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Local minimality of RN -valued and S
N -valued

Ginzburg–Landau vortex solutions in the unit ball BN

Radu Ignat∗ and Luc Nguyen†

Abstract

We study the existence, uniqueness and minimality of critical points of the form
mε,η(x) = (fε,η(|x|) x

|x| , gε,η(|x|)) of the functional

Eε,η[m] =

∫

BN

[1

2
|∇m|2 + 1

2ε2
(1− |m|2)2 + 1

2η2
m2

N+1

]

dx

for m = (m1, . . . ,mN ,mN+1) ∈ H1(BN ,RN+1) with m(x) = (x, 0) on ∂BN . We
establish a necessary and sufficient condition on the dimension N and the parameters
ε and η for the existence of an escaping vortex solution (fε,η, gε,η) with gε,η > 0. We
also establish its uniqueness and local minimality. In the limiting case η = 0, we
prove the local minimality of the degree-one vortex solution for the Ginzburg–Landau
(GL) energy for every ε > 0 and N ≥ 2. Similarly, when ε = 0, we prove the local
minimality of the degree-one escaping vortex solution to an S

N -valued GL model arising
in micromagnetics for every η > 0 and 2 ≤ N ≤ 6.

Keywords: minimality, stability, uniqueness, Ginzburg–Landau vortex, micromagnetics.
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1 Introduction

The minimality of the degree-one vortex solution for the Ginzburg-Landau system in the
unit ball BN ⊂ R

N in dimension 2 ≤ N ≤ 6 is an important open question for which a rich
literature is available. In dimension N ≥ 7, this has been proved recently in a joint work of
the authors with Slastikov and Zarnescu [25]. In this paper, we address the local minimality
of this solution. Motivated by the theory of magnetic materials, we also consider the local
minimality of a similar vortex structure taking values into the unit sphere SN . Our strategy
is to treat the local minimality of the vortex solution for an extended model of which the
previous two models are special limit cases.

We introduce first the Ginzburg–Landau (GL) functional

EGLε [u] =

∫

BN

[1

2
|∇u|2 + 1

2ε2
W (1− |u|2)

]

dx,

where ε > 0, W (t) = t2

2 and u belongs to the set

A
GL = {u ∈ H1(BN ,RN ) : u(x) = x on ∂BN}.

The functional EGLε has a unique radially symmetric critical point of the form (see Definition
A.1 and Lemma A.4 in Appendix A)

uε(x) = fε(r)n(x) ∈ A
GL, n(x) =

x

r
, r = |x|, (1.1)

where the radial profile fε is the unique solution to the ODE (see e.g. [19, 21])

f ′′ε +
N − 1

r
f ′ε −

N − 1

r2
fε = − 1

ε2
W ′(1− f2ε )fε in (0, 1), (1.2)

fε(1) = 1. (1.3)
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Note that fε(0) = 0 (see Lemma A.4). Here a map ucrit ∈ A GL is said to be a bounded
critical point of EGLε if ucrit ∈ L∞(BN ,RN ) and 〈DEGLε [ucrit], ϕ〉 := d

dt

∣
∣
t=0

EGLε [ucrit+tϕ] =

0 for all ϕ ∈ C∞
c (BN \{0},RN ) (which is dense in H1

0 (B
N ,RN )), and is said to be a radially

symmetric critical point of EGLε if ucrit is radially symmetric1 in the sense of Definition A.1
and 〈DEGLε [ucrit], ϕ〉 = 0 for all ϕ ∈ C∞

c (BN \{0},RN ). By Lemma 2.7, radially symmetric
critical points of EGLε are bounded.

The map uε in (1.1), called the (RN -valued) Ginzburg–Landau vortex solution of topo-
logical degree one, can be considered as a regularization of the singular harmonic map
n : BN → S

N−1 given by n(x) = x
|x| for every x ∈ BN , which is the unique minimizing

S
N−1-valued harmonic map for N ≥ 3 within the boundary condition n(x) = x on ∂BN

(see Brezis, Coron and Lieb [6] and Lin [31]). It is not hard to see that, when ε is suffi-
ciently large, EGLε is strictly convex and so uε is the unique bounded critical point of EGLε
in A GL for every N ≥ 2 (see e.g. [4] or [26, Remark 3.3]). In dimension N = 2, Pacard
and Rivière showed in [36] that, for small ε > 0, uε is the unique critical point of EGLε in
A GL; however, whether uε is the unique minimizer of EGLε for all ε > 0 remains an open
question. In dimensions N ≥ 7, it was shown in a recent work of Ignat, Nguyen, Slastikov
and Zarnescu [25] that uε is the unique minimizer of EGLε in A GL for every ε > 0. It is
not known whether uε minimizes EGLε in A GL in dimensions 3 ≤ N ≤ 6 when ε is small.

A different way to regularize the singular harmonic map n is to add an (N + 1)-st
direction in the target space while keeping the constraint of unit length and minimize

EMM
η [m] =

∫

BN

[1

2
|∇m|2 + 1

2η2
W̃ (m2

N+1)
]

dx

where η > 0, W̃ (t) = t and m belongs to

A
MM = {m ∈ H1(BN ,SN ) : m(x) = (x, 0) on ∂BN}.

This model comes from micromagnetics, where the order parameter m stands for the mag-
netization in ferromagnetic materials.2 Considering radially symmetric critical points of
EMM
η over A MM , one is led to (see Appendix A)

mη(x) = (f̃η(r)n(x), gη(r)) ∈ A
MM (1.4)

where the radial profiles f̃η and gη satisfy

f̃2η + g2η = 1 in (0, 1), (1.5)

1By Lemma A.2, radially symmetric maps in H1(BN ,RN ) belong to L∞

loc(B̄
N \ {0},RN ).

2In fact, in a reduced micromagnetic model in dimension N = 2 (see e.g. [11, Section 4.5] or [20,
Section 7]) and after a rotation by π

2
in the first two components, the condition ∇ × (m1,m2) = 0 is also

imposed in the space of admissible configurations in A
MM . Note that the vortex solutionmη in (1.4) satisfies

the above curl-free condition and we will prove its local minimality in the larger class of H1
0 perturbations

(that are not necessarily curl-free in the in-plane components). See also [15] for a different thin-film regime
where this curl-free constraint on (m1,m2) can be neglected.
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and the system of ODEs:

f̃ ′′η +
N − 1

r
f̃ ′η −

N − 1

r2
f̃η = −λ(r)f̃η in (0, 1), (1.6)

g′′η +
N − 1

r
g′η =

1

η2
W̃ ′(g2η)gη − λ(r)gη in (0, 1), (1.7)

f̃η(1) = 1 and gη(1) = 0, (1.8)

where

λ(r) = (f̃ ′η)
2 +

N − 1

r2
f̃2η + (g′η)

2 +
1

η2
W̃ ′(g2η)g

2
η (1.9)

is the Lagrange multiplier due to the unit length constraint in A MM .

Remark 1.1. We will see in Lemma A.6 that solutions to (1.4)–(1.8) satisfy the dichotomy:
either f̃η(0) = 0 or f̃η(0) = 1. Furthermore, in the latter case, it holds that N ≥ 3 and
(f̃η = 1, gη = 0) in (0, 1), which corresponds to the equator map

m̄(x) := (n(x), 0).

In dimension N ≥ 7, m̄ is the unique minimizing harmonic map from BN into S
N in A MM

(Jäger and Kaul [27]; see also [26, Example 1.6]), and so is the unique minimizer of EMM
η

in A MM for every η > 0.

We will focus in the following on “escaping” solutions mη(x) = (f̃η(r)n(x),±gη(r))
satisfying gη > 0 in (0, 1) which exist only in dimension 2 ≤ N ≤ 6 (see Theorem 2.6).
More precisely, we will show in these dimensions that, for every η > 0, there exists a
unique solution (f̃η, gη) with gη > 0 in (0, 1) of the system (1.5)–(1.8) and we call the
two configurations mη = (f̃η(r)n(x),±gη(r)) ∈ A MM the escaping (SN -valued) Ginzburg–
Landau vortex solutions, or simply the micromagnetic vortex solutions. In addition, the
micromagnetic vortex solutions mη have lower energy than the equator map; in particular,
the equator map is no longer a minimizer of EMM

η in A MM (see Proposition 2.15). It

is not known whether the micromagnetic vortex solutions mη minimize EMM
η in A MM in

dimension 2 ≤ N ≤ 6.
The goal of this paper is to study the local minimality of the vortex solutions uε and

mη with respect to EGLε over the set A GL and EMM
η over the set A MM respectively. We

will in fact consider C2 potentials W : (−∞, 1] → [0,∞) and W̃ : [0,∞) → [0,∞) more
general than the ones described above. We make the following assumptions:

W (0) = 0,W (t) ≥ 0,W ′′(t) ≥ 0 in (−∞, 1] \ {0}, (1.10)

W̃ (0) = 0, W̃ (t) ≥ 0, W̃ ′′(t) ≥ 0 in (0,∞). (1.11)

We point out that (1.10) implies that W ′(0) = 0 and tW ′(t) ≥ 0 in (−∞, 1]\{0}. Likewise,
(1.11) implies that W̃ ′(0) ≥ 0 and W̃ ′(t) ≥ 0 in (0,∞). However, we allow the possibility
that W or W̃ are zero in a neighborhood of the origin. This leads to new difficulties as well
as new behaviors of solutions; see for example Proposition B.1(ii).
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Under assumptions (1.10) and (1.11) for W and W̃ , we will prove the existence and
uniqueness of the radial profiles fε and (f̃η, gη) with gη > 0 solving (1.1)–(1.3) and (1.4)–
(1.8), respectively. See Theorems 2.1 and 2.6 where the global minimality of these solutions
in the class of radial symmetric maps is also established. For these unique radial profiles,
we will continue to refer to the maps uε(x) = fε(|x|)n(x) and mη(x) = (f̃η(r)n(x), gη(r))
as the R

N -valued and S
N -valued Ginzburg–Landau vortex solutions. Our main results

concern the local minimizing property of these vortex solutions, in particular the positive
definiteness of the second variation at those solutions (see Section 3 for the definition).

Theorem 1.2. Suppose W ∈ C2((−∞, 1]) satisfies (1.10). For N ≥ 2 and every ε > 0, the
R
N -valued Ginzburg–Landau vortex solution uε(x) = fε(r)n(x) is a local minimizer of EGLε

in A GL with a positive definite second variation.

Theorem 1.3. Suppose W̃ ∈ C2([0,∞)) satisfies (1.11). For 2 ≤ N ≤ 6 and every η > 0,
the escaping S

N -valued Ginzburg–Landau vortex solution mη(x) = (f̃η(r)n(x), gη(r)) with
gη > 0 is a local minimizer mη of EMM

η in A MM with a positive definite second variation.
For 3 ≤ N ≤ 6 and every η > 0, the equator map m̄ = (n(x), 0) is an unstable critical point
of EMM

η in A MM and EMM
η (mη) < EMM

η (m̄).

Remark 1.4. (a) In Theorem 1.3, we can replace (1.11) by W̃ ∈ C2([0, 1]) satisfying

W̃ (0) = 0, W̃ (t) ≥ 0, W̃ ′′(t) ≥ 0 in [0, 1],

since any such function W̃ can be extended to a function satisfying (1.11).
(b) In dimension N = 2, the equator map m̄ /∈ H1(BN ,SN ), so m̄ /∈ A MM . However,

the second variation of EMM
η at m̄ can still be defined and it is negative in a certain direction

compactly supported in BN \{0}, leading to the instability of m̄ also for N = 2 (see (2.27)).

In the R
N -valued Ginzburg–Landau case, when N = 2, Theorem 1.2 was proved by

Mironescu [33] for W (t) = t2

2 . Also when N = 2, the non-negativity of the second variation
was proved by Lieb and Loss [30] for potentials W which are strictly increasing and convex3

in [0, 1]. In dimension N ≥ 7, the global minimality of the vortex solution was proved by
Ignat, Nguyen, Slastikov and Zarnescu [25, 26]. When the domain is RN (instead of BN ),
the local minimality of the entire vortex solution (in the sense of De Giorgi) was obtained
in Mironescu [34] for N = 2, Millot and Pisante [32] for N = 3, and Pisante [37] for N ≥ 4.
For the stability of the entire vortex solution, see Ovchinnikov and Sigal [35], del Pino,
Felmer and Kowalczyk [10] for N = 2, and Gustafson [16] for N ≥ 3.

In the micromagnetic case, in dimension N = 2 and for W̃ (t) = t, Theorem 1.3 was
proved by Hang and Lin [17]. For dimension N ≥ 7, see Remark 1.1. See also Li and
Melcher [29] for related stability analysis in the study of micromagnetics skyrmions.

More generally, we consider a family of extended energy functionals Eε,η depending on
two positive parameters ε, η of which EGLε and EMM

η are limiting cases:

Eε,η[m] =

∫

BN

[1

2
|∇m|2 + 1

2ε2
W (1− |m|2) + 1

2η2
W̃ (m2

N+1)
]

dx, ε, η > 0,

3See Remark 3.5 for a related comment for Eε,η.
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where W and W̃ satisfy (1.10)–(1.11) and m belongs to

A = {m ∈ H1(BN ,RN+1) : m(x) = (x, 0) on ∂BN}.

Under suitable conditions on W̃ (e.g. W̃ (t) > 0 for t > 0), it can be shown that for a
fixed ε > 0, minimizers of Eε,η in A converge in H1 to minimizers of EGLε in A GL as
η → 0. Likewise under suitable conditions on W , for a fixed η > 0, minimizers of Eε,η in
A converge in H1 to minimizers of EMM

η in A MM as ε→ 0. We hope that having a good
understanding on critical points of Eε,η would lead to new insights on the open problem
concerning of the minimality of the vortex solutions uε and mη.

We define a mapmcrit ∈ A to be a bounded critical point of Eε,η ifmcrit ∈ L∞(BN ,RN+1)
and 〈DEε,η[mcrit], ϕ〉 := d

dt

∣
∣
t=0

Eε,η[mcrit+ tϕ] = 0 for all ϕ ∈ C∞
c (BN \ {0},RN+1), and to

be a radially symmetric critical point of Eε,η if mcrit is radially symmetric in the sense of
Definition A.1 and 〈DEε,η[mcrit], ϕ〉 = 0 for all ϕ ∈ C∞

c (BN \ {0},RN+1). By Lemma 2.7,
radially symmetric critical points of Eε,η are bounded. Radially symmetric critical points
of Eε,η in A take the form

(fε,η(r)n(x), gε,η(r)) ∈ A (1.12)

where (fε,η, gε,η) satisfies the system of ODEs

f ′′ε,η +
N − 1

r
f ′ε,η −

N − 1

r2
fε,η = − 1

ε2
W ′(1− f2ε,η − g2ε,η)fε,η, (1.13)

g′′ε,η +
N − 1

r
g′ε,η = − 1

ε2
W ′(1− f2ε,η − g2ε,η)gε,η +

1

η2
W̃ ′(g2ε,η)gε,η, (1.14)

fε,η(1) = 1 and gε,η(1) = 0. (1.15)

Note that the above implies fε,η(0) = 0 and g′ε,η(0) = 0 (see Lemma A.5).
Of special interest to our discussion will be solutions to (1.12)–(1.15) satisfying the sign

constraint gε,η ≥ 0 in (0, 1). It is easy to see by the strong maximum principle that either
gε,η ≡ 0 or gε,η > 0 in (0, 1). When gε,η ≡ 0, we obtain an η-independent solution given by
(fε, 0) where fε is the unique radial profile in (1.1)–(1.3). We will sometimes refer to (fε, 0)
as the non-escaping solution to (1.12)–(1.15) and

m̄ε(x) = (fε(r)n(x), 0)

as the non-escaping (radially symmetric) critical point of the extended energy functional
Eε,η in A . In contrast, we will refer to solutions (fε,η, gε,η) of (1.12)–(1.15) satisfying
gε,η > 0 as escaping solutions and the corresponding maps

mε,η(x) = (fε,η(r)n(x),±gε,η(r))

as4 escaping (radially symmetric) critical points of the extended energy functional Eε,η in
A . The escaping phenomenon refers to the positivity of gε,η. We will prove that such
escaping solutions satisfy fε,η > 0 in (0, 1), see Proposition 2.10.

4In the following, when discussing escaping and non-escaping critical points, we will drop the term
“radially symmetric” as we only study here radially symmetric critical points.
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There exists a sufficiently large ε∗ such that Eε,η is strictly convex for all ε > ε∗ and
η > 0 and so m̄ε is the unique critical point and hence the unique global minimizer of
Eε,η in A if N ≥ 2. In dimensions N ≥ 7, it follows from [25, Theorem 2]5 (compare [26,
Theorem 1.7]) that m̄ε(x) is the unique global minimizer of Eε,η in A for every ε > 0. In
dimension 2 ≤ N ≤ 6 and for small ε > 0, it is not known if a solution to (1.12)–(1.15)
satisfying gε,η ≥ 0 gives a global minimizer of Eε,η in A . Our next theorem concerns the
existence, uniqueness and local minimality of these solutions. See Figure 1.

Figure 1: Radial critical points of the extended functional Eε,η when W ′(1) > 0 and
W̃ ′(0) > 0. In the escaping region, there is a co-existence of non-escaping and escaping
critical points. In the non-escaping region, only the non-escaping critical point exists.

ε

η

ε∗ε0

Escaping region

Non-escaping region

Theorem 1.5. Let N ≥ 2, W ∈ C2((−∞, 1]) and W̃ ∈ C2([0,∞)) satisfy (1.10) and (1.11).

(a) There is at most one escaping critical point mε,η(x) = (fε,η(r)n(x), gε,η(r)) of Eε,η in
A with gε,η > 0. Moreover, if such escaping critical point exists, then it is a local
minimizer of Eε,η in A with a positive definite second variation, and the non-escaping
critical point m̄ε(x) = (fε(r)n(x), 0) is unstable for Eε,η.

(b) An escaping critical point mε,η(x) = (fε,η(r)n(x), gε,η(r)) with gε,η > 0 exists if and
only if 2 ≤ N ≤ 6, W ′(1) > 0, 0 < ε < ε0 and η > η0(ε) for some ε0 ∈ (0,∞) and a
continuous non-decreasing function6 η0 : [0, ε0) → [0,∞) with η0(0) = 0.

(c) In the absence of an escaping critical point mε,η(x) = (fε,η(r)n(x), gε,η(r)) with gε,η > 0
for Eε,η, the non-escaping critical point m̄ε(x) = (fε(r)n(x), 0) is a local minimizer of
Eε,η in A with a positive definite second variation unless 2 ≤ N ≤ 6, W ′(1) > 0,
W̃ ′(0) > 0, 0 < ε < ε0 and η = η0(ε). Moreover, in the latter case, the second
variation of Eε,η at m̄ε is non-negative semi-definite with a one-dimensional kernel
generated by (0, qε) ∈ C2(B̄N ,RN+1) for some positive smooth function qε > 0 in BN

with qε = 0 on ∂BN .
5In the cited paper, beside the convexity of W , it is assumed that W is strictly positive away from 0;

but it can be seen from the proof there that non-negativity W ≥ 0 is sufficient as in (1.10).
6For further information about the constant ε0 and the function η0, see Lemma 2.3(c) and Remark 2.5.
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A main part of our paper concerns the local minimality of vortex solutions. Let us
explain our strategy for the Ginzburg–Landau model. We establish

EGLε [uε + v] ≥ EGLε [uε] + c‖v‖2H1 for uε + v ∈ A
GL, ‖v‖H1 < δ,

for some small c > 0 and δ > 0. This draws on a careful study of the second variation
of EGLε at uε based on a separation of variables and a Hardy decomposition technique
[22]. To separate variables, we first decompose v = sn + w where w · n = 0, and then,
for each 0 < r < 1, we use the Helmholtz decomposition to write w = ẘ + /Dψ on ∂Br
where ẘ is a divergence-free vector field on ∂Br and /D is the gradient operator. In the
context of Ginzburg–Landau theory, our use of the Helmholtz decomposition appears new in
dimension N ≥ 3. The contribution of ẘ to the second variation is treated at once using the
sharp Poincaré inequality in Appendix C and the Hardy decomposition technique. Finally,
we decompose s and ψ into spherical harmonics and treat them using again the Hardy
decomposition technique with special choices of factoring functions.

An important point in proving our results resides in the analysis of the radial profiles fε,
(f̃η, gη) and (fε,η, gε,η) for general potentials W and W̃ that goes beyond the existing (very
rich) literature. For example, the choice of factoring functions in our use of the Hardy
decomposition technique is based on the positivity and monotonicity of (a-priori, nodal
solutions) fε, f̃η and fε,η. The proof of these uses the moving plane method for cooperative
systems [9, 13, 39]. A novel part of our argument is in the fact that cooperativity is obtained
alongside the application of the moving plane method. Another issue is the uniqueness of
the radial profiles, which is established again using the Hardy decomposition technique that
handles the nonlinear part in the ODE. This analysis enables us to prove the dichotomy
of escaping vs. non-escaping critical points in the extended model introduced here for the
first time.

The rest of the paper is organized as follows. In Section 2, we establish the existence and
uniqueness of vortex radial profiles and discuss their minimality within radially symmetric
configurations. In Section 3 we analyze their stability and give the proof of the main
theorems. We include also four appendices on some miscellaneous results.

Acknowledgment. R.I. thanks the Mathematical Institute and St Edmund Hall, Univer-
sity of Oxford and L.N. thanks the Institut de Mathématiques de Toulouse where part of
this work was done.

2 Existence and uniqueness of vortex radial profiles

We study existence and uniqueness properties of radially symmetric critical points of EGLε ,
EMM
η and Eε,η. We define the following reduced energy functionals relevant in the discussion

of radially symmetric critical points in A GL, A MM and A (see Appendix A).

• The reduced R
N -valued Ginzburg–Landau functional

IGLε [f ] =
1

|SN−1|E
GL
ε [f(|x|)n(x)] = 1

2

∫ 1

0

[

(f ′)2 +
N − 1

r2
f2 +

1

ε2
W (1− f2)

]

rN−1 dr

8



where f belongs to

B
GL =

{

f : r
N−1

2 f ′, r
N−3

2 f ∈ L2(0, 1), f(1) = 1
}

.

• The reduced S
N -valued Ginzburg–Landau functional:

IMM
η [f, g] =

1

|SN−1|E
MM
η [(f(r)n(x), g(r))]

=
1

2

∫ 1

0

[

(f ′)2 + (g′)2 +
N − 1

r2
f2 +

1

η2
W̃ (g2)

]

rN−1 dr,

where (f, g) belongs to

B
MM =

{

(f, g) : r
N−1

2 f ′, r
N−3

2 f, r
N−1

2 g′, r
N−1

2 g ∈ L2(0, 1),

f2 + g2 = 1, f(1) = 1, g(1) = 0
}

.

• The reduced extended functional

Iε,η[f, g] =
1

|SN−1|Eε,η[(f(r)n(x), g(r))]

=
1

2

∫ 1

0

[

(f ′)2 + (g′)2 +
N − 1

r2
f2 +

1

ε2
W (1− f2 − g2) +

1

η2
W̃ (g2)

]

rN−1 dr

where (f, g) belongs to

B =
{

(f, g) : r
N−1

2 f ′, r
N−3

2 f, r
N−1

2 g′, r
N−1

2 g ∈ L2(0, 1), f(1) = 1, g(1) = 0
}

.

Note that (f, g) ∈ B is equivalent to m(x) = (f(r)n(x), g(r)) ∈ H1(BN ,RN+1) with
m(x) = (x, 0) on ∂BN , and

∫

BN

|∇m|2 dx = |SN−1|
∫ 1

0

[

(f ′)2 + (g′)2 +
N − 1

r2
f2

]

rN−1 dr.

It is straightforward to check that bounded critical points of IGLε , IMM
η and Iε,η correspond

to bounded radially symmetric critical points of EGLε , EMM
η and Eε,η, respectively.

