where δ̃ = ǫ̃ log 1
ǫ̃ . We then also obtain

‖x · ∇ũǫ‖Lq(∂+B1(0)) ≤
Cr + o(1)

log 1
δ̃

and
∥

∥

∥

∥

∥

∇ũǫ −
γnx

⊥

|x|2 log 1
δ̃

∥

∥

∥

∥

∥

L2(B+
1 (0)\Bδ̃(0))

+ ‖∇ũǫ‖L2(B+

δ̃
(0)) ≤

C

log 1
δ̃

.

Because of this and (79), we may apply Corollary 21 to dnm̃1ǫ with

γ = dnγn, η = Cr + o(1), and ζ = dn

(

λn + γn log
1

r

)

+ Cr + o(1).

In view of Definition 26, we conclude that

(

log
1

δ̃

)2
(

ǫ̃

ˆ 1

−1

|m̃′
ǫ|2 dx1 +

ˆ

B+
1 (0)

|∇ũǫ|2 dx
)

≥ πγ2
n log

1

δ̃
+ 2e(dn) − 2πγ2

n log
1

r
− 2πγnλn − Cr − o(1). (82)

We recall (74) and (75). Now (80), (81), and (82) imply that

(

log
1

δ
− log

1

r

)2
(

ǫ

ˆ an+r

an−r

|m′
ǫ|2 dx1 +

ˆ

B+
r (an,0)

|∇uǫ|2 dx
)

− πγ2
n

(

log
1

δ
− log

1

r

)

≥ 2e(dn) − 2πγ2
n log

1

r
− 2πγnλn − Cr − o(1).

46



Since this means in particular that

log
1

δ

(

ǫ

ˆ an+r

an−r

|m′
ǫ|2 dt+

ˆ

B+
r (an,0)

|∇uǫ|2 dx
)

≥ πγ2
n + o(1),

and since we have (77), the inequality also yields

(

log
1

δ

)2
(

ǫ

ˆ an+r

an−r

|m′
ǫ|2 dt+

ˆ

B+
r (an,0)

|∇uǫ|2 dx
)

− πγ2
n

(

log
1

δ
− log

1

r

)

≥ 2e(dn) − 2πγnλn − Cr − o(1).

Fourth step: combine the estimates If we sum over n and use (78), we obtain

(

log
1

δ

)2

Eǫ(mǫ) −
πΓ

2

(

log
1

δ
− log

1

r

)

≥
N
∑

n=1

(e(dn) − πγnλn) +
1

2

ˆ

Ωr(a)

|∇u∗a,d|2 dx− Cr − o(1).

Thus

lim inf
ǫց0

(

(

log
1

δ

)2

Eǫ(mǫ) −
πΓ

2
log

1

δ

)

≥
N
∑

n=1

(e(dn)−πγnλn)+
1

2

ˆ

Ωr(a)

|∇u∗a,d|2 dx−
πΓ

2
log

1

r
−Cr.

Finally we let r ց 0. Recall that

1

2
lim
rց0

(

ˆ

Ωr(a)

|∇u∗a,d|2 dx− πΓ log
1

r

)

= E∗
a,d(u

∗
a,d) = W1(a, d)

and

−π
N
∑

n=1

γnλn = W2(a, d)

for the functions W1 and W2 defined in Section 2.3. Hence we conclude that

lim inf
ǫց0

(

(

log
1

δ

)2

Eǫ(mǫ) −
πΓ

2
log

1

δ

)

≥
N
∑

n=1

e(dn) +W (a, d).

That is, inequality (76) is indeed satisfied.

6.3 An upper bound for the interaction energy

We now want to prove the inequality

lim sup
ǫց0

(

(

log
1

δ

)2

inf
M(a,d)

Eǫ −
πΓ

2
log

1

δ

)

≤
N
∑

n=1

e(dn) +W (a, d), (83)

which complements (76).
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First step: glue energy minimising cores into the tail profile Define

κrn =
λn + γnlog 1

r

γn log 1
δ

.

