Uniqueness of degree-one Ginzburg-Landau vortex in the unit ball in dimensions $N \geq 7$

Radu Ignat*, Luc Nguyen[†], Valeriy Slastikov[‡] and Arghir Zarnescu[§] ¶∥

Abstract

For $\varepsilon > 0$, we consider the Ginzburg-Landau functional for \mathbb{R}^N -valued maps defined in the unit ball $B^N \subset \mathbb{R}^N$ with the vortex boundary data x on ∂B^N . In dimensions $N \geq 7$, we prove that for every $\varepsilon > 0$, there exists a unique global minimizer u_{ε} of this problem; moreover, u_{ε} is symmetric and of the form $u_{\varepsilon}(x) = f_{\varepsilon}(|x|) \frac{x}{|x|}$ for $x \in B^N$.

Keywords: uniqueness, symmetry, minimizers, Ginzburg-Landau. MSC: 35A02. 35B06. 35J50.

1 Introduction and main results

In this note, we consider the following Ginzburg-Landau type energy functional

$$E_{\varepsilon}(u) = \int_{\mathbb{R}^N} \left[\frac{1}{2} |\nabla u|^2 + \frac{1}{2\varepsilon^2} W(1 - |u|^2) \right] dx,$$

where $\varepsilon > 0$, B^N is the unit ball in \mathbb{R}^N , $N \geq 2$, and the potential $W \in C^1((-\infty, 1]; \mathbb{R})$ satisfies

$$W(0) = 0, W(t) > 0 \text{ for all } t \in (-\infty, 1] \setminus \{0\}, \text{ and } W \text{ is convex.}$$
 (1)

We investigate the global minimizers of the energy E_{ε} in the set

$$\mathscr{A} := \{ u \in H^1(B^N; \mathbb{R}^N) : u(x) = x \text{ on } \partial B^N = \mathbb{S}^{N-1} \}.$$

^{*}Institut de Mathématiques de Toulouse & Institut Universitaire de France, UMR 5219, Université de Toulouse, CNRS, UPS IMT, F-31062 Toulouse Cedex 9, France. Email: Radu.Ignat@math.univ-toulouse.fr

[†]Mathematical Institute and St Edmund Hall, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, United Kingdom. Email: luc.nguyen@maths.ox.ac.uk

[‡]School of Mathematics, University of Bristol, University Walk, Bristol, BS8 1TW, United Kingdom. Email: Valeriy.Slastikov@bristol.ac.uk

[§]IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Bizkaia, Spain.

[¶]BCAM, Basque Center for Applied Mathematics, Mazarredo 14, E48009 Bilbao, Bizkaia, Spain. (azarnescu@bcamath.org)

[&]quot;Simion Stoilow" Institute of the Romanian Academy, 21 Calea Griviței, 010702 Bucharest, Romania.

The requirement that u(x) = x on \mathbb{S}^{N-1} is sometimes referred in the literature as the vortex boundary condition.

We note that in our analysis the convexity of W needs not be strict; compare [6] where strict convexity is assumed.

The direct method in the calculus of variations yields the existence of a global minimizer u_{ε} of E_{ε} over \mathscr{A} for all range of $\varepsilon > 0$. Moreover, any minimizer u_{ε} belongs to $C^{1}(\overline{B^{N}}; \mathbb{R}^{N})$ and satisfies $|u_{\varepsilon}| \leq 1$ and the system of PDEs (in the sense of distributions)

$$-\Delta u_{\varepsilon} = \frac{1}{\varepsilon^2} u_{\varepsilon} W'(1 - |u_{\varepsilon}|^2) \quad \text{in } B^N.$$
 (2)