7

The R
N -valued Ginzburg–Landau model

Theorem 2.1. Let N ≥ 2 and suppose that W ∈ C2((−∞, 1]) satisfies W (0) = 0 and
W ≥ 0. Then, for every ε > 0, (1.2)–(1.3) has a solution fε such that fε

r ∈ C2([0, 1]),
0 < fε < 1 in (0, 1), and fε(0) = 0. If, in addition, W satisfies (1.10), then f ′ε > 0 in (0, 1]
and fε is the unique solution to (1.1)–(1.3); in particular, fε is the unique minimizer of
IGLε in BGL.

7In this radially symmetric setting, whenW and W̃ satisfy (1.10) and (1.11), the boundedness assumption
on critical points can be dropped, in view of Lemma 2.7.
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Remark 2.2. The existence and uniqueness of the vortex radial profile for the R
N -valued

Ginzburg–Landau model has been studied by many authors. Closely related to our result
above is a result in [25] which gives the uniqueness in dimensions N ≥ 7. Earlier results in
[2, 8, 12, 19, 21] are for all dimensions N ≥ 2 but assume the inequality W ′′(0) > 0, while
Theorem 2.1 above allows the case W ′′(0) = 0.

Let fε be the radial profile in Theorem 2.1. Note that (fε, 0) is the non-escaping critical
point for the extended functional Iε,η for any η > 0. For the existence of escaping solutions
in the extended model, we give an estimate on the first eigenvalue ℓ(ε) of

LGLε = −∆− 1

ε2
W ′(1− f2ε ) (2.1)

in BN with respect to the zero Dirichlet boundary condition. Note that since the potential
1
ε2W

′(1−f2ε ) is radially symmetric, any first eigenfunction of LGLε is also radially symmetric.
It is clear that, under (1.10), we have ℓ(ε) > −W ′(1)ε−2 for every ε > 0.

Lemma 2.3. Suppose W ∈ C2((−∞, 1]) satisfies (1.10). Then ℓ is a continuous function of
ε satisfying

ε2ℓ(ε) > ε̃2ℓ(ε̃) for all 0 < ε̃ < ε <∞, (2.2)

and the following estimates hold.

(a) If W ′(1) = 0, then W = 0 in (0, 1), LGLε = −∆ and

ℓ(ε) = λ1(−∆) > 0 for all ε > 0,

where λ1(−∆) is the first eigenvalue of the Laplacian on BN with respect to the zero
Dirichlet boundary value.

(b) If N ≥ 7,

ℓ(ε) ≥ (N − 2)2

4
− (N − 1) > 0 for all ε > 0.

(c) If 2 ≤ N ≤ 6 and W ′(1) > 0, then there exists ε0 ∈ (0,∞) such that ℓ(ε) < 0
and increasing in (0, ε0), ℓ(ε0) = 0 and ℓ(ε) > 0 in (ε0,∞). Furthermore, for some
ε1 ∈ (0, ε0) and c1 ∈ (0,W ′(1)),

−W
′(1)
ε2

< ℓ(ε) ≤ −c1
ε2

for ε ∈ (0, ε1).

The extended model
We are now in position to give a necessary and sufficient condition for the existence of

an escaping solution of (1.12)–(1.15). For an illustration see Figure 1.

Theorem 2.4. Suppose W ∈ C2((−∞, 1]) and W̃ ∈ C2([0,∞)) satisfy (1.10) and (1.11).

(a) If N ≥ 7 or W ′(1) = 0, then for every ε, η > 0, (1.12)–(1.15) has no solution (fε,η, gε,η)
which satisfies gε,η > 0 in (0, 1). Moreover, the non-escaping solution (fε, 0) is the
unique minimizer of Iε,η in B.
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(b) Suppose 2 ≤ N ≤ 6, W ′(1) > 0. Let ε0 ∈ (0,∞) be as in Lemma 2.3 and define

η0(ε) =

√

W̃ ′(0)
|ℓ(ε)| ∈ [0,∞) for ε ∈ (0, ε0).

(b1) The system (1.12)–(1.15) has an escaping solution (fε,η, gε,η) which satisfies gε,η >
0 in (0, 1) if and only if 0 < ε < ε0 and η > η0(ε). In this case, it is the unique

escaping solution of (1.12)–(1.15),
fε,η
r , gε,η ∈ C2([0, 1]), f2ε,η + g2ε,η < 1, fε,η > 0,

f ′ε,η > 0, g′ε,η < 0 in (0, 1), and there are exactly two minimizers of Iε,η in B given
by (fε,η,±gε,η).

(b2) If ε ≥ ε0 or 0 < η ≤ η0(ε), the non-escaping solution (fε, 0) of (1.12)–(1.15) is
the unique minimizer of Iε,η in B. Otherwise (i.e. 0 < ε < ε0 and η > η0(ε)), the
non-escaping solution (fε, 0) of (1.12)–(1.15) is an unstable critical point of Iε,η
in B.

We note that if 2 ≤ N ≤ 6, W ′(1) > 0 and W̃ ′(0) = 0, then η0(ε) = 0 for all ε ∈ (0, ε0).
In this case, the theorem asserts for all η > 0, an escaping solution of (1.12)–(1.15) exists
if and only if ε ∈ (0, ε0).

Remark 2.5. By Lemma 2.3, when 2 ≤ N ≤ 6, W ′(1) > 0 and W̃ ′(0) > 0, the function η0
defined in Theorem 2.4(b) belongs to C([0, ε0)),

η0(ε)
ε is increasing with respect to ε,

lim
ε→ε0

η0(ε) = ∞, lim
ε→0

η0(0) = 0,

and, for some C > 1 and ε1 ∈ (0, ε0),

√
W̃ ′(0)ε
C ≤ η0(ε) ≤ C

√

W̃ ′(0)ε for every ε ∈ (0, ε1).

Theorem 2.4 can be viewed as an extension of the results in [26] but within radial
symmetry, relating the escaping phenomenon with the stability property of critical points.

The S
N -valued Ginzburg–Landau model

Theorem 2.6. Suppose that W̃ ∈ C2([0,∞)) satisfies (1.11).

(a) If N ≥ 7, then for every η > 0, the system (1.4)–(1.8) has no escaping solution (f̃η, gη)
with gη > 0 in (0, 1).

(b) If 2 ≤ N ≤ 6, then for every η > 0 the system (1.4)–(1.8) has a unique escaping
solution (f̃η, gη) with gη > 0. Furthermore, (f̃η,±gη) are the only two minimizers of

the functional IMM
η in BMM ,

f̃η
r , gη ∈ C2([0, 1]), f̃η > 0, f̃ ′η > 0 and g′η < 0 in (0, 1).

In addition, for 3 ≤ N ≤ 6, the non-escaping solution (1, 0) is an unstable critical point
of IMM

η in BMM .

Recall that, when N ≥ 7, the non-escaping solution (1, 0) is the unique minimizer of
IMM
η in BMM for every η > 0 (see Remark 1.1). Note that when N = 2, the non-escaping

solution (1, 0) /∈ BMM ; however, the second variation of IMM
η at (1, 0) can still be defined
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and it is negative in a certain direction with compact support in the interval (0, 1), leading
to the instability of the non-escaping solution (1, 0) also for N = 2 (see (2.27)).

The rest of the section is organized as follows. In Subsection 2.1, for the extended model,
we prove the monotonicity (see Proposition 2.9) and uniqueness (see Proposition 2.12) of
escaping solutions (1.12)–(1.15), if exist, together with the positivity of fε,η in Propo-
sition 2.10; we also prove the boundedness of arbitrary solutions to (1.12)–(1.15), see
Lemma 2.7. In Subsection 2.2, for the R

N -valued GL model, we give the proof of The-
orem 2.1 and Lemma 2.3. In Subsection 2.3, we give the proof of Theorem 2.4 for the
extended. Finally, Theorem 2.6 for the S

N -valued GL model is proved in Subsection 2.4.

2.1 The extended model: Monotonicity and uniqueness

In this subsection we establish the monotonicity and the uniqueness of escaping radially
symmetric critical points of the extended functional Eε,η, which correspond to escaping
solutions (fε,η, gε,η) with gε,η > 0 of the ODE system (1.12)–(1.15). Furthermore, we show
that fε,η > 0 and prove the minimality of this escaping solution with respect to radially
symmetric competitors.

The following lemma shows that every solution to (1.12)–(1.15) is bounded in (0, 1)
under conditions (1.10)–(1.11). To dispel confusion, in this result, we do not assume a
priori the boundedness nor the non-negativity of fε,η and gε,η.

Lemma 2.7. Let N ≥ 2, ε > 0 and η > 0. If W ∈ C2((−∞, 1]) and W̃ ∈ C2([0,∞)) satisfy
(1.10)–(1.11) and (fε,η, gε,η) satisfies (1.12)–(1.15), then f2ε,η + g2ε,η < 1 in (0, 1) and the

map x 7→ mε,η(x) = (fε,η(r)n(x), gε,η(r)) belongs to C
2(B̄N ). In particular, fε,η(0) = 0 and

g′ε,η(0) = 0.

Proof. Note that mε,η ∈ H1(BN ) (since (fε,η, gε,η) ∈ B) and that (1.13)–(1.15) gives

∆mε,η = − 1

ε2
W ′(1− |mε,η|2)mε,η +

1

η2
W̃ ′(g2ε,η)gε,ηeN+1 in BN \ {0}, (2.3)

mε,η(x) = (n(x), 0) on ∂BN .

Let M = f2ε,η + g2ε,η. Note that M(1) = 1 and

1

2
(M ′′ +

N − 1

r
M ′) = (f ′ε,η)

2 + (g′ε,η)
2 +

N − 1

r2
f2ε,η −

1

ε2
W ′(1−M)M +

1

η2
W̃ ′(g2ε,η)g

2
ε,η

≥ − 1

ε2
W ′(1−M)M.

In particular, the function X = 1−M satisfies

−X ′′ − N − 1

r
X ′ + 2a(r)X ≥ 0 (2.4)

where a : (0, 1] → [0,∞) is given by

a(r) =

{
1
ε2
W ′(1−M(r))

1−M(r) M(r) if M(r) 6= 1,
1
ε2
W ′′(0) if M(r) = 1.

(2.5)
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Note that (1.10) and the continuity of M in (0, 1] imply a ≥ 0 and a is continuous on (0, 1].
Now, define

r0 = inf
{

r ∈ (0, 1] :M ≤ 1 in [r, 1]
}

.

The aim is to show that r0 = 0.

Step 1: We show that if r0 > 0, then M > 1 in (0, r0). Assume by contradiction that

M(r1) ≤ 1 for some r1 ∈ (0, r0). Multiplying (2.4) by rN−1X− (where X± = max{0,±X}),
noting that X−(1) = X−(r1) = 0, and integrating over [r1, 1] give

∫ 1

r1

rN−1
[
((X−)′)2 + 2a(r)(X−)2

]
dr ≤ 0.

This shows that X− = 0 in [r1, 1], i.e. X ≥ 0 and M ≤ 1 in [r1, 1]. By definition of r0, this
implies that r0 ≤ r1, which contradicts the fact that r1 ∈ (0, r0). Step 1 is established.

Step 2: We show that f2ε,η + g2ε,η ≤ 1 in (0, 1). Indeed, if r0 = 0, this step is clear. Suppose
that r0 > 0. By Step 1, we have M > 1 and so W ′(1 −M) ≤ 0 in (0, r0). Returning to
(1.13)–(1.14), as (1.11) implies W̃ ′(t) ≥ W̃ ′(0) ≥ 0 for t ≥ 0, we have that the functions
fε,η and gε,η, considered as functions on the ball B(0, r0) in R

N , satisfy

∆fε,η = c1fε,η in B(0, r0) \ {0},
∆gε,η = c2gε,η in B(0, r0) \ {0},

where c1 = N−1
r2

− 1
ε2
W ′(1 −M) ≥ 0 and c2 = − 1

ε2
W ′(1 −M) + 1

η2
W̃ ′(g2ε,η) ≥ 0 in (0, r0).

By Kato’s inequality (see [28] or [5, Lemma A.1]), this implies

∆f±ε,η ≥ 0 in B(0, r0) \ {0},
∆g±ε,η ≥ 0 in B(0, r0) \ {0}.

Since fε,η, gε,η ∈ H1(B(0, r0)), these hold in B(0, r0). By the maximum principle,

f±ε,η ≤ f±ε,η(r0) and g
±
ε,η ≤ g±ε,η(r0) in B(0, r0).

We deduce that f2ε,η + g2ε,η ≤ M(r0) ≤ 1 in (0, r0). As M = f2ε,η + g2ε,η ≤ 1 in [r0, 1], the
conclusion of Step 2 follows.

Step 3: Conclusion. By Step 2 and the fact that mη ∈ H1(BN ), we deduce that (2.3) holds

in the whole BN ; then standard elliptic regularity theory yields mε,η and so X are C2 in
B̄N . In particular, fε,η(0) = 0 (as fε,η(r)n(x) ∈ C2(BN )) and g′ε,η(0) = 0 (since gε,η extends
to an even C2 function on (−1, 1)). By Step 2, we know that M ≤ 1 in (0, 1). Moreover,
since fε,η(1) = 1, we deduce that the inequality in (2.4) is strict near r = 1, in particular, X
cannot be identically 0. Thus, the strong maximum principle applied to (2.4) yields X > 0
in (0, 1) i.e. M < 1 in (0, 1). The conclusion follows.

By restricting attention to solutions with gε,η ≡ 0 (for any W̃ satisfying (1.11) e.g.
W̃ (t) = t), we immediately obtain:
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Corollary 2.8. Let N ≥ 2 and ε > 0. If W ∈ C2((−∞, 1]) satisfies (1.10) and fε satisfies
(1.1)–(1.3), then |fε| < 1 in (0, 1) and the map x 7→ uε(x) = fε(r)n(x) belongs to C2(B̄N ).
In particular, fε(0) = 0.

We next consider the monotonicity of solutions of (1.12)–(1.15) satisfying gε,η ≥ 0. We
first prove the monotonicity under an additional assumption that fε,η ≥ 0 in Proposition 2.9.
We then show that this additional non-negativity assumption on fε,η can be removed in
Proposition 2.10.

Proposition 2.9. Suppose W ∈ C2((−∞, 1]) and W̃ ∈ C2([0,∞)) satisfy (1.10) and
(1.11), and (fε,η, gε,η) satisfies (1.12)–(1.15) with fε,η ≥ 0, gε,η ≥ 0 in (0, 1). Then f ′ε,η > 0,
( fε,η

r

)′ ≤ 0 and either g′ε,η < 0 or gε,η = 0 in (0, 1].

Proof of Proposition 2.9. To simplify notation, we drop off the indices ε and η, so that in the
following we denote f and g the solution considered in (1.12)–(1.15). First, by Lemma 2.7,
we know that f2 + g2 < 1 in (0, 1) and f(0) = 0 and g′(0) = 0. By the strong maximum
principle applied to (1.13) for f ≥ 0 in (0, 1), we get f > 0 in (0, 1) (as f = 0 in (0, 1) would
contradict the boundary condition f(1) = 1 in (1.15)). By the strong maximum principle
applied to (1.14) (as a PDE in BN for g ≥ 0) we get g > 0 in [0, 1) or g = 0 in (0, 1).

Case 1: g > 0 in [0, 1). For a, b ∈ [0, 1], let

A(a, b) = − 1

ε2
W ′(1− a2 − b2)a, B(a, b) = − 1

ε2
W ′(1− a2 − b2)b+

1

η2
W̃ ′(b2)b. (2.6)

Then (1.13) and (1.14) rewrite as

f ′′ +
N − 1

r
f ′ − N − 1

r2
f = A(f, g) in (0, 1), (2.7)

g′′ +
N − 1

r
g′ = B(f, g) in (0, 1). (2.8)

The convexity assumption on W in (1.10) yields

∂bA(a, b) = ∂aB(a, b) ≥ 0 for all a, b ∈ [0, 1].

These inequalities give the system (2.7)–(2.8) a cooperative structure, see e.g. [9, 13, 39].
In order to prove the monotonicity of f and g, we follow the ideas based on a moving plane
argument in the proof of [24, Theorem 1.6]. See also [1] for a similar argument in the
context of phase segregation in Bose–Einstein condensates. For 0 < s < 1, define

fs(r) = f(2s− r) and gs(r) = g(2s − r) for max(0, 2s − 1) < r < s.

By (1.15) and (1.10) (in particular, W ′(0) = 0), we have A(f(1), g(1)) = B(f(1), g(1)) = 0
and recall that 0 < f < 1 = f(1) and g > 0 = g(1) in (0, 1). Combined with the
monotonicity of A(a, b) in b, we deduce that the function f̂ = f − f(1) satisfies

f̂ ′′ +
N − 1

r
f̂ ′ − N − 1

r2
f̂ =

N − 1

r2
f(1) +A(f, g)−A(f(1), g(1))

≥ A(f, g)−A(f(1), g) = c(r) f̂
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for some continuous function c ∈ C[0, 1]. As f̂(1) = 0 and f̂ < 0 in (0, 1), we deduce
from the Hopf lemma (see e.g. [14, Lemma 3.4]) that f ′(1) > 0. Likewise, we can show
that g′(1) < 0. Consequently, there is some small δ > 0 such that fs > f and gs < g in
max(0, 2s − 1) < r < s for any s ∈ (1− δ, 1). We define

s = inf
{

0 < s < 1 : ft > f and gt < g in max(0, 2t − 1) < r < t for all t ∈ (s, 1)
}

.

It follows that s ∈ [0, 1 − δ].

Claim: s = 0, f ′ > 0 and g′ < 0 in (0, 1].
Proof of Claim: Assume by contradiction that s > 0. By the definition of s, we deduce

(a) f ′ ≥ 0 and g′ ≤ 0 in (s, 1),

(b) and fs ≥ f > 0 and gs ≤ g in max(0, 2s − 1) < r < s.

Combined with the monotonicity of A(a, ·) and B(·, b), it follows for every s ∈ [s, 1) and
every r ∈ (max(0, 2s − 1), s):

f ′′s (r)+
N − 1

r
f ′s(r)−

N − 1

r2
fs(r) = f ′′(2s − r)− N − 1

r
f ′(2s− r)− N − 1

r2
f(2s− r)

≤ A(f(2s − r), g(2s − r)) = A(fs(r), gs(r)) ≤ A(fs(r), g(r)), (2.9)

g′′s (r) +
N − 1

r
g′s(r) ≥ B(fs(r), gs(r)) ≥ B(f(r), gs(r)) (2.10)

and equality in all the inequalities (2.9) (resp. in (2.10)) for some s ∈ [s, 1) implies

f ′(2s− r) = 0 (resp. g′(2s − r) = 0) for every r ∈ (max(0, 2s − 1), s). (2.11)

Combining (2.9) and (2.10) with (2.7) and (2.8), we obtain for every s ∈ [s, 1):

(fs − f)′′ +
N − 1

r
(fs − f)′ − N − 1

r2
(fs − f) ≤ A(fs, g) −A(f, g) = (fs − f)c1(r),

(gs − g)′′ +
N − 1

r
(gs − g)′ ≥ B(f, gs)−B(f, g) = (gs − g)c2(r),

with c1, c2 being two continuous functions on [max(0, 2s − 1), s] and equality in the above
inequalities implies again (2.11).

Recall that, by the definition of s, fs > f and gs < g in (max(0, 2s− 1), s) for s ∈ (s, 1).
By the Hopf lemma, applied to the above differential inequalities, we have f ′s(s) < f ′(s)
and g′s(s) > g′(s), i.e. f ′(s) > 0 and g′(s) < 0 for s ∈ (s, 1). We now show that these
assertions continue to hold with s = s, i.e.

Fact 1: fs > f and gs < g in max(0, 2s − 1) < r < s.

Fact 2: f ′ > 0 and g′ < 0 in [s, 1).

Indeed, since f ′ > 0 and g′ < 0 in (s, 1), (2.11) does not hold and so the above differential
inequalities for fs − f and gs − g are strict in (max(0, 2s − 1), s). Since fs − f ≥ 0 and
gs− g ≤ 0 in (max(0, 2s− 1), s), the strong maximum principle applied to those differential
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inequalities gives Fact 1. By the Hopf lemma, we then have f ′s(s) < f ′(s) and g′s(s) > g′(s),
i.e. f ′(s) > 0 and g′(s) < 0, and Fact 2 follows.

Conclusion: We now show that Facts 1 and 2 contradict the minimality of s. Indeed, observe
first that (fs − f)

(
max(0, 2s − 1)

)
> 0 since

fs(max(0, 2s − 1)) = 1 > f(max(0, 2s − 1)) when
1

2
≤ s < 1,

fs(max(0, 2s − 1)) > 0 = f(max(0, 2s − 1)) when s <
1

2
.

Likewise, we have (gs − g)
(
max(0, 2s − 1)

)
< 0 since

gs(max(0, 2s − 1)) = 0 < g(max(0, 2s − 1)) when
1

2
≤ s < 1,

g′s(max(0, 2s − 1)) = −g′(2s) > 0 = g′(0) = g′(max(0, 2s − 1)) when s <
1

2

(in the latter case, this is combined with gs < g on (0, s) by Fact 1). Thus, thanks to

Facts 1 and 2, we deduce by continuity the existence of a small δ̃ > 0 such that, for every
s ∈ (s− δ̃, s], fs > f and gs < g in max(0, 2s − 1) < r < s, contradicting the minimality of
s. Thus, s = 0. Also, by Fact 2, f ′ > 0 and g′ < 0 in (0, 1]. The Claim is proved.

Case 2: g = 0 in (0, 1). The above argument applies to solutions f ≥ 0 of (1.1)–(1.3),
where equation (2.9) is replaced by

f ′′s (r) +
N − 1

r
f ′s(r)−

N − 1

r2
fs(r) ≤ A(fs(r), 0),

yielding f ′ > 0. (Note that the assumptionW ′′ ≥ 0 is no longer needed in this case, though
the condition W ′(0) = 0 is used.)

Proof of
(f
r

)′ ≤ 0 in (0, 1). Indeed, by Lemma A.5, we know that v := f
r ∈ C2([0, 1]). To

prove that v is decreasing, we follow the argument in [21, Proposition 2.2]: by (1.10) we
have W ′ ≥ 0 in (0, 1) so that

(rN+1v′(r))′ = −r
N+1

ε2
W ′(1− f2 − g2)v(r) ≤ 0, r ∈ (0, 1).

This implies that rN+1v′(r) is a nonincreasing C1 function in [0, 1]. Since limr→0 r
N+1v′(r) =

0 (as v ∈ C1([0, 1])), we deduce that v′(r) ≤ 0 in [0, 1].

Next, we prove the positivity of fε,η when gε,η ≥ 0. When gε,η ≡ 0, the result was
obtained in [19, 22] under some slightly different condition on W .

Proposition 2.10. Suppose W ∈ C2((−∞, 1]) and W̃ ∈ C2([0,∞)) satisfy (1.10) and
(1.11), and (fε,η, gε,η) satisfies (1.12)–(1.15) with gε,η ≥ 0 in (0, 1). Then fε,η > 0 in (0, 1).
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Proof. As in the proof of the previous proposition, we drop off the indices ε and η, so that
in the following we denote f and g the solution considered in (1.12)–(1.15). Suppose by
contradiction that f changes sign in (0, 1). Let r1 ∈ (0, 1) be such that f(r1) = 0 and
f > 0 in (r1, 1]. Applying the Hopf lemma to (1.13) in (r1, 1), we have f ′(r1) > 0. In
particular, f < 0 in some small interval (r1 − δ, r1). Observe that (|f |, g) satisfies in the
sense of distribution

|f |′′ + N − 1

r
|f |′ − N − 1

r2
|f | = A(|f |, g) in (r1, 1),

|f |′′ + N − 1

r
|f |′ − N − 1

r2
|f | ≥ A(|f |, g) in (0, 1),

g′′ +
N − 1

r
g′ = B(|f |, g) in (0, 1),

where A and B are defined in (2.6). Consequently, we can apply the proof of Proposition 2.9
to the pair (|f |, g) to obtain

(|f |)s ≥ |f | and gs ≤ g in max(0, 2s − 1) < r < s for all r1 ≤ s < 1,

where (|f |)s(r) = |f |(2s − r) and gs(r) = g(2s − r). Observe also that, by definition, both
|f | and (|f |)r1 have the same first left-derivative at r1; thus, we deduce by the Hopf lemma
that (|f |)r1 ≡ |f | and f ′(2r1 − r) = 0 in max(0, 2r1 − 1) < r < r1 (see (2.11)). The latter
identity is impossible, since f ′(r1) > 0. We conclude that f ≥ 0 in (0, 1). The positivity of
f follows by the strong maximum principle applied to (1.13) (as f(1) = 1).

