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Abstract

We study the minimizers of an energy functional which is obtained as the Γ-limit of a family
of functionals depending on a small parameter ε > 0, associated with a function u ∈ BV (Ω, S1)
and a positive parameter p. We find necessary and sufficient conditions on p and the dimension
under which these minimizers coincide with the optimal liftings of u, for every u ∈ BV (Ω, S1).
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1 Introduction

Let Ω ⊂ RN be a bounded domain and u ∈ BV (Ω, S1), i.e., u = (u1, u2) ∈ L1(Ω,R2), |u(x)| = 1
for almost every x ∈ Ω and the derivative of u (in the distributional sense) is a finite 2×N−matrix
Radon measure. The BV -seminorm of u is given by

∫

Ω

|Du| = sup

{∫

Ω

2∑

k=1

uk div ζk dx : ζk ∈ C1
c (Ω,R2),

2∑

k=1

|ζk(x)|2 ≤ 1,∀x ∈ Ω

}
< ∞ ,

where | · | is the Euclidean norm in R2. A BV lifting of u is a function ϕ ∈ BV (Ω,R) such that

u = eiϕ a.e. in Ω.

The existence of a BV lifting for any u ∈ BV (Ω, S1) was first proved by Giaquinta, Modica and
Soucek [5]. In general, we may have that

min
{ ∫

Ω

|Dϕ| : ϕ ∈ BV (Ω,R), eiϕ = u a.e. in Ω
}

>

∫

Ω

|Du|.

The optimal control of a BV lifting was given by Davila and Ignat [3] who showed the existence
of a lifting ϕ ∈ BV ∩ L∞(Ω,R) such that

∫

Ω

|Dϕ| ≤ 2
∫

Ω

|Du|. (1)

The constant 2 in the inequality (1) is optimal for N ≥ 2 (for example, consider

u(x) =
x

|x| (2)
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in the unit disc in R2, see [3] for details).
It is natural to investigate the quantity

E(u) = min
{ ∫

Ω

|Dϕ| : ϕ ∈ BV (Ω,R), eiϕ = u a.e. in Ω
}

. (3)

The case u ∈ W 1,1 was previously studied in [2] while the more general case u ∈ BV was studied

in [5, 7, 8]. We shall say that a lifting ϕ ∈ BV (Ω,R) of u is optimal if E(u) =
∫

Ω

|Dϕ|, i.e., if

ϕ is a minimizer in (3). An optimal lifting of u always exists but in general it is not unique (i.e.,
there might exist two optimal BV liftings ϕ1 and ϕ2 such that ϕ1−ϕ2 is not identically constant).
For example, for the function u given in (2), every optimal lifting is an argument function whose
jump set is a radius of the unit disc, see [7]. The structure of an optimal lifting of u is described in
[5, 8, 7] using the notion of minimal connection between singularity sets of dimension N − 2 of u.

A natural way to approximate liftings of u is to consider, for a fixed parameter 0 < p < +∞,
the family of energy functionals

{
F

(u,p)
ε

}
ε>0

defined by

F (u,p)
ε (ϕ) = ε

∫

Ω

|∇ϕ|2 +
1
ε

∫

Ω

|u− eiϕ|p, ∀ϕ ∈ H1(Ω,R). (4)

Due to the penalizing term in (4), sequences of minimizers ϕε of F
(u,p)
ε are expected to converge to

a lifting ϕ0 of u as ε → 0. More precisely, Poliakovsky [9] proved that for p > 1 and for bounded
domains Ω with Lipschitz boundary, any sequence of minimizers ϕε ∈ H1(Ω,R) of F

(u,p)
ε , satisfying

| ∫
Ω

ϕε| ≤ C, converges strongly in L1 (up to a subsequence) to a lifting ϕ0 ∈ BV (Ω,R) of u as
ε → 0 and ϕ0 is a minimizer of the Γ−limit energy F

(u,p)
0 : L1(Ω,R) → R given by

F
(u,p)
0 (ϕ) =





2
∫

S(ϕ)

f (p)(|ϕ+ − ϕ−|) dHN−1 if ϕ is a BV lifting of u,

+∞ otherwise.
(5)

Here, S(ϕ) is the jump set of ϕ ∈ BV (Ω,R) and ϕ−, ϕ+ are the traces of ϕ on each of the sides
of the jump set and f (p) : [0, +∞) → R is the function defined by

f (p)(θ) = inf
t∈R

∫ θ+t

t

|eis − 1|p/2 ds, ∀θ ≥ 0.

Notice that F
(u,p)
0 (ϕ) < +∞ for a BV lifting ϕ of u since f (p) is an increasing Lipschitz function

(see Lemma 1). Due to the fact that the energies
{
F

(u,p)
ε

}
ε>0

and F
(u,p)
0 are invariant with respect

to translations by 2πk, k ∈ Z, uniqueness of minimizers has a meaning up to additive constants in
2πZ.

The goal of this paper is to study the question whether the minimizers of F
(u,p)
0 are necessarily

optimal liftings of u, for any p. Surprisingly, this turns out to be the case (in general) only in
dimension one, while in dimension N ≥ 2 this holds only for p = 4. Our main result is the
following:

Theorem 1 Let Ω be a bounded domain in RN .

(i) If N = 1 then for every u ∈ BV (Ω, S1) and p ∈ (0, +∞), ϕ is a minimizer of F
(u,p)
0 if and

only if ϕ is an optimal lifting of u ;

(ii) If N ≥ 2 then only for p = 4 it is true that for every u ∈ BV (Ω, S1), any minimizer of F
(u,p)
0

is an optimal lifting of u.
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We recall that for a function u in the smaller class W 1,1(Ω, S1), a lifting of u is optimal if and only
if it is a minimizer of F

(u,p)
0 , for every p ∈ (0, +∞) (see [9]).

The paper is organized as follows. In Section 2 we recall some basic notions of BV spaces
that will be needed throughout this paper. Section 3 is devoted to the one dimensional case. In
Section 4 we treat the case p = 4, which was already studied in [9]. In Section 5 we construct
counterexamples needed for the proof of assertion (ii) of Theorem 1 in the case 0 < p < 4. For
any domain Ω we construct a piecewise constant function u ∈ BV (Ω, S1) depending on p such
that F

(u,p)
0 has a unique minimizer ξ0 (up to 2πZ constants), u has a unique optimal lifting ζ0 (up

to 2πZ constants) and ξ0 − ζ0 is not a constant function. In Section 6, we deal with the general
case p 6= 4. For any bounded domain G, we construct a family of functions {Ut}t∈(−1/4,1/4) that
contains elements Ut with a unique optimal lifting whose energy F

(Ut,p)
0 is strictly larger than the

minimal energy min F
(Ut,p)
0 . (In addition, for those functions Ut, we will prove that F

(Ut,p)
0 has a

unique minimizer up to a 2πZ translation.)
For the sake of simplicity of notations we shall often suppress the dependence on u and p when

referring to the energies
{
F

(u,p)
ε

}
ε>0

, F
(u,p)
0 and f (p).

2 Preliminaries about the space BV

In this section we present some known results on BV functions that can be found in the book [1] by
Ambrosio, Fusco and Pallara (see also Giusti [6] and Evans and Gariepy [4]). Let v ∈ BV (Ω,Rm).
A point x ∈ Ω is a point of approximate continuity of v if there exists ṽ(x) ∈ Rm such that
ṽ(x) = ap-lim

y→x
v(y), that is:

lim
r→0

HN
(
Br(x) ∩ {y ∈ Ω : |v(y)− ṽ(x)| > ε})

HN (Br(x))
= 0, ∀ε > 0.