The goal of this note is to give a short proof of the uniqueness and symmetry of the global minimizer of E_{ε} in \mathscr{A} for all $\varepsilon > 0$ in dimensions $N \geq 7$. We prove that, in these dimensions, the global minimizer is unique and given by the unique radially symmetric critical point of E_{ε} defined by

$$u_{\varepsilon}(x) = f_{\varepsilon}(|x|) \frac{x}{|x|} \quad \text{for all } x \in B^N,$$
 (3)

where the radial profile $f_{\varepsilon}:[0,1]\to\mathbb{R}_+$ is the unique solution of

$$\begin{cases} -f_{\varepsilon}'' - \frac{N-1}{r} f_{\varepsilon}' + \frac{N-1}{r^2} f_{\varepsilon} = \frac{1}{\varepsilon^2} f_{\varepsilon} W'(1 - f_{\varepsilon}^2) & \text{for } r \in (0, 1), \\ f_{\varepsilon}(0) = 0, f_{\varepsilon}(1) = 1. \end{cases}$$

$$(4)$$

Moreover, $f_{\varepsilon} > 0$ and $f'_{\varepsilon} > 0$ in (0,1) (see e.g. [4]).

THEOREM 1. Assume that W satisfies (1). If $N \geq 7$, then for every $\varepsilon > 0$, u_{ε} given in (3) is the unique global minimizer of E_{ε} in \mathscr{A} .

To our knowledge, the question about the uniqueness of minimizers/critical points of E_{ε} in \mathscr{A} for any $\varepsilon > 0$ was raised in dimension N = 2 in the book of Bethuel, Brezis and Hélein [1, Problem 10, page 139], and in general dimensions $N \geq 2$ and also for the blow-up limiting problem around the vortex (when the domain is the whole space \mathbb{R}^N and by rescaling, ε can be assumed equal to 1) in an article of Brezis [2, Section 2].

It is well known that uniqueness is present for large enough $\varepsilon > 0$ for any $N \ge 2$. Indeed, for any $\varepsilon > (W'(1)/\lambda_1)^{1/2}$ where λ_1 is the first eigenvalue of $-\Delta$ in B^N with zero Dirichlet boundary condition, E_{ε} is strictly convex in $\mathscr A$ and thus has a unique critical point in $\mathscr A$ (that is the global minimizer of our problem).

For sufficiently small $\varepsilon > 0$ all results regarding uniqueness question available in the literature are in the affirmative. In particular, we have:

- (i) Pacard and Rivière [11, Theorem 10.2] showed in dimension N=2 that, for small $\varepsilon > 0$, E_{ε} has in fact a unique critical point in \mathscr{A} .
- (ii) Mironescu [10] showed in dimension N=2 that, when B^2 is replaced by \mathbb{R}^2 and $\varepsilon=1$, a local minimizer of E_{ε} subjected to a degree-one boundary condition at infinity is

unique (up to translation and suitable rotation). This was generalized to dimension N=3 by Millot and Pisante [9] and dimensions $N\geq 4$ by Pisante [12], also in the case of the blow-up limiting problem on \mathbb{R}^N and $\varepsilon=1$.

These results should be compared to those for the limit problem on the unit ball obtained by sending $\varepsilon \to 0$. In this limit, the Ginzburg-Landau problem 'converges' to the harmonic map problem from B^N to \mathbb{S}^{N-1} . It is well known that, the vortex boundary condition gives rise to a unique minimizing harmonic map $x \mapsto \frac{x}{|x|}$ if $N \geq 3$; see Brezis, Coron and Lieb [3] in dimension N = 3, Jäger and Kaul [7] in dimensions $N \geq 7$, and Lin [8] in dimensions $N \geq 3$.

We highlight that, in contrast to the above, our result holds for $all \ \varepsilon > 0$, provided that $N \ge 7$. The method of our proof deviates somewhat from that in the aforementioned works. In fact it is reminiscent of our recent work [6] on the (non-)uniqueness and symmetry of minimizers of the Ginzburg-Landau functionals for \mathbb{R}^M -valued maps defined on N-dimensional domains, where M is not necessarily the same as N. However we note that the results in [6] do not directly apply to the present context, as in [6] it is required that W be $strictly \ convex$. Furthermore, a priori, it is not clear why non-strict convexity of the potential W is sufficient to ensure uniqueness of global minimizers.