Fix r ∈ (0, ρ(a)] small enough so that κrn ∈ (0, 1) for sufficiently small values of ǫ. Choose minimisers

µ̂nǫ ∈M|γn| of the functionals E
|γn|
ǫ and let ûnǫ be the solutions of the corresponding boundary value

problem (47)–(49) with
ˆ

B+
1 (0)\B1/2(0)

ûnǫ dx = 0.

Define µnǫ = dnµ̂
n
ǫ and unǫ = dnû

n
ǫ .

Let η ∈ C∞(R) with η ≡ 1 in (−∞, 1
2 ] and η ≡ 0 in [34 ,∞). Set

ϕn(x1) = η

( |x1 − an|
r

)

and ψn(x) = η

(

√

(x1 − an)2 + x2
2

r

)

.

Note that ∂ψn

∂x2
= 0 on R × {0}. Now define

m1ǫ(x1) = cosα+
µ∗
a,d(x1)

log 1
δ

+

N
∑

n=1

ϕn(x1)

(

(1 − κrn)µ
n
ǫ/r

(

x1 − an
r

)

+ κrndn − cosα−
µ∗
a,d(x1)

log 1
δ

)

and

ũǫ(x) =
u∗a,d(x)

log 1
δ

+

N
∑

n=1

ψn(x)

(

(1 − κrn)u
n
ǫ/r

(

(x1 − an, x2)

r

)

−
u∗a,d(x) − ωn

log 1
δ

)

.

Then m1ǫ(an) = dn for n = 1, . . . , N . If ǫ is sufficiently small, we have −1 ≤ m1ǫ ≤ 1. Hence there
exists a function m2ǫ such that mǫ = (m1ǫ,m2ǫ) ∈M(a, d). Let uǫ = U(mǫ).

Second step: estimate the magnetostatic energy in terms of ũǫ Since u∗a,d is harmonic on

R2
+, we compute

∆ũǫ(x) =
N
∑

n=1

∆ψn(x)

(

(1 − κrn)u
n
ǫ/r

(

(x1 − an, x2)

r

)

−
u∗a,d(x) − ωn

log 1
δ

)

+ 2

N
∑

n=1

∇ψn(x)

(

r−1(1 − κrn)∇unǫ/r
(

(x1 − an, x2)

r

)

−
∇u∗a,d(x)

log 1
δ

)

.

Let Σrn = B+
3r/4(an, 0)\Br/2(an, 0). Using Theorem 22 and the inequalities (72) and (73), we infer

∥

∥

∥

∥

unǫ/r

(

(x1 − an, x2)

r

)

−
u∗a,d(x) − ωn

log 1
δ

∥

∥

∥

∥

L∞(Σr
n)

≤ Cr + o(1)

log 1
δ

(84)

and
∥

∥

∥

∥

∇unǫ/r
(

(x1 − an, x2)

r

)

−
r∇u∗a,d(x)

log 1
δ

∥

∥

∥

∥

Lp(Σr
n)

≤ Cr1+2/p + o(1)

log 1
δ

(85)
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for any p < ∞ and all n = 1, . . . , N . (Here o(1) again stands for any quantity that converges to 0
as ǫց 0, with a rate of convergence that may possibly depend on r.) Therefore, we have

‖∆ũǫ‖Lp(R2
+) ≤

Cr2/p−1 + o(1)

log 1
δ

.

We also compute

∂ũǫ
∂x2

(x1, 0) = −
d
dx1

µ∗
a,d(x1)

log 1
δ

−
N
∑

n=1

ϕn(x1)

(

1 − κrn
r

dµnǫ/r

dx1

(

x1 − an
r

)

−
d
dx1

µ∗
a,d(x1)

log 1
δ

)

= −m′
1ǫ(x1) +

N
∑

n=1

ϕ′
n(x1)

(

(1 − κrn)µ
n
ǫ/r

(

x1 − an
r

)

+ dnκ
r
n − cosα−

µ∗
a,d(x1)

log 1
δ

)

.