The complement of the set of points of approximate continuity is denoted by S(v). It is known (see
[1]) that the set S(v) is a countably HN−1-rectifiable Borel set, i.e., S(v) is σ-finite with respect to
the Hausdorff measure HN−1 and there exist countably many N −1 dimensional C1-hypersurfaces

{Sk}∞k=1 such that HN−1
(
S(v) \

∞⋃
k=1

Sk

)
= 0. Moreover, for HN−1-a.e. x ∈ S(v) there exist

v+(x), v−(x) ∈ Rm and a unit vector νv(x) such that

ap-lim
y→x, 〈y−x,νv(x)〉>0

v(y) = v+(x) and ap-lim
y→x, 〈y−x,νv(x)〉<0

v(y) = v−(x). (6)

In the sequel we shall refer to S(v) as the jump set of v, although (6) is valid only for HN−1-a.e.
x ∈ S(v). The vector field νv is called the orientation of the jump set S(v). Dv is a m×N matrix
valued Radon measure which can be decomposed as Dv = Dav + Djv + Dcv, where Dav is the
absolutely continuous part of Dv with respect to the Lebesgue measure, while Djv and Dcv are
defined by

Djv = DvxS(v) and Dcv = (Dv −Dav)x(Ω \ S(v)).

We shall call Djv and Dcv the jump part and the Cantor part, respectively, of Dv. We have:

1. Dav = ∇vHN where ∇v ∈ L1(Ω,Rm×N ) is the approximate differential of v;

2. (Dcv)(B) = 0 for any Borel set B ⊂ Ω which is σ-finite with respect to HN−1;

3. Djv = (v+ − v−)⊗ νv HN−1xS(v).
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Throughout this paper we identify the function v with its precise representative v∗ : Ω 7→ Rm given
by

v∗(x) = lim
r→0

1
HN (Br(x))

∫

Br(x)

v(y) dy ,

if this limit exists, and v∗(x) = 0 otherwise. Note that v∗ specifies the values of v except on a
HN−1-negligible set.

We also recall Vol’pert’s chain rule. Let Ω be a bounded domain and assume that v ∈
BV (Ω,Rm) and g ∈ [C1(Rm)]q is a Lipschitz function. Then w = g ◦ v belongs to BV (Ω,Rq)
and

Daw = ∇g(v)∇vHN , Dcw = ∇g(v)Dcv, Djw =
[
g(v+)− g(v−)

]⊗ νv HN−1xS(v) . (7)

3 The one-dimensional case

In this section we shall show that the optimal liftings of u coincide with the minimizers of F
(u,p)
0 in

the one-dimensional case, for every parameter p > 0 and any function u ∈ BV (Ω, S1). The proof
uses the same method as in [8].

Proof of (i) in Theorem 1. Let Ω be an interval in R and let ϕ ∈ BV (Ω,R) be a lifting of u.
By the chain rule (7), it follows that

(ϕ̇)a +(ϕ̇)c = u∧ ((u̇)a +(u̇)c) and (ϕ̇)j =
∑

a∈S(u)

(ϕ(a+)−ϕ(a−))δa +
∑

b∈B

(ϕ(b+)−ϕ(b−))δb (8)

where B ⊂ Ω is a finite set such that S(u)∩B = ∅ and ϕ(b+)−ϕ(b−) = −2παb, αb ∈ Z, for every

b ∈ B. For any a ∈ S(u), we denote da(u) = Arg
u(a+)
u(a−)

where Arg ω ∈ (−π, π] is the argument

of the unit complex number ω. Since f (p) is increasing and |ϕ(a+)− ϕ(a−)| ≥ |da(u)| in S(u), it
follows that

f (p)(|ϕ(a+)− ϕ(a−)|) ≥ f (p)(|da(u)|) if a ∈ S(u) and f (p)(|ϕ(b+)− ϕ(b−)|) ≥ 0 if b ∈ B (9)

with equality if and only if

|ϕ(a+)− ϕ(a−)| = |da(u)| for a ∈ S(u) and αb = 0 for b ∈ B. (10)

According to (8), we have
∫

Ω

(
|(ϕ̇)a|+ |(ϕ̇)c|

)
=

∫

Ω

(
|(u̇)a|+ |(u̇)c|

)
.

By [8], it follows that

E(u) =
∫

Ω

(
|(u̇)a|+ |(u̇)c|

)
+

∑

a∈S(u)

|da(u)|,

i.e., ϕ is an optimal lifting if
∫

Ω

|(ϕ̇)j | =
∑

a∈S(u)

|da(u)|. Therefore, by (9) and (10), we obtain that

min F
(u,p)
0 = 2

∑

a∈S(u)

f (p)(|da(u)|).

Finally, we conclude that ϕ is a minimizer of F
(u,p)
0 if and only if ϕ is an optimal lifting of u. ¤
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4 The case p = 4

In this section we shall recall the proof from [9] of the result that states that for p = 4 minimizers
of the Γ-limit energy F

(u,p)
0 coincide with those of the energy E(u) in (3) for every u ∈ BV (Ω, S1).

We also derive an asymptotic upper bound for the minimal energy of F
(u,4)
ε in terms of the mass

of the measure |Du|.
Proof of (ii) of Theorem 1 for p = 4. Let ϕ ∈ BV (Ω,R) be a lifting of u. Then |u+ − u−| =
2
∣∣ sin

ϕ+ − ϕ−

2

∣∣ HN−1-a.e. in S(u). A simple computation yields

f (4)(θ) = 2θ − 4
∣∣ sin

θ

2

∣∣, ∀θ ≥ 0.

This implies that

F
(u,4)
0 (ϕ) = 4

∫

S(ϕ)

|ϕ+ − ϕ−| dHN−1 − 4
∫

S(u)

|u+ − u−| dHN−1.

On the other hand, the chain rule (7) yields that

Daϕ = u ∧Dau and Dcϕ = u ∧Dcu (11)

and therefore, the total variation of the diffuse part of Dϕ is completely determined by Du, i.e.,
∫

Ω

(|Daϕ|+ |Dcϕ|) =
∫

Ω

(|Dau|+ |Dcu|). (12)

Hence, ϕ is a minimizer of F
(u,4)
0 if and only if ϕ is an optimal lifting of u. ¤

As a consequence, we deduce an estimate for the energy F
(u,4)
ε which relies on some results

from [3] and [9].

Corollary 1 Let Ω be a bounded domain in RN with Lipschitz boundary and u ∈ BV (Ω, S1).
Then

minF (u,4)
ε ≤ 4

∫

Ω

|Du|+ o(1)

where o(1) is a quantity that tends to 0 as ε → 0.

Proof. By contradiction, assume that there exist a constant δ > 0 and a sequence {εk}k≥1 tending
to 0 as k →∞, such that

F (u,4)
εk

(ϕεk
) ≥ 4

∫

Ω

|Du|+ δ , (13)

where ϕεk
∈ H1(Ω,R) is a minimizer of F

(u,4)
εk . Since the value of F

(u,4)
εk (ϕεk

) does not change
by adding a constant multiple of 2π to ϕεk

, we may assume that 0 ≤ ∫
Ω

ϕεk
dx ≤ 2πHN (Ω).

According to [9] it follows that, up to a subsequence,

ϕεk
→ ϕ0 in L1 and lim

k→∞
F (u,4)

εk
(ϕεk

) = F
(u,4)
0 (ϕ0) ,

where ϕ0 is a BV lifting of u that minimizes the Γ−limit energy F
(u,4)
0 . Using (13), it follows that

F
(u,4)
0 (ϕ0) ≥ 4

∫

Ω

|Du|+ δ. (14)
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On the other hand, by assertion (ii) of Theorem 1 in the case p = 4, we know that ϕ0 is an
optimal lifting and

F
(u,4)
0 (ϕ0) = 4

∫

S(ϕ0)

|ϕ+
0 − ϕ−0 | dHN−1 − 4

∫

S(u)

|u+ − u−| dHN−1.

By (1) we deduce that
∫
Ω
|Dϕ0| ≤ 2

∫
Ω
|Du| and therefore, it implies by (12),

F
(u,4)
0 (ϕ0) ≤ 4

∫

Ω

|Du|

which contradicts (14). ¤
It would be interesting to have a direct proof of Corollary 1 which does not use the results in

[3] and [9]. That will lead to a new proof of the inequality (1).

5 The case p ∈ (0, 4)

In this section we prove the case p < 4 of assertion (ii) of Theorem 1. We shall first construct, for
each 0 < p < 4, a piecewise constant function u ∈ BV (R, S1) in a rectangle R ⊂ R2 such that no
minimizer of F

(u,p)
0 is an optimal lifting of u. Then, we shall adapt this example to the case of an

arbitrary bounded domain Ω.

