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Abstract

We present some Pohozaev identities for the equation −∆u = |u|p−1u − λu and as an
application, we prove some nonexistence results.

1 Introduction

In this paper we present some Pohozaev type identities for the following nonlinear elliptic equation:

−∆gu = |u|p−1u− λu on M. (1)

Here, p > 1, λ ∈ R and M is a ball in Rn or on the unit sphere Sn, n ≥ 3, equipped with the
standard metric g and ∆g stands for the Laplace-Beltrami operator on (M, g). The goal is to prove
nonexistence results for (1) in different ranges of λ.

Motivated by the study of Brezis and Nirenberg [5], we first consider the Dirichlet problem
associated to (1) in the unit ball B1 ⊂ Rn, i.e.,

{ −∆u = |u|p−1u− λu, u ≡/ 0 in B1,
u = 0 on ∂B1.

(2)

We prove the following identity:

Lemma 1 Let ψ : [0,∞) → R be a smooth function (with ψ′(0) = ψ′′(0) = 0 if n ≥ 4). If u is a
solution of (2), then

∫

B1

{
rψ′′′(r) + 3ψ′′(r)− (n− 1)(n− 3)

r
ψ′(r)− 4λ

(
rψ′(r) + ψ(r)

)} u2

2
dx

= ψ(1)
∫

∂B1

∣∣∂u

∂r

∣∣2 dHn−1(x) + 2
∫

B1

rψ′(r)
(
|∇u|2 −

∣∣∂u

∂r

∣∣2
)

dx

−
∫

B1

{
p + 3
p + 1

rψ′(r)− (p− 1
p + 1

n− 2
)
ψ(r)

}
|u|p+1 dx,

(3)

where r = |x| and
∂u

∂r
(x) =

x

|x| · ∇u(x) stands for the radial derivative of u.

As a consequence, we deduce the nonexistence result of Brezis and Nirenberg [5] for positive
solutions of (2) in the supercritical case p ≥ n+2

n−2 :
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Theorem 2 (Brezis and Nirenberg [5]) Let p ≥ n+2
n−2 and λ1 := λ1(−∆; B1) be the first eigenvalue

of the Laplace operator with Dirichlet boundary condition in B1. If one of the following two
conditions is satisfied

(i)

n = 3 and λ /∈
(
−λ1,−λ1

4

)
,

(ii)
n ≥ 4 and λ /∈ (−λ1, 0),

then there is no positive solution of (2).

Remark 1 a) The set of positive and nodal radial solutions (regular or singular) of (2) is described
by Benguria, Dolbeault and Esteban [2].

b) The question if there is no (nodal) solution of (2) for n = 3 and λ ∈ (−λ1
4 , 0) is still open.

Next we study the Dirichlet problem associated to (1) on a geodesic ball Dθ∗ centered at the
North pole in S3 of radius θ∗ ∈ (0, π):

{ −∆gu = |u|p−1u− λu, u ≡/ 0 in Dθ∗ ,
u = 0 on ∂Dθ∗ .

(4)

We want to obtain a similar identity to (3) for any solution u of (4). Using the stereographic
projection ΦQ : S3 \ {Q} → R3 with vertex at the South pole Q in S3, the equation (4) writes as

− 1
ρ3

div(ρ∇U) = |U |p−1U − λU in BR∗ ⊂ R3

where ρ(x) = 2
1+|x|2 , U(x) = u(Φ−1

Q (x)) for every x ∈ BR∗ and R∗ = tan θ∗
2 . The transformation

v(x) = U(x)
√

ρ(x)

turns (4) into
{
−∆v = ρ(x)

5−p
2 |v|p−1v + 3−4λ

4 ρ2v, v ≡/ 0 in BR∗ ,
v = 0 on ∂BR∗ .