Using Theorem 22, we then see that

∣

∣

∣

∣

µnǫ (x1) − cosα+
γn log |x1|

log 1
δ

∣

∣

∣

∣

≤ o(1)

log 1
δ

for x1 ∈ [− 3
4 ,− 1

2 ] ∪ [ 12 ,
3
4 ]. This, together with (71), implies that

∣

∣

∣

∣

(1 − κrn)µ
n
ǫ/r

(

x1 − an
r

)

+ dnκ
r
n − cosα−

µ∗
a,d(x1)

log 1
δ

∣

∣

∣

∣

≤ Cr + o(1)

log 1
δ

(86)

for any x1 ∈ [an − 3r
4 , an − r

2 ] ∪ [an + r
2 , an + 3r

4 ].
Recall that uǫ is the solution of

∆uǫ = 0 in R
2
+,

∂uǫ
∂x2

= −m′
1ǫ on (−1, 1) × {0},

∂uǫ
∂x2

= 0 on (−∞, 1) × {0} and (1,∞) × {0}.

Thus we have

‖∆(uǫ − ũǫ)‖Lp(R2
+) ≤

Cr2/p−1 + o(1)

log 1
δ

(87)

for an arbitrary (but fixed) p ∈ (1, 2) and

∥

∥

∥

∥

∂

∂x2
(uǫ − ũǫ)

∥

∥

∥

∥

L∞(R)

≤ C + o(1)

log 1
δ

. (88)

Also note that the support of ∆(uǫ − ũǫ) is contained in B∗
r (a) and the support of ∂

∂x2
(uǫ − ũǫ) is

contained in
⋃N
n=1(an− r, an+ r). Thus if M(R2) denotes the space of Radon measures on R2, then

after extending to R2 by an even reflection on R × {0}, we have

‖∆(uǫ − ũǫ)‖M(R2) ≤
Cr + o(1)

log 1
δ

,

whence

‖∇(uǫ − ũǫ)‖Lq(B+
2 (0)) ≤

Cr + o(1)

log 1
δ
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for any fixed q ∈ [1, 2). Theorem 17 and (84) imply that

‖∇ũǫ‖Lq(B+
2 (0)) ≤

C + o(1)

log 1
δ

.

It then follows that

‖∇uǫ‖Lq(B+
2 (0)) ≤

C + o(1)

log 1
δ

(89)

as well. We will use this inequality for q = 2p
3p−2 in conjunction with (87).

Let

ūǫ =

 

B+
1 (0)

uǫ dx.

Then it follows that
ˆ

R
2
+

|∇uǫ|2 dx = −
ˆ

(−1,1)×{0}

(uǫ − ūǫ)
∂uǫ
∂x2

dx1

=

ˆ

R
2
+

∇ũǫ · ∇uǫ dx−
ˆ

(−1,1)×{0}

(uǫ − ūǫ)
∂

∂x2
(uǫ − ũǫ) dx1 +

ˆ

R
2
+

(uǫ − ūǫ)∆ũǫ dx.

Now with the help of (88), (89), and the continuous embedding W 1,q(B+
2 (0)) → Lq/(2−q)(−1, 1), we

derive the estimate

−
ˆ

(−1,1)×{0}

(uǫ − ūǫ)
∂

∂x2
(uǫ − ũǫ) dx1 ≤ C(r2−2/q + o(1))

(

log 1
δ

)2 .

(Note that for q = 2p
3p−2 , we have 2 − 2

q = 2
p − 1.) Furthermore, by (87), (89), and the Sobolev

inequality,
ˆ

R
2
+

(uǫ − ūǫ)∆ũǫ dx ≤ C(r2/p−1 + o(1))
(

log 1
δ

)2 .