Applying Propositions 2.9 and 2.10 to the non-escaping solution (fε, 0), we obtain:

Corollary 2.11. Suppose W ∈ C2((−∞, 1]) satisfies (1.10), and fε satisfies (1.1)–(1.3).
Then fε > 0, f ′ε > 0 and

( fε
r

)′ ≤ 0 in (0, 1].

Finally, we prove the uniqueness of escaping solutions of (1.12)–(1.15).

Proposition 2.12. Let N ≥ 2 and suppose that W ∈ C2((−∞, 1]) and W̃ ∈ C2([0,∞))
satisfy (1.10) and (1.11). Then, for every ε > 0 and η > 0, the system (1.12)–(1.15)
has at most one escaping solution (fε,η, gε,η) with gε,η > 0 in (0, 1). Furthermore, when
it exists, (fε,η,±gε,η) are the only two minimizers of Iε,η over the set B; in particular,
Iε,η[fε, 0] > Iε,η[fε,η, gε,η] where fε is the radial profile satisfying (1.2)–(1.3).

Proof. We use ideas from our previous papers [25, 26]. Suppose that (fε,η, gε,η) solves
(1.12)–(1.15) and gε,η > 0 in (0, 1). By Proposition 2.10, fε,η > 0 in (0, 1). For (f, g) ∈ B,
we write (f, g) = (fε,η, gε,η) + (s, q) and

V (x) = (s(r)n(x), q(r)) ∈ H1
0 (B

N ,RN+1).

Using first the convexity of W and W̃ and then equations (1.13)–(1.14), we compute

Iε,η[f, g]− Iε,η[fε,η, gε,η] ≥
1

2

∫ 1

0

{

2f ′ε,ηs
′ + (s′)2 + 2g′ε,ηq

′ + (q′)2 +
N − 1

r2
(2fε,ηs+ s2)

− 1

ε2
W ′(1− f2ε,η − g2ε,η)[2(fε,ηs+ gε,ηq) + s2 + q2] +

1

η2
W̃ ′(g2ε,η)(2gε,ηq + q2)

}

rN−1dr
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=
1

2

∫ 1

0

{

(s′)2 + (q′)2 +
N − 1

r2
s2 − 1

ε2
W ′(1− f2ε,η − g2ε,η)(s

2 + q2) +
1

η2
W̃ ′(g2ε,η)q

2
}

rN−1dr

=
1

2|SN−1|

∫

BN

{

|∇V |2 − 1

ε2
W ′(1− f2ε,η − g2ε,η)|V |2 + 1

η2
W̃ ′(g2ε,η)V

2
N+1

}

dx =:
Fε,η[V ]

2|SN−1| .

Claim 1: For every V (x) = (s(r)n(x), q(r)) ∈ H1
0 (B

N ,RN+1), it holds

Fε,η[V ] ≥
∫

BN

{

f2ε,η(|x|)
∣
∣
∣

( s

fε,η

)′
(|x|)

∣
∣
∣

2
+ g2ε,η(|x|)

∣
∣
∣

( q

gε,η

)′
(|x|)

∣
∣
∣

2}

dx,

and as a consequence, (fε,η, gε,η) minimizes Iε,η in B.
Proof of Claim 1: Since Fε,η is continuous in H1

0 (B
N ,RN+1) (because W ′(1 − f2ε,η − g2ε,η),

W̃ ′(g2ε,η) ∈ L∞(BN ) by Lemma 2.7), by standard density results and Fatou’s lemma, it

suffices to show the claim for V = (s(r)n, q(r)) ∈ C∞
c (BN \ {0},RN+1). For that, we will

apply [21, Lemma A.1] for the operators
{

L := −∆− 1
ε2W

′(1− f2ε,η − g2ε,η),

T := −∆− 1
ε2
W ′(1− f2ε,η − g2ε,η) +

1
η2
W̃ ′(g2ε,η).

(2.12)

Indeed, writing V = (s(r)n, q(r)) = (V1, . . . , VN , VN+1) ∈ C∞
c (BN \ {0},RN+1) and decom-

posing Vj = fε,ηV̂j with V̂j =
Vj
fε,η

for j = 1, . . . , N and VN+1 = gε,ηV̂N+1 with V̂N+1 =
q
gε,η

,

Fε,η[V ] =

N∑

j=1

∫

BN

LVj · Vj dx+

∫

BN

TVN+1 · VN+1 dx

=
N∑

j=1

∫

BN

{

f2ε,η|∇V̂j|2 + V̂ 2
j Lfε,η · fε,η + g2ε,η|∇V̂N+1|2 + V̂ 2

N+1Tgε,η · gε,η
}

dx

=

∫

BN

{

f2ε,η(|x|)
∣
∣
∣∇

( s(r)

fε,η(r)
n(x)

)
∣
∣
∣

2
− N − 1

r2
s2 + g2ε,η(|x|)

∣
∣
∣

( q

gε,η

)′
(|x|)

∣
∣
∣

2}

dx

=

∫

BN

{

f2ε,η(|x|)
∣
∣
∣

( s

fε,η

)′
(|x|)

∣
∣
∣

2
+ g2ε,η(|x|)

∣
∣
∣

( q

gε,η

)′
(|x|)

∣
∣
∣

2}

dx, (2.13)

because Lfε,η = −N−1
r2

fε,η, Tgε,η = 0 (by (1.13)–(1.14)) and (V̂1, . . . , V̂N ) =
s(r)
fε,η(r)

n(x) with

|∇n|2 = N−1
r2

. Hence, the claim is proved.

Step 1: We prove that {(fε,η,±gε,η)} is the set of minimizers of Iε,η in B. Indeed, we have

seen that (fε,η,±gε,η) minimizes Iε,η in B. Suppose (f̃ε,η, g̃ε,η) also minimizes Iε,η in B, in

particular, Iε,η[fε,η, gε,η] = Iε,η[f̃ε,η, g̃ε,η] so that, for V =
(

(f̃ε,η− fε,η)n(x), g̃ε,η − gε,η
)

, one

has F [V ] = 0 leading to:

f̃ε,η − fε,η
fε,η

and
g̃ε,η − gε,η

gε,η
are constant in (0, 1).

This together with f̃ε,η(1) − fε,η(1) = 0 gives f̃ε,η ≡ fε,η and g̃ε,η ≡ agε,η in (0, 1) for some
constant a ∈ R. Since gε,η > 0, this implies that g̃ε,η has a fixed sign. Furthermore, either
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a = 0 (so g̃ε,η ≡ 0), or |g̃ε,η| > 0 in (0, 1) in which case, we can interchange gε,η and ±g̃ε,η if
necessary (note that (f̃ε,η,−g̃ε,η) also minimizes Iε,η in B), so that we may always assume
that 0 ≤ a ≤ 1.

To finish the proof, we prove that a = 1, i.e., g̃ε,η ≡ gε,η in (0, 1). Assume by contradic-
tion that 0 ≤ a < 1. We will show that

W ′(1− f2ε,η − g2ε,η) ≡ 0 in (0, 1). (2.14)

Once this is done, we deduce from (1.14) that −∆gε,η +
1
η2
W̃ ′(g2ε,η)gε,η = 0 in BN . Since

W̃ ′ ≥ W̃ ′(0) ≥ 0 in [0,∞) (by (1.11)) and gε,η = 0 on ∂BN , we deduce that gε,η = 0 in BN

which gives a contradiction to the assumption gε,η > 0 in BN , and completes the proof.
Let us now prove (2.14). Returning to (1.13), we see that

W ′(1− f2ε,η − g2ε,η) ≡W ′(1− f2ε,η − a2g2ε,η) in [0, 1]. (2.15)

Therefore, to prove (2.14), it suffices to show that W ′(t) = 0 for every 0 ≤ t ≤ max[0,1](1−
f2ε,η − a2g2ε,η) =: τ . For that, we have f2ε,η + a2g2ε,η < f2ε,η + g2ε,η < 1 in (0, 1) by Lemma 2.7,
and hence τ > 0. Note that the range of 1−f2ε,η−a2g2ε,η over [0, 1] is [0, τ ] because of (1.15).
Set t0 = inf{t > 0 : W ′(s) = W ′(τ) for all s ∈ [t, τ ]}. We show that t0 = 0. For that,
let r0 ∈ [0, 1] such that 1 − f2ε,η(r0)− a2g2ε,η(r0) = t0. By the continuity of W ′ and (2.15),
we deduce for t1 := 1 − f2ε,η(r0) − g2ε,η(r0) ≤ t0 that W ′(t1) = W ′(t0) = W ′(τ). As W ′ is
nondecreasing (because W is convex), we deduce that W ′(s) = W ′(τ) for every s ∈ [t1, τ ].
By the minimality of t0, it means that t1 = t0, i.e., g

2
ε,η(r0) = 0. Since gε,η > 0 in [0, 1)

(which is a consequence of the strong maximum principle applied to (1.14), considered as
a PDE on BN ), this yields r0 = 1, i.e., t0 = 0. It follows that W ′ ≡ W ′(0) = 0 on [0, τ ] as
desired (where we use that 0 is a minimum point of W by the assumption (1.10)).

Step 2:We prove the uniqueness of escaping solutions of (1.12)–(1.15). Indeed, assume that

(f̌ε,η, ǧε,η) is also a solution to (1.12)–(1.15) with ǧε,η > 0 in (0, 1). Then Claim 1 yields
that both (fε,η, gε,η) and (f̌ε,η, ǧε,η) minimize Iε,η in B. By Step 1, we have fε,η ≡ f̌ε,η and
gε,η ≡ ǧε,η as desired. The proof is complete.

2.2 The R
N-valued GL model: Existence and uniqueness

We prove existence and uniqueness of the radial profile and its minimality for IGLε as stated
in in Theorem 2.1. Then we prove Lemma 2.3.

Proof of Theorem 2.1. Let fε be a minimizer of the reduced energy functional IGLε in BGL.
(It is easy to see that such minimizer exists.) Since IGLε [f ] ≥ IGLε [min{|f |, 1}], we may
also assume that 0 ≤ fε ≤ 1. In addition, we have that fε satisfies (1.2), fε(1) = 1 and
fε ∈ C2((0, 1]). Noting also that the constant functions 0 and 1 are a solution and a super-
solution to (1.2) respectively (since W ′(0) = 0), the strong maximum principle implies that
0 < fε < 1 in (0, 1). By Lemma A.4, fε/r ∈ C2([0, 1]), in particular, fε(0) = 0.

If (1.10) holds, then by Corollary 2.11 we have f ′ε > 0 in (0, 1]. Also, the same argument
as in the proof of Proposition 2.12 applies giving also the uniqueness of fε as solution of
(1.2)-(1.3), in particular, as unique minimizer of IGLε over BGL. We omit the details.
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We next prove estimates for ℓ(ε).

Proof of Lemma 2.3. Note that by the definition of the first eigenvalue for LGLε and stan-
dard elliptic regularity, ℓ depends continuously on ε. Let us prove (2.2) for 0 < ε̃ < ε <∞.
We have

∫

BN

[

|∇ϕ|2 − 1

ε̃2
W ′(1− f2ε̃ )ϕ

2
]

dx ≥ ℓ(ε̃)

∫

BN

ϕ2 dx for all ϕ ∈ H1
0 (B

N ).

By rescaling, we deduce:

∫

B(0,1/ε̃)

[

|∇ψ|2 −W ′(1− f2ε̃ (ε̃|x|))ψ2
]

≥ ε̃2ℓ(ε̃)

∫

B(0,1/ε̃)
ψ2 dx for all ψ ∈ H1

0 (B(0, 1/ε̃)).

As B(0, 1/ε) ⊂ B(0, 1/ε̃), by the strict monotonicity of the first eigenvalue with respect to
domains (due to the positivity of the first eigenfunctions), we have

∫

B(0,1/ε)

[

|∇ψ|2−W ′(1−f2ε̃ (ε̃|x|))ψ2
]

> ε̃2ℓ(ε̃)

∫

B(0,1/ε)
ψ2 dx for all 0 6≡ ψ ∈ H1

0 (B(0, 1/ε)).

Now using the inequality 1 ≥ fε(ε|x|) ≥ fε̃(ε̃|x|) ≥ 0 (see Proposition B.1(a)) for |x| < 1/ε
and the monotonicity of W ′, we deduce that

∫

B(0,1/ε)

[

|∇ψ|2−W ′(1−f2ε (ε|x|))ψ2
]

> ε̃2ℓ(ε̃)

∫

B(0,1/ε)
ψ2 dx for all 0 6≡ ψ ∈ H1

0 (B(0, 1/ε)).

Rescaling once again we get that

∫

BN

[

|∇ϕ|2 − 1

ε2
W ′(1− f2ε )ϕ

2
]

>
ε̃2ℓ(ε̃)

ε2

∫

BN

ϕ2 dx for all 0 6≡ ϕ ∈ H1
0 (B

N ),

which is equivalent to (2.2).
Assertion (a) is clear because if W ′(1) = 0, then (1.10) implies that W = 0 in (0, 1).
Assertion (b) for N ≥ 7 is a consequence of the inequality

∫

BN

LGLε v · v dx ≥
( (N − 2)2

4
− (N − 1)

) ∫

BN

v2

r2
dx for all v ∈ H1

0 (B
N ),

which was proved in Step 4 of the proof of [25, Theorem 2].
We next prove assertion (c) for 2 ≤ N ≤ 6 and W ′(1) > 0. We have seen that

ℓ(ε) > −W ′(1)ε−2. We prove the rest in 2 steps.
Step 1: We show that there exist ε1 > 0 and c1 > 0 such that ℓ(ε) ≤ − c1

ε2
for ε ∈ (0, ε1),

by exhibiting a non-zero function q = qε(r) ∈ Lipc((0, 1)) satisfying

∫

BN

LGLε q · q dx ≤ −c1
ε2

∫

BN

q2 dx.

(Note that by the lower bound of ℓ(ε), it is clear that c1 < W ′(1).)
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Note that, by [22, Lemma A.1], for every positive function ϕ ∈ C1,1
loc ((0, 1)), we have the

following identity for every q = fεϕq̃ ∈ Lipc(B
N \ {0})

∫

BN

LGLε q · q dx =

∫

BN

ϕ2
{

f2ε |∇q̃|2 +
LGLε (ϕfε)fε

ϕ
q̃2
}

dx. (2.16)

We choose8 ϕ = r−
N−2

2 ∈ C∞((0, 1)), and note that, by (1.2),

LGLε (ϕfε)fε =
(N2 − 8N + 8)f2εϕ

4r2
− 2fεf

′
εϕ

′ in (0, 1).

The idea now is to exploit the negativity of N2−8N +8 for 2 ≤ N ≤ 6 to reach the desired
conclusion. Let t0 = sup{0 ≤ t < 1 : W (t) = 0}. By Proposition B.1(b), for every small
δ > 0, there exists Cδ > 0 such that for every a > Cδ we can find ε1 = ε1(δ, a) for which

1− t0 − δ ≤ f2ε ≤ 1− t0 in [Cδε, aε] for all ε ∈ (0, ε1). (2.17)

The contribution of the term −2fεf
′
εϕ

′ in the above expression of LGLε (ϕfε)fε to the right
hand side of (2.16) is handled as follows. (Note that if N = 2, then ϕ′ = 0 so that term
vanishes and the reader can proceed directly to estimate (2.18) below.) We impose that
q̃ = q̃(r) is supported in [Cδε, aε], then integration by parts combined with (2.17) and
(
rN−1(ϕ2)′

)′
= 0 for r ∈ (0, 1) yields by Cauchy-Schwarz:

− 2

∫ 1

0
rN−1q̃2fεf

′
εϕϕ

′ dr =
1

2

∫ 1

0
rN−1q̃2(1− t0 − f2ε )

′(ϕ2)′ dr

= −
∫ 1

0
rN−1q̃q̃′(1− t0 − f2ε )(ϕ

2)′ dr ≤ δ

∫ 1

0
(q̃′)2r dr +

(N − 2)2

4
δ

∫ 1

0

q̃2

r
dr.

Since 2 ≤ N ≤ 6 implies N2 − 8N + 8 < 0, using (2.17), we deduce
∫

BN

[

LGLε q · q + c1q
2

ε2

]

dx ≤ |SN−1|
∫ 1

0
r
{

(1− t0 + δ)(q̃′)2

+
1

r2

[(N2 − 8N + 8)(1 − t0 − δ) + (N − 2)2δ

4
+
c1r

2

ε2

]

q̃2
}

dr. (2.18)

We now choose a non-negative q̃ ∈ Lipc((0, 1)) given by

q̃(r) = q̃a,ε(r) :=

{

sin
(

π
ln a

Cδ

ln r
Cδε

)

for r ∈ (Cδε, aε),

0 elsewhere.

Note that (N2−8N+8)(1−t0−δ)+(N−2)2δ = (N2−8N+8)(1−t0)+cδ for c = 4N−4 > 0.
Inserting into (2.18), we get
∫

BN

[

LGLε q · q + c1q
2

ε2

]

dx ≤ |SN−1|
∫ aε

Cδε

{( π

ln a
Cδ

)2
cos2

( π

ln a
Cδ

ln
r

Cδε

)

(1− t0 + δ)

+
((N2 − 8N + 8)(1 − t0) + cδ

4
+ c1a

2
)

sin2
( π

ln a
Cδε

ln
r

Cδε

)} 1

r
dr

8See [25, inequality (6)] for an explanation of this choice of ϕ.
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=
|SN−1| ln a

Cδ

2

(( π

ln a
Cδ

)2
(1− t0 + δ) +

(N2 − 8N + 8)(1 − t0) + cδ

4
+ c1a

2
)

. (2.19)

Recalling N2−8N+8 < 0 for 2 ≤ N ≤ 6, we can choose δ > 0 sufficiently small, a = aδ > 0
sufficiently large and then c1 = c1(δ) > 0 sufficiently small such that the right hand side of
(2.19) is negative for ε < ε1(δ), yielding Step 1.

Step 2: We prove that there exists ε0 > 0 such that ℓ(ε) < 0 and increasing in (0, ε0),
ℓ(ε0) = 0 and ℓ(ε) > 0 for ε > ε0. Let I = {ε ∈ (0,∞) : ℓ(ε) < 0}. It is clear that ℓ(ε) > 0
for large ε and so I is bounded. By Step 1, I contains (0, ε1). Let

ε0 = sup{ε̃ : ℓ(ε) < 0 for ε ∈ (0, ε̃)} ∈ (ε1,∞).

By the continuity of ℓ, we must have ℓ(ε0) = 0. Then (2.2) yields the monotonicity of ℓ in
(0, ε0) and also, ℓ(ε) > 0 for ε > ε0. Step 2 is proved.

2.3 The extended model: Existence.

The aim is to prove Theorem 2.4 for the extended model.

Proof of Theorem 2.4. Proof of (a) when N ≥ 7. By [25, Theorem 2], whenN ≥ 7, m̄ε(x) =

(fε(|x|)n(x), 0) 9 is the unique minimizer for the functional Eε,∞ : A ⊂ H1(BN ,RN+1) →
[0,∞], i.e.

Eε,∞[m] =

∫

BN

[1

2
|∇m|2 + 1

2ε2
W (1− |m|2)

]

dx, ε > 0.

Recalling the fact that W̃ ≥ 0, it follows that for every ε, η > 0, m̄ε is the unique minimizer
of Eε,η in A and so (fε, 0) is the unique minimizer of Iε,η in B. This together with
Proposition 2.12 implies that (1.12)–(1.15) has no escaping solution.

Proof of (a) when W ′(1) = 0. When W ′(1) = 0, we have by (1.10) that W = 0 in [0, 1]. In
particular, Eε,∞ is exactly the Dirichlet energy (and hence convex) when restricting to the
set {m ∈ A : |m| ≤ 1 a.e.}. This together with the fact that for m ∈ A ,

Eε,∞[m] ≥ Eε,∞[m♯] where m♯(x) =

{

m(x) if |m| ≤ 1,
m(x)
|m(x)| if |m(x)| > 1,

implies that the unique minimizer of Eε,∞ is the map Y (x) = (x, 0) (i.e. the unique
H1(BN ,RN+1) harmonic map with boundary value (x, 0)). Also, note that for W ≡ 0 in
[0, 1], then fε(r) = r solves (1.2)–(1.3), so by Theorem 2.1, fε is the unique solution of (1.2)–
(1.3). Thus, m̄ε = (fεn(x), 0) = Y . We thus have that m̄ε is the unique minimizer of Eε,∞
and hence of Eε,η (since W̃ ≥ W̃ (0)) in A ; in particular, (fε, 0) is the unique minimizer of
Iε,η over B. By appealing again to Proposition 2.12, we conclude that (1.12)–(1.15) has no
escaping solution.

9[25, Theorem 1] assumes (1.10), but is clear from the proof there that (1.10) is sufficient.
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Proof of (b) First, we focus on the existence of escaping solutions of (1.12)–(1.15) when
2 ≤ N ≤ 6 and W ′(1) > 0. It is easy to see that Iε,η admits a minimizer (fε,η, gε,η) ∈ B.
Since (fε,η, gε,η) ∈ B, (fε,η, gε,η) ∈ C((0, 1]). It follows that (fε,η, gε,η) satisfies (1.13)–(1.15)
in the weak sense, and so (fε,η, gε,η) ∈ C2((0, 1]).

Since (|fε,η|, |gε,η|) is also a minimizer of Iε,η in B, the above argument also shows that
(|fε,η|, |gε,η |) ∈ C2((0, 1]) satisfies (1.13)–(1.15). Since |fε,η|, |gε,η| ≥ 0 and fε,η(1) = 1, by
the strong maximum principle, we have that |fε,η| > 0 in (0, 1), and either |gε,η| > 0 in (0, 1)
or gε,η ≡ 0 in (0, 1). It follows that fε,η > 0 in (0, 1), and either gε,η > 0 in (0, 1) or gε,η < 0
in (0, 1) or gε,η ≡ 0 in (0, 1). Clearly, when gε,η ≡ 0, fε,η is equal to the radial profile fε
obtained in Theorem 2.1. By considering (fε,η,−gε,η) instead of (fε,η, gε,η) if necessary, we
assume in the sequel that gε,η ≥ 0.

Claim: gε,η > 0 in (0, 1) if and only if (ε, η) ∈ A := {(ε, η) : 0 < ε < ε0, η > η0(ε)}.
Proof of Claim: Define

Qε,η[α, β]

=

∫

BN

[

LGLε α · α+ LGLε β · β +
N − 1

r2
α2 +

2

ε2
W ′′(1− f2ε )f

2
εα

2 +
1

η2
W̃ ′(0)β2

]

dx,

for (α, β) belonging to the Hilbert space

H = {(α, β) : (fε + α, β) ∈ B} with the norm ‖(α, β)‖H := ‖(αn, β)‖H1(BN ,RN+1).