We exploit the convexity of W to lower estimate the 'excess' energy by a suitable quadratic energy which can be handled by the factorization trick à la Hardy. Indeed, the positivity of the excess energy is then related to the validity of a Hardy-type inequality, which explains our restriction of $N \geq 7$. This echoes our observation made in [6] that a result of Jäger and Kaul [7] on the minimality of the equator map in these dimensions is related to a certain inequality involving the sharp constant in the Hardy inequality.

We expect that our result remains valid in dimensions $2 \le N \le 6$, but this goes beyond the scope of this note and remains for further investigation.

2 Proof of Theorem 1

Theorem 1 will be obtained as a consequence of a stronger result on the uniqueness of global minimizers of for the \mathbb{R}^M -valued Ginzburg-Landau functional with $M \geq N$. By a slight abuse of notation, we consider the energy functional

$$E_{\varepsilon}(u) = \int_{B^N} \left[\frac{1}{2} |\nabla u|^2 + \frac{1}{2\varepsilon^2} W(1 - |u|^2) \right] dx,$$

where u belongs to

$$\mathscr{A} := \{ u \in H^1(B^N; \mathbb{R}^M) : u(x) = x \text{ on } \partial B^N = \mathbb{S}^{N-1} \subset \mathbb{R}^M \}.$$

THEOREM 2. Assume that W satisfies (1). If $M \ge N \ge 7$, then for every $\varepsilon > 0$, u_{ε} given in (3) is the unique global minimizer of E_{ε} in \mathscr{A} .

When W is strictly convex, the above theorem is proved in [6]; see Theorem 1.7. The argument therein uses the strict convexity in a crucial way.

Proof. The proof will be done in several steps. First, we consider the difference between the energies of the critical point u_{ε} , defined in (3), and an arbitrary competitor $u_{\varepsilon} + v$ and show that this difference is controlled from below by some quadratic energy functional $F_{\varepsilon}(v)$. Second, we employ the positivity of the radial profile f_{ε} in (4) and apply the Hardy decomposition method in order to show that $F_{\varepsilon}(v) \geq 0$, which proves in particular that u_{ε} is a global minimizer of E_{ε} . Finally, we characterise the situation when this difference is zero and conclude to the uniqueness of the global minimizer u_{ε} .

Step 1: Lower bound for energy difference. For any $v \in H_0^1(B^N; \mathbb{R}^M)$, we have

$$E_{\varepsilon}(u_{\varepsilon} + v) - E_{\varepsilon}(u_{\varepsilon}) = \int_{B^{N}} \left[\nabla u_{\varepsilon} \cdot \nabla v + \frac{1}{2} |\nabla v|^{2} \right] dx + \frac{1}{2\varepsilon^{2}} \int_{B^{N}} \left[W(1 - |u_{\varepsilon} + v|^{2}) - W(1 - |u_{\varepsilon}|^{2}) \right] dx.$$

Using the convexity of W, we have

$$W(1 - |u_{\varepsilon} + v|^2) - W(1 - |u_{\varepsilon}|^2) \ge -W'(1 - |u_{\varepsilon}|^2)(|u_{\varepsilon} + v|^2 - |u_{\varepsilon}|^2).$$

The last two relations imply that

$$E_{\varepsilon}(u_{\varepsilon} + v) - E_{\varepsilon}(u_{\varepsilon}) \ge \int_{B^{N}} \left[\nabla u_{\varepsilon} \cdot \nabla v - \frac{1}{\varepsilon^{2}} W'(1 - f_{\varepsilon}^{2}) u_{\varepsilon} \cdot v \right] dx + \int_{B^{N}} \left[\frac{1}{2} |\nabla v|^{2} - \frac{1}{2\varepsilon^{2}} W'(1 - f_{\varepsilon}^{2}) |v|^{2} \right] dx.$$

Moreover, by (2), we obtain

$$E_{\varepsilon}(u_{\varepsilon} + v) - E_{\varepsilon}(u_{\varepsilon}) \ge \int_{\mathbb{R}^{N}} \left[\frac{1}{2} |\nabla v|^{2} - \frac{1}{2\varepsilon^{2}} W'(1 - f_{\varepsilon}^{2}) |v|^{2} \right] dx =: \frac{1}{2} F_{\varepsilon}(v)$$
 (5)

for all $v \in H_0^1(B^N; \mathbb{R}^M)$.