If we choose p = 4
3 , then we obtain

ˆ

R
2
+

|∇uǫ|2 dx ≤
ˆ

R
2
+

|∇ũǫ|2 dx+
C
√
r + o(1)

(

log 1
δ

)2 .

Hence

Eǫ(mǫ) ≤
ǫ

2

ˆ 1

−1

|m′
ǫ|2 dt+

1

2

ˆ

R
2
+

|∇ũǫ|2 dx+
C
√
r + o(1)

(

log 1
δ

)2 . (90)

Third step: estimate ‖∇ũǫ‖L2(R2
+) We clearly have

ˆ

Ωr(a)

|∇ũǫ|2 dx =
1

(

log 1
δ

)2

ˆ

Ωr(a)

|∇u∗a,d|2 dx. (91)

In B+
r (an, 0) for n = 1, . . . , N , we have

∇ũǫ(x) = r−1(1 − κrn)∇unǫ/r
(

(x1 − an, x2)

r

)

+ (ψn(x) − 1)

(

r−1(1 − κrn)∇unǫ/r
(

(x1 − an, x2)

r

)

−
∇u∗a,d(x)

log 1
δ

)

+ ∇ψn(x)

(

(1 − κrn)u
n
ǫ/r

(

(x1 − an, x2)

r

)

−
u∗a,d(x) − ωn

log 1
δ

)

.
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Thus using (84), (85) and Theorem 22, and observing that

‖∇unǫ/r‖2
L2(B+

1 (0)\B1/2(0))
≤ C
(

log 1
δ

)2

by Theorem 17, we obtain

‖∇ũǫ‖2
L2(B+

r (an,0))
≤ (1 − κrn)

2‖∇unǫ/r‖2
L2(B+

1 (0))
+
Cr + o(1)
(

log 1
δ

)2 . (92)

Combining (91) and (92), we now find that

ˆ

R
2
+

|∇ũǫ|2 dx ≤ 1
(

log 1
δ

)2

ˆ

Ωr(a)

|∇u∗a,d|2 dx +

N
∑

n=1

(1 − 2κrn)

ˆ

B+
1 (0)

|∇unǫ/r|2 dx+
Cr + o(1)
(

log 1
δ

)2 .

Since
ˆ

B+
1 (0)

|∇unǫ/r|2 dx ≥ πγ2
n

log 1
δ

− C
(

log 1
δ

)2

by Theorem 17, it follows that

ˆ

R
2
+

|∇ũǫ|2 dx ≤ 1
(

log 1
δ

)2

ˆ

Ωr(a)

|∇u∗a,d|2 dx +

N
∑

n=1

ˆ

B+
1 (0)

|∇unǫ/r|2 dx

−
N
∑

n=1

2πγn(λn + γn log 1
r )

(

log 1
δ

)2 +
Cr + o(1)
(

log 1
δ

)2 . (93)

Fourth step: estimate the exchange energy Note that we have |m1ǫ − cosα| ≤ C
log 1

δ

in

(−1, a1 − r
2 ], in [an + r

2 , an+1 − r
2 ] for n = 1, . . . , N , and in [aN − r

2 , 1) by Theorem 22. Moreover,
by (86), we have

dn −m1ǫ(x1) = (1 − κrn)

(

dn − µnǫ/r

(

x1 − an
r

))

+ (1 − ϕn(x1))

(

(1 − κrn)µ
n
ǫ/r

(

x1 − an
r

)

− cosα−
µ∗
a,d(x1)

log 1
δ

+ dnκ
r
n

)

=

(

dn − µnǫ/r

(

x1 − an
r

))(

1 − O(1)

log 1
δ

)

and

dn +m1ǫ(x1) = (1 − κrn)

(

dn + µnǫ/r

(

x1 − an
r

))

+ 2dnκ
r
n

+ (1 − ϕn(x1))

(

(κrn − 1)µnǫ/r

(

x1 − an
r

)