This can be considered as the second variation of Iε,η at (fε, 0); see equation (3.1) in
Subsection 3.1. Note that the C2 regularity of W together with (1.10), W̃ ′(0) ≥ 0 and the
boundedness of fε yield a constant c1 > 0 (independent of ε and η) such that

Qε,η[α, β] ≥ ‖(α, β)‖2H − c1
ε2

‖(α, β)‖2L2(BN ) for all (α, β) ∈ H . (2.20)

(⇐) If (ε, η) ∈ A, then W̃ ′(0)
η2

< −ℓ(ε). Taking β ∈ H1
0 (B

N ) to be any first eigenfunction

of LGLε , which is radially symmetric, we have r
N−1

2 β′, r
N−1

2 β ∈ L2(0, 1), β(1) = 0 and
Qε,η[0, β] < 0. This implies that (fε, 0) is not minimizing Iε,η in B, and thus gε,η > 0.

(⇒) For the converse, we suppose by contradiction that there exists (ε, η) ∈ B = (0,∞)2\A
with gε,η > 0. By (2.16) with the choice ϕ = 1 and by (1.2), we have

∫

BN

LGLε α · α dx =

∫

BN

{

f2ε

∣
∣
∣∇

( α

fε

)∣
∣
∣

2
− N − 1

r2
α2

}

dx for every α ∈ C∞
c (0, 1).

By a density argument in H1
0 (B

N ) using Fatou’s lemma, we deduce by (1.10) that

Qε,η[α, β] ≥
∫

BN

{

f2ε

∣
∣
∣∇

( α

fε

)∣
∣
∣

2
+
(
ℓ(ε) +

W̃ ′(0)
η2

)
β2

}

dx for every (α, β) ∈ H .

In view of Lemma 2.3, we thus have that Qε,η is positive definite over H for (ε, η) ∈ B̊ =

(0,∞)2 \ Ā where ℓ(ε)+ W̃ ′(0)
η2 > 0. More precisely, there exists a constant c > 0 (depending
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on ε and η) such that Qε,η[α, β] ≥ c‖(α, β)‖2
L2(BN )

for every (α, β) ∈ H . This follows

by the above inequality for Qε,η[α, β] combined with the following estimate based on the
Hardy inequality in R

N+2 using r ≤ fε(r) ≤ 1 for every r ∈ (0, 1) (see Corollary 2.11):

∫ 1

0
rN−1f2ε (h

′)2 dr ≥
∫ 1

0
rN+1(h′)2 dr ≥ N2

4

∫ 1

0
rN−1h2 dr ≥ N2

4

∫ 1

0
rN−1f2εh

2 dr, (2.21)

where h plays the role of α
fε
. Thus, by (2.20), for (ε, η) ∈ B̊, there exists a constant c̃ > 0

(depending on ε and η) such that

Qε,η[α, β] ≥ c̃‖(α, β)‖2H for all (α, β) ∈ H . (2.22)

Fact: (fε, 0) is a local minimizer of Iε,η if (ε, η) ∈ B̊. Indeed, by (1.2), for (α, β) ∈ H ,

|SN−1|
(
Iε,η[fε + α, β]− Iε,η[fε, 0]

)
− 1

2
Qε,η[α, β] =

∫

BN

h(x, α(|x|)n(x), β(|x|)) dx,

h(x, V ) =
1

2ε2

{

W (1− |fε(r)n(x) + V‖|2 − V 2
N+1)−W (1− fε(r)

2)

+W ′(1− fε(r)
2)(2fε(r)n(x) · V‖ + |V |2)− 2W ′′(1− fε(r)

2)fε(r)
2(n(x) · V‖)2

}

+
1

2η2

{

W̃ (V 2
N+1)− W̃ (0)− W̃ ′(0)V 2

N+1

}

, r = |x|, V = (V‖, VN+1) ∈ R
N+1.

We have h ∈ C0(B̄N , C2(RN+1)) (since W, W̃ ∈ C2 and fεn ∈ C2(B̄N ) by Lemma A.4),
h(x, 0) = 0, ∇V h(x, 0) = 0, ∇2

V h(x, 0) = 0 (thus, (D.1) holds true in Lemma D.1) and h
satisfies the growth assumption (D.2) in Lemma D.1 for p = 2 (due to the convexity of W
and W̃ ); therefore, Lemma D.1 applies and yields some small radius r̃ > 0 such that

∫

BN

h(x, α(|x|)n(x), β(|x|)) dx ≥ − c̃
4
‖(α, β)‖2H for for‖(α, β)‖H < r̃.

Combined with (2.22), the local minimality of (fε, 0) follows.

End of proof of Claim: Recalling our assumption that the constructed minimizer (fε,η, gε,η)

of Iε,η satisfies gε,η > 0, the above Fact combined with Lemma 2.13 below yield (ε, η) ∈ B\B̊
and, for all (ε̃, η̃) ∈ B̊, (fε̃, 0) is the unique minimizer for Iε̃,η̃ in B. Thanks to the latter, by
considering a sequence {(ε̃j , η̃j)} ⊂ B̊ which converges to (ε, η), since fε̃j converges to fε in
H1(BN ), Fatou’s lemma implies that (fε, 0) is a minimizer for Iε,η in B, which contradicts
the fact that (fε,η,±gε,η) are the only two minimizers of Iε,η in B (see Proposition 2.12).
This proves the claim.

Proof of (b1) By the Claim, an escaping solution of (1.12)–(1.15) exists if and only if
0 < ε < ε0 and η > η0(ε). In this case, the uniqueness of an escaping solution and
the classification of minimizers of Iε,η are obtained in Proposition 2.12, Lemma 2.7 yields
f2ε,η + g2ε,η < 1, the regularity of (fε,η, gε,η) follows from Lemma A.5, while the positivity of
fε,η and monotonicity of fε,η and gε,η are given by Propositions 2.10 and 2.9.
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Proof of (b2) The fact that the non-escaping solution (fε, 0) is an unstable critical point
(and hence not minimizer) of Iε,η in B when 0 < ε < ε0 and η > η0(ε) was obtained in the
proof of the (⇐) part of the claim. The fact that the non-escaping solution (fε, 0) is the
unique minimizer of Iε,η in B when ε ≥ ε0 or 0 < η ≤ η0(ε) follows from the claim.

It remains to prove the following lemma used above:

Lemma 2.13. Let N ≥ 2, ε, η > 0, and suppose that W ∈ C2((−∞, 1]) and W̃ ∈ C2([0,∞))
satisfy (1.10) and (1.11). If Iε,η admits an escaping critical point (fε,η, gε,η) in B with
gε,η > 0 in (0, 1), then the non-escaping critical point (fε, 0) is not a local minimizer of Iε,η.
As a consequence, if the non-escaping critical point (fε, 0) is a local minimizer of Iε,η, then
(fε, 0) is the unique global minimizer of Iε,η in B and Iε,η does not admit any escaping
critical point (fε,η, gε,η) in B with gε,η > 0 in (0, 1).

Proof. By Proposition 2.12, (fε,η,±gε,η) are the only two minimizers of Iε,η in B. In par-
ticular, Iε,η[fε,η, gε,η] < Iε,η[fε, 0]. Suppose by contradiction that (fε, 0) is a local minimizer
of Iε,η. We use some ideas from [3, 24]: we show, by mean of a mountain-pass theorem, the

existence of a second escaping critical point (f̂ , ĝ) of Iε,η with ĝ > 0 which would lead to a
contradiction with Proposition 2.12. Along the way, care is given due to the fact that Iε,η is
not always finite in B. To avoid this problem, let V, Ṽ ∈ C2(R) be bounded non-negative
functions such that V |[0,1] =W |[0,1], Ṽ |[0,1] = W̃ |[0,1] and define J : H → R by

J [α, β] =
1

2

∫ 1

0

[

((fε+α)
′)2+(β′)2+

N − 1

r2
(fε+α)

2+
1

ε2
V (1−(fε+α)

2−β2)+ 1

η2
Ṽ (β2)

]

rN−1 dr.

Let M := {(α, β) ∈ H : fε + α ≥ 0, β ≥ 0 and (fε + α)2 + β2 ≤ 1 in (0, 1)}. Then
J ∈ C1(H ), M is a closed convex subset of H , J [α, β] = Iε,η[fε+α, β] for (α, β) ∈ M , and
(0, 0) and (fε,η−fε, gε,η) are two relative minima of J in M with J(fε,η−fε, gε,η) < J(0, 0).

We proceed to check that J satisfies the Palais-Smale condition on M (see e.g. [40,
Theorem II.12.8]): if {(αj , βj)} ⊂ M is such that {J [αj , βj ]} is bounded and

G[αj , βj ] := sup
(αj−ϕ,βj−ψ)∈M :‖(ϕ,ψ)‖H ≤1

〈DJ [αj , βj ], (ϕ,ψ)〉 → 0, (2.23)

then {(αj , βj)} is relatively compact in H . Indeed, since {J [αj , βj ]} is bounded, {(αj , βj)}
is bounded in H . Thus, we assume that (αj , βj) converges weakly in H , strongly in
L2(BN ), and almost everywhere in (0, 1) to some (α∗, β∗) ∈ M .

Let us note that we may use (ϕ,ψ) = t(αj−α∗, βj−β∗) = t((fε+αj)−(fε+α∗), βj−β∗)
for some small t > 0 (which is independent of j) in (2.23), since (αj −ϕ, βj −ψ) is a convex
combination of (αj , βj), (α∗, β∗) ∈ M and M is convex. This gives

0 ≥ lim sup
j→∞

〈DJ [αj , βj ], (αj − α∗, βj − β∗)〉

= lim sup
j→∞

∫ 1

0

[

(fε + αj)
′(αj − α∗)

′ + β′j(βj − β∗)
′ +

N − 1

r2
(fε + αj)(αj − α∗)

− 1

ε2
W ′(1− (fε + αj)

2 − β2j )[(fε + αj)(αj − α∗) + βj(βj − β∗)]

+
1

η2
W̃ ′(β2j )βj(βj − β∗)

]

rN−1 dr.
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Using the strong convergence of (αj , βj) to (α∗, β∗) in L2(BN ) and the boundedness of
(αj , βj) in L∞(BN ), the last two lines above converge to 0 as j → ∞. Then writing
αj − α∗ = (fε + αj)− (fε + α∗), by the weak convergence of (αj , βj) in H , we get

0 ≥ lim sup
j→∞

∫ 1

0

[

((fε + αj)
′)2 + (β′j)

2 +
N − 1

r2
(fε + αj)

2
]

rN−1 dr

−
∫ 1

0

[

((fε + α∗)
′)2 + (β′∗)

2 +
N − 1

r2
(fε + α∗)

2
]

rN−1 dr.

This implies that ‖((fε +αj)n, βj)‖H1(BN ,RN+1) converges to ‖((fε +α∗)n, β∗)‖H1(BN ,RN+1)

and so ((fε+αj)n, βj) converges strongly in H1(BN ,RN+1) to ((fε+α∗)n, β∗). This means
also that (αj , βj) converges strongly in H to (α∗, β∗), giving the desired Palais–Smale
property for J .

Applying the mountain pass theorem (see e.g. [40, Theorem II.12.8]), we see that J has
a mountain-pass critical point (α̂ε,η, β̂ε,η) ∈ M relative to M , i.e.

sup
(α̂ε,η−ϕ,β̂ε,η−ψ)∈M :‖(ϕ,ψ)‖H ≤1

〈DJ [α̂ε,η, β̂ε,η], (ϕ,ψ)〉 = 0. (2.24)

In addition, (α̂ε,η, β̂ε,η) is not a local minimizer of J relative to M . For ease of exposition,

we write f̂ = fε + α̂ε,η and ĝ = β̂ε,η. Then (2.24) means

0 = sup
{∫ 1

0
rN−1

[

f̂ ′ϕ′ + ĝ′ψ′ +
N − 1

r2
f̂ϕ− 1

ε2
W ′(1− f̂2 − ĝ2)(f̂ϕ+ ĝψ) (2.25)

+
1

η2
W̃ ′(ĝ2)ĝψ

]

dr : ‖(ϕ,ψ)‖H ≤ 1, f̂ − ϕ ≥ 0, ĝ − ψ ≥ 0, (f̂ − ϕ)2 + (ĝ − ψ)2 ≤ 1
}

.

To proceed, we show that f̂2 + ĝ2 < 1 in (0, 1), f̂ > 0 in (0, 1), and either ĝ ≡ 0 in
(0, 1) or ĝ > 0 in (0, 1), so that we have in fact that (f̂ , ĝ) is either a non-escaping solution
(fε, 0) or an escaping solution of (1.12)–(1.15). Once this is proved, by Theorem 2.1 and
Proposition 2.12, we then have that (f̂ , ĝ) must be identical to either (fε, 0) or (fε,η, gε,η),

which contradicts the fact that (α̂ε,η, β̂ε,η) is not a local minimizer of J relative to M .

Indeed, using (ϕ,ψ) = tζ(f̂ , ĝ) in (2.25) where ζ ∈ C∞
c (0, 1) is non-negative and t ≥ 0

is sufficiently small so that 0 ≤ 1− tζ ≤ 1 in (0, 1), we obtain

− 1

2
[(f̂2)′′ +

N − 1

r
(f̂2)′]− 1

2
[(ĝ2)′′ +

N − 1

r
(ĝ2)′] + (f̂ ′)2 + (ĝ′)2 +

N − 1

r2
f̂2

− 1

ε2
W ′(1− f̂2 − ĝ2)(f̂2 + ĝ2) +

1

η2
W̃ ′(ĝ2)ĝ2 ≤ 0 in (0, 1)

in the sense of distribution. It follows that the function X̂ = 1 − f̂2 − ĝ2, considered as a
radially symmetric function in BN , satisfies

−X̂ ′′ − N − 1

r
X̂ ′ + 2a(r)X̂ ≥ 2(N − 1)

r2
f̂2 ≥ 0 in (0, 1)
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where the continuous function a : (0, 1] → [0,∞) is given in (2.5). Since X̂ ≥ 0, we deduce
from the strong max principle that either X̂ ≡ 0 in (0, 1) or X̂ > 0 in (0, 1). The case
X̂ ≡ 0 is impossible since it would imply, in view of the above differential inequality, that
f̂ ≡ 0, contradicting that f̂(1) = 1. We thus have X̂ > 0 and f̂2 + ĝ2 < 1 in (0, 1).

As f̂2 + ĝ2 < 1 in (0, 1), we may use (ϕ,ψ) = (−tζ, 0) in (2.25) where ζ ∈ C∞
c (0, 1) is

non-negative and t ≥ 0 is sufficiently small so that (f̂ + tζ)2 + ĝ2 < 1 in (0, 1) to get

f̂ ′′ +
N − 1

r
f̂ ′ − b(r)f̂ ≤ 0 in (0, 1), b(r) :=

N − 1

r2
− 1

ε2
W ′(1− f̂2 − ĝ2) ∈ L∞

loc((0, 1]).

Since f̂ ≥ 0 and f̂(1) = 1, we have by the strong maximum principle that f̂ > 0 in (0, 1).
Likewise, we use (ϕ,ψ) = (0,−tζ) in (2.25) where ζ ∈ C∞

c (0, 1) is non-negative and
t ≥ 0 is sufficiently small so that f̂2 + (ĝ + tζ)2 < 1 in (0, 1) to get

ĝ′′ +
N − 1

r
ĝ′ − c(r)ĝ ≤ 0 in (0, 1), c(r) := − 1

ε2
W ′(1− f̂2 − ĝ2) +

1

η2
Ŵ ′(ĝ2).

Since ĝ ≥ 0, we have by the strong maximum principle that either ĝ ≡ 0 in (0, 1) or ĝ > 0
in (0, 1). As explained earlier, this together with the previous shown fact that f̂2 + ĝ2 < 1
and f̂ > 0 in (0, 1) shows that the statement that (ε, η) ∈ B̊ amounts to a contradiction.

Finally, we explain the stated consequence: by the proof of Theorem 2.4 b), any min-
imizer (fε,η, gε,η) of Iε,η in B satisfies |gε,η| > 0 or gε,η ≡ 0. As we have just proved that
escaping critical points of Iε,η cannot exist whenever (fε, 0) is a local minimizer of Iε,η, we
conclude that every minimizer satisfies gε,η ≡ 0, i.e., it is given by (fε, 0).

2.4 The S
N -valued GL model: Existence, monotonicity and uniqueness

We start with positivity of f̃η and the monotonicity for an escaping solution (f̃η, gη) of
(1.4)–(1.8) with gη > 0. Next we prove Theorem 2.6.

Proposition 2.14. Suppose W̃ ∈ C2([0,∞)) satisfies (1.11), and (f̃η, gη) satisfies (1.4)–

(1.8) with gη > 0 in (0, 1). Then f̃η > 0, f̃ ′η > 0, g′η < 0 and
( f̃η
r

)′ ≤ 0 in (0, 1].

Proof. We adapt the strategy in the proof of Propositions 2.9 and 2.10. By Lemma A.6,
(f̃η, gη) ∈ C2([0, 1],S1) and f(0) = 0. Recalling also that gη > 0, we may thus write
f̃η = sin θ, gη = cos θ in [0, 1] where the lifting θ : [0, 1] → [−π/2, π/2] is C2, θ(0) = 0 and
θ(1) = π/2. Then θ satisfies

θ′′ +
N − 1

r
θ′ =

N − 1

r2
sin θ cos θ − 1

η2
W̃ ′(cos2 θ) sin θ cos θ =: P (r, θ) in (0, 1). (2.26)

Since θ(1) = π/2, θ ≤ π/2 in (0, 1), and π/2 is a constant solution of (2.26), the maximum
principle and the Hopf lemma applied to (2.26) yield θ < π/2 in (0, 1) and θ′(1) > 0.

Let r1 ∈ [0, 1) be such that θ(r1) = 0 and θ > 0 in (r1, 1]. Observe that, if r1 > 0, then
by applying the Hopf lemma to (2.26) in (r1, 1), we have θ′(r1) > 0. In particular, θ < 0 in
some small interval (r1 − δ, r1) when r1 > 0.
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Observe that, since P (r, θ) is odd in θ, |θ| satisfies in the sense of distribution

|θ|′′ + N − 1

r
|θ|′ = P (r, |θ|) in (r1, 1), and |θ|′′ + N − 1

r
|θ|′ ≥ P (r, |θ|) in (0, 1).

Since P is non-increasing in r, we can apply the proof of Proposition 2.9 to obtain

(|θ|)s ≥ |θ| in max(0, 2s − 1) < r < s for all r1 ≤ s < 1,

where (|θ|)s(r) = |θ|(2s − r). As in the proof of Proposition 2.10, the Hopf lemma then
implies that r1 = 0, i.e. θ > 0 in (0, 1), and so the above gives

θs ≥ θ in max(0, 2s − 1) < r < s for all 0 < s < 1.

In addition, we have that θ′ > 0 in (0, 1] (see Fact 2 in the proof of Proposition 2.9). In
particular, 0 = θ(0) < θ < θ(1) = π/2 in (0, 1).

Returning to (f̃η, gη), we have shown that f̃η > 0, f̃ ′η > 0 and g′η < 0 in (0, 1]. The

statement
( f̃η
r

)′ ≤ 0 in (0, 1] is obtained in the same way as in the last part of the proof of
Proposition 2.9 using the following equivalent form of (1.6)

(

rN+1
( f̃η
r

)′
(r)

)′
= −rN+1λ(r)

f̃η(r)

r
≤ 0, r ∈ (0, 1).

The proof is complete.

Next we prove the uniqueness of escaping solutions of (1.4)–(1.8).

Proposition 2.15. Let N ≥ 2 and η > 0. Suppose that W̃ ∈ C2([0,∞)) satisfies (1.11).
Then the system (1.4)–(1.8) has at most one escaping solution (f̃η, gη) with gη > 0 in (0, 1).
Furthermore, when it exists, then (f̃η,±gη) are the only two minimizers of the functional
IMM
η in BMM .

Proof. By Proposition 2.14, we have f̃η > 0 in (0, 1) for any escaping (f̃η, gη) with gη > 0
in (0, 1) of the system (1.4)–(1.8). To prove the uniqueness, we follow a similar argu-
ment to the proof of Proposition 2.12, adapted to the new target space S

N . Indeed,
denoting mη = (f̃η(r)n(x), gη(r)) ∈ H1(BN ,SN ) for a solution (f̃η, gη) in (0, 1) of the
system (1.4)–(1.8) with gη > 0 in (0, 1), we consider an arbitrary radial configuration
m = (f(r)n(x), g(r)) ∈ H1(BN ,SN ) with m = (n, 0) on ∂BN . Setting V = m − mη =
(s(r)n, q(r)) ∈ H1

0 (B
N ,RN+1), the constraints |m| = |mη| = 1 yield f̃ηs + gηq = mη · V =

−1
2 |V |2 in BN . Together with the convexity of W̃ and (1.6)–(1.7), we compute

IMM
η [f, g]− IMM

η [f̃η, gη]

≥ 1

2

∫ 1

0
rN−1

{

2f̃ ′ηs
′ + (s′)2 + 2g′ηq

′ + (q′)2 +
N − 1

r2
(2f̃ηs+ s2) +

1

η2
W̃ ′(g2η)(2gηq + q2)

}

dr

=
1

2

∫ 1

0
rN−1

{

(s′)2 + (q′)2 +
N − 1

r2
s2 +

1

η2
W̃ ′(g2η)q

2 + 2λ(r)(f̃ηs+ gηq)
}

dr

=
1

2|SN−1|

∫

BN

{

|∇V |2 + 1

η2
W̃ ′(g2η)V

2
N+1 − λ(r)|V |2

}

dx =:
1

2|SN−1|F
MM
η [V ].
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Claim: For every V (x) = (s(r)n(x), q(r)) ∈ H1
0 (B

N ,RN+1), it holds

FMM
η [V ] ≥

∫

BN

{

f̃2η (|x|)
∣
∣
∣∇

( s

f̃η

)

(|x|)
∣
∣
∣

2
+ g2η(|x|)

∣
∣
∣∇

( q

gη

)

(|x|)
∣
∣
∣

2}

dx.

Proof of Claim: Since FMM
η is continuous in H1

0 (B
N ,RN+1) (because λ, W̃ ′(g2η) ∈ L∞(BN )

by Lemma A.6), by standard density results and Fatou’s lemma, it suffices to show the
claim for V = (s(r)n, q(r)) ∈ C∞

c (BN \ {0},RN+1). For that, we apply [22, Lemma A.1] to
the operators

L̃ := −∆− λ(r) and T̃ := −∆+
1

η2
W̃ ′(g2ε,η)− λ(r).

Writing V = (s(r)n, q(r)) = (V1, . . . , VN , VN+1) ∈ C∞
c (BN \ {0},RN+1) and decomposing

Vj = f̃ηV̂j with V̂j =
Vj
f̃η

for j = 1, . . . , N and VN+1 = gηV̂N+1 with V̂N+1 =
q
gη
,

FMM
η [V ] =

N∑

j=1

∫

BN

L̃Vj · Vj dx+

∫

BN

T̃ VN+1 · VN+1 dx

=

N∑

j=1

∫

BN

{

f̃2η |∇V̂j |2 + V̂ 2
j L̃f̃η · f̃η

}

dx+

∫

BN

{

g2η |∇V̂N+1|2 + V̂ 2
N+1T̃ gη · gη

}

dx

=

∫

BN

{

f̃2η

∣
∣
∣∇

( s(r)

f̃η(r)
n(x)

)
∣
∣
∣

2
− N − 1

r2
s2 + g2η(|x|)

∣
∣
∣∇

( q

gη

)

(|x|)
∣
∣
∣

2}

dx

=

∫

BN

{

f̃2η (|x|)
∣
∣
∣∇

( s

f̃η

)

(|x|)
∣
∣
∣

2
+ g2η(|x|)

∣
∣
∣∇

( q

gη

)

(|x|)
∣
∣
∣

2}

dx,

because L̃f̃η = −N−1
r2

f̃η, T̃ gη = 0 (by (1.6)–(1.7)) and (V̂1, . . . , V̂N ) = s(r)

f̃η(r)
n(x) with

|∇n|2 = N−1
r2

. Hence, the claim is proved.