Step 2: A rewriting of $F_{\varepsilon}(v)$ using the decomposition $v = f_{\varepsilon}w$ for every scalar test function $v \in C_c^{\infty}(B^N \setminus \{0\}; \mathbb{R})$. We consider the operator

$$L_{\varepsilon} := \frac{1}{2} \nabla_{L^2} F_{\varepsilon} = -\Delta - \frac{1}{\varepsilon^2} W'(1 - f_{\varepsilon}^2).$$

Using the decomposition

$$v = f_{\varepsilon} w$$

for the scalar function $v \in C_c^{\infty}(B^N \setminus \{0\}; \mathbb{R})$, we have (see e.g. [5, Lemma A.1]):

$$F_{\varepsilon}(v) = \int_{B^N} L_{\varepsilon}v \cdot v \, dx = \int_{B^N} w^2 L_{\varepsilon} f_{\varepsilon} \cdot f_{\varepsilon} \, dx + \int_{B^N} f_{\varepsilon}^2 |\nabla w|^2 \, dx$$
$$= \int_{B^N} f_{\varepsilon}^2 \left(|\nabla w|^2 - \frac{N-1}{r^2} w^2 \right) dx,$$

because (4) yields $L_{\varepsilon}f_{\varepsilon} \cdot f_{\varepsilon} = -\frac{N-1}{r^2}f_{\varepsilon}^2$ in B^N .

Step 3: We prove that $F_{\varepsilon}(v) \geq 0$ for every scalar test function $v \in C_c^{\infty}(B^N \setminus \{0\}; \mathbb{R})$. Within the notation $v = f_{\varepsilon}w$ of Step 2 with $v, w \in C_c^{\infty}(B^N \setminus \{0\}; \mathbb{R})$, we use the decomposition

$$w = \varphi q$$

with $\varphi = |x|^{-\frac{N-2}{2}}$ being the first eigenfunction of the Hardy's operator $-\Delta - \frac{(N-2)^2}{4|x|^2}$ in $\mathbb{R}^N \setminus \{0\}$ and $g \in C_c^{\infty}(B^N \setminus \{0\}; \mathbb{R})$. We compute

$$|\nabla w|^2 = |\nabla \varphi|^2 g^2 + |\nabla g|^2 \varphi^2 + \frac{1}{2} \nabla(\varphi^2) \cdot \nabla(g^2).$$

As $|\nabla \varphi|^2 = \frac{(N-2)^2}{4|x|^2} \varphi^2$ and φ^2 is harmonic in $B^N \setminus \{0\}$, integration by parts yields

$$F_{\varepsilon}(v) = \int_{B^{N}} f_{\varepsilon}^{2} \left(|\nabla g|^{2} \varphi^{2} + \frac{(N-2)^{2}}{4r^{2}} \varphi^{2} g^{2} - \frac{N-1}{r^{2}} \varphi^{2} g^{2} \right) dx - \frac{1}{2} \int_{B^{N}} \nabla(\varphi^{2}) \cdot \nabla(f_{\varepsilon}^{2}) g^{2} dx$$

$$\geq \int_{B^{N}} f_{\varepsilon}^{2} |\nabla g|^{2} \varphi^{2} dx + \left(\frac{(N-2)^{2}}{4} - (N-1) \right) \int_{B^{N}} \frac{f_{\varepsilon}^{2}}{r^{2}} \varphi^{2} g^{2} dx$$

$$\geq \left(\frac{(N-2)^{2}}{4} - (N-1) \right) \int_{B^{N}} \frac{v^{2}}{r^{2}} dx \geq 0, \tag{6}$$

where we have used $N \geq 7$ and $\frac{1}{2}\nabla(\varphi^2)\cdot\nabla(f_{\varepsilon}^2) = 2\varphi\varphi'f_{\varepsilon}f'_{\varepsilon} \leq 0$ in $B^N\setminus\{0\}$.