(5)

We prove the following identity for a solution v of (5):

Lemma 3 Let ψ : [0,∞) → R be a smooth function. If v is a solution of (5), then
∫

BR∗

{
rψ′′′ + 3ψ′′ +

3− 4λ

2
[
r(1 + r2)ψ′ + (1− r2)ψ

]
ρ3(x)

}
v2

2
dx

= R∗ψ(R∗)
∫

∂BR∗

∣∣∂v

∂r

∣∣2 dH2(x) + 2
∫

BR∗
rψ′

(
|∇v|2 − ∣∣∂v

∂r

∣∣2
)

dx

−
∫

BR∗

{
(1 +

2
p + 1

)rψ′ − p− 5
p + 1

· 1− r2

1 + r2
ψ

}
|v|p+1ρ(x)

5−p
2 dx.

(6)

From here, we deduce the result of Bandle and Benguria [1], i.e., to determine the range of
values of the parameters θ∗ and λ for which there exists no positive solution of (4) in the critical
case p = 5.
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Theorem 4 (Bandle and Benguria [1]) Let p = 5 and Dθ∗ ⊂ S3 be a geodesic ball of radius θ∗.
Set λ∗1 = π2−(θ∗)2

(θ∗)2 be the first eigenvalue of the Laplace-Beltrami operator with Dirichlet boundary

condition in Dθ∗ and µ∗1 = π2−4(θ∗)2

4(θ∗)2 . If one of the following conditions is satisfied

(i)

λ ≤ 3
4

and λ /∈ (−λ∗1,−µ∗1) ,

(ii)

λ >
3
4

and θ∗ ∈ (0,
π

2
],

then there is no positive solution of (4). Moreover, there exists a curve in the strip (θ∗, λ) ⊂(
π
2 , π

)× (
3
4 ,∞)

, denoted by ν(θ∗) = λ such that ν(θ∗) → 3
4 as θ∗ → π and for λ ∈ (

3
4 , ν(θ∗)

)
there

is no radial solution of (4) (see Figure 1).

Remark 2 (a) In [6], Brezis and Peletier proved that for any θ∗ ∈ (π/2, π), there exist positive
radial solutions of (4) for λ sufficiently large; therefore, ν(θ∗) → +∞ as θ∗ → π/2.

(b) The question if there is no solution of (4) in the strip (θ∗, λ) ⊂ (
π
2 , π

) × (
3
4 ,∞)

below the
curve ν is still open (see discussion in Section 4).

*
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-
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Figure 1: Range of values of λ for nonexistence of positive radial solutions.

Finally, we deal with positive solutions of (1) in the case of the whole unit sphere Sn, n ≥ 3:
{ −∆gu = up − λu

u > 0 on Sn. (7)

For λ ≤ 0, there is no solution of (7) (it directly follows by integration of (7) on Sn). Therefore,
we consider the range λ > 0. The goal is to present a simplified proof of the following Pohozaev
type identity due to Gidas and Spruck [9]:

Lemma 5 (Gidas and Spruck [9]) Let n ≥ 3 and u be a solution of (7). Set

w = u−2/(n−2) (8)

and

J(x) =
1

wn−1

n∑

i,j=1

(∇iw̃j − 1
n

∆gw δij)2 ≥ 0,
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where ∇iw̃j denotes the j component of the covariant derivative ∇i of the vector field
(

1
ρ2 ∂jw

)
1≤j≤n

.

For any γ ∈ R we have

(n− 2)2

2

∫

Sn

J(x)u−γ + γ(1− γ)
∫

Sn

u−γ− 2n−2
n−2 |du|4

+
2(n− 1)

n

(n + 2
n− 2

− p− γ
n + 2

2(n− 1)
) ∫

Sn

up−γ− n
n−2 |du|2

+ 2
[
n− 1− λ

( 4(n− 1)
n(n− 2)

− γ
n + 2
2n

)] ∫

Sn

u−γ− 2
n−2 |du|2 = 0.

(9)

From here, it follows the following uniqueness result for solutions of (7):

Corollary 6 Let n ≥ 3. Assume that one of the following conditions holds:

(i) 1 < p < n+2
n−2 and {

0 < λ < min{ n
p−1 , an} if n < 8,

0 < λ ≤ n
p−1 if n ≥ 8,

(10)

where

an =
2n(n− 1)(n− 2)
−n2 + 8n− 4

;

(ii) p = n+2
n−2 and 0 < λ < n(n−2)

4 .