As direct consequence of the claim, (f̃η,±gη) minimizes IMM
η in BMM . If (f̂η, ĝη) also

minimizes IMM
η in BMM , the argument in Step 1 of the proof of Proposition 2.12 gives

f̂η − f̃η

f̃η
and

ĝη − gη
gη

are constant in (0, 1).

This together with f̂η(1)− f̃η(1) = 0 gives f̂η ≡ f̃η and ĝη ≡ agη in (0, 1) for some constant

a ∈ R. Since f̃2η + g2η = 1 = f̂2η + ĝ2η we deduce that ĝη ≡ ±gη in (0, 1). This proves that

(f̃η,±gη) are the only two minimizers of IMM
η in BMM

Lastly, if (f̌η, ǧη) is also a solution to (1.4)–(1.8) with ǧη > 0 in (0, 1), then the claim
yields that (f̌η, ǧη) also minimizes IMM

η in BMM , and by the above, f̌η ≡ f̃η and ǧη ≡ gη
in (0, 1). The proof is complete.

Proof of Theorem 2.6. Recall that in dimension N ≥ 7, since W̃ ≥ 0, the equator map
m̄(x) = (n(x), 0) is the unique minimizer of EMM

η in A for every η > 0 (see Remark 1.1).
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Thus, by (1.11) and Proposition 2.15, escaping solutions of (1.4)–(1.8) do not exist for any
η > 0.

Suppose in the rest of the proof that 2 ≤ N ≤ 6 and fix some η > 0. The uniqueness
of escaping solution (f̃η, gη) of (1.4)–(1.8) with gη > 0 together with its minimality, mono-
tonicity and positivity were proved in Propositions 2.14 and 2.15 and its regularity follows
from Lemma A.6 in Appendix A.

It remains to prove the existence10 of an escaping solution of (1.4)–(1.8) for 2 ≤ N ≤ 6
and the instability of the non-escaping solution (1, 0) for 3 ≤ N ≤ 6.

Proof of the instability of (1, 0) when 3 ≤ N ≤ 6: We show the second variation of IMM
η in

BMM at (1, 0) is not non-negative semi-definite, i.e. there exists q ∈ Lipc(0, 1) such that

QMM
η [0, q] =

d2

dt2

∣
∣
∣
t=0

IMM
η

( (1, tq)
√

1 + t2q2

)

=

∫ 1

0

[

(q′)2 − N − 1

r2
q2 +

W̃ ′(0)
η2

q2
]

rN−1 dr < 0.

To this end, we adapt the computation in Step 1 of the proof of Lemma 2.3(c). Writing

q = ϕq̃ with ϕ = r−
N−2

2 and applying [21, Lemma A.1] (for the Laplace operator), we have

QMM
η [0, q] =

∫ 1

0

{

(q̃′)2 +
1

r2

[N2 − 8N + 8

4
+
W̃ ′(0)r2

η2

]

q̃2
}

r dr.

For 0 < b < a < 1 to be fixed, let

q̃(r) =

{

sin
(

π
ln a

b
ln r

b

)

for r ∈ (b, a),

0 otherwise.

We have

QMM
η [0, q] ≤

∫ a

b

{( π

ln a
b

)2
cos2

( π

ln a
b

ln
r

b

)

+
(N2 − 8N + 8

4
+
W̃ ′(0)a2

η2

)

sin2
( π

ln a
b

ln
r

b

)} dr

r

=
1

2
ln
a

b

{( π

ln a
b

)2
+
N2 − 8N + 8

4
+
W̃ ′(0)a2

η2

}

.

Noting that N2−8N+8
4 < 0 for 3 ≤ N ≤ 6, we can select 0 ≪ b≪ a≪ η such that the above

quantity is negative.

Proof of the existence of an escaping solution: Minimizing IMM
η in BMM , we obtain a min-

imizer (f̃η, gη) ∈ BMM . Replacing (f̃η, gη) by (|f̃η|, |gη |) if necessary, we have f̃η ≥ 0 and
gη ≥ 0. It is readily seen that (f̃η, gη) satisfies (1.4)–(1.8). By (1.6), the fact that f̃η(1) = 1
and the strong maximum principle, f̃η > 0 in (0, 1). By (1.7) and the strong maximum
principle, either gη > 0 or gη ≡ 0 in (0, 1). The case gη ≡ 0 cannot hold since it would
imply f̃η ≡ 1 in (0, 1) (since f̃2η + g2η = 1, f̃η(1) = 1 and f̃η ∈ C((0, 1])) and N ≥ 3 (since

r
N−3

2 f̃η ∈ L2(0, 1)), which contradicts the instability statement established above.

10For the existence of an escaping solution, it suffices to assume W̃ ∈ C2([0,∞)) instead of (1.11).
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Remark 2.16. In dimension N = 2, if we define the second variation of IMM
η at (1, 0) (in

BMM) along directions (0, q) compactly supported in (0, 1) by

QMM
η [0, q] =

∫ 1

0

[

(q′)2 − N − 1

r2
q2 +

W̃ ′(0)
η2

q2
]

rN−1 dr,

then the same proof above yields a perturbation q ∈ Lipc(0, 1) such that

QMM
η [0, q] < 0. (2.27)

Remark 2.17. One can also prove Theorem 2.6 by considering the limit as ε → 0 of
the escaping (minimizing) solutions (fε,η > 0, gε,η > 0) obtained in Theorem 2.4 for a
fixed η > 0 with W (t) = t2. The strong limit (f̃η, gη) of {(fε,η, gε,η)}ε→0 in B is indeed
escaping because the non-escaping solution (1, 0) (which corresponds to the equator map
m̄(x) = (n(x), 0)) is unstable for IMM

η .

Proof of the convergence of (fε,η, gε,η) in B when W (t) = t2. By the minimality of (fε,η, gε,η)
for Iε,η, we have

Iε,η[fε,η, gε,η] ≤ Iε,η[f, g] = IMM
η [f, g] for all (f, g) ∈ B

MM .

Recall the expression of Iε,η, we see that the sequence {mε,η = (fε,ηn, gε,η)}ε>0 is bounded
in H1(BN ) and (1− f2ε,η− g2ε,η)

2 =W (1− f2ε,η− g2ε,η) → 0 in L1(BN ,RN+1). Thus, along a

sequence εj → 0, mεj ,η converges weakly in H1(BN ,RN+1), strongly in L2(BN ,RN+1) and
uniformly on compact subsets of B̄N \ {0} to some limit m∗ = (f∗n, g∗) ∈ A MM satisfying
f∗ ≥ 0, g∗ ≥ 0. Furthermore,

IMM
η [f∗, g∗] ≤ lim inf

j→∞
Iεj ,η[fεj ,η, gεj ,η] ≤ IMM

η [f, g] for all (f, g) ∈ B
MM .

Hence (f∗, g∗) is a minimizer for IMM
η in BMM . Also, by taking (f, g) = (f∗, g∗) in the

above inequality, we get

IMM
η [f∗, g∗] = lim

j→∞
Iεj ,η[fεj ,η, gεj ,η].

By inspecting the chain of equality, we also have ‖∇mεj ,η‖L2(BN ,RN+1) → ‖∇m∗‖L2(BN ).

This together with the weak convergence of mεj ,η in H
1 implies that mεj ,η in fact converges

strongly in H1(BN ,RN+1) to m∗.
As explain above, we have (f∗, g∗) is an escaping critical point of IMM

η and by its
uniqueness in Proposition 2.15, it is thus independent of the sequence (εj). We deduce that
mε,η converges strongly in H1(BN ,RN+1) as ε → 0 to m∗ = mη, i.e. (fε,η, gε,η) converges
strongly B to (f̃η, gη).

3 Stability analysis of vortex solutions

3.1 An orthogonal decomposition for the second variation in the ex-

tended model

Assume that N ≥ 2 and W ∈ C2((−∞, 1]) and W̃ ∈ C2([0,∞)). Let mε,η = (fε,ηn, gε,η)
be any (bounded) radially symmetric critical point of Eε,η in A , and define the second
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variation Qε,η : H1
0 (B

N ,RN+1) → R of Eε,η at mε,η as follows. Under our assumptions on
W and W̃ , Eε,η may take on infinite value in any neighborhood of mε,η. To bypass this
technical matter, we first define the second variation Qε,η[V ] along a direction V = (v, q) ∈
C∞
c (BN \ {0},RN )×C∞

c (BN \ {0},R) ∼= C∞
c (BN \ {0},RN+1) by

Qε,η[V ] =
d2

dt2

∣
∣
∣
t=0

Eε,η[mε,η + tV ]

=

∫

BN

[

|∇v|2 + |∇q|2 − 1

ε2
W ′(1− f2ε,η − g2ε,η)(|v|2 + q2) +

1

η2
W̃ ′(g2ε,η)q

2

+
2

ε2
W ′′(1− f2ε,η − g2ε,η)(fε,ηn · v + gε,ηq)

2 +
2

η2
W̃ ′′(g2ε,η)g

2
ε,ηq

2
]

dx, (3.1)

and extend this definition to V ∈ H1
0 (B

N ,RN+1) by density using the fact that the right
hand side of (3.1) is continuous H1

0 (B
N ,RN+1) (because fε,η, gε,η ∈ L∞(BN ) and W and

W̃ are twice continuously differentiable). We will see that this definition is appropriate for
our proof of the local minimality of the escaping critical points.

In the sequel A : B denotes the Frobenius scalar product of matrices. Writing v = sn+w
where w · n = 0 with s ∈ C∞

c (BN \ {0},R) and w ∈ C∞
c (BN \ {0},RN ), we compute

|∇v|2 = |∇s|2 + N − 1

r2
s2 + |∇w|2 + 2∇(sn) : ∇w

and
∫

BN

∇(sn) : ∇w dx = −
∫

BN

∆(sn) · w dx = −2

∫

BN

∇s · ((∇n)tw) dx = −
∫

BN

2

r
(w · ∇)s dx,

where we used w · ∂kn = wk
r for 1 ≤ k ≤ N because w · n = 0. It follows that

Qε,η[V ] =

∫

BN

[

|∇s|2 + N − 1

r2
s2 + |∇w|2 − 4

r
(w · ∇)s+ |∇q|2

− 1

ε2
W ′(1− f2ε,η − g2ε,η)(s

2 + |w|2 + q2) +
1

η2
W̃ ′(g2ε,η)q

2

+
2

ε2
W ′′(1− f2ε,η − g2ε,η)(fε,ηs+ gε,ηq)

2 +
2

η2
W̃ ′′(g2ε,η)g

2
ε,ηq

2
]

dx.

We identify x = (r, θ) where r = |x| ≥ 0 and θ = x
|x| ∈ S

N−1. Let /D denote the covariant

derivative of the standard metric ground on the unit sphere SN−1 and dσ denote the surface
measure on S

N−1. For a tangent vector field w on S
N−1 (i.e., w · n = 0), one computes

|∇w|2 = |∂rw|2 +
1

r2
(|w|2 + | /Dw|2). (3.2)

We have

Qε,η[V ] =

∫ 1

0

∫

SN−1

rN−1
{

(∂rs)
2 +

1

r2
| /Ds|2 + N − 1

r2
s2 + |∂rw|2 +

1

r2
| /Dw|2 + 1

r2
|w|2

− 4

r2
(w · /D)s+ (∂rq)

2 +
1

r2
| /Dq|2 − 1

ε2
W ′(1− f2ε,η − g2ε,η)(s

2 + |w|2 + q2) +
1

η2
W̃ ′(g2ε,η)q

2

+
2

ε2
W ′′(1− f2ε,η − g2ε,η)(fε,ηs+ gε,ηq)

2 +
2

η2
W̃ ′′(g2ε,η)g

2
ε,ηq

2
}

dσ dr. (3.3)
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We start with an orthogonal decomposition for Qε,η. Let λ0 = 0 < λ1 ≤ λ2 ≤ . . . → ∞
be the eigenvalues of the Laplacian − /∆ on S

N−1, and let ζ0, ζ1, . . . be a corresponding
orthonormal eigenbasis of L2(SN−1). In particular, λk = N − 1 for k = 1, . . . , N , λk ≥ 2N
for k ≥ N + 1, and the first N + 1 eigenfunctions can be taken as

ζ0(θ) =
1

√

|SN−1|
, ζk(θ) =

√

N

|SN−1|θk, 1 ≤ k ≤ N.

Moreover,
∫

SN−1 ζkdσ = 0 for all k ≥ 1.

Proposition 3.1. Assume N ≥ 2, W ∈ C2((−∞, 1]), W̃ ∈ C2([0,∞)). Let mε,η =
(fε,ηn, gε,η) be a radially symmetric critical point of Eε,η in A and Qε,η be the second
variation of Eε,η at mε,η defined by (3.1). Suppose that V = (v = sn + w, q) ∈ C∞

c (BN \
{0},RN+1) with w · n = 0. For r ∈ (0, 1], let

• w(r, ·) = ẘ(r, ·)+ /Dψ(r, ·) be the Helmholtz decomposition of w(r, ·) as a tangent vector
field on S

N−1 so that the tangent vector field ẘ ∈ C∞
c (BN \ {0},RN ) with vanishing

covariant divergence /D·ẘ(r, ·) = 0 and ψ ∈ C∞
c (BN \{0},R) with

∫

SN−1 ψ(r, θ)dσ = 0,
where we use the convention that ẘ = 0 when N = 2;

• the expansions of s(r, θ), ψ(r, θ) and q(r, θ) in the basis {ζi}∞i=0 be

s(r, θ) =

∞∑

i=0

si(r)ζi(θ), ψ(r, θ) =

∞∑

i=0

ψi(r)ζi(θ), q(r, θ) =

∞∑

i=0

qi(r)ζi(θ), (3.4)

with si, ψi, qi ∈ C∞
c

(
(0, 1)

)
for every i ≥ 0.11

Then V̊ := (ẘ, 0), Vi := (siζin+ ψi /Dζi, qiζi) belong to C∞
c (BN \ {0},RN+1) for i ≥ 0, and

Qε,η[V ] = Qε,η[V̊ ] +
∞∑

i=0

Qε,η[Vi]. (3.5)

For related decomposition see [10, 16, 33] (in the context of the Ginzburg–Landau
functional), [17, 29] (in the context of micromagnetics), [22, 24] (in the context of the
Landau–de Gennes functional).

Proof. Observe that for a tangent vector field w (i.e., w · n = 0),

∫

SN−1

(w · /D)s dσ = −
∫

SN−1

/D · ws dσ. (3.6)

Hence, in the coupling term (w · /D)s between s and w in the expression for Qε,η[V ] in (3.3),
the divergence-free part of the tangent vector field w does not contribute. If w = ẘ + /Dψ

11Note that ψ0 = 0 since ψ(r, ·) as well as ζi have zero average on S
N−1 for i ≥ 1.
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is the Helmholtz decomposition of w with /D · ẘ = 0 and
∫

SN−1 ψdσ = 0, then, by (3.6),
∫

SN−1

|w|2 dσ =

∫

SN−1

|ẘ|2 dσ +

∫

SN−1

|w − ẘ|2 dσ,
∫

SN−1

|∂rw|2 dσ =

∫

SN−1

|∂rẘ|2 dσ +

∫

SN−1

|∂r(w − ẘ)|2 dσ,
∫

SN−1

(w · /D)s dσ =

∫

SN−1

((w − ẘ) · /D)s dσ,

∫

SN−1

| /Dw|2 dσ =

∫

SN−1

| /Dẘ|2 dσ +

∫

SN−1

| /D(w − ẘ)|2 dσ

=

∫

SN−1

| /Dẘ|2 dσ +

∫

SN−1

[( /∆ψ)2 − (N − 2)| /Dψ|2] dσ

where we used the Bochner identity on the sphere (see e.g. [38, Chapter I, Proposition 2.2])
∫

SN−1

| /D2
ψ|2 dσ =

∫

SN−1

[( /∆ψ)2 − (N − 2)| /Dψ|2] dσ,

with /D
2
ψ and /∆ψ standing for the covariant Hessian and Laplacian of ψ, respectively.

Summing up and using (3.4), the Dirichlet part in Qε,η[V ] in (3.3) becomes:

Dir :=

∫

SN−1

rN−1
{

(∂rs)
2 + (∂rq)

2 + |∂rw|2 +
(N − 1)s2 + | /Ds|2 + | /Dq|2 + | /Dw|2 + |w|2 − 4(w · /D)s

r2

}

dσ

=

∫

SN−1

rN−1
{

|∂rẘ|2 +
1

r2
| /Dẘ|2 + 1

r2
|ẘ|2 + (∂rs)

2 +
1

r2
| /Ds|2 + N − 1

r2
s2 + (∂rq)

2

+
1

r2
| /Dq|2 + |∂r /Dψ|2 +

1

r2
( /∆ψ)2 − N − 3

r2
| /Dψ|2 − 4

r2
/Dψ · /Ds

}

dσ

=

∫

SN−1

rN−1
{

|∂rẘ|2 +
1

r2
| /Dẘ|2 + 1

r2
|ẘ|2

}

dσ

+

∞∑

i=0

rN−1
{

(s′i)
2 +

λi +N − 1

r2
s2i + (q′i)

2 +
λi
r2
q2i + λi(ψ

′
i)
2 +

λi(λi −N + 3)

r2
ψ2
i −

4λi
r2
ψisi

}

.

Noting that, as λi(λi + N − 1)(λi − N + 3) − 4λ2i = λi(λi + N − 3)(λi − N + 1) ≥ 0 for
λi ≥ N − 1, which holds for i ≥ 1, we have

λi +N − 1

r2
x2 +

λi(λi −N + 3)

r2
y2 − 4λi

r2
xy ≥ 0 for all i ≥ 1.

Recall also that ψ0 ≡ 0 and λ0 = 0. Hence, all the summands on the right hand side of
the identity above are non-negative. Hence, by Fubini-Tonelli’s theorem, we obtain the
following formula for Qε,η[V ] in (3.3):

Qε,η[V ] =

∫ 1

0
Dir dr +

∫ 1

0

∫

SN−1

rN−1
{

− 1

ε2
W ′(1− f2ε,η − g2ε,η)(s

2 + |w|2 + q2) +
1

η2
W̃ ′(g2ε,η)q

2

+
2

ε2
W ′′(1− f2ε,η − g2ε,η)(fε,ηs+ gε,ηq)

2 +
2

η2
W̃ ′′(g2ε,η)g

2
ε,ηq

2
}

dσ dr = Qε,η[V̊ ] +
∞∑

i=0

Qε,η[Vi],
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because the same computation as for the Dirichlet energy Dir yields

‖∇V̊ ‖2L2(BN ,RN+1) =

∫ 1

0

∫

SN−1

rN−1
{

|∂rẘ|2 +
1

r2
| /Dẘ|2 + 1

r2
|ẘ|2

}

dσ dr <∞,

‖∇Vi‖2L2(BN ,RN+1) =

∫ 1

0
rN−1

{

(s′i)
2 +

λi +N − 1

r2
s2i + (q′i)

2 +
λi
r2
q2i

+ λi(ψ
′
i)
2 +

λi(λi −N + 3)

r2
ψ2
i −

4λi
r2
ψisi

}

dr <∞

which finally gives the expressions of Qε,η[V̊ ] and Qε,η[Vi] used above:

Qε,η[V̊ ] =

∫ 1

0

∫

SN−1

rN−1
{

|∂rẘ|2 +
| /Dẘ|2 + |ẘ|2

r2
−
W ′(1− f2ε,η − g2ε,η)|ẘ|2

ε2

}

dσ dr,

Qε,η[Vi] =

∫ 1

0
rN−1

{

(s′i)
2 +

λi +N − 1

r2
s2i + λi(ψ

′
i)
2 +

λi(λi −N + 3)

r2
ψ2
i −

4λiψi si
r2

+ (q′i)
2

+
λi
r2
q2i −

1

ε2
W ′(1− f2ε,η − g2ε,η)(s

2
i + λiψ

2
i + q2i ) +

1

η2
W̃ ′(g2ε,η)q

2
i

+
2

ε2
W ′′(1− f2ε,η − g2ε,η)(fε,ηsi + gε,ηqi)

2 +
2

η2
W̃ ′′(g2ε,η)g

2
ε,ηq

2
i

}

dr. (3.7)

Thus, (3.5) holds.

Strategy of the proof of the stability/instability. The aim is to study the positivity
of the terms in the decomposition of Qε,η[V ] in (3.5). For that, we will use the Hardy
decomposition [22, Lemma A.1] for the two operators L and T defined in (2.12) (as in the
proof of Proposition 2.12). By the equations (1.13)–(1.14), one easily computes for α ∈ R:







L(rαfε,η) = −2αrα−1f ′ε,η −
(

α(α +N − 2) +N − 1
)

rα−2fε,η,

L(f ′ε,η) = −2(N−1)
r2

f ′ε,η +
2(N−1)
r3

fε,η − 2
ε2
W ′′(1− f2ε,η − g2ε,η)(f

2
ε,ηf

′
ε,η + fε,ηgε,ηg

′
ε,η),

T gε,η = 0,

T g′ε,η = −N−1
r2

g′ε,η − 2
ε2
W ′′(1− f2ε,η − g2ε,η)(gε,ηfε,ηf

′
ε,η + g2ε,ηg

′
ε,η)− 2

η2
W̃ ′′(g2ε,η)g

2
ε,ηg

′
ε,η,

(3.8)
paying attention to the differences in the cases gε,η > 0 and gε,η ≡ 0.

Stability in direction V̊ = (ẘ, 0).

Lemma 3.2. Suppose N ≥ 3 and W ∈ C2((−∞, 1]) and W̃ ∈ C2([0,∞)) satisfy (1.10)
and (1.11). Let mε,η = (fε,ηn, gε,η) be a radially symmetric critical point of Eε,η in A

with gε,η ≥ 0 in (0, 1), and let Qε,η be the second variation of Eε,η at mε,η defined by
(3.1). Then there exists a constant C > 0 independent of ε, η > 0 such that for every
ẘ ∈ C∞

c (BN \ {0},RN ) with ẘ · n = 0 and /D · ẘ = 0:

Qε,η[(ẘ, 0)] ≥ C

∫

BN

|ẘ|2 dx.
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To be clear, in the lemma above, mε,η can be either an escaping solution with gε,η > 0 or
a non-escaping solution with gε,η ≡ 0. Also, in dimension N = 2, this inequality is obvious
since ẘ = 0 by definition.

Proof. Note that fε,η > 0 by Proposition 2.10. Let α ∈ R to be chosen later (see (3.10) at
the end of the proof). We factor ẘ = rαfε,ηŵ with ŵ = (ŵ1, . . . , ŵN ) ∈ C∞

c (BN \ {0},RN )
and we apply [22, Lemma A.1] for the operator L in (2.12):

Qε,η[(ẘ, 0)] =

∫

BN

N∑

j=1

Lẘj · ẘj dx

=

N∑

j=1

∫

BN

{

r2αf2ε,η|∇ŵj |2 + ŵ2
jL(r

αfε,η) · (rαfε,η)
}

dx

=

∫ 1

0

∫

SN−1

r2α+N−1f2ε,η

{

|∂rŵ|2 −
2αf ′ε,η
rfε,η

|ŵ|2 − (α+ 1)(α +N − 3)

r2
|ŵ|2

+
1

r2
(| /Dŵ|2 − |ŵ|2)

}

dσ dr, (3.9)

because of (3.2) for the tangent vector field ŵ and (3.8). By the Poincaré inequality for
divergence-free vector field on the sphere (see Lemma C.1), we have

∫

SN−1

| /Dŵ|2 dσ ≥ (N − 2)

∫

SN−1

|ŵ|2dσ.

We then choose α ∈ (−(N − 2), 0) yielding

α < 0 and (α+ 1)(α+N − 3) < N − 3. (3.10)

Since f ′ε,η > 0 (see Proposition 2.9) and 1
r2
> 1 in (0, 1), it follows Qε,η[(ẘ, 0)] ≥ C‖ẘ‖2L2

for a constant C > 0 independent of ε, η > 0. The lemma is proved.

