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The model. For α ∈ (0, π), consider maps m = (m1,m2) : (−1, 1) → S
1 with

(1) m1(−1) = m1(1) = cosα.

For ε > 0, consider the energy

Eε(m) = ε

∫ 1

−1

|m′|2 dx1 +

∫

R
2
+

|∇u|2 dx,

where u : R2
+ → R is determined (up to a constant) by the boundary value problem

∆u = 0 in R
2
+,

∂u

∂x2
= −m′

1 on R× {0},

where m1 is extended by cosα outside of (−1, 1) and x = (x1, x2). The energy Eε

can be written as a strictly convex functional in m1:

Eε(m) = ε

∫ 1

−1

(m′
1)

2

1−m2
1

dx1 + ‖m1‖
2
Ḣ1/2(R)

.

This represents a simplified version of the free energy of a magnetisation vector
field m in a thin film of a ferromagnetic material (for more details on the model,
see e.g. [3]) and u is called the stray field potential.

Néel walls. We are interested in transition layers corresponding to rotations
between (cosα,± sinα) and (cosα,∓ sinα) on the unit circle S1. Such a transition
is called Néel wall and is typically a two-length scale object (a core and two
logarithmically decaying tails) with an energy Eε of order πγ2

±/| log ε| as ε → 0
(see [5]). Here, γ± = ±1− cosα stands for the height of the transition in m1 when
m1 passes through ±1.
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Figure 1. Several Néel walls of positions an, 1 ≤ n ≤ 4.
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We are particularly interested in the interaction of several transitions (see Fig-
ure 1). For fixed −1 < a1 < · · · < aN < 1 and dn ∈ {±1}, n = 1, . . . , N , set

M(a, d) =

{

m : (−1, 1) → S
1 with (1) and m1(an) = dn for 1 ≤ n ≤ N

}

.

Note that minimizers of Eε over M(a, d) exist and have a unique component m1

that is smooth away from the positions an, 1 ≤ n ≤ N .

Main result. We estimate the minimal energy Eε required for a profile inM(a, d).

Theorem 1 (Ignat-Moser [4]). As ε → 0, we have

inf
M(a,d)

Eε = π

N
∑

n=1

γ2
n

log 1
δ

+
W (a, d)
(

log 1
δ

)2 + o

(

1
(

log 1
δ

)2

)

where δ = ε| log ε|, γn = dn − cosα and

W (a, d) =

N
∑

n=1

(

e(dn)− πγ2
n log(2− 2a2n)

)

−π

N
∑

n=1

∑

k 6=n

γkγn log

(

1 +
√

1− ρ(ak, an)

ρ(ak, an)

)

where e(±1) > 0 and ρ(ak, an) =
|ak−an|
1−akan

.

In analogy to the theory of Ginzburg-Landau vortices (see [1]), we call W (a, d)
the renormalised energy for the N walls placed at a = (a1, . . . aN ) with signs
d = (d1, . . . , dN ). As the theorem shows, W (a, d) represents the next-to-leading
order term in the expansion of infM(a,d)Eε in 1/| log δ|. This is an improvement
of the result in [2] giving only the first leading order term of Eε.

We now briefly discuss how the above expression comes about. Suppose that
for a given a ∈ AN , we study minimisers m of Eε in M(a, d). When ε is small,
we expect to have a typical Néel wall profile near each of the points a1, . . . , aN
with the prescribed signs d1, . . . , dN , and the full transition layer m is essentially a
superposition of all of these. We can think of a Néel wall as consisting of two parts:
a small core around an and two logarithmically decaying tails. In our situation,
the walls are confined in the relatively short interval (−1, 1) and each tail will
interact with the other walls and with the boundary as well. We can then account
for the full energy infM(a,d)Eε (at leading and next-to-leading order) as follows.

Core energy. The core of each wall requires a certain amount of energy, namely
e(±1)

(log 1
δ )

2 for a positive and a negative wall, respectively. The constants e(±1)

represent the rescaled energy of the core profile as ε → 0. This is the only term
where we have a contribution from the Dirichlet integral of m and it appears only
at next-to-leading order in the full energy. All the remaining terms below come
from the stray field energy alone.

Tail energy. The two tails of the wall at an give rise to the energy
πγ2

n

log 1
δ

. This is

the leading order term of the full energy.
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Tail-boundary interaction. Moving a wall relative to the boundary points ±1
will deform the tail profile, resulting in a change of the energy. This phenomenon

gives rise to the energy
πγ2

n log(2−2a2
n)

(log 1
δ )

2 for the wall at an. (The sign here is not a

mistake; it is the opposite of the sign of the corresponding expression in Theo-
rem 1.) This means that the tails are attracted by the boundary, in the sense that
the energy decreases if an approaches ±1.

Tail-tail interaction. There is an energy contribution coming from reinforcement
or cancellation between the stray fields generated by different walls. For the walls
at ak and an with k 6= n, this amounts to

πγkγn
(

log 1
δ

)2 log

(

1 +
√

1− ̺(ak, an)2

̺(ak, an)

)

.

(Again we have the opposite sign relative to the above theorem.) A conclusion is
that the tails of two walls attract each other if they have opposite signs and repel
each other if they have the same sign.

Tail-core interaction. Since the profile of a Néel wall decays only logarithmically,
it will change the turning angle of the neighbouring walls slightly. This has an
effect on the energy as well (at the next-to-leading order). Indeed, the tail of the
wall at ak and the core of the wall at an with k 6= n lead to a contribution of

−
2πγkγn
(

log 1
δ

)2 log

(

1 +
√

1− ̺(ak, an)2

̺(ak, an)

)

.

We also have an interaction between the two tails of a wall and its own core: if
k = n, then we obtain the energy −

2πγ2
n log(2−2a2

n)

(log 1
δ )

2 . This is twice the size of the

terms from the tail-boundary interaction and tail-tail interaction, but with the
opposite signs, resulting in a net repulsion between walls of opposite signs and
a net attraction between walls of the same sign. Furthermore, we have a net
repulsion of the walls by the boundary.

Notwithstanding the term ‘energy’ used in this description, strictly speaking,
these are energy differences and therefore some of them may be negative. All
except one of these contributions occur similarly in the theory of Ginzburg-Landau
vortices. The core-tail interaction, on the other hand, is new and more delicate to
handle.
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