We start by two preliminary results about the function f (p):

Lemma 1 Let 0 < p < ∞. The function f (p) is an increasing Lipschitz continuous function.
Moreover,

f (p)(θ) =





∫ θ/2

−θ/2

|eis − 1|p/2 ds if θ ∈ [2πk, 2π(k + 1)], k even,
∫ θ/2+π

−θ/2+π

|eis − 1|p/2 ds if θ ∈ [2πk, 2π(k + 1)], k odd.
(15)

Proof. In the sequel we shall write for short f instead of f (p). The function

s ∈ R 7→ |eis − 1|p/2 = 2p/2
∣∣ sin

s

2

∣∣p/2

is 2π-periodic, increasing on (0, π) and symmetric with respect to π. Hence, if θ ∈ [0, 2π], then

f(θ) =
∫ θ/2

−θ/2

|eis − 1|p/2 ds. In general, if θ = 2πk + θ̃ with θ̃ ∈ [0, 2π] and k ∈ N, we have

f(θ) = f(2πk) + f(θ̃) and (15) is now straightforward. In particular, we deduce that

f(2πk) = kf(2π) , ∀k ∈ N. (16)

From here, we conclude that almost everywhere in (0,+∞), f is differentiable and 0 < f ′ ≤ 2p/2.
¤

Lemma 2 Let 0 < p < 4. Then the function θ ∈ (0, π) 7→ f (p)(2π − θ)− f (p)(θ)
π − θ

is increasing.
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Proof. It is sufficient to prove that the function g : (0, π) → R defined by

g(θ) = f(2π − θ)− f(θ)− (π − θ)
(

f ′(2π − θ) + f ′(θ)
)

is positive, where we denoted f = f (p) as above. Indeed, by Lemma 1 we have for every θ ∈ (0, π),

g′(θ) = (π − θ)
(
f ′′(2π − θ)− f ′′(θ)

)
= p 2p/2−4 (π − θ) sin

θ

2

(
cosp/2−2 θ

4
− sinp/2−2 θ

4

)
.

Since p < 4 it follows that g′(θ) < 0, ∀θ ∈ (0, π); hence g is decreasing. Since lim
θ→π

g(θ) = 0, we

deduce that g must be positive on (0, π). ¤

Construction of a counter-example u when Ω is a rectangle. Let p ∈ (0, 4). We first

construct our function u in a certain rectangle R. Let θ1 =
4π

5
and θ2 =

3π

4
. Thanks to Lemma 2

we can choose L3 > L1 > 0 such that

5
4

=
π − θ2

π − θ1
>

L3

L1
>

f (p)(2π − θ2)− f (p)(θ2)
f (p)(2π − θ1)− f (p)(θ1)

> 1. (17)

Set also L2 = L3 and L4 = L3. We consider the rectangle

R =
{

(x, y) ∈ R2 : −L2 < x < L4, −L3 < y < L1

}
.

.

.

..

. ..

. .

O

A1(−L2, L1) A4(L4, L1)

A2(−L2,−L3) A3(L4,−L3)

. .
At

1

At
3At

2

At
4

Rt

Γ1

Γ2 Γ3

Γ4

U2

U1

U3

U4

. .

. .

.

. .

.

at
1

at
4

at
3

at
2

Figure 1: The rectangle construction for p ∈ (0, 4)

Notice that the rectangle R depends on p by the choice of the edges; moreover, the choice
(17) is no longer possible for p ≥ 4. In the rectangle R, we denote the vertices A1 = (−L2, L1),
A2 = (−L2,−L3), A3 = (L4,−L3) and A4 = (L4, L1) and also the interior full triangles Uk =
4AkOAk−1 and the segments Γk = (OAk) for 1 ≤ k ≤ 4 where O = (0, 0) is the origin and we
use the convention that A0 = A4, see Figure 1.

7



Let ϕ0 ∈ BV (R,R) be the piecewise constant function defined by

ϕ0(x, y) =





π
2 if 0 < x < L4, 0 < y < L1,

5π
4 if −L2 < x < 0, 0 < y < L1,
3π
2 if −L2 < x < 0, −L3 < y < 0,
3π
10 if 0 < x < L4, −L3 < y < 0

and set u = eiϕ0 ∈ BV (R, S1).
In Lemmas 3 and 4 below we shall prove that ϕ0 is the unique optimal lifting of u (up to a 2πZ

constant) and ϕ0 is not a minimizer of F
(u,p)
0 . Actually, we prove that the lifting ψ0 ∈ BV (R,R)

of u defined as

ψ0(x, y) =





π
2 if 0 < x < L4, 0 < y < L1,

− 3π
4 if −L2 < x < 0, 0 < y < L1,

−π
2 if −L2 < x < 0, −L3 < y < 0,

3π
10 if 0 < x < L4, −L3 < y < 0

is the unique minimizer of F
(u,p)
0 (up to 2πZ constants).

Lemma 3 The function ϕ0 is the unique optimal lifting of u (up to a 2πZ constant).

Proof. Let ϕ ∈ BV (R,R) be a lifting of u. Then

∫

R
|Dϕ| =

4∑

k=1

( ∫

Uk

|Dϕ|+
∫

Γk

|ϕ+
Γk
− ϕ−Γk

| dH1

)

where ϕ+
Γk

and ϕ−Γk
are the traces of ϕ on Γk. Let us consider the one-dimensional sections

Rt =
{

(tx, ty) : (x, y) ∈ ∂R
}

, ∀t ∈ (0, 1)

where we denote the vertices of the rectangle Rt by
{
At

k

}
1≤k≤4

. By the characterization of BV

functions by sections (see Theorem 3.103 in [1]), the restriction ϕt = ϕ
∣∣
Rt

belongs to BV (Rt,R)
for almost any t ∈ (0, 1). We define the following rescaled variation of ϕt on Rt as

V (ϕt,Rt) =
4∑

k=1

(
Lk

∫

Rt∩Uk

∣∣∂ϕt

∂τ

∣∣ +
√

L2
k + L2

k+1

∣∣ϕ+
Γk

(At
k)− ϕ−Γk

(At
k)

∣∣
)

for a.e. t ∈ (0, 1)

so that ∫ 1

0

V (ϕt,Rt) dt ≤
∫

R
|Dϕ|

(here τ is the tangent vector of straight lines). An easy computation yields
∫

R
|Dϕ0| = L1

3π

4
+ L2

π

4
+ L3

6π

5
+ L4

π

5
.

In order to prove that ϕ0 is an optimal lifting, it is sufficient to prove that

V (ϕt,Rt) ≥ L1
3π

4
+ L2

π

4
+ L3

6π

5
+ L4

π

5
for a.e. t ∈ (0, 1). (18)
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We shall use a method from [8]. Denoting the restriction of u to Rt by ut = u
∣∣
Rt

, we have
for almost every t ∈ (0, 1): ut = eiϕt H1 − a.e. in Rt and S(ut) = {at

k : 1 ≤ k ≤ 4} where
at

k = Rt ∩ Uk ∩ {x = 0} for k ∈ {1, 3} and at
k = Rt ∩ Uk ∩ {y = 0} for k ∈ {2, 4}. The chain rule

(7) leads to
(

∂ϕt

∂τ

)a

= ut ∧
(

∂ut

∂τ

)a

= 0 and
(

∂ϕt

∂τ

)c

= ut ∧
(

∂ut

∂τ

)c

= 0;

hence,
∂ϕt

∂τ
=

(
∂ϕt

∂τ

)j

=
∑

a∈S(ut)

(ϕt(a+)− ϕt(a−))δa +
∑

b∈B
(ϕt(b+)− ϕt(b−))δb.

Here, the Lipschitz curve Rt is considered oriented counterclockwise and the traces of ϕt are taken
with respect to this orientation. We have that

1. B ⊂ Rt is a finite set such that S(ut) ∩ B = ∅ and ϕt(b+) − ϕt(b−) = −2παb where αb ∈
Z, ∀b ∈ B;

2. ϕt(a+)− ϕt(a−) = Arg ut(a+)
ut(a−) − 2παa with αa ∈ Z,∀a ∈ S(ut).