3.2 The extended model: Stability of the escaping vortex solution

Stability for the zero-mode V0.
Recall that λ0 = 0 and ζ0 is a nonzero constant that satisfies ‖ζ0‖L2(SN−1) = 1, in

particular, /Dζ0 = 0; thus, the zero-mode in (3.5) is given by V0 = (sζ0n, qζ0) for two
functions s, q ∈ C∞

c (0, 1).

Lemma 3.3. Let N ≥ 2, W ∈ C2((−∞, 1]) and W̃ ∈ C2([0,∞)). Let mε,η = (fε,ηn, gε,η)
be a bounded radially symmetric critical point of Eε,η in A and let Qε,η be the second
variation of Eε,η at mε,η defined by (3.1). Suppose that fε,η > 0 and gε,η > 0 in (0, 1). If
(s, q) ∈ C∞

c (0, 1), then

Qε,η[(sζ0n, qζ0)] =

∫ 1

0
rN−1

{

f2ε,η

∣
∣
∣

( s

fε,η

)′∣∣
∣

2
+ g2ε,η

∣
∣
∣

( q

gε,η

)′∣∣
∣

2

+
2

ε2
W ′′(1− f2ε,η − g2ε,η)(fε,ηs+ gε,ηq)

2 +
2

η2
W̃ ′′(g2ε,η)g

2
ε,ηq

2
}

dr.
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Proof. Recalling the operators L and T defined in (2.12), by (3.7),

Qε,η[(sζ0n, qζ0)] =
1

|SN−1|

∫

BN

{

Ls · s+ N − 1

|x|2 s2 + Tq · q

+
2

ε2
W ′′(1− f2ε,η − g2ε,η)(fε,ηs+ gε,ηq)

2 +
2

η2
W̃ ′′(g2ε,η)g

2
ε,ηq

2
}

dx.

We factor s = fε,ηŝ and q = gε,ηq̂ and (3.8) combined with [22, Lemma A.1] yields the
conclusion. (For details, see (2.13).)

Stability for the modes Vi, i ≥ 1.

Lemma 3.4. Assume N ≥ 2 and W ∈ C2((−∞, 1]) and W̃ ∈ C2([0,∞)) satisfy (1.10) and
(1.11). Let mε,η = (fε,ηn, gε,η) be a radially symmetric critical point of Eε,η in A and let
Qε,η be the second variation of Eε,η at mε,η defined by (3.1). Suppose that gε,η > 0 in (0, 1).
If s, ψ, q ∈ C∞

c (0, 1) then, for i ≥ 1 and Vi = (sζin+ ψ /Dζi, qζi),

Qε,η[Vi] ≥
∫ 1

0
rN−1

{

(f ′ε,η)
2
∣
∣
∣

( s

f ′ε,η

)′∣∣
∣

2
+
λi
r2
f2ε,η

∣
∣
∣

( rψ

fε,η

)′∣∣
∣

2
+ (g′ε,η)

2
∣
∣
∣

( q

g′ε,η

)′∣∣
∣

2

+
2

r3
fε,η f

′
ε,η

(
√
N − 1 s

f ′ε,η
−

√
λi r ψ

fε,η

)2}

dr ≥ 0.

Moreover, there exists a constant C > 0 independent of ε, η > 0 such that

Qε,η[Vi] ≥ C‖Vi‖2L2(BN ) for every i ≥ N + 1.

Proof. By Proposition 2.10, fε,η > 0 in (0, 1). By Proposition 2.9 we have that f ′ε,η > 0
and g′ε,η < 0 in (0, 1). We factor

s = f ′ε,ηŝ, ψ =
fε,η
r
ψ̂, and q = g′ε,η q̂.

Recalling the operators L and T defined in (2.12), by (3.7), we have

Qε,η[Vi] =
1

|SN−1|

∫

BN

{

Ls · s+ λiLψ · ψ + Tq · q + λi +N − 1

r2
s2

+
λi(λi −N + 3)

r2
ψ2 − 4λi

r2
sψ +

λi
r2
q2

+
2

ε2
W ′′(1− f2ε,η − g2ε,η)(fε,ηs+ gε,ηq)

2 +
2

η2
W̃ ′′(g2ε,η)g

2
ε,ηq

2
}

dx

=

∫ 1

0
rN−1

{

(f ′ε,η)
2(ŝ′)2 +

2(N − 1)

r3
fε,η f

′
ε,ηŝ

2 +
λi − (N − 1)

r2
(f ′ε,η)

2ŝ2

+
λi
r2
f2ε,η(ψ̂

′)2 +
2λi
r3
fε,ηf

′
ε,ηψ̂

2 +
λi(λi − (N − 1))

r4
f2ε,ηψ̂

2 − 4λi
r3
f ′ε,ηfε,ηŝψ̂

+ (g′ε,η)
2(q̂′)2 +

λi − (N − 1)

r2
(g′ε,η)

2q̂2

− 2

ε2
W ′′(1− f2ε,η − g2ε,η)fε,ηf

′
ε,ηgε,ηg

′
ε,η(ŝ− q̂)2

}

dr, (3.11)
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where we used [22, Lemma A.1] and (3.8). Using fε,η > 0, f ′ε,η > 0, and λi ≥ N − 1 for
i ≥ 1, we have

λi − (N − 1)

r2
(f ′ε,η)

2ŝ2 +
λi(λi − (N − 1))

r4
f2ε,ηψ̂

2 ≥ 2
√
λi(λi − (N − 1))

r3
fε,η f

′
ε,η|ŝψ̂|.

Also, for i ≥ 1,

4
√

λi(N − 1) + 2
√

λi(λi − (N − 1))− 4λi = 2
√

λi[(
√

λi − 1)2 − (
√
N − 1− 1)2] ≥ 0,

which implies

2
√
λi(λi − (N − 1))

r3
fε,η f

′
ε,η|ŝψ̂| ≥

4λi − 4
√

λi(N − 1)

r3
fε,η f

′
ε,ηŝψ̂.

Putting these inequalities in (3.11), we conclude

Qε,η[Vi] ≥
∫ 1

0
rN−1

{

(f ′ε,η)
2(ŝ′)2 +

λi
r2
f2ε,η(ψ̂

′)2 + (g′ε,η)
2(q̂′)2

+
2

r3
fε,η f

′
ε,η(

√
N − 1ŝ−

√

λiψ̂)
2
}

dr.

This proves the first assertion.
Consider the second assertion concerning the case i ≥ N + 1. We can prove a uniform

L2 lower bound by a different Hardy decomposition using the fact that λi ≥ 2N . Indeed,
we factor

s = fε,ηs̃, ψ = fε,ηψ̃, and q = gε,ηq̃

and we compute using [22, Lemma A.1] and (3.8):

Qε,η[Vi] =
1

|SN−1|

∫

BN

{

f2ε,η|∇s̃|2 + s̃2Lfε,η · fε,η + λi

(

f2ε,η|∇ψ̃|2 + ψ̃2Lfε,η · fε,η
)

+ g2ε,η|∇q̃|2 +
λi +N − 1

r2
s2 +

λi(λi −N + 3)

r2
ψ2 − 4λi

r2
sψ +

λi
r2
q2

+
2

ε2
W ′′(1− f2ε,η − g2ε,η)(fε,ηs+ gε,ηq)

2 +
2

η2
W̃ ′′(g2ε,η)g

2
ε,ηq

2
}

dx

=

∫ 1

0
rN−1

{

f2ε,η(s̃
′)2 +

λi
r2
s2 + λif

2
ε,η(ψ̃

′)2 +
λi(λi − 2N + 4)

r2
ψ2 + g2ε,η(q̃

′)2 +
λi
r2
q2

− 4λi
r2
sψ +

2

ε2
W ′′(1− f2ε,η − g2ε,η)(fε,ηs+ gε,ηq)

2 +
2

η2
W̃ ′′(g2ε,η)g

2
ε,ηq

2
}

dr,

≥
∫ 1

0
rN−1

{

f2ε,η(s̃
′)2 + λif

2
ε,η(ψ̃

′)2 +
λi
r2

(s− 2ψ)2 +
λi
r2
q2
}

dr, (3.12)

where we used (1.10) and λi ≥ 2N for i ≥ N + 1. Finally, the L2 lower bound (uniform in
ε, η > 0) follows by the Hardy inequality in R

N+2 using r ≤ fε,η(r) ≤ 1 for every r ∈ (0, 1)
(as in (2.21)):

∫ 1

0
rN−1f2ε,η(h

′)2 dr ≥
∫ 1

0
rN+1(h′)2 dr ≥ N2

4

∫ 1

0
rN−1h2 dr ≥ N2

4

∫ 1

0
rN−1f2ε,ηh

2 dr,

(3.13)
where h stands for either s̃ or ψ̃.
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We are in position to give:

Proof of Theorem 1.5(a) and (b). By Theorem 2.4, we only need to prove that, when an
escaping critical point mε,η(x) = (fε,η(r)n(x), gε,η(r)) with gε,η > 0 exists, the second
variation Qε,η of Eε,η at mε,η is positive definite, and that mε,η is a local minimizer of Eε,η.

Proof of the positive definiteness of Qε,η. Fix some V ∈ C∞
c (BN \ {0},RN+1) and define

V̊ = (ẘ, 0), Vi = (siζin+ψi /Dζi, qiζi) as in Proposition 3.1. By the orthogonal decomposition
(3.5), Lemmas 3.2, 3.3 and 3.4, we have

Qε,η[V ] ≥ C
∥
∥
∥V −

N∑

i=0

Vi

∥
∥
∥

2

L2(BN )

+

∫ 1

0
rN−1

{

f2ε,η

∣
∣
∣

( s0
fε,η

)′∣∣
∣

2
+ g2ε,η

∣
∣
∣

( q0
gε,η

)′∣∣
∣

2

+
2

ε2
W ′′(1− f2ε,η − g2ε,η)(fε,ηs0 + gε,ηq0)

2 +
2

η2
W̃ ′′(g2ε,η)g

2
ε,ηq

2
0

}

dr

+

N∑

i=1

∫ 1

0
rN−1

{

(f ′ε,η)
2
∣
∣
∣

( si
f ′ε,η

)′∣∣
∣

2
+
N − 1

r2
f2ε,η

∣
∣
∣

( rψi
fε,η

)′∣∣
∣

2

+ (g′ε,η)
2
∣
∣
∣

( qi
g′ε,η

)′∣∣
∣

2
+

2(N − 1)

r3
fε,η f

′
ε,η

( si
f ′ε,η

− r ψi
fε,η

)2}

dr. (3.14)

By the density of C∞
c (BN \ {0},RN+1) in H1

0 (B
N ,RN+1) and Fatou’s lemma, the above

inequality holds for all V ∈ H1
0 (B

N ,RN+1), proving that Qε,η is non-negative semi-definite.
Suppose next that Qε,η[V ] = 0 for some non-trivial V ∈ H1

0 (B
N ,RN+1). The above

inequality implies that V =
∑N

i=0 Vi, s0 = c0fε,η, q0 = c̃0gε,η, si = cif
′
ε,η, ψi = ĉi

r fε,η,
qi = c̃ig

′
ε,η in (0, 1) for 1 ≤ i ≤ N and some constants ci, c̃i, ĉi. As Vi are compactly

supported in BN and fε,η(1), f
′
ε,η(1), g

′
ε,η(1) 6= 0, we deduce that V = V0 = (0, q0ζ0).

Suppose by contradiction that c̃0 6= 0. Then q0 has no zeros inside (0, 1), therefore
W ′′(1 − f2ε,η − g2ε,η) ≡ W̃ ′′(g2ε,η) ≡ 0 in (0, 1). It follows that W ′ is constant in [min(1 −
f2ε,η − g2ε,η),max(1 − f2ε,η − g2ε,η)] =: [0, τ ] and hence W ′ = 0 in [0, τ ] since W ′(0) = 0 (by

(1.10)). Recalling (1.14), we thus have that −∆gε,η +
1
η2
W̃ ′(g2ε,η)gε,η = 0 in BN . Since

W̃ ′ ≥ W̃ ′(0) ≥ 0 in [0,∞) (by (1.11)) and gε,η = 0 on ∂BN , we deduce that gε,η = 0 in
BN which gives a contradiction to the assumption gε,η > 0 in BN . Thus, c̃0 = 0, leading
to q0 = 0 and V = 0. This proves that Qε,η is positive definite.

By (3.1), the convexity of W and W̃ , the fact that W̃ ′ ≥ 0 and the boundedness of
(fε,η, gε,η), we have for some constant C1 = C1(ε) > 0 that

Qε,η[V ] ≥ ‖∇V ‖2L2(BN ) − C1‖V ‖2L2(BN ) for all V ∈ H1
0 (B

N ,RN+1).

This together with the weak lower semi-continuity of Qε,η in H1
0 (B

N ,RN+1) implies that
min{Qε,η[V ] : V ∈ H1

0 (B
N ,RN+1), ‖V ‖L2(BN ) = 1} is achieved and positive (as Qε,η is

positive definite), yielding for some constant C2 = C2(ε, η) > 0

Qε,η[V ] ≥ 1

C2
‖V ‖2L2(BN ) for all V ∈ H1

0 (B
N ,RN+1).

39



The above two inequalities imply for C3 = C3(ε, η) = 1 + C2(C1 + 1) that

Qε,η[V ] ≥ 1

C3
‖V ‖2H1(BN ) for all V ∈ H1

0 (B
N ,RN+1).

Proof of the local minimality of mε,η. We note a subtlety in this step due to the fact that

Eε,η may not be finite in aH1
0 neighborhood ofmε,η as we make no growth assumption forW

and W̃ . Sincemε,η is a critical point for Eε,η in A , we have, for V = (v, q) ∈ H1
0 (B

N ,RN+1),

Eε,η[mε,η + V ]− Eε,η[mε,η]−
1

2
Qε,η[V ] =

∫

BN

h(x, V (x)) dx,

h(x, y) =
1

2ε2

{

W (1− |mε,η(x) + y|2)−W (1− |mε,η(x)|2)

+W ′(1− |mε,η(x)|2)(2mε,η(x) · y + |y|2)− 2W ′′(1− |mε,η(x)|2)(mε,η(x) · y)2
}

+
1

2η2

{

W̃ ((gε,η(x) + yN+1)
2)− W̃ (g2ε,η(x))− W̃ ′(g2ε,η(x))(2gε,η(x)yN+1 + y2N+1)

− 2W̃ ′′(g2ε,η(x))g
2
ε,η(x)y

2
N+1

}

.

Note that h ∈ C0(B̄N , C2(RN+1)), h(x, 0) = 0, ∇yh(x, 0) = 0, ∇2
yh(x, 0) = 0 (thus, (D.1)

holds true in Lemma D.1) and, due to the convexity of W and W̃ , h satisfies the growth
assumptions in Lemma D.1 for p = 2, namely

h(x, y) ≥ − 1

ε2
W ′′(1− |mε,η(x)|2)(mε,η(x) · y)2 −

1

η2
W̃ ′′(g2ε,η(x))g

2
ε,η(x)y

2
N+1 ≥ −C(ε, η)|y|2

for every x ∈ BN and y ∈ R
N+1 and a constant C(ε, η) > 0. Therefore, Lemma D.1

together with the positive definiteness of Qε,η yield for some constants δ > 0 and C̃ > 0
(depending on ε and η),

Eε,η[mε,η+V ] ≥ Eε,η[mε,η]+ C̃‖V ‖2H1(BN ) for all V ∈ H1
0 (B

N ,RN+1) with ‖V ‖H1(BN ) < δ.

This proves the local minimality of mε,η.

Remark 3.5. The above result can be used to obtain the local minimality of any escaping
radially symmetric critical point mε,η = (fε,ηn, gε,η) of Eε,η with gε,η > 0 and f2ε,η+g

2
ε,η ≤ 1

under a slightly weaker assumption that W ∈ C2([0, 1]), W̃ ∈ C2([0, 1]) and

W (0) = 0,W (t) ≥ 0 in (−∞, 1],W ′′(t) ≥ 0 in [0, 1], (3.15)

W̃ (0) = 0, W̃ (t) ≥ 0 in [0, 1], W̃ (t) ≥ W̃ (1) in [1,∞), W̃ ′′(t) ≥ 0 in [0, 1]. (3.16)

In the Ginzburg–Landau context, similar conditions appeared in [30].

Proof. For m ∈ A , define the truncation Tm ∈ A of m by

Tm(x) =

{

m(x) if |m(x)| ≤ 1,
m(x)
|m(x)| if |m(x)| > 1.
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Observe that, by (3.15)–(3.16), Eε,η[m] ≥ Eε,η[Tm] for m ∈ A . On the other hand, by ap-
plying Theorem 1.5 to a pair of potentials satisfying (1.10)–(1.11) which agree with (W, W̃ )
in [0, 1] (e.g. by using suitable quadratic polynomials outside of [0, 1]), we obtain that there
exist δ > 0 and C > 0 such that Eε,η[Tm] ≥ Eε,η[mε,η] +

1
C ‖Tm−mε,η‖H1(BN ,RN+1) when-

ever m ∈ A and ‖Tm−mε,η‖H1(BN ,RN+1) ≤ δ. Therefore, to prove the local minimality of
mε,η, it suffices to show that the truncation map is continuous at mε,η, i.e. if mj → mε,η

in H1(BN ,RN+1), then Tmj → mε,η in H1(BN ,RN+1).
Indeed, observe that, for a, b ∈ R

N with |a| ≥ 1, |b| ≤ 1,

|a− b|2 =
(

|a| − b · a
|a|

)2
+

∣
∣
∣b− b · a

|a|2 a
∣
∣
∣

2
≥

(

1− b · a
|a|

)2
+

∣
∣
∣b− b · a

|a|2 a
∣
∣
∣

2
=

∣
∣
∣
a

|a| − b
∣
∣
∣

2
.

This implies that

‖mj −mε,η‖2L2(BN ,RN+1) ≥ ‖Tmj −mε,η‖2L2(BN ,RN+1),

and so Tmj → mε,η in L2(BN ,RN+1). Since ‖Tmj‖H1(BN ,RN+1) ≤ ‖mj‖H1(BN ,RN+1),

{Tmj} has a H1-weakly convergent subsequence {Tmjk
}, whose weak limit must be mε,η

(in view of the strong L2 convergence of Tmj), and

‖∇mε,η‖L2(BN ,RN+1) ≤ lim inf
k→∞

‖∇Tmjk‖L2(BN ,RN+1).

On the other hand, by construction,

‖∇Tmj‖L2(BN ,RN+1) ≤ ‖∇mj‖L2(BN ,RN+1) → ‖∇mε,η‖L2(BN ,RN+1).

We thus have that ‖∇Tmjk‖L2(BN ,RN+1) → ‖∇mε,η‖L2(BN ,RN+1) and so Tmjk → mε,η in

H1(BN ,RN+1). Since the above argument can be applied to any subsequence of {Tmj},
we deduce that Tmj → mε,η in H1(BN ,RN+1) as desired.

3.3 The R
N-valued GL model: Stability of the vortex solution

Assume that N ≥ 2 and W ∈ C2((−∞, 1]) satisfies (1.10). Let uε = fεn be the radially
symmetric critical point of the Ginzburg–Landau energy EGLε in A GL obtained in Theorem
2.1, and let QGLε be the second variation of EGLε at uε = fεn,

QGLε [v] :=

∫

BN

[

|∇v|2 − 1

ε2
W ′(1− f2ε )|v|2 +

2

ε2
W ′′(1− f2ε )f

2
ε (n · v)2

]

dx, (3.17)

where v ∈ H1
0 (B

N ,RN ).

Proof of Theorem 1.2. We will only prove the positive definiteness of QGLε in C∞
c (BN \

{0},RN ). As in the proof of Theorem 1.5(a), the estimate we obtain (see (3.18) below)
implies that QGLε [v] ≥ C‖v‖2

H1(BN )
for v ∈ H1

0 (B
N ,RN ) and that uε is a local minimizer of

EGLε in A GL, more precisely, for some constants δ > 0 and C̃ > 0 (depending on ε),

EGLε [uε + v] ≥ EGLε [uε] + C̃‖v‖2H1(BN ) for all v ∈ H1
0 (B

N ,RN ) with ‖v‖H1(BN ) < δ.
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Take an arbitrary v ∈ C∞
c (BN \ {0},RN ). We use the decomposition in Proposition

3.1 in the orthonormal basis (ζi)i≥0 of L2(SN−1). We write v = sn + ẘ + /Dψ with s ∈
C∞
c (BN \ {0}), ẘ ∈ C∞

c (BN \ {0},RN ) being a tangent vector field (i.e., ẘ · n = 0) having
vanishing covariant divergence /D · ẘ(r, ·) = 0 on S

N−1 and ψ ∈ C∞
c (BN \ {0},R) satisfying

∫

SN−1 ψ(r, θ)dσ = 0, and decompose

s(r, θ) =
∞∑

i=0

si(r)ζi(θ), ψ(r, θ) =
∞∑

i=0

ψi(r)ζi(θ),

with si, ψi ∈ C∞
c

(
(0, 1)

)
for every i ≥ 0 and for every r ∈ (0, 1]. We will prove

QGLε [v] ≥ C
∥
∥
∥v −

N∑

i=1

vi

∥
∥
∥

2

L2(BN )

+
N∑

i=1

∫ 1

0
rN−1

{

(f ′ε)
2
∣
∣
∣

( si
f ′ε

)′∣∣
∣

2

+
2(N − 1)

r3
fε f

′
ε

( si
f ′ε

− rψi
fε

)2
+
N − 1

r2
f2ε

∣
∣
∣

(rψi
fε

)′∣∣
∣

2}

dr, (3.18)

where vi = siζin+ ψi /Dζi ∈ C∞
c (BN \ {0},RN ) for i ≥ 0.

Proposition 3.1 yields

QGLε [v] = QGLε [ẘ] +
∞∑

i=0

QGLε [vi].

First, Lemma 3.2 yields a constant C > 0 independent of ε such that

QGLε [ẘ] ≥ C‖ẘ‖2L2

for every tangent vector field ẘ ∈ C∞
c (BN \ {0},RN ) of vanishing covariant divergence.

Second, for the zero mode v0 = s0ζ0n, the argument in the proof of Lemma 3.3 yields

QGLε [s0ζ0n] =

∫ 1

0
rN−1

{

f2ε

∣
∣
∣

(s0
fε

)′∣∣
∣

2
+

2

ε2
W ′′(1− f2ε )f

2
ε s

2
0

}

dr

≥
∫ 1

0
rN+1

∣
∣
∣

(s0
fε

)′∣∣
∣

2
dr ≥ N2

4

∫ 1

0
rN−1s20 dr =

N2

4
‖v0‖2L2 ,

where we used r ≤ fε ≤ 1 in (0, 1) and the Hardy inequality in R
N+2 (as in (2.21)). Third,

for the modes vi = siζin + ψi /Dζi for 1 ≤ i ≤ N (so that λi = N − 1), we factor si = f ′εŝi
and ψi =

fε
r ψ̂i, and the computation in the proof of Lemma 3.4 yields

QGLε [vi] =

∫ 1

0
rN−1

{

(f ′ε)
2(ŝ′i)

2 +
2(N − 1)

r3
fε f

′
ε(ŝi − ψ̂i)

2 +
N − 1

r2
f2ε (ψ̂

′
i)
2
}

dr ≥ 0.