Step 4: We prove that $F_{\varepsilon}(v) \geq 0$ for every $v \in H_0^1(B^N; \mathbb{R}^M)$ meaning that u_{ε} is a global minimizer of E_{ε} over \mathscr{A} ; moreover, $F_{\varepsilon}(v) = 0$ if and only if v = 0. Let $v \in H_0^1(B^N; \mathbb{R}^M)$. As a point has zero H^1 capacity in \mathbb{R}^N , a standard density argument implies the existence of a sequence $v_k \in C_c^{\infty}(B^N \setminus \{0\}; \mathbb{R}^M)$ such that $v_k \to v$ in $H^1(B^N, \mathbb{R}^M)$ and a.e. in B^N . On the one hand, by definition (5) of F_{ε} , since $W'(1-f_{\varepsilon}^2) \in L^{\infty}$, we deduce that $F_{\varepsilon}(v_k) \to F_{\varepsilon}(v)$ as $k \to \infty$. On the other hand, by (6) and Fatou's lemma, we deduce

$$\liminf_{k \to \infty} F_{\varepsilon}(v_k) \ge \left(\frac{(N-2)^2}{4} - (N-1)\right) \liminf_{k \to \infty} \int_{B^N} \frac{v_k^2}{r^2} dx$$

$$\ge \left(\frac{(N-2)^2}{4} - (N-1)\right) \int_{B^N} \frac{v^2}{r^2} dx.$$

Therefore, we conclude that

$$F_{\varepsilon}(v) \ge \left(\frac{(N-2)^2}{4} - (N-1)\right) \int_{B^N} \frac{v^2}{r^2} dx \ge 0, \quad \forall v \in H_0^1(B^N; \mathbb{R}^M),$$

implying by (5) that u_{ε} is a minimizer of E_{ε} over \mathscr{A} . Moreover, $F_{\varepsilon}(v) = 0$ if and only if v = 0.

Step 5: Conclusion. We have shown that u_{ε} is a global minimizer. Assume that \tilde{u}_{ε} is another global minimizer of E_{ε} over \mathscr{A} . If $v := \tilde{u}_{\varepsilon} - u_{\varepsilon}$, then $v \in H_0^1(B^N; \mathbb{R}^M)$ and by Steps 1 and 4, we have that $0 = E_{\varepsilon}(\tilde{u}_{\varepsilon}) - E_{\varepsilon}(u_{\varepsilon}) \geq F_{\varepsilon}(v) \geq 0$, which yields $F_{\varepsilon}(v) = 0$. Step 4 implies that v = 0, i.e., $\tilde{u}_{\varepsilon} = u_{\varepsilon}$.

Remark 3. Recall that in the case $M \geq N \geq 7$, Jäger and Kaul [7] proved the uniqueness of global minimizer for harmonic map problem

$$\min_{u \in \mathscr{A}_*} \int_{B^N} |\nabla u|^2 \, dx,$$

where $\mathscr{A}_* = \{u \in H^1(B^N; \mathbb{S}^{M-1}) : u(x) = x \text{ on } \partial B^N = \mathbb{S}^{N-1} \subset \mathbb{S}^{M-1}\}$. This can also be seen by the method above as observed in our earlier paper [6]. We give the argument here for readers' convenience: Take a perturbation $v \in H^1_0(B^N, \mathbb{R}^M)$ of the harmonic map $u_*(x) = \frac{x}{|x|}$ such that $|u_*(x) + v(x)| = 1$ a.e. in B^N . Then, by [6, Proof of Theorem 5.1],

$$\int_{B^N} \left[|\nabla (u_* + v)|^2 - |\nabla u_*|^2 \right] dx = \int_{B^N} \left[|\nabla v|^2 - |\nabla u_*|^2 |v|^2 \right] dx = \int_{B^N} \left[|\nabla v|^2 - (N-1) \frac{|v|^2}{|x|^2} \right] dx.$$