Then the only solution of (7) is the trivial constant solution λ1/(p−1).

This result was extended by M.F. Bidaut-Veron et L. Veron [3] using the Bochner-Lichnerowicz-
Weitzenböck formula [10]:

Theorem 7 (Veron and Veron [3]) Assume that

1 < p ≤ n + 2
n− 2

and 0 < λ ≤ n

p− 1
(11)

where at least one of the two inequalities (11) is strict. Then the only solution of (7) is the constant
λ1/(p−1).

Recently, Brezis and Li [4] proved Theorem 7 in the case of λ ≤ n(n − 2)/4 using the theory of
moving planes; they also showed that for subcritical exponent p, there exist nonconstant solutions
of (7) if λ > n

p−1 with |λ − n
p−1 | small. For the critical exponent p = n+2

n−2 , Corollary 6 and

Theorem 7 are also sharp since there is a well-known branch of nonconstant solutions if λ = n(n−2)
4

(see [7]).
The outline of the paper is the following: we start with some preliminaries on the geometry of

the unit sphere Sn that we use in the proof of Lemma 5. In Section 3, we prove Lemma 1 and
Theorem 2. In Section 4, we show Lemma 3 and Theorem 4. Finally, we give a simplified proof of
the Gidas-Spruck result.
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2 Preliminaries

In this section we introduce some notations that we use throughout of the paper. Let P =
(0, . . . , 0, 1) ∈ Rn+1 and Q = (0, . . . , 0,−1) ∈ Rn+1 be the North and the South pole of Sn and
set ΩP = Sn \ {P} and ΩQ = Sn \ {Q}. The stereographic projection ΦP : ΩP → Rn of pole P
(respectively, ΦQ : ΩQ → Rn of pole Q) is defined as

ΦP (y) =
(

y1

1− yn+1
, . . . ,

yn

1− yn+1

)
, ∀y = (y1, . . . , yn+1) ∈ ΩP

(respectively, ΦQ(y) =
(

y1

1 + yn+1
, . . . ,

yn

1 + yn+1

)
, ∀y = (y1, . . . , yn+1) ∈ ΩQ).

We easily check that ΦP (respectively, ΦQ) is a homeomorphism of ΩP (respectively, ΩQ) into Rn

and the inverse function Φ−1
P : Rn → Rn+1 (respectively, Φ−1

Q : Rn → Rn+1) is given by

Φ−1
P (x) = ρ(x)

(
x1, . . . , xn,

|x|2 − 1
2

)
, ∀x = (x1, . . . , xn) ∈ Rn

(respectively, Φ−1
Q (x) = ρ(x)

(
x1, . . . , xn,

1− |x|2
2

)
, ∀x = (x1, . . . , xn) ∈ Rn),

where
ρ(x) =

2
1 + |x|2

and |x|2 =
n∑

i=1

x2
i for any x ∈ Rn. In the following we omit the argument of maps. In the local

charts (ΩP ,ΦP ) and (ΩQ,ΦQ), the standard metric g on Sn writes as

gij = ρ2δij , 1 ≤ i, j ≤ n

where δij denotes the Kronecker’s symbol. For a function u : Sn → R, we use the following
notations:

ui = ∂iu, ũi =
1
ρ2

ui, 1 ≤ i ≤ n

|du|2 =
n∑

i=1

uiũi,

∆gu =
1
ρn

n∑

i=1

∂i(ρnũi).

For 1 ≤ i ≤ n, let ∇i be the covariant derivative. The Cristoffel symbols are given by

Γk
ij =





xkρ if i = j 6= k,
−xiρ if i = j = k,
−xjρ if i 6= j, i = k,
−xiρ if i 6= j, j = k.

If Vi are the components of a vector field V , we associate the vector field Ṽ of components Ṽi = 1
ρ2 Vi.