Finally, for the modes vi = siζin+ ψi /Dζi for i ≥ N + 1, we factor si = fεs̃ and ψi = fεψ̃i,
and the computation in the proof of Lemma 3.4 (see (3.12)) yields

QGLε [vi] ≥ C‖vi‖2L2(BN ) for every i ≥ N + 1

for some C > 0 independent of ε and i. Combining the above estimates, we get (3.18).
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3.4 The extended model: Stability-instability dichotomy of the non-

escaping vortex solutions

Let N ≥ 2. Assume W ∈ C2((−∞, 1]) and W̃ ∈ C2([0,∞)) satisfy (1.10) and (1.11). Let
m̄ε = (fεn, 0) be the in-plane radially symmetric critical point of Eε,η in A , where fε is
given by Theorem 2.1. Let Q̄ε,η be the second variation of Eε,η at m̄ε: For V = (v, q) ∈
H1

0 (B
N ,RN )×H1

0 (B
N ,R) ∼= H1

0 (B
N ,RN+1),

Q̄ε,η[V ] = QGLε [v] + Q̄ε,η[(0, q)],

Q̄ε,η[(0, q)] =

∫

BN

[

|∇q|2 − 1

ε2
W ′(1− f2ε )q

2 +
1

η2
W̃ ′(0)q2

]

dx

=

∫

BN

[

LGLε q · q + 1

η2
W̃ ′(0)q2

]

dx,

where QGLε is the second variation at the critical point uε = fεn of the Ginzburg–Landau
energy EGLε given in (3.17) and LGLε is defined by (2.1).

Proof of Theorem 1.5(c). We will only discuss the positive definiteness of Q̄ε,η. As in the
proof of Theorem 1.5(a), in the case when Q̄ε,η is positive definite, we have that Q̄ε,η[V ] ≥
C‖V ‖2

H1(BN )
for V ∈ H1

0 (B
N ,RN+1) and that m̄ε is a local minimizer of Eε,η in A , more

precisely, for some constants δ > 0 and C̃ > 0 (depending on ε and η),

Eε,η[m̄ε + V ] ≥ Eε,η[m̄ε] + C̃‖V ‖2H1(BN ) for all V ∈ H1
0 (B

N ,RN+1) with ‖V ‖H1(BN ) < δ.

By Theorem 1.2, QGLε is positive definite. Therefore, Q̄ε,η is positive definite if and only
if Q̄ε,η[(0, ·)] is positive definite, i.e.

ℓ(ε) +
1

η2
W̃ ′(0) > 0,

where ℓ(ε) is the first eigenvalue of LGLε on BN with zero Dirichlet boundary value. Recalling
that we are assuming that (1.12)–(1.15) has no escaping solutions, we deduce from Theorem
2.4(a) and (b), Lemma 2.3 and the fact that W̃ ′(0) ≥ 0 that the above inequality fails if
and only if 2 ≤ N ≤ 6, W ′(1) > 0, W̃ ′(0) > 0, 0 < ε < ε0 and η = η0(ε). In this case,
ℓ(ε) + 1

η2
W̃ ′(0) = 0, Q̄ε,η is non-negative semi-definite with the kernel

{

(0, q) : q ∈ H1
0 (B

N ), LGLε q = ℓ(ε)q
}

,

which is one-dimensional and generated by (0, qε) for any first eigenfunction qε of L
GL
ε .

3.5 The S
N -valued GL model: Stability of the escaping vortex solution

Assume that N ≥ 2 and W̃ ∈ C2([0,∞)). Let mη = (f̃ηn, gη) be the escaping radially
symmetric critical point of EMM

η in A MM with f̃η > 0 and gη > 0, and let QMM
η be
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the second variation of EMM
η at mη: For V = (v, q) ∈ H1

0 (B
N ,RN ) × H1

0 (B
N ,R) ∼=

H1
0 (B

N ,RN+1) with V ·mη = 0,

QMM
η [V ] =

d2

dt2

∣
∣
∣
t=0

EMM
η

[ mη + tV

|mη + tV |
]

=

∫

BN

[

|∇V |2 − λ(r)|V |2 + 1

η2
W̃ ′(g2η)q

2 +
2

η2
W̃ ′′(g2η)g

2
ε,ηq

2
]

dx

where λ ∈ C1([0, 1]) is given by (1.9). In particular, QMM
η is continuous in H1

0 (B
N ,RN+1).

Proof of Theorem 1.3. By the instability of the equator map proved in Theorem 2.6(b), we
only need to prove the stability and local minimality of the escaping solution mη.

Proof of the positive definiteness of QMM
η . LetW (t) = t2 and let ε0 and η0 ∈ C0([0, ε0)) be

as in Theorem 2.4; those are well-defined as W ′(1) > 0. If W̃ ′(0) > 0, then η0 is increasing
and limε→ε0 η0(ε) = ∞ (see Remark 2.5), so η0 has an increasing inverse η−1

0 : [0,∞) →
[0, ε0). If W̃ ′(0) = 0, then η0(ε) = 0 for all ε ∈ (0, ε0) and by abuse of notation, we set
η−1
0 (η) = ε0 for every η > 0. In both cases, by Theorem 2.4, for 0 < ε < η−1

0 (η), (1.12)–
(1.15) has an escaping solution (fε,η, gε,η) with fε,η > 0 and gε,η > 0. By Remark 2.17,
(fε,η, gε,η) → (f̃η, gη) in B as ε→ 0, and so uniformly on compact subsets of (0, 1].

We would like to deduce the positive definiteness of QMM
η from the positive definite-

ness of the second variation Qε,η of the escaping critical point mε,η = (fε,ηn, gε,η) of Eε,η
(established in Theorem 1.5(a)).

Fix some V = (v, q) ∈ C∞
c (BN \ {0},RN+1) with V · mη = 0 in BN . We write

v = sn+ ẘ + /Dψ with s ∈ C∞
c (BN \ {0}), ẘ ∈ C∞

c (BN \ {0},RN ) being a tangent vector
field (i.e., ẘ · n = 0) having vanishing covariant divergence /D · ẘ(r, ·) = 0 on S

N−1 and
ψ ∈ C∞

c (BN \ {0},R) satisfying
∫

SN−1 ψ(r, θ)dσ = 0.

For 0 < ε < η−1
0 (η), define Vε = (v, qε) ∈ C∞

c (BN \ {0},RN+1) by

qε = q − fε,η − f̃η
gε,η

s− gε,η − gη
gε,η

q.

Then suppVε ⊂ suppV ⊂ BN \ {0}, and Vε → V uniformly in B̄N and in H1(BN ) as ε→ 0
and Vε ·mε,η = 0 in BN . We decompose

s(r, θ) =

∞∑

i=0

si(r)ζi(θ), ψ(r, θ) =

∞∑

i=0

ψi(r)ζi(θ),

q(r, θ) =
∞∑

i=0

qi(r)ζi(θ), qε(r, θ) =
∞∑

i=0

qε,i(r)ζi(θ),

define V̊ = (ẘ, 0), Vi = (siζin+ψi /Dζi, qiζi) and Vε,i = (siζin+ψi /Dζi, qε,iζi) as in Proposition
3.1. Note that Vε,i → Vi uniformly in B̄N and in H1(BN ) as ε→ 0 for every i ≥ 0,

0 = V ·mη = sf̃η + qgη =

∞∑

i=0

(sif̃η + qigη)ζi
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and so sif̃η + qigη = 0 for all i ≥ 0. By the positivity inequality (3.14) for Qε,η, we have

Qε,η[Vε] ≥ C
∥
∥
∥Vε −

N∑

i=0

Vε,i

∥
∥
∥

2

L2(BN )
+

∫ 1

0
rN−1f2ε,η

∣
∣
∣

( s0
fε,η

)′∣∣
∣

2
dr

+ (N − 1)
N∑

i=1

∫ 1

0
rN−3

{

f2ε,η

∣
∣
∣

( rψi
fε,η

)′∣∣
∣

2
+

2

r
fε,η f

′
ε,η

( si
f ′ε,η

− r ψi
fε,η

)2}

dr. (3.19)

Claim: Qε,η[Vε] → QMM
η [V ] as ε → 0. Indeed, since fε,η converges to f̃η in H1

loc(0, 1), we

deduce that, for any open set K compactly supported in BN \ {0} and (ϕε) ⊂ H1
0 (K)

converging in H1 to ϕ ∈ H1
0 (K), by multiplying from (1.13) and (1.6) with ϕε/fε,η and

ϕ/f̃η respectively,

lim
ε→0

∫

BN

1

ε2
W ′(1− f2ε,η − g2ε,η)ϕε dx =

∫

BN

λ(r)ϕdx.

Recalling the expressions of Qε,η[Vε] and Q
MM
η [V ] together with the fact that sfε,η+qεgε,η =

Vε ·mε,η = 0, suppVε ⊂ suppV ⊂ BN \ {0}, and |Vε|2 → |V |2 in H1
0 (suppV ), the claim is

readily seen from the above identity.
Passing ε→ 0 in (3.19) using the claim on the left hand side and Fatou’s lemma on the

right hand side, we obtain

QMM
η [V ] ≥ C

∥
∥
∥V −

N∑

i=0

Vi

∥
∥
∥

2

L2(BN )
+

∫ 1

0
rN−1f̃2η

∣
∣
∣

(s0

f̃η

)′∣∣
∣

2
dr

+ (N − 1)

N∑

i=1

∫ 1

0
rN−3

{

f̃2η

∣
∣
∣

(rψi

f̃η

)′∣∣
∣

2
+

2

r
f̃η f̃

′
η

( si

f̃ ′η
− r ψi

f̃η

)2}

dr (3.20)

for any V ∈ C∞
0 (BN \ {0},RN+1) satisfying V ·mη = 0 in BN .

Suppose next that V ∈ H1
0 (B

N ,RN+1) with V · mη = 0 in BN . Pick a sequence
{Vj} ⊂ C∞

c (BN \ {0},RN+1) which converges in H1(BN ,RN+1) to V . Let Ṽj = Vj −
(Vj · mη)mη ∈ C∞

c (BN \ {0},RN+1). Then {Ṽj} also converges in H1(BN ,RN+1) to V .
Applying (3.20) to Ṽj (since Ṽj · mη = 0), and sending j → ∞ (using the continuity of
QMM
η on the left hand side and Fatou’s lemma on the right hand side), we see that (3.20)

holds for V ∈ H1
0 (B

N ,RN+1) satisfying V ·mη = 0 in BN . Moreover, if QMM
η [V ] = 0, then

V =
∑N

i=0 Vi, and
s0
f̃η
, rψi

f̃η
are constant and si

f̃ ′η
− r ψi

f̃η
= 0 for 1 ≤ i ≤ N . Recalling also that

sif̃η + qigη = 0 in (0, 1) and si(1) = ψi(1) = 0 for all i ≥ 0, we deduce that V ≡ 0. This
proves the required positive definiteness of QMM

η .

Proof of the local minimality of mη.

We need to relate the functional EMM
η in a neighborhood of mη to the second variation

QMM
η notwithstanding the fact that H1(BN ,SN ) is not a manifold.• 1 • 1: add references

Consider a map mη+V ∈ A MM , and write V = (v, q) and Ṽ := V −(V ·mη)mη = (ṽ, q̃)
so that V, Ṽ ∈ H1

0 (B
N ,RN+1) and Ṽ ·mη = 0. By the Euler-Lagrange equation for mη (as
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a critical point for EMM
η in A MM ) and V ·mη = −1

2 |V |2 (since |mη + V |2 = |mη|2 = 1),

EMM
η [mη + V ]− EMM

η [mη]−
1

2
QMM
η [Ṽ ]

=
1

2

∫

BN

{

(|∇V |2 − |∇Ṽ |2)− λ(r)(|V |2 − |Ṽ |2)

+
1

η2

[

W̃ ′(g2η) + 2W̃ ′′(g2η)g
2
η

]

(q2 − q̃2)
}

dx+

∫

BN

h(x, V (x)) dx, (3.21)

h(x, y) =
1

2η2

{

W̃ ((gη(x) + yN+1)
2)− W̃ (g2η(x))− W̃ ′(g2η(x))(2gη(x)yN+1 + y2N+1)

− 2W̃ ′′(g2η(x))g
2
η(x)y

2
N+1

}

.

As in the proof of Theorem 1.5(a), the positive definiteness of QMM
η implies that there is a

constant c > 0 depending only on η, W and W̃ such that

QMM
η [Ṽ ] ≥ c‖∇Ṽ ‖2L2(BN ) for every Ṽ ∈ H1

0 (B
N ,RN+1) with Ṽ ·mη = 0.

Since h ∈ C0(B̄N , C2(RN+1)), h(x, 0) = 0, ∇yh(x, 0) = 0, ∇2
yh(x, 0) = 0 and h satisfies the

growth assumptions in Lemma D.1 for p = 2 (due to the convexity of W̃ ), by Lemma D.1,
for any a > 0, there exists δ > 0 such that

∫

BN

h(x, V (x)) dx ≥ −a‖∇V ‖2L2(BN ) whenever V ∈ H1
0 (B

N ,RN+1), ‖V ‖H1(BN ) ≤ δ.

Let us consider the first integral on the right hand side of (3.21). We start with the
term |V |2 − |Ṽ |2, using the fact that V ·mη = −1

2 |V |2,

|V |2 − |Ṽ |2 = |V ·mη|2 =
1

4
|V |4.

Likewise, since |q| ≤ |V |, |q̃| ≤ |Ṽ | ≤ |V |, 0 < gη ≤ 1 and q − q̃ = (V ·mη)gη ,

|q2 − q̃2| = |q − q̃||q + q̃| ≤ 2|V ·mη||V | = |V |3.

Next, the term |∇V |2 − |∇Ṽ |2 is estimated as follows, using the fact that ∇(V − Ṽ ) =
∇((V ·mη)mη) = −1

2∇(|V |2mη) and −mη · ∂j Ṽ = ∂jmη · Ṽ for 1 ≤ j ≤ N ,

|∇V |2 − |∇Ṽ |2 = |∇(V − Ṽ )|2 + 2∇(V − Ṽ ) : ∇Ṽ = |∇(V − Ṽ )|2 −∇(|V |2mη) : ∇Ṽ

= |∇(V − Ṽ )|2 +
N∑

j=1

∂j(|V |2)Ṽ · ∂jmη − |V |2∇mη : ∇Ṽ

≥ |∇(V − Ṽ )|2 − C|V |2(|∇V |+ |V |2)

for some C = C(‖∇mη‖C1(B̄N )), where we have used |V | ≤ |mη + V | + |mη| = 2 and

|∇Ṽ | = |∇V + 1
2∇(|V |2mη)| ≤ C(|∇V |+ |V |2).

46



Putting things together in (3.21) with a = 1
8 min(c, 1), by the Cauchy-Schwarz and

triangle inequalities, we get for all mη + V ∈ A MM with ‖V ‖H1(BN ) ≤ δ that

EMM
η [mη + V ]− EMM

η [mε,η] ≥
c

2
‖∇Ṽ ‖2L2(BN ) +

1

2
‖∇(V − Ṽ )‖2L2(BN ) − a‖∇V ‖2L2(BN )

− C(‖∇V ‖L2(BN )‖V ‖2L4(BN ) + ‖V ‖4L4(BN ) + ‖V ‖3L3(BN ))

≥ min(c, 1)

8
‖∇V ‖2L2(BN ) − C̃(‖V ‖4L4(BN ) + ‖V ‖3L3(BN )).

Note also that, since |V | ≤ 2 and by the Sobolev embedding theorem for V ∈ H1
0 (B

N ), we
have for any fixed 2 < p < min(3, 2N

N−2) that

‖V ‖4L4(BN ) + ‖V ‖3L3(BN ) ≤ Cp‖V ‖p
Lp(BN )

≤ CN,p‖∇V ‖p
L2(BN )

.

Putting the last two estimates together, for small δ > 0, we obtain for some Ĉ > 0:

EMM
η [mη + V ] ≥ EMM

η [mη] + Ĉ‖∇V ‖2L2(BN ) if mη + V ∈ A
MM with ‖V ‖H1(BN ) < δ

yielding the desired local minimality of mη for EMM
η in A MM .

A Radially symmetric vector-valued maps

In the sequel, let SO(N) denote the group of N ×N special orthogonal matrices, equipped
with the Haar measure. Naturally, SO(N)×BN is equipped with the product measure.

Definition A.1. Let N ≥ 2 and k ≥ 0. A measurable map m : BN → R
N+k is said to be

SO(N)-equivariant, or simply radially symmetric, if

m(Rx) = R̃m(x) for almost all (R,x) ∈ SO(N)×BN ,

where R̃ =

(
R 0N×k

0k×N Ik×k

)

∈ SO(N + k), and 0i×j and Ik×k denote respectively the i × j

zero matrix and the k × k identity matrix.

Lemma A.2. Let N ≥ 2, k ≥ 0 and m ∈ L1
loc(B

N ,RN+k).

(a) If N ≥ 3, then m is radially symmetric if and only if there exist functions f, g1, . . . , gk ∈
L1
loc(0, 1) such that

m(x) =
(

f(|x|) x|x| , g1(|x|), . . . , gk(|x|)
)

for almost all x ∈ BN .

(b) If N = 2, thenm is radially symmetric if and only if there exist functions f1, f2, g1, . . . , gk ∈
L1
loc(0, 1) such that

m(x) =
(

f1(|x|)
x

|x| + f2(|x|)
x⊥

|x| , g1(|x|), . . . , gk(|x|)
)

for almost all x ∈ B2,

where (x1, x2)
⊥ = (−x2, x1).
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Proof. It is clear that if m has the stated form, then m is radially symmetric. For the
converse, suppose that m is radially symmetric.

Let us make an observation on mollifications of a radially symmetric map. Let (̺ε)
be a sequence of smooth radially symmetric mollifiers (i.e. ̺ε(x) = ̺ε(|x|)) satisfying
supp ̺ε ⊂ (−ε, ε) and let mε = m ∗ ̺ε in B1−ε where Br is the ball centered at zero of
radius r > 0. We claim that mε is radially symmetric in B1−ε. Indeed, by Fubini’s theorem,
for almost all R ∈ SO(N), we have

m(Rx) = R̃m(x) for almost all x ∈ BN .

Therefore, for almost all R ∈ SO(N) and for all 0 < |x| < 1− ε,

mε(Rx) =

∫

BN

m(y)̺ε(Rx− y) dy =

∫

BN

m(Rz)̺ε(Rx−Rz) dz

=

∫

BN

R̃m(z)̺ε(x− z) dz = R̃mε(x),

i.e. mε is radially symmetric in B1−ε.
By the above claim, it suffices to consider continuous m in our proof. In this case,

m(Rx) = R̃m(x) for all (R,x) ∈ SO(N)×BN . (A.1)

Clearly (A.1) implies that, for 1 ≤ j ≤ k and x ∈ BN , mN+j(Rx) = mN+j(x) for all
R ∈ SO(N) and so mN+j(x) = gj(|x|) for some gj ∈ C(0, 1). We thus assume without loss
of generality that k = 0, i.e., m : BN → R

N .
Let eN = (0, . . . , 0, 1). For r ∈ (0, 1), we writem(reN ) = (a(r), b(r)) where a(r) ∈ R

N−1

and b(r) ∈ R. Since m is continuous, a and b are continuous in (0, 1).

Case (a): N ≥ 3. Taking R of the form R =

(
S 0(n−1)×1

01×(n−1) 1

)

where S ∈ SO(N − 1),

we obtain from (A.1) that

a(r) = Sa(r) for all S ∈ SO(N − 1).

As N ≥ 3, there exists S(r) ∈ SO(N−1) so that S(r)a(r) = −a(r) and so the above implies
that a(r) = 0. In particular, m(reN ) = b(r)eN for every r ∈ (0, 1). Now if |x| = r ∈ (0, 1),
we select R ∈ SO(N) such that R(reN ) = x and obtain from (A.1) that

m(x) = m(R(reN )) = Rm(reN ) = b(r)ReN = b(r)
x

r
.

The conclusion follows with f(r) = b(r).

Case (b): N = 2. In this case, a(r) is a scalar so that

m(re2) = −a(r)e⊥2 + b(r)e2.

Now if x = (r cosϕ, r sinϕ) for some r > 0 and ϕ ∈ [0, 2π), setting

Rϕ :=

(
sinϕ cosϕ

− cosϕ sinϕ

)

∈ SO(2),
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then we have
Rϕ(re2) = x and Rϕ(re

⊥
2 ) = x⊥.

We thus obtain from (A.1) that

m(x) = m(Rϕ(re2)) = Rϕm(re2) = −a(r)Rϕe⊥2 + b(r)Rϕe2 = −a(r)x
⊥

r
+ b(r)

x

r
.

The conclusion follows with f1(r) = b(r) and f2(r) = −a(r).

RemarkA.3. In a similar fashion as in Definition A.1, one can also define O(N)-equivariant
maps. It is easy to see from the above lemma that, for N ≥ 3 and k ≥ 0, SO(N)-equivariant
maps are O(N)-equivariant. For N = 2 and k ≥ 0, m ∈ L1

loc(B
2;R2+k) is O(2)-equivariant

if and only if there exist functions f, g1, . . . gk ∈ L1
loc(0, 1) such that

m(x) =
(

f(|x|) x|x| , g1(|x|), . . . , gk(|x|)
)

for almost all x ∈ B2.

This is because the map x 7→ f2(|x|)x
⊥

|x| is O(2)-invariant if and only if f2 = 0, in view of the

fact that (Rx)⊥ = −R(x⊥) with R being the reflection about the x1-axis, i.e. R(x1, x2) =
(x1,−x2).

Lemma A.4. Suppose N ≥ 2, ε > 0 and W ∈ C2((−∞, 1]). If m is a bounded12 radially
symmetric critical point of EGLε in A GL, then m ∈ C2(B̄N ) and takes the form

m(x) = f(|x|) x|x|

for some f ∈ C2([0, 1]) with f
r ∈ C2([0, 1]). In particular, f(0) = 0 and m is O(N)-

equivariant.

Lemma A.5. Suppose N ≥ 2, ε, η > 0, W ∈ C2((−∞, 1]) and W̃ ∈ C2([0,∞)). If m is a
bounded13 radially symmetric critical point of Eε,η in A , then m ∈ C2(B̄N ) and takes the
form

m(x) = (f(|x|) x|x| , g(|x|))

for some f, g ∈ C2([0, 1]) with f
r ∈ C2([0, 1]). In particular, f(0) = 0, g′(0) = 0 and m is

O(N)-equivariant.

We will only give the proof of the latter one. The proof of the other one requires minor
modifications and is omitted.

Proof of Lemma A.5. As a bounded radially symmetric critical point of Eε,η, m satisfies

{

−∆m− 1
ε2
W ′(1− |m|2)m+ 1

η2
W̃ ′(m2

N+1)mN+1eN+1 = 0 in BN \ {0},
m(x) = x on ∂BN .

(A.2)

12If W satisfies the condition (1.10), then the boundedness of m is a consequence of Corollary 2.8.
13If W and W̃ satisfy the conditions (1.10)-(1.11), then the boundedness of m follows from Lemma 2.7.
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Due to m ∈ H1 ∩ L∞(BN ) (in particular, W ′(1− |m|2), W̃ ′(m2
N+1) ∈ L∞(BN )), it follows

that (A.2) holds in all of BN , and, by elliptic regularity theory, m ∈ C2(B̄N ).
On the other hand, using Lemma A.2 and the regularity of m, we write

m(x) =







(

f1(|x|) x|x| + f2(|x|)x
⊥

|x| , g(|x|)
)

if N = 2,
(

f1(|x|) x|x| , g(|x|)
)

if N ≥ 3,
(A.3)

where f1, f2 ∈ C2 ∩ L∞((0, 1]) and g ∈ C2([0, 1]) with f1(0) = f2(0) = 0 and g′(0) = 0.
To conclude, we show that f1

r ∈ C2([0, 1]) and, when N = 2, f2 = 0 in (0, 1).
Let us show that f2 = 0 in (0, 1) when N = 2. We use ideas from the proof of [23,

Proposition 2.3]. From (A.2), we have that

∇ · (−m2∇m1 +m1∇m2) = (m1,m2)
⊥ ·∆(m1,m2) = 0 in B2.