Using Hardy's inequality in dimension N we arrive at

$$\int_{B^N} \left[|\nabla (u_* + v)|^2 - |\nabla u_*|^2 \right] dx \ge \left(\frac{(N-2)^2}{4} - (N-1) \right) \int_{B^N} \frac{|v|^2}{|x|^2} dx.$$

The result follows since $N \geq 7$.

Acknowledgment.

R.I. acknowledges partial support by the ANR project ANR-14-CE25-0009-01. V.S. acknowledges support by the Leverhulme grant RPG-2014-226. A.Z. was partially supported by a Grant of the Romanian National Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project number PN-II-RU-TE-2014-4-0657; by the Basque Government through the BERC 2014-2017 program; and by the Spanish Ministry of Economy and Competitiveness MINECO: BCAM Severo Ochoa accreditation SEV-2013-0323.

References

- [1] Bethuel, F., Brezis, H., and Hélein, F. *Ginzburg-Landau vortices*. Progress in Nonlinear Differential Equations and their Applications, 13. Birkhäuser Boston Inc., Boston, MA, 1994.
- [2] Brezis, H. Symmetry in nonlinear PDE's. In *Differential equations: La Pietra 1996* (Florence), vol. 65 of *Proc. Sympos. Pure Math.* Amer. Math. Soc., Providence, RI, 1999, pp. 1–12.
- [3] Brezis, H., Coron, J.-M., and Lieb, E. H. Harmonic maps with defects. *Comm. Math. Phys.* 107, 4 (1986), 649–705.
- [4] IGNAT, R., NGUYEN, L., SLASTIKOV, V., AND ZARNESCU, A. Uniqueness results for an ODE related to a generalized Ginzburg-Landau model for liquid crystals. SIAM J. Math. Anal. 46, 5 (2014), 3390–3425.

- [5] IGNAT, R., NGUYEN, L., SLASTIKOV, V., AND ZARNESCU, A. Stability of the melting hedgehog in the Landau-de Gennes theory of nematic liquid crystals. Arch. Ration. Mech. Anal. 215, 2 (2015), 633–673.
- [6] IGNAT, R., NGUYEN, L., SLASTIKOV, V., AND ZARNESCU, A. On the uniqueness of minimisers of Ginzburg-Landau functionals. arXiv:1708.05040 (2017).
- [7] JÄGER, W., AND KAUL, H. Rotationally symmetric harmonic maps from a ball into a sphere and the regularity problem for weak solutions of elliptic systems. *J. Reine Angew. Math.* 343 (1983), 146–161.
- [8] Lin, F.-H. A remark on the map x/|x|. C. R. Acad. Sci. Paris Sér. I Math. 305, 12 (1987), 529–531.
- [9] MILLOT, V., AND PISANTE, A. Symmetry of local minimizers for the three-dimensional Ginzburg-Landau functional. *J. Eur. Math. Soc. (JEMS)* 12, 5 (2010), 1069–1096.
- [10] MIRONESCU, P. Les minimiseurs locaux pour l'équation de Ginzburg-Landau sont à symétrie radiale. C. R. Acad. Sci. Paris Sér. I Math. 323, 6 (1996), 593–598.
- [11] PACARD, F., AND RIVIÈRE, T. Linear and nonlinear aspects of vortices, vol. 39 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston, Inc., Boston, MA, 2000. The Ginzburg-Landau model.
- [12] PISANTE, A. Two results on the equivariant Ginzburg-Landau vortex in arbitrary dimension. J. Funct. Anal. 260, 3 (2011), 892–905.