Therefore, setting L5 = L1, it follows that

V (ϕt,Rt) =
4∑

k=1

( ∑

a∈(S(ut)∪B)∩Uk

Lk

∣∣ϕt(a+)−ϕt(a−)
∣∣+

√
L2

k + L2
k+1

∣∣ϕ+
Γk

(At
k)−ϕ−Γk

(At
k)

∣∣
)

. (19)

Since
∫

Rt

∂ϕt

∂τ
= 0, we get

∑

a∈S(ut)∪B
αa =

1
2π

∑

a∈S(ut)

Arg
ut(a+)
ut(a−)

= 1. (20)

Obviously,

|ϕt(at
k+)− ϕt(at

k−)| ≥ ∣∣ Arg
ut(at

k+)
ut(at

k−)

∣∣, ∀1 ≤ k ≤ 4.

By (19), the inequality (18) will follow from the surplus of the variation induced by the condition
(20), i.e.,

V (ϕt,Rt) ≥ L3
2π

5
+

4∑

k=1

Lk

∣∣ Arg
ut(at

k+)
ut(at

k−)

∣∣. (21)

Indeed, suppose that there is b ∈ B such that αb 6= 0. If b ∈ Uk for some 1 ≤ k ≤ 4 then by (17),

Lk|ϕt(b+)− ϕt(b−)| ≥ 2πLk > L3
2π

5
.

If b = At
k for some 1 ≤ k ≤ 4, then

√
L2

k + L2
k+1 |ϕ+

Γk
(At

k)− ϕ−Γk
(At

k)| ≥ 2π
√

L2
k + L2

k+1 > L3
2π

5

(here we used the fact that the traces of ϕt on Γk coincide with ϕ±Γk
(At

k) for a.e. t ∈ (0, 1)).
Otherwise, according to (20), there exists αa 6= 0 for some a = at

k and by (17), we easily check
that

Lk|ϕt(at
k+)− ϕt(at

k−)| ≥ L3
2π

5
+ Lk

∣∣ Arg
ut(at

k+)
ut(at

k−)

∣∣

9



with equality if and only if k = 3. Therefore, (21) holds, i.e., ϕ0 is an optimal lifting of u.
It remains to prove the uniqueness of the optimal lifting ϕ0 (up to a 2πZ constant). Let ϕ

be an optimal lifting. From above, we deduce that the restriction ϕt on Rt satisfies for almost
t ∈ (0, 1) that

S(ϕt) = S(ut) and αat
k

=

{
0 if k ∈ {1, 2, 4},
1 if k = 3.

(22)

It follows that
∫

R
|Dϕ| ≥

∫

S(ϕ)

|ϕ+ − ϕ−| dH1 ≥
∫

S(u)

|ϕ+ − ϕ−| dH1

≥
∫ 1

0

4∑

k=1

Lk|ϕt(at
k+)− ϕt(at

k−)| dt =
∫

R
|Dϕ0|.

Since ϕ is an optimal lifting, we deduce that S(ϕ) = S(u). By (11), we have Daϕ = Dcϕ = 0. It
follows that ϕ is constant on each connected component of R \ S(u). By (22), we conclude that
ϕ− ϕ0 is a constant function, for some constant in 2πZ. ¤

Lemma 4 The function ψ0 is the unique minimizer of F
(u,p)
0 (up to 2πZ constants).

Proof. We use the same argument and notations as in the proof of Lemma 3. Let ϕ ∈ BV (R,R)
be a lifting of u. By (11), we have Daϕ = Dcϕ = 0 and Dϕ = Djϕ = (ϕ+ − ϕ−)νϕH1xS(ϕ). We
define for almost every t ∈ (0, 1) the following variation of ϕt on Rt:

G(ϕt,Rt) =
4∑

k=1

( ∑

a∈(S(ut)∪B)∩Uk

Lkf (p)
(|ϕt(a+)− ϕt(a−)|)

+
√

L2
k + L2

k+1 f (p)
(|ϕ+

Γk
(At

k)− ϕ−Γk
(At

k)|)
)

so that

2
∫ 1

0

G(ϕt,Rt) dt ≤ F
(u,p)
0 (ϕ).

In order to prove that ψ0 is a minimizer of F
(u,p)
0 , it is sufficient to verify that

G(ϕt,Rt) ≥ L1f
(p)(

5π

4
) + L2f

(p)(
π

4
) + L3f

(p)(
4π

5
) + L4f

(p)(
π

5
) =

F
(u,p)
0 (ψ0)

2
for a.e. t ∈ (0, 1).

(23)
Indeed, suppose that there is b ∈ B such that αb 6= 0. If b ∈ Uk for some 1 ≤ k ≤ 4 then by (17)
and Lemma 1,

Lkf (p)(|ϕt(b+)− ϕt(b−)|) + L1f
(p)(|ϕt(at

1+)− ϕt(at
1−)|) > L1f

(p)(
5π

4
)

and then, we use that

f (p)(|ϕt(at
k+)− ϕt(at

k−)|) ≥ f (p)

(∣∣ Arg
ut(at

k+)
ut(at

k−)

∣∣
)

, 2 ≤ k ≤ 4.

If b = At
k for some 1 ≤ k ≤ 4, then

√
L2

k + L2
k+1 f (p)(|ϕ+

Γk
(At

k)− ϕ−Γk
(At

k)|) + L1f
(p)(|ϕt(at

1+)− ϕt(at
1−)|) > L1f

(p)(
5π

4
).

10



Otherwise, according to (20), there exists αa 6= 0 for some a = at
k. By Lemma 1, we notice that

the map θ ∈ (0, π) 7→ f (p)(2π − θ)− f (p)(θ) is decreasing. Then, by (17), we easily check that

Lkf (p)(|ϕt(at
k+)−ϕt(at

k−)|) + L1f
(p)

(∣∣ Arg
ut(at

1+)
ut(at

1−)

∣∣
)
≥ Lkf (p)

(∣∣ Arg
ut(at

k+)
ut(at

k−)

∣∣
)

+ L1f
(p)(

5π

4
)

with equality if and only if k = 1. Therefore, (23) holds and we also deduce that if ϕ is a minimizer
of F

(u,p)
0 , then for almost every t ∈ (0, 1),

S(ϕt) = S(ut) and αat
k

=

{
0 if 2 ≤ k ≤ 4,

1 if k = 1.
(24)

The uniqueness of the minimizer ψ0 (up to 2πZ constants) follows by (24) as in the proof of
Lemma 3. ¤

Proof of (ii) in Theorem 1 for p ∈ (0, 4). Let Ω be an arbitrary bounded domain in RN , for
N ≥ 2. Denote by D = (2R)× (−2, 2)N−2 ⊂ RN . By translating and shrinking homotopically the
rectangular parallelepiped D, we may suppose that D ⊂⊂ Ω. Let u, ϕ0 and ψ0 be the functions
in R constructed above and denote D1 = R × (−1, 1)N−2. We write x = (x1, x2, . . . , xN ) =
(x1, x2, x

′) ∈ RN . We define in Ω,

w(x) =





u(x1, x2) in D1,

1 in
(D \ D1

) ∩ {x1 > 0},
−1 otherwise.

Consider the liftings

ζ0(x) =





ϕ0(x1, x2) in D1,

0 in
(D \ D1

) ∩ {x1 > 0},
π otherwise

and

ξ0(x) =





ψ0(x1, x2) in D1,

0 in
(D \ D1

) ∩ {x1 > 0},
−π otherwise.

We prove that ζ0 is the unique optimal lifting of w and ξ0 is the unique minimizer of F
(w,p)
0 , but

ζ0 − ξ0 is not constant since

ζ0 =

{
ξ0 in D ∩ {x1 > 0},
ξ0 + 2π otherwise.

Step 1. The function ζ0 is the unique optimal lifting of w (up to a 2πZ constant).