Integrating over balls Br of radius r ∈ (0, 1), the Gauss formula yields

∫

∂Br

(m1,m2)
⊥ · ∂r(m1,m2) dS =

∫

∂Br

(−m2∂rm1 +m1∂rm2) dS = 0. (A.4)

Using (A.3) in (A.4), we obtain

− f ′1f2 + f ′2f1 = 0 in (0, 1). (A.5)

Since f1(1) = 1, we have that f1 > 0 in some interval (r1, 1) with 0 ≤ r1 < 1. Dividing
(A.5) by f21 in (r1, 1), we get (f2/f1)

′ = 0, and using the fact that f2(1) = 0, we have f2 = 0
in (r1, 1). In particular f ′2(1) = 0. Now, by (A.2), we have that

f ′′2 +
N − 1

r
f ′2 + c(r)f2 = 0 in (0, 1), (A.6)

where c(r) := −N−1
r2

+ 1
ε2
W ′(1−f21 −f22 −g2) belongs to C1((0, 1]). Since f2(1) = f ′2(1) = 0,

standard uniqueness results for ODEs implies that f2 = 0 in (0, 1) as desired.
Let us show next that f1

r ∈ C2([0, 1]) for any N ≥ 2. By (A.2) and (A.3), we have

f ′′1 +
N − 1

r
f ′1 +

(

− N − 1

r2
+

1

ε2
W ′(1− f21 − g2)

)

f1 = 0 in (0, 1).

Setting v = f1
r and d = 1

ε2
W ′(1− f21 − g2) = 1

ε2
W ′(1− |m|2) ∈ C1([0, 1]) (as m ∈ C2(B̄N )),

we then have

v′′ +
N + 1

r
v′ + d(r)v(r) = 0 in (0, 1).

Considering v as a radially symmetric function on the (N + 2)-dimensional ball BN+2, we
have that v satisfies ∆v + dv = 0 in BN+2 \ {0}. On the other hand, since m ∈ H1(BN ),

we have r
N−1

2 f ′1, r
N−3

2 f1 ∈ L2(0, 1) and so v ∈ H1(BN+2). It follows that ∆v + dv = 0 in
BN+2 and since d ∈ C1([0, 1]), we deduce that v ∈ C2(BN+2). The conclusion follows.
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Lemma A.6. Suppose N ≥ 2, η > 0, and W̃ ∈ C2([0, 1]). If m is a radially symmetric
critical point of EMM

η in A MM , then m takes the form

m(x) = (f(|x|) x|x| , g(|x|)) (A.7)

for some f, g ∈ C2
loc((0, 1]) with f2 + g2 = 1 and r

N−1
2 (|f ′| + |g′|) + r

N−3
2 |f | ∈ L2(0, 1). In

particular, m is O(N)-equivariant. Furthermore, either f
r , g ∈ C2([0, 1]) or both (f, g) ≡

(1, 0) and N ≥ 3, where in the former case one has also that m ∈ C2(B̄N ), f(0) = 0 and
g′(0) = 0.

Proof. We adapt the proof of Lemma A.5. Without loss of generality, we may assume that
W̃ (0) = 0. As a critical point of EMM

η in A MM , m satisfies

{

−∆m− λ(x)m+ 1
η2
W̃ ′(m2

N+1)mN+1eN+1 = 0 in BN ,

m(x) = x on ∂BN ,
(A.8)

where λ = |∇m|2 + 1
η2
W̃ ′(m2

N+1)m
2
N+1 ∈ L1(BN ). By Lemma A.2, m takes the form

(A.3). In particular, λ = λ(r) ∈ L1
loc((0, 1]), which together with (A.8) (recast as ODEs for

f1, f2, g) implies that f ′′1 , f
′′
2 , g

′′ ∈ L1
loc((0, 1]) where f2 is absent when N ≥ 3. This in turn

implies that λ ∈ C0((0, 1]) and then again, by regularity theory, f1, f2, g ∈ C2((0, 1]) (and
hence m ∈ C2(B̄N \ {0}). Next, as in the proof of Lemma A.5, when N = 2, we prove that
(A.4)-(A.5) hold also here yielding f2 = 0 in (0, 1). We have thus shown that m has the

form (A.7) where f2 + g2 = 1, r
N−1

2 (|f ′|+ |g′|) + r
N−3

2 |f | ∈ L2(0, 1), and f, g ∈ C2((0, 1]).

Step 1: We prove that f, g ∈ C([0, 1]). We distinguish the cases N = 2 and N ≥ 3.

Case 1: N = 2. It is known that the continuity of m in B̄2 can be proved using Wente’s
lemma (see e.g. Hélein [18] or Carbou [7, Theorem 1]). However, in this ODE setting, the

continuity of f (and hence of g) in [0, 1] is a consequence of the fact that r
1
2 |f ′|+ r−

1
2 |f | ∈

L2(0, 1), since

|f2(r1)− f2(r2)| ≤ 2

∫ r1

r2

|f ′(r)||f(r)|dr ≤
∫ r1

r2

(r|f ′(r)|2 + 1

r
|f(r)|2) dr r1,r2→0−→ 0.

Also, since r−
1
2 |f | ∈ L2(0, 1), we also have that f(0) = 0. It follows that m ∈ C(B̄2).

Case 2: N ≥ 3. As f, g ∈ C2((0, 1]) and f2+g2 = 1, we can find a lifting θ ∈ C2((0, 1]) such

that r
N−1

2 |θ′| ∈ L2(0, 1), f = sin θ, g = cos θ in (0, 1] and θ(1) = π/2. (To prepare for Steps
2 and 3 later on, we note that the existence of such a lifting θ also holds for N = 2 where
we have in addition to the above that θ ∈ C([0, 1]), r−1/2 sin θ ∈ L2(0, 1) and θ(0) ∈ πZ.)

A direct computation using (A.8) gives

θ′′ +
N − 1

r
θ′ − N − 1

r2
sin θ cos θ +

1

η2
W̃ ′(cos2 θ) sin θ cos θ = 0 in (0, 1). (A.9)
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Set F (r) = [(N − 1)− 1
η2 r

2W̃ ′(cos2 θ(r))] sin θ(r) cos θ(r) ∈ L∞(0, 1) so that (A.9) is equiv-

alent to (rN−1θ′)′ = F (r)rN−3. Therefore, for some constant c,

θ′(r) =
c

rN−1
+

1

rN−1

∫ r

0
F (s) sN−3 ds =

c

rN−1
+O(

1

r
) as r → 0.

Using that r
N−1

2 |θ′| ∈ L2(0, 1), we deduce that c = 0 and

θ′(r) =
1

rN−1

∫ r

0
F (s) sN−3 ds. (A.10)

It follows that, for some positive constant C independent of r,

|θ′(r)| ≤ C

r
and |θ(r)| ≤ C(1 + | log r|) in (0, 1). (A.11)

Claim: We prove that θ ∈ C([0, 1]) and θ(0) = kπ
2 for some k ∈ Z.

Proof of Claim: Indeed, let

P (r) = r2(θ′)2 + (N − 1) cos2 θ − r2

η2
W̃ (cos2 θ).

By (A.11), P ∈ L∞(0, 1). Multiplying (A.9) by 2r2θ′, we see that

P ′(r) = −2(N − 2)r(θ′)2 − 2r

η2
W̃ (cos2 θ). (A.12)

In particular, the function P̃ (r) := P (r) +
∫ r
0

2s
η2
W̃ (cos2 θ(s)) ds satisfies P̃ ∈ L∞(0, 1)

and P̃ ′(r) = −2(N − 2)r(θ′)2 ≤ 0. It follows that r(θ′)2 = 1
2(N−2) |P̃ ′| ∈ L1(0, 1) and

P̃ , P ∈W 1,1(0, 1) ⊂ C([0, 1]).
By (A.10) and integrating by parts,

θ′(r) =
F (r)

(N − 2)r
− 1

(N − 2)rN−1

∫ r

0
F ′(s) sN−2 ds.

Since |F ′(r)| ≤ C(|θ′(r)|+ r) for every r ∈ (0, 1), we obtain

|F (r)| =
∣
∣
∣(N − 2)rθ′(r) +

1

rN−2

∫ r

0
F ′(s) sN−2 ds

∣
∣
∣

≤ Cr2 + Cr|θ′(r)|+ C

rN−2

∫ r

0
|θ′(s)| sN−2 ds.

Noting that, by Cauchy-Schwarz’ inequality,

∫ r

0
|θ′(s)|sN−2 ds ≤ CrN−2

(∫ r

0
s|θ′(s)|2 ds

)1/2
,
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we deduce from the above bound for |F | that
∫ r

0
|F (s)| sN−3 ds ≤ CrN + C

∫ r

0
|θ′(s)| sN−2 ds

︸ ︷︷ ︸

≤CrN−2(
∫ r
0
s|θ′(s)|2 ds)1/2

+C

∫ r

0

1

s

∫ s

0
|θ′(t)| tN−2 dt

︸ ︷︷ ︸

≤CsN−3(
∫ r
0
t|θ′(t)|2 dt)1/2

ds

≤ CrN + CrN−2
( ∫ r

0
s|θ′(s)|2 ds

)1/2
.

Returning to (A.10), since r|θ′(r)|2 ∈ L1(0, 1), we have that

r|θ′(r)| ≤ Cr2 + C
(∫ r

0
s|θ′(s)|2 ds

)1/2
→ 0 as r → 0.

Recalling the expression of P and its continuity, we deduce that cos2 θ and hence θ belong
to C([0, 1]). By (A.10) and the continuity of F , rθ′(r) = 1

N−2F (0) + o(1) for small r > 0.

We hence have that F (0) = 0, i.e. θ(0) = kπ
2 for some k ∈ Z. Step 1 is now completed.

Step 2: We prove that if k is odd, then (f, g) ≡ (1, 0) and N ≥ 3.
When k is odd, f(0) 6= 0. We saw in Step 1 that this is possible only if N ≥ 3.
In the absence of W̃ (i.e. for the harmonic map problem), the assertion that (f, g) ≡

(1, 0) can be dealt as in [27] as follows: (A.12) implies that P ′ ≤ 0, which leads to 0 =
P (0) ≥ P (r) ≥ P (1) = (θ′(1))2 ≥ 0. Thus θ′(1) = 0; since θ(1) = π

2 , uniqueness results for
second order ODEs give that θ ≡ π

2 .

To account for the presence of W̃ in (A.9), we argue as follows. By (A.12), P ′(r) ≤ 2ar
for some constant a > 0. Since rθ′(r) → 0 as r → 0 and k is odd, P (r) → 0 as r → 0.
Hence P (r) ≤ ar2. By (A.12), we have (r−2P )′ ≤ 0 and since cos θ(1) = 0, W̃ (0) = 0,

P (r) ≥ P (1)r2 = (θ′(1))2r2 ≥ 0 in (0, 1). (A.13)

Also by (A.12), we have that

(r−1P )′ ≤ −(N − 1)

r2
cos2 θ − 1

η2
W̃ (cos2 θ).

Using the fact that cos θ(0) = 0, W̃ (0) = 0 and W̃ ∈ C1, in particular, |W̃ (t)| ≤ c̃t for
t ∈ [0, 1], we thus have that (r−1P )′ ≤ 0 in some interval (0, r0). But as r−1P (r) → 0 as
r → 0 (as 0 ≤ P (r) ≤ ar2), we deduce that

P (r) ≤ 0 in (0, r0) (A.14)

and so, P ≡ 0 in (0, r0). Putting together (A.13) and (A.14), we have that θ′(1) = 0. By
uniqueness results for ODEs, we then have that θ ≡ π

2 , i.e. (f, g) ≡ (1, 0).

Step 3: We prove that if θ(0) ∈ πZ and N ≥ 2, then f
r , g ∈ C2([0, 1]). Since θ(0) ∈ πZ,

F (r) = (N − 1)d(r)(θ(r)− θ(0)) where d(r) = 1 +O(r2 + |θ(r)− θ(0)|2) as r → 0.
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We can then recast (A.9) in the form

L(θ − θ(0)) := (θ − θ(0))′′ +
N − 1

r
(θ − θ(0))′ − (N − 1)d(r)

r2
(θ − θ(0)) = 0.

It is straightforward to check that, for δ ∈ (0, 1), there exists rδ > 0 such that

L(r−(N−1)+δ) < 0 and L(r1−δ) < 0 in (0, rδ).

Thus, by the maximum principle (see e.g. [21, Lemma B.1]), we have that

|θ(rδ)− θ(0)|
r1−δδ

r1−δ ± (θ(r)− θ(0)) ≥ 0 in (0, rδ).

This shows that r−(1−δ)|θ − θ(0)| ∈ L∞(0, 1) for all δ ∈ (0, 1).
Taking δ = 1/2 above, we have that d(r) = 1 + O(r). Then, for some large A > 0 and

small r0 > 0, we have

L(r −Ar2) < 0 and r −Ar2 > 0 in (0, r0).

Again, by the maximum principle, we then have that

|θ(r0)− θ(0)|
r0 −Ar20

(r −Ar2)± (θ(r)− θ(0)) ≥ 0 in (0, r0).

We thus have that r−1(θ − θ(0)) ∈ L∞(0, 1). This yields F (r) = O(r) and by (A.10),

θ′ ∈ L∞(0, 1).

Since f(0) = sin θ(0) = 0, we get f
r ∈ L∞(0, 1). Returning tom, as |∇m|2 = (θ′)2+ (N−1)f2

r2 ,
we see that m ∈ C0,1(BN ) and λ ∈ L∞(BN ) (given in (A.8)), and by bootstrapping (A.8),
m ∈ C2(BN ) and λ ∈ C1(BN ). By the same argument in Lemma A.5, it follows that
f
r , g ∈ C2([0, 1]), f(0) = 0 and g′(0) = 0 as desired.

B Some properties of the R
N -valued GL vortex radial profile

Proposition B.1. Suppose that N ≥ 2, W ∈ C2((−∞, 1]) satisfies (1.10) and let fε :
[0, 1] → [0, 1] be given by Theorem 2.1 and f−1

ε : [0, 1] → [0, 1] its inverse. Then:

(i) For 0 < ε̃ ≤ ε, fε(εr) ≥ fε̃(ε̃r) for 0 < r < 1/ε.

(ii) If W ′(1) > 0 and t0 := sup{0 ≤ t < 1 : W (t) = 0}, then t0 < 1, limε→0
f−1
ε (

√
1−t0)
ε =

∞, and, for every δ ∈ (0, 1 − t0), limε→0
f−1
ε (

√
1−t0−δ)
ε ∈ (0,∞). In particular, for

every a > 0, there exists εa > 0 such that

f2ε ≤ 1− t0 in [0, aε] for every ε ∈ (0, εa],

and, for every δ ∈ (0, 1− t0), there exists Cδ > 0 such that

1− t0 − δ ≤ f2ε in [Cδε, 1] for every ε ∈ (0, 1/Cδ ].
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Proof. For ε > 0, define

f̂ε(r) =

{
fε(εr) if r ∈ (0, 1/ε),
1 if r ∈ (1/ε,∞).

Note that

f̂ ′′ε +
N − 1

r
f̂ ′ε −

N − 1

r2
f̂ε = −W ′(1− f̂2ε )f̂ε in (0, 1/ε)

and, the function v̂ε :=
f̂ε
r , considered as a radially symmetric function in R

N+2 satisfies

∆v̂ε = −W ′(1− f̂2ε )v̂ε ≤ 0 in B(0, 1/ε). (B.1)

As at the end of the proof of Proposition 2.9, we deduce that v̂ε is non-increasing in (0, 1/ε)
and so in (0,∞).

Proof of (i). This is equivalent to prove that f̂ε ≥ f̂ε̃ for 0 < ε̃ ≤ ε. This is a direct

consequence of the comparison principle14 [21, Proposition 3.5] and the fact that f̂ ′ε(0) =

v̂ε(0) > 0 (since f̂ε
r = v̂ε is non-increasing), f̂ε(1/ε̃) = f̂ε̃(1/ε̃) = 1, and

f̂ ′′ε̃ +
N − 1

r
f̂ ′ε̃ −

N − 1

r2
f̂ε̃ = −W ′(1− f̂2ε̃ )f̂ε̃ in (0, 1/ε̃),

f̂ ′′ε +
N − 1

r
f̂ ′ε −

N − 1

r2
f̂ε ≤ −W ′(1− f̂2ε )f̂ε in (0, 1/ε̃).

Proof of (ii). By (1.10), we have t0 < 1, W > 0 and W ′ > 0 in (t0, 1]. We need to prove

lim
ε→0

f̂−1
ε (

√
1− t0) = ∞ and lim

ε→0
f̂−1
ε (

√

1− t0 − δ) ∈ (0,∞). (B.2)

By (i), {f̂ε} is non-increasing as ε→ 0 and hence converges pointwise to some limit function
f̂∗. In particular, f̂∗(0) = 0, 0 ≤ f̂∗ ≤ 1 in (0,∞), f̂∗ is continuous at 0, and, by the
monotonicity of f̂ε, f̂∗ is non-decreasing. By the equation of f̂ε and the bound 0 ≤ f̂ε ≤
1, for every compact interval [1/C,C] ⊂ (0,∞), the family {f̂ε}0<ε<1/C is bounded in

C3([1/C,C]). By the Arzelà-Ascoli theorem, it follows that f̂∗ ∈ C2((0,∞)), f̂ε converges
to f̂∗ in C2

loc((0,∞)) as ε→ 0 and

f̂ ′′∗ +
N − 1

r
f̂ ′∗ −

N − 1

r2
f̂∗ = −W ′(1− f̂2∗ )f̂∗ in (0,∞).

Since W ′ > 0 in (t0, 1], one can argue as in Step 3 of the proof of [21, Proposition 2.4]
to show that W ′(1 − f̂∗(∞)2)f̂∗(∞) = 0, which implies that f̂∗(∞) ∈ {0} ∪ [

√
1− t0, 1].

Moreover, using again that W ′ > 0 in (t0, 1], we can argue as in Steps 4 and 5 of the proof

14Though the comparison principle [21, Proposition 3.5] was stated with the assumption that W ′ > 0 in
(0, 1) and W ′′(0) > 0, it is straightforward to see that it remains valid under the weaker condition that
W ′ ≥ 0 in (0, 1). Alternatively, one can first apply [21, Proposition 3.5] for the unique radial profiles
corresponding to the strictly convex potentials t 7→W (t) + δt2 with δ > 0 and then send δ → 0.
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of [21, Proposition 2.4] to show that f̂∗ 6≡ 0 and so f̂∗(∞) ∈ [
√
1− t0, 1]. Differentiating the

equation for f̂∗ and applying the strong maximum principle, we have that f̂ ′∗ > 0 in (0,∞).

Claim: f̂∗(∞) =
√
1− t0. Once this claim is proved, since {f̂−1

ε } is non-decreasing as ε→ 0,
the desired estimate (B.2) follows.
Proof of the claim: Indeed, suppose by contradiction that this does not hold, i.e. f̂∗(∞) >√
1− t0. Then we can select r0 ∈ (0,∞) so that f̂∗(r0) =

√
1− t0, f̂∗ ∈ [

√
1− t0, 1] and so

W ′(1− f̂2∗ ) = 0 in [r0,∞). It follows that f̂ ′′∗ + N−1
r f̂ ′∗ − N−1

r2
f̂∗ = 0 in [r0,∞) and so

f̂∗(r) = c1r + c2r
1−N in [r0,∞) for some constants c1, c2.

Since f̂∗ is bounded, we must have c1 = 0, which implies that f̂∗(∞) = 0, which gives a
contradiction. The claim is proved.

C A sharp Poincaré inequality for solenoidal vector fields on

the sphere

Lemma C.1. Suppose N ≥ 3 and let /D and dσ denote the covariant derivative and the
volume form on the standard sphere S

N−1. For every smooth divergence-free vector field v
on S

N−1, i.e., /D · v = 0 on S
N−1, one has

∫

SN−1

| /Dv|2 dσ = (N − 2)

∫

SN−1

|v|2 dσ + 2

∫

SN−1

|Sym( /Dv)|2 dσ.

In particular, ∫

SN−1

| /Dv|2 dσ ≥ (N − 2)

∫

SN−1

|v|2 dσ,

and equality holds if and only if v is a Killing field, i.e. Sym( /Dv) = 0.

Proof. In the following computation, we raise and lower indices using the standard metric
g on the round sphere, i.e. /D

i
= gij /Dj , vi = gijv

j , etc. Also, repeated upper-lower indices

are summed from 1 to N − 1. As the commutator [ /D
j
, /Di]vj = Rickiv

k, integration by
parts yields:

∫

SN−1

/Divj /D
j
vi dσ = −

∫

SN−1

/D
j /Divjv

i dσ = −
∫

SN−1

(

/Di /D
j
vj

︸ ︷︷ ︸

=0

+ Ricki
︸ ︷︷ ︸

=(N−2)gki

vk
)

vi dσ

= −(N − 2)

∫

SN−1

|v|2 dσ.

It follows that

4

∫

SN−1

|Sym( /Dv)|2 dσ =

∫

SN−1

| /Divj + /Djvi|2 dσ = 2

∫

SN−1

[

| /Dv|2 − (N − 2)|v|2
]

dσ,

which clearly gives the assertion.
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D Miscellaneous

Lemma D.1. Suppose N ≥ 2, M ≥ 1, and 2 ≤ p <∞ if N = 2 and 2 ≤ p ≤ 2N
N−2 if N ≥ 3.

Let Ω be a bounded smooth open subset of RN and h ∈ C0(Ω × R
M) satisfies

lim
|y|→0, y 6=0

sup
x∈Ω

|h(x, y)|
|y|2 = 0 (D.1)

and, for some C > 0,

h(x, y) ≥ −C|y|2(|y|p−2 + 1) for all x ∈ Ω, y ∈ R
M . (D.2)

Then

lim inf
‖v‖

H1(Ω,RM )
→0

v 6=0, v∈H1
0 (Ω,R

M )

∫

Ω h(x, v(x)) dx

‖v‖2
H1(Ω,RM )

≥ 0.

Note that by the Sobolev embedding theorem and the lower bound of h, the integral
∫

Ω h(x, v(x)) dx ∈ R ∪ {+∞} makes sense for v ∈ H1
0 (Ω,R

M ).

Proof. Suppose by contradiction that the conclusion fails. Then there exist tj → 0+ and
vj ∈ H1

0 (Ω,R
M ) with ‖vj‖H1 = 1 such that, for some ε > 0 independent of j,

∫

Ω

1

t2j
h(x, tjvj(x)) dx ≤ −ε < 0. (D.3)

Without loss of generality, we may also assume that vj converges weakly in H1 and a.e. in
Ω to some v ∈ H1

0 (Ω,R
M ).

Fix some small δ > 0. By Egorov’s theorem, we can select a measurable set A ⊂ Ω such
that vj converges uniformly to v in A and |Ω \ A| ≤ δ/2. Also, since v ∈ L2(Ω), then for
large K = K(δ) ≥ 1, we can select a measurable set B ⊂ A such that |v| ≤ K in B and
|A \B| ≤ δ/2. In particular, we have |vj | ≤ 2K in B for all large j. Hence, by (D.1),

lim
j→∞

∫

B

1

t2j
|h(x, tjvj(x))| dx = 0.

Let q = 2N
N−2 if N ≥ 3 and q be arbitrary in (p,∞) if N = 2. Using the bound h(x, y) ≥

−C|y|2(|y|p−2+1), Hölder’s inequality, the Sobolev embedding theorem for ‖vj‖H1 = 1 and
the fact that |Ω \B| ≤ δ, we have for some constant C ′ > 0 (independent of δ) that

∫

Ω\B

1

t2j
h(x, tjvj(x)) dx ≥ −C

∫

Ω\B
(tp−2
j |vj |p + |vj |2) dx ≥ −C ′

(

tp−2
j δ

1− p
q + δ

1− 2
q

)

.

Putting together the last two estimates, we get

lim inf
j→∞

∫

Ω

1

t2j
h(x, tjvj(x)) dx ≥ −C ′ lim sup

j→∞

(

tp−2
j δ1−

p
q + δ1−

2
q

)

.

Clearly, when δ is sufficiently small, this gives a contradiction to (D.3).
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Linéaire, 11 (1994), pp. 427–440.

[20] R. Ignat, A survey of some new results in ferromagnetic thin films, in Séminaire:
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in Journées “Équations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1995), École
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