− dnκ
r
n + cosα+

µ∗
a,d(x1)

log 1
δ

)

=

(

dn + µnǫ/r

(

x1 − an
r

))(

1 − O(1)

log 1
δ

)
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in (an − r, an + r). We also have

m′
1ǫ(x1) =

1 − κrn
r

dµnǫ/r

dx1

(

x1 − an
r

)

+ ϕ′
n(x1)

(

(1 − κrn)µ
n
ǫ/r

(

x1 − an
r

)

+ dnκ
r
n − cosα−

µ∗
a,d(x1)

log 1
δ

)

− (1 − ϕn(x1))

(

1 − κrn
r

dµnǫ/r

dx1

(

x1 − an
r

)

−
d
dx1

µ∗
a,d(x1)

log 1
δ

)

near an. We have
dµ∗

a,d

dx1
(x1) = −

∂u∗a,d
∂x2

(x1, 0).

Hence defining T rn = (an − r, an − r
2 ) ∪ (an + r

2 , an + r), we have

∥

∥

∥

∥

∥

1 − κrn
r

dµnǫ/r

dx1

(

x1 − an
r

)

−
d
dx1

µ∗
a,d(x1)

log 1
δ

∥

∥

∥

∥

∥

L2(T r
n)

≤ C
√
r + o(1)

log 1
δ

by Theorem 22 and (73). Recalling (86), we then compute

ǫ

2

ˆ 1

−1

|m′
ǫ|2 dt =

N
∑

n=1

ǫ

2r

ˆ 1

−1

( d
dx1

µnǫ/r)
2

1 − (µnǫ/r)
2
dt+

o(1)
(

log 1
δ

)2 . (94)

Combining (90), (93), and (94), we now find

Eǫ(mǫ) ≤
1

2
(

log 1
δ

)2

ˆ

Ωr(a)

|∇u∗a,d|2 dx+

N
∑

n=1

inf
M|γn|

E
|γn|
ǫ/r −

N
∑

n=1

πγn(λn + γn log 1
r )

(

log 1
δ

)2 +
C
√
r + o(1)

(

log 1
δ

)2 .

Fifth step: estimate the core energy Recalling Definition 26, we see that

inf
M|γn|

E
|γn|
ǫ/r ≤ πγ2

n

2 log 1
δ̃

+
e(dn) + o(1)
(

log 1
δ̃

)2 ,

where
δ̃ =

ǫ

r
log

r

ǫ
.

Using the estimates (74) and (75), we obtain

inf
M|γn|

E
|γn|
ǫ/r ≤ πγ2

n

2 log 1
δ

+
πγ2

n log 1
r

2
(

log 1
δ

)2 +
e(dn) + o(1)
(

log 1
δ

)2 .

Sixth step: combine the estimates It follows that

(

log
1

δ

)2

Eǫ(mǫ) ≤
1

2

ˆ

Ωr(a)

|∇u∗a,d|2 dx +
πΓ

2
log

1

δ
− πΓ

2
log

1

r
+

N
∑

n=1

e(dn) +W2(a, d)

+ C
√
r + o(1).
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That is,

lim sup
ǫց0

(

(

log
1

δ

)2

Eǫ(mǫ) −
πΓ

2
log

1

δ

)

≤ 1

2

ˆ

Ωr(a)

|∇u∗a,d|2 dx−
πΓ

2
log

1

r
+

N
∑

n=1

e(dn) +W2(a, d)

+ C
√
r.

Letting r ց 0, we finally obtain

lim sup
ǫց0

(

(

log
1

δ

)2

Eǫ(mǫ) −
dπΓ

2
log

1

δ

)

≤
N
∑

n=1

e(dn) +W (a, d),

which amounts to inequality (83). This completes the proof of Theorem 2.
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Comm. Pure Appl. Math., 63 (2010), pp. 1677–1724.

[15] R. Ignat and F. Otto, A compactness result in thin-film micromagnetics and the optimality
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