Indeed, let ζ ∈ BV (Ω,R) be a lifting of w. Obviously, |ζ+−ζ−| ≥ dS1(w+, w−) = |ζ+
0 −ζ−0 | HN−1-

a.e. in S(w) ∩ (
Ω \ D1

)
. The restriction of ζ to R × {x′} is a BV lifting of u for almost every

x′ ∈ (−1, 1)N−2. Therefore, by Lemma 3, we obtain
∫

Ω

|Dζ| =
∫

Ω\D1

|Dζ|+
∫

D1

|Dζ|

≥
∫

S(w)∩(Ω\D1)

|ζ+ − ζ−| dHN−1 +
∫

(−1,1)N−2
dx′

∫

R×{x′}

∣∣∣∣
( ∂ζ

∂x1
,

∂ζ

∂x2

)∣∣∣∣

≥
∫

S(w)∩(Ω\D1)

dS1(w+, w−) dHN−1 + 2N−2

∫

R
|Dϕ0| =

∫

Ω

|Dζ0|,

11



i.e., ζ0 is an optimal lifting of w. Let now ζ be an optimal lifting. From the above it follows that
∫

Ω\D1

|Dζ| =
∫

S(w)∩(Ω\D1)

dS1(w+, w−) dHN−1

and for almost every x′ ∈ (−1, 1)N−2, the restriction of ζ to R × {x′} is an optimal lifting of u,
i.e., ∫

R×{x′}
|Dζ| =

∫

R
|Dϕ0|.

As in the proof of Lemma 3, it follows that ζ − ζ0 ≡ 2πm in D1 where m ∈ Z. Since the size of
the jump of ζ must satisfy 0 < dS1(w+, w−) < π on ∂D, we deduce that

ζ − ζ0 ≡ 2πm in Ω.

Hence, ζ0 is the unique optimal lifting of w (up to 2πZ constants).

Step 2. The function ξ0 is the unique minimizer of F
(w,p)
0 (up to 2πZ constants).

As in Step 1, using Lemma 4, we have that for every BV lifting ζ of w,

F
(w,p)
0 (ζ)

2
=

∫

S(ζ)∩(Ω\D1)

f (p)(|ζ+ − ζ−|) dHN−1 +
∫

S(ζ)∩D1

f (p)(|ζ+ − ζ−|) dHN−1

≥
∫

S(w)∩(Ω\D1)

f (p)(|ζ+ − ζ−|) dHN−1

+
∫

(−1,1)N−2
dx′

∫

S(ζ)∩(R×{x′})
f (p)(|ζ+ − ζ−|) dH1

≥
∫

S(w)∩(Ω\D1)

f (p)
(
dS1(w+, w−)

)
dHN−1 + 2N−3F

(u,p)
0 (ψ0) =

F
(w,p)
0 (ξ0)

2

i.e., ξ0 is a minimizer of F
(w,p)
0 . The uniqueness of the minimizer follows by the same argument as

above. ¤

6 Proof of (ii) in Theorem 1 for p 6= 4

In this section we shall complete the proof of our main result in the general case p ∈ (0, 4)∪(4, +∞).
The strategy will be to construct a family of functions U = {Ut}t∈(− 1

4 , 1
4 ) in BV (Ω, S1) with the

following property: for every p 6= 4, there exists a function Ut in the family U such that Ut has a
unique optimal lifting (up to translations in 2πZ) and the energy F

(Ut,p)
0 of the optimal lifting is

larger than the minimal energy min F
(Ut,p)
0 . First of all, we make that construction in the special

case of the two-dimensional disc
Ω := {z ∈ C : |z| < 2}.

Construction of the family U = {Ut}t∈(− 1
4 , 1

4 ) in the disc Ω = B(0, 2) ⊂ R2. For any

z ∈ Ω \ {0}, we denote the argument θ̄(z) ∈ [0, 2π), i.e., z
|z| = eiθ̄(z). Let t ∈ (− 1

4 , 1
4 ). We define

the set
At := { z ∈ Ω : z = reiθ, r ∈ (1, 2), 0 < θ < (

3
4

+ t) ln r }

and we consider the function θ̂t : Ω → R given by

θ̂t(z) := θ̄(z) + 2πχAt(z), ∀z ∈ Ω, (25)
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where χAt
is the characteristic function associated to the set At. Now let Ut ∈ BV (Ω, S1) be

defined by
Ut(z) := ei 9

10 θ̂t(z), ∀z ∈ Ω. (26)

Set the liftings ϕ1,t, ϕ2,t ∈ BV (Ω,R) of Ut:

ϕ1,t :=
9
10

θ̂t =
9
10

θ̄ +
9π

5
χAt and ϕ2,t :=

9
10

θ̂t − 2πχAt =
9
10

θ̄ − π

5
χAt . (27)

We will show that:

. .
O(0, 0) (1, 0)

AtPt

Rt

Qt

Figure 2: The construction for the general case p 6= 4

Lemma 5

(i) For any t ∈ (− 1
4 , 0), ϕ1,t is the unique optimal lifting of Ut (up to 2πZ additive constants);

(ii) For any t ∈ (0, 1
4 ), ϕ2,t is the unique optimal lifting of Ut (up to 2πZ additive constants).

The conclusion of Theorem 1 (in the case of the disc) will then follow from the next result:

Lemma 6

(i) For every 0 < p < 4 there exists a positive number ρp ∈ (0, 1
4 ) such that for any t ∈ (−ρp, 0)

we have that F
(Ut,p)
0 (ϕ1,t) > F

(Ut,p)
0 (ϕ2,t), i.e., the optimal lifting ϕ1,t of Ut is not a minimizer

of F
(Ut,p)
0 . Moreover, ϕ2,t is the unique minimizer of F

(Ut,p)
0 (up to a 2πZ translation), for

every t ∈ (−ρp, ρp).

(ii) For any p > 4 there exists ρp ∈ (0, 1
4 ) such that F

(Ut,p)
0 (ϕ2,t) > F

(Ut,p)
0 (ϕ1,t), for each

t ∈ (0, ρp), i.e., the optimal lifting ϕ2,t of Ut is not a minimizer of F
(Ut,p)
0 . Moreover, ϕ1,t is

the unique minimizer of F
(Ut,p)
0 (up to a 2πZ translation), for every t ∈ (−ρp, ρp).

Before proving the above Lemmas, we shall introduce some notations (see Figure 2). Set

Pt := {z ∈ C : z = r, r ∈ (0, 1)} and Qt := {z ∈ C : z = rei(3/4+t) ln r, r ∈ (1, 2)}. (28)
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Then the jump set of Ut is given by

S(Ut) = Pt ∪Qt ∪ {(0, 0), (1, 0)}; (29)

moreover, we have that

H1(Pt) = 1 and H1(Qt) =
√

1 + (3/4 + t)2. (30)

We choose the orientation of the jump set S(Ut) to be given by the unit normal vector νUt
∈ S1

defined by

νUt(z) =





(0, 1) z ∈ Pt,
1

|γ′t(|z|)|
(− γ′t,2(|z|), γ′t,1(|z|)

)
z ∈ Qt,

where γt(r) = γt,1(r) + iγt,2(r) := rei(3/4+t) ln r. Then for any z ∈ S(Ut) we consider the traces

U+
t (z) = ei 9

10 θ̄(z) and U−
t (z) = ei 9

10 (θ̄(z)+2π) = ei
(

9
10 θ̄(z)−π

5

)
.

We start by giving a useful characterization of a general lifting ϕ ∈ BV (Ω,R) of Ut. We can
choose the orientation of S(ϕ) to coincide with the orientation of S(Ut) on S(ϕ) ∩ S(Ut). Then,
we have

ϕ+(z)− ϕ−(z) =
π

5
+ 2πn(z), ∀z ∈ S(Ut) and ϕ+(z)− ϕ−(z) = 2πn(z), ∀z ∈ S(ϕ) \ S(Ut),

where n : S(ϕ) → Z is an integrable function. We define the sets

Lϕ := {z ∈ S(ϕ) : n(z) 6= 0} and Lr
ϕ := {r ∈ (0, 2) : ∃ θ ∈ R, reiθ ∈ Lϕ}. (31)

We next prove the following property:

Lemma 7 For any lifting ϕ ∈ BV (Ω,R) of Ut, we have H1(Lr
ϕ) = 2.

Proof. By contradiction, assume that H1(Lr
ϕ) < 2. Then, there exists a compact set K ⊂ (0, 2)

such that H1(K) > 0 and Lr
ϕ ∩K = ∅. Consider a sequence of open sets Vk ⊂⊂ (0, 2) such that

K ⊂ Vk ⊂⊂ (0, 2) and
⋂∞

k=1 Vk = K. Now take a sequence of functions σk ∈ C1
c

(
(0, 2),R

)
that

satisfy 0 ≤ σk ≤ 1, σk(r) = 1 for any r ∈ K and σk(r) = 0 for any r ∈ (0, 2) \ Vk. Define the
functions δk ∈ C2

c (Ω,R) by

δk(z) :=
∫ 2

|z|
σk(t)dt.

For z = (x, y), we denote ∇⊥δk := (−∂yδk, ∂xδk). Then we have
∫

Ω

∇⊥δk(z) d[Dϕ](z) = 0. (32)

Since Ut = eiϕ, we obtain from the chain rule (7),

Dϕ = Daϕ + Djϕ =
9
10

Daθ̄ +
π

5
νUt H1xS(Ut) + 2πn(·)νϕH1xLϕ.

Therefore, by (32) we infer

−2πδk(0) + 2π

∫

Lϕ

n(z)∇⊥δk(z) · νϕ(z) dH1(z) = 0. (33)
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Define the sets Wk := {z ∈ Ω : |z| ∈ Vk \K}, ∀k ≥ 1. Then by the construction of δk, we deduce
from (33),

δk(0) =
∫

Lϕ∩Wk

n(z)∇⊥δk(z) · νϕ(z) dH1(z).

Since |∇⊥δk| ≤ 1, it follows that

|δk(0)| ≤
∫

Lϕ∩Wk

|n(z)| dH1(z) ≤ 1
π

∫

Lϕ∩Wk

|ϕ+(z)− ϕ−(z)| dH1(z) ≤ 1
π

∫

Wk

|Dϕ|.

Using ∩∞k=1Wk = ∅, we get that
lim

k→∞
δk(0) = 0. (34)

On the other hand, according to the definition of δk, we have

δk(0) =
∫ 2

0

σk(t)dt ≥
∫

K

1 dt = H1(K) > 0,

which leads to a contradiction to (34). This completes the proof of Lemma 7. ¤

We now present the proofs of Lemmas 5 and 6:

Proof of Lemma 5. The jump set of ϕ1,t and ϕ2,t are

S(ϕ1,t) = S(Ut) = Pt ∪Qt ∪ {(0, 0), (1, 0)} and S(ϕ2,t) = Pt ∪Qt ∪Rt ∪ {(0, 0), (1, 0)}, (35)

where Rt := {z ∈ C : z = r, r ∈ (1, 2)}. Moreover, the size of the jump is

|ϕ+
1,t(z)− ϕ−1,t(z)| = 9π

5
, ∀z ∈ Pt ∪Qt

and

|ϕ+
2,t(z)− ϕ−2,t(z)| =





9π
5 if z ∈ Pt,

π
5 if z ∈ Qt,

2π if z ∈ Rt.

Therefore, by (30), it follows that
∫

Ω

|Djϕ1,t| = 9π

5
+

9π

5

√
1 + (3/4 + t)2;

∫

Ω

|Djϕ2,t| = 9π

5
+

π

5

√
1 + (3/4 + t)2 + 2π.

(36)

Hence, we have
∫

Ω

|Djϕ1,t| <
∫

Ω

|Djϕ2,t|, ∀t ∈ (−1/4, 0),
∫

Ω

|Djϕ1,t| >
∫

Ω

|Djϕ2,t|, ∀t ∈ (0, 1/4),
∫

Ω

|Djϕ1,0| =
∫

Ω

|Djϕ2,0|.

(37)
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Let now ϕ ∈ BV (Ω,R) be an arbitrary lifting of Ut. From (11) it follows that
∫

Ω

|Daϕ| =
∫

Ω

|DaUt|

and
∫

Ω

|Dcϕ| =
∫

Ω

|DcUt| = 0. We choose an orientation of S(ϕ) that coincides with the orientation

of S(Ut) on S(ϕ) ∩ S(Ut). Put




xϕ := H1(Lϕ ∩ Pt), yϕ := H1(Lϕ ∩Qt),
wϕ := H1(S(ϕ) \ S(Ut)) = H1

(
Lϕ \ (Pt ∪Qt)

)
,

zϕ := wϕ + xϕ + yϕ√
1+(3/4+t)2

,

(38)

where Pt and Qt are defined in (28) and Lϕ is given in (31). Consider the following decomposition
of Lr

ϕ (defined in (31)):
Lr

ϕ = Ar
ϕ ∪Br

ϕ ∪Dr
ϕ a.e. in (0, 2),

where 



Ar
ϕ := {r ∈ (0, 1) : ∃ θ ∈ R, reiθ ∈ Lϕ ∩ Pt},

Br
ϕ := {r ∈ (1, 2) : ∃ θ ∈ R, reiθ ∈ Lϕ ∩Qt},

Dr
ϕ := {r ∈ (0, 2) : ∃ θ ∈ R, reiθ ∈ Lϕ \ (Pt ∪Qt)}.

(39)

Note that Ar
ϕ ∩Br

ϕ = ∅, but Ar
ϕ (resp. Br

ϕ) and Dr
ϕ are not necessarily disjoint. We have

H1(Ar
ϕ) = xϕ and H1(Br

ϕ) =
yϕ√

1 + (3/4 + t)2
,

where the last equality follows by the construction of Qt. It is clear then that

wϕ ≥ H1
(
Dr

ϕ) ≥ H1
(
Lr

ϕ \ (Ar
ϕ ∪Br

ϕ)
)

= H1
(
Lr

ϕ)− xϕ − yϕ√
1 + (3/4 + t)2

.

By Lemma 7 we have H1(Lr
ϕ) = 2. Therefore,

wϕ ≥ 2− xϕ − yϕ√
1 + (3/4 + t)2

, i.e., zϕ ≥ 2. (40)

By (30), we deduce that

(xϕ, yϕ, zϕ) ∈ Mt := {(x, y, z) ∈ R3 : 0 ≤ x ≤ 1, 0 ≤ y ≤
√

1 + (3/4 + t)2, z ≥ 2}. (41)

We define the function Φt : Mt → R by

Φt(x, y, z) := 2πz − 2π

5
x +

2π
(
4
√

1 + (3/4 + t)2 − 5
)

5
√

1 + (3/4 + t)2
y +

π

5

(
1 +

√
1 + (3/4 + t)2

)
.

It is easy to check that for t > 0 the unique minimum point of Φt on the set Mt is achieved
at the point (1, 0, 2). Similarly, if t < 0 then Φt attains its unique minimum on the set Mt at
(x, y, z) =

(
1,

√
1 + (3/4 + t)2, 2

)
.

On the other hand, from (29) we infer
∫

Ω

|Djϕ| ≥
∫

S(ϕ)\S(Ut)

|ϕ+ − ϕ−|+
∫

(Lϕ∩Pt)∪(Lϕ∩Qt)

|ϕ+ − ϕ−|+
∫

(Pt∪Qt)\Lϕ

|ϕ+ − ϕ−|

≥ 2πwϕ +
(
2π − π

5

)
(xϕ + yϕ) +

π

5

(
1 +

√
1 + (3/4 + t)2 − xϕ − yϕ

)

= Φt(xϕ, yϕ, zϕ). (42)
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Therefore,
∫

Ω

|Djϕ| ≥ Φt(xϕ, yϕ, zϕ) ≥ Φt

(
1,

√
1 + (3/4 + t)2, 2

)
=

∫

Ω

|Djϕ1,t|, if t ∈ (−1/4, 0),
∫

Ω

|Djϕ| ≥ Φt(xϕ, yϕ, zϕ) ≥ Φt(1, 0, 2) =
∫

Ω

|Djϕ2,t|, if t ∈ (0, 1/4).
(43)

We conclude that for t ∈ (−1/4, 0), ϕ1,t is an optimal lifting of Ut while for t ∈ (0, 1/4), ϕ2,t is an
optimal lifting of Ut.

It remains to prove the uniqueness of the optimal lifting of Ut. Let ϕ be an arbitrary optimal
lifting of Ut. Then all inequalities in (42) and (43) become equalities.
(i) In the case of t ∈ (−1/4, 0), we deduce that xϕ = 1, yϕ =

√
1 + (3/4 + t)2, wϕ = 0 (hence,

S(ϕ) = S(Ut)). Moreover, by (42),

|ϕ+ − ϕ−| = 9π

5
H1-a.e. in S(ϕ).

Since every lifting has the same diffuse part (see (11)), it follows that

D(ϕ− ϕ1,t) = 0 in Ω.

Since Ω is connected, we conclude that ϕ− ϕ1,t is constant in Ω.
(ii) In the case t ∈ (0, 1/4) we obtain xϕ = 1, yϕ = 0, wϕ = 1. Moreover, by (42),

|ϕ+ − ϕ−| =





9π
5 H1-a.e. in S(ϕ) ∩ Pt,

π
5 H1-a.e. in S(ϕ) ∩Qt,

2π H1-a.e. in S(ϕ) \ (Pt ∪Qt).

Then, according to (11), it follows that

D(ϕ− ϕ2,t) = 2π

(
νϕ2,tH1xRt − νϕH1x

(
S(ϕ) \ S(Ut)

))
.

We deduce that for every function δ ∈ C1
c (Ω),

∫

S(ϕ)\S(Ut)

∂δ

∂τϕ
dH1 =

∫

S(ϕ)\S(Ut)

∇⊥δ · νϕ dH1 = δ(1, 0),

where τϕ stands for the tangent vector to the H1-rectifiable set S(ϕ) \ S(Ut). Using the same
technique as in [7], since H1

(
S(ϕ) \ S(Ut)

)
= dist ((0, 1), ∂Ω) = 1, we conclude that S(ϕ) \ S(Ut)

coincides with Rt (which is the geodesic line between the point (0, 1) and ∂Ω). Thus, D(ϕ−ϕ2,t) = 0
in Ω, i.e., ϕ− ϕ2,t is constant in Ω. This completes the proof of Lemma 5. ¤

Proof of Lemma 6. Let p > 0. By Lemma 1 we compute

F
(Ut,p)
0 (ϕ1,t) =

(
1 +

√
1 + (3/4 + t)2

) 9π/10∫

−9π/10

2|eis − 1|p/2ds

= 2p/2+3
(
1 +

√
1 + (3/4 + t)2

) 9π/20∫

0

sinp/2 s ds

= 2p/2+3

9π/20∫

0

sinp/2 s ds + 2p/2+3
√

1 + (3/4 + t)2
π/2∫

π/20

cosp/2 s ds.
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On the other hand,

F
(Ut,p)
0 (ϕ2,t) =

∫ 9π/10

0

4|eis − 1|p/2ds +
√

1 + (3/4 + t)2
∫ π/10

0

4|eis − 1|p/2ds

+
∫ π

0

4|eis − 1|p/2ds

= 2p/2+3

( 9π/20∫

0

sinp/2 s ds +
√

1 + (3/4 + t)2
π/20∫

0

sinp/2 s ds +

π/2∫

0

cosp/2 s ds

)
.

Therefore, we infer that

2−p/2−3
(
F

(Ut,p)
0 (ϕ1,t)− F

(Ut,p)
0 (ϕ2,t)

)
=

=
(√

1 + (3/4 + t)2 − 1
) π/2∫

0

cosp/2 s ds−
√

1 + (3/4 + t)2
π/20∫

0

(
cosp/2 s + sinp/2 s

)
ds

=
(√

1 + (3/4 + t)2 − 1
) π/4∫

0

(
cosp/2 s + sinp/2 s

)
ds−

√
1 + (3/4 + t)2

π/20∫

0

(
cosp/2 s + sinp/2 s

)
ds

=
1
5

∫ π/4

0

(
cosp/2 s + sinp/2 s

)
ds ·

(
5
(√

1 + (3/4 + t)2 − 1
)− cp

√
1 + (3/4 + t)2

)
, (44)

where we denoted

cp :=
5

∫ π/20

0

(
cosp/2 s + sinp/2 s

)
ds

∫ π/4

0

(
cosp/2 s + sinp/2 s

)
ds

∈ (0, 5).

Since the function
s ∈ (0,

π

4
) 7→ (

cosp/2 s + sinp/2 s
)

is increasing for 0 < p < 4 and decreasing for p > 4, it turns out that

cp < 1, ∀p ∈ (0, 4) and cp > 1, ∀p ∈ (4,∞).

Therefore, by (44), for any p ∈ (0, 4) there exists 0 < ρp < 1/4 such that

F
(Ut,p)
0 (ϕ1,t) > F

(Ut,p)
0 (ϕ2,t) ∀t ∈ (−ρp, ρp). (45)

Similarly, for any p ∈ (4,∞), there exists 0 < ρp < 1/4 such that

F
(Ut,p)
0 (ϕ1,t) < F

(Ut,p)
0 (ϕ2,t) ∀t ∈ (−ρp, ρp). (46)

Now we prove that for any t ∈ (−ρp, ρp), ϕ2,t (resp. ϕ1,t) is the unique minimizer of F
(Ut,p)
0 if

p ∈ (0, 4) (resp. p > 4). Let ϕ ∈ BV (Ω,R) be an arbitrary lifting of Ut. We choose an orientation
on S(ϕ) that coincides with the orientation of S(Ut) on S(ϕ) ∩ S(Ut). In the following we use
the same notations as in the proof of Lemma 5 (see (38), (39) and (41)). We define the function
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Ψt : Mt → R by

Ψt(x, y, z) : = f (p)(2π)z −
(
f (p)(2π) + f (p)

(π

5
)− f (p)

(9π

5
))

x

+
(

f (p)
(9π

5
)− f (p)(2π)√

1 + (3/4 + t)2
− f (p)

(π

5
))

y + f (p)
(π

5
)(

1 +
√

1 + (3/4 + t)2
)

= f (p)(2π)z −
(
f (p)(2π) + f (p)

(π

5
)− f (p)

(9π

5
))

x

+
y√

1 + (3/4 + t)2

(
F

(Ut,p)
0 (ϕ1,t)− F

(Ut,p)
0 (ϕ2,t)

)
+ f (p)

(π

5
)(

1 +
√

1 + (3/4 + t)2
)
.

By (45) and (46), it can be easily checked that: if p ∈ (0, 4) and t ∈ (−ρp, ρp) then the unique
minimal point of Ψt in the set Mt is achieved in (1, 0, 2), while if p > 4 and t ∈ (−ρp, ρp) then
Ψt has also a unique minimal point in Mt for (x, y, z) =

(
1,

√
1 + (3/4 + t)2, 2

)
. Using the same

argument as in the proof of Lemma 5, it follows that

F
(Ut,p)
0 (ϕ)

2
≥

∫

S(ϕ)\S(Ut)

f (p)(|ϕ+ − ϕ−|) dH1 +
∫

(Lϕ∩Pt)∪(Lϕ∩Qt)

f (p)(|ϕ+ − ϕ−|) dH1

+
∫

(Pt∪Qt)\Lϕ

f (p)(|ϕ+ − ϕ−|) dH1

≥ f (p)(2π)wϕ + f (p)
(
2π − π

5

)
(xϕ + yϕ) + f (p)

(π

5

)(
1 +

√
1 + (3/4 + t)2 − xϕ − yϕ

)

= Ψt(xϕ, yϕ, zϕ). (47)

Therefore, for every t ∈ (−ρp, ρp),
{

F
(Ut,p)
0 (ϕ) ≥ 2Ψt(xϕ, yϕ, zϕ) ≥ 2Ψt

(
1,

√
1 + (3/4 + t)2, 2

)
= F

(Ut,p)
0 (ϕ1,t) if p > 4,

F
(Ut,p)
0 (ϕ) ≥ 2Ψt(xϕ, yϕ, zϕ) ≥ 2Ψt(1, 0, 2) = F

(Ut,p)
0 (ϕ2,t) if p ∈ (0, 4).

(48)
It follows that for any t ∈ (−ρp, ρp), ϕ1,t is a minimizer of F

(Ut,p)
0 if p > 4, and ϕ2,t is a minimizer

of F
(Ut,p)
0 if p ∈ (0, 4). It remains to prove the uniqueness of the minimizer of F

(Ut,p)
0 for any

t ∈ (−ρp, ρp). Let ϕ be a lifting of Ut that minimizes the energy F
(Ut,p)
0 . Then all inequalities in

(47) and (48) become equalities. Next we distinguish two cases:

(i) In the case of p > 4 we deduce that xϕ = 1, yϕ =
√

1 + (3/4 + t)2, wϕ = 0 (hence, S(ϕ) =
S(Ut)). Moreover, by Lemma 1 and (47),

|ϕ+ − ϕ−| = 9π

5
H1-a.e. in S(ϕ).

Since every lifting has the same diffuse part (see (11)), it follows that

D(ϕ− ϕ1,t) = 0 in Ω.

Since Ω is connected, we conclude that ϕ− ϕ1,t is constant in Ω.

(ii) In the case p ∈ (0, 4) we obtain that xϕ = 1, yϕ = 0, wϕ = 1. Moreover, by (47)

|ϕ+ − ϕ−| =





9π
5 H1-a.e. in S(ϕ) ∩ Pt,

π
5 H1-a.e. in S(ϕ) ∩Qt,

2π H1-a.e. in S(ϕ) \ (Pt ∪Qt).
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Then, by the same argument as in the end of the proof of Lemma 5, we conclude that ϕ− ϕ2,t is
constant in Ω. ¤

In the following, we shall adapt our construction of the family U to the general case of an
arbitrary domain G:

Proof of (ii) in Theorem 1. Assume that G is an arbitrary bounded domain in RN for N ≥ 2. We
construct a family of functions Ũ = {Ũt}t∈(−1/4,1/4) in BV (G, S1) that will have the same behavior
as the family U = {Ut}t∈(−1/4,1/4), defined in (26) over the set Ω = {(x1, x2) ∈ R2 : x2

1 + x2
2 < 4}.

Let us introduce the sets
Ω1 := {(x1, x2) ∈ R2 : x2

1 + x2
2 < 16},

G1 := Ω× (−1/2, 1/2)N−2 ⊂ RN and G2 := Ω1 × (−1, 1)N−2 ⊂ RN .

For t ∈ (−1/4, 1/4), set also

Ht := { (x1, x2) ∈ Ω1 : (x1, x2) = reiθ, r ∈ (1, 4), 0 < θ < (3/4 + t) ln r },

and define H̃t := Ht × (−1, 1)N−2 ⊂ RN . As before, by translating and shrinking homotopically
the set G2, we may suppose that G2 ⊂ G. We write x = (x1, x2, . . . , xN ) = (x1, x2, x

′) ∈ RN .
Next we define the function Ũt ∈ BV (G,S1) by

Ũt(x) :=





Ut(x1, x2) x ∈ G1,

1 x ∈ H̃t \G1,

−1 otherwise.
(49)

Recall the liftings ϕ1,t, ϕ2,t ∈ BV (Ω,R) of Ut defined in (27). Then, consider the liftings Φ1,t, Φ2,t ∈
BV (G,R) of Ũt given by

Φ1,t(x) :=





ϕ1,t(x1, x2) x ∈ G1,

2π x ∈ H̃t \G1,

π otherwise
and Φ2,t(x) :=





ϕ2,t(x1, x2) x ∈ G1,

0 x ∈ H̃t \G1,

π otherwise.
(50)

The jump part of these liftings enjoys the following property: for every j = 1, 2, and every t ∈
(−1/4, 1/4) we have

S(Φj,t)\G1 = S(Ũt)\G1 and
∣∣Φ+

j,t(x)−Φ−j,t(x)
∣∣ = dS1

(
Ũ+

t (x), Ũ−
t (x)

) HN−1-a.e. in S(Φj,t)\G1.
(51)

In the sequel we will prove that the analog results to those of Lemmas 5 and 6 hold for the functions
Φj,t, j = 1, 2.

Step 1. For j = 1, 2, Φj,t is the unique optimal lifting of Ũt (up to 2πZ constants) if t is between
0 and (−1)j/4.

Indeed, let Φ : G → R be an arbitrary lifting of Ũt on G. First notice that by (12), we have that
∫

G\G1

|DaΦ|+
∫

G\G1

|DcΦ| =
∫

G\G1

|DaŨt|+
∫

G\G1

|DcŨt| = 0.
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Using Lemma 5 it follows that
∫

G

|DΦ| =
∫

G\G1

|DΦ|+
∫

G1

|DΦ|

=
∫

S(Φ)\G1

|Φ+ − Φ−| dHN−1 +
∫

G1

|DΦ|

≥
∫

S(Ũt)\G1

dS1(Ũ+
t , Ũ−

t )dHN−1 +
∫

(−1/2,1/2)N−2

dx′
∫

Ω×{x′}

∣∣∣
( ∂Φ
∂x1

,
∂Φ
∂x2

)∣∣∣

≥
∫

S(Ũt)\G1

dS1(Ũ+
t , Ũ−

t )dHN−1 +
∫

Ω

|Dϕj,t| =
∫

G

|DΦj,t|, (52)

i.e., Φj,t is an optimal lifting of Ũt if t is between 0 and (−1)j/4. It remains to show the uniqueness
of the optimal lifting. For that, let Φ be an arbitrary optimal lifting of Ũt. Then we must have
equalities in (52) and therefore we obtain:

S(Φ)\G1 = S(Ũt)\G1 and
∣∣Φ+(x)−Φ−(x)

∣∣ = dS1

(
Ũ+

t (x), Ũ−
t (x)

) HN−1-a.e. in S(Φj,t)\G1 ,
(53)

and for almost every x′ ∈ (−1/2, 1/2)N−2, the restriction of Φ to Ω× {x′} is an optimal lifting of
Ut. Therefore, the jump set of Φ satisfies:

S(Φ) ∩G1 = S(ϕj,t)× (−1/2, 1/2)N−2 = S(Φj,t) ∩G1.

By (11), it follows that D(Φ−Φj,t) = 0 in G1 \S(Φj,t), i.e., Φ−Φj,t is constant on all j connected
components of G1 \ S(Φj,t), j = 1, 2. The optimality of Φ does not allow any jumps for Φ − Φj,t

on S(Φj,t) ∩G1. Hence, by (53), we conclude that Φ− Φj,t is constant in G.

Step 2. For every p ∈ (4,∞) (resp. p ∈ (0, 4)), there exists ρp ∈ (0, 1
4 ) such that for any 0 < t < ρp

(resp. −ρp < t < 0), we have

F
(Ũt,p)
0 (Φ2,t) > F

(Ũt,p)
0 (Φ1,t) (resp. F

(Ũt,p)
0 (Φ1,t) > F

(Ũt,p)
0 (Φ2,t) ),

i.e., the optimal lifting of Ũt is not a minimizer of F
(Ũt,p)
0 for the above ranges of p and t.

Indeed, let us prove the claim for p > 4 (the other case follows using the same argument). Take
ρp ∈ (0, 1/4) as given by Lemma 6. Then, by Step 1 and Lemma 6, we deduce that for t ∈ (0, ρp),

F
(Ũt,p)
0 (Φ2,t) =

∫

S(Φ2,t)\G1

f (p)(|Φ+
2,t − Φ−2,t|) dHN−1 +

∫

G1∩S(Φ2,t)

f (p)(|Φ+
2,t − Φ−2,t|)dHN−1

=
∫

S(Ũt)\G1

f (p)
(
dS1(Ũ+

t , Ũ−
t )

)
dHN−1 +

∫

Ω∩S(ϕ2,t)

f (p)(|ϕ+
2,t − ϕ−2,t|)dH1

>

∫

S(Ũt)\G1

f (p)
(
dS1(Ũ+

t , Ũ−
t )

)
dHN−1 +

∫

Ω∩S(ϕ1,t)

f (p)(|ϕ+
1,t − ϕ−1,t|) dH1

= F
(Ũt,p)
0 (Φ1,t).

As before, one can also obtain that for any t ∈ (−ρp, ρp), Φ2,t (resp. Φ1,t) is the unique minimizer

of F
(Ũt,p)
0 if p ∈ (0, 4) (resp. p > 4). ¤
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