Standard computations yield that

(∇iV )j = ∂i(Vj) +
n∑

k=1

Γj
ikVk, 1 ≤ i, j ≤ n,
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n∑

i=1

(∇iV )i =
1
ρn

n∑

i=1

∂i(ρnVi), (12)

n∑

j=1

(∇j∇iV −∇i∇jV )j = (n− 1)ρ2Vi, 1 ≤ i ≤ n. (13)

One can check that

∇iũj = ∇j ũi, 1 ≤ i, j ≤ n, (14)

∆gu =
n∑

i=1

∇iũi, (15)

∂i(|du|2) = 2
n∑

j=1

uj∇j ũi, 1 ≤ i ≤ n, (16)

n∑

i,j=1

(∂iũj∇j ũi + ũj∇j∇iũi) =
n∑

i,j=1

(∇iũj∇j ũi + ũj∂j(∇iũi)), (17)

where ∇iũj denotes the j component of the covariant derivative ∇i of the vector field with the
components ũj .

3 The case of the unit ball in Rn. Proof of Lemma 1 and
Theorem 2

We start by proving identity (3):

Proof of Lemma 1. Let u be a solution of (2). Following the ideas of Brezis and Nirenberg [5],
we first multiply (2) by ψ(r)x · ∇u(x) ∈ C1(B1) (without any condition on ψ) and integrating by
parts, we obtain:

−
∫

B1

[rψ′ − (n− 2)ψ]|∇u|2 dx + ψ(1)
∫

∂B1

∣∣∂u

∂r

∣∣2 dHn−1(x) + 2
∫

B1

rψ′
(
|∇u|2 −

∣∣∂u

∂r

∣∣2
)

dx

=
∫

B1

(rψ′ + nψ)
(

2
p + 1

|u|p+1 − λu2

)
dx.

(18)

Next we multiply (2) by [rψ′ − (n − 2)ψ]u ∈ C1(B1) (since ψ′(0) = 0 if n ≥ 4) and it results by
integration by parts:

∫

B1

[rψ′ − (n− 2)ψ]|∇u|2 dx−
∫

B1

[
rψ′′′ + 3ψ′′ − (n− 1)(n− 3)

r
ψ′

]
u2

2
dx

=
∫

B1

[rψ′ − (n− 2)ψ](|u|p+1 − λu2) dx.

(19)

(Here, we used that ψ′′(0) = 0 if n ≥ 4.) Combining (18) and (19), the conclusion follows
immediately. ¤

Using identity (3), we show Theorem 2:

Proof of Theorem 2. Let u be a positive solution of (2). Choosing ψ = 1, (3) becomes the
standard Pohozaev identity [11]:

−2λ

∫

B1

u2 dx− (p− 1
p + 1

n− 2
) ∫

B1

up+1 dx =
∫

∂B1

∣∣∂u

∂r

∣∣2 dHn−1(x).
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Therefore, no solution exists for (2) if λ ≥ 0 and p ≥ n+2
n−2 . Set ϕ be a positive eigenfunction

associated to the first eigenvalue λ1 in B1. First, we prove the nonexistence result for λ ≤ −λ1.
Indeed, multiplying (2) by ϕ, we deduce:

λ1

∫

B1

uϕ = −
∫

B1

u∆ϕ = −
∫

B1

∆u ϕ =
∫

B1

(up − λu)ϕ.

That is, ∫

B1

[up − (λ + λ1)u]ϕ = 0;

therefore, we get a contradiction with u > 0. Now we treat the remaining case: n = 3 and
λ ∈ [−λ1

4 , 0) where λ1 = π2. By the symmetry result of Gidas, Ni and Nirenberg [8] applied for
positive solutions of (2), we know that u is radial. Then (3) becomes:

∫

B1

{rψ′′′ + 3ψ′′ − 4λ(rψ′ + ψ)} u2

2
dx

= ψ(1)
∫

∂B1

∣∣∂u

∂r

∣∣2 dH2(x)−
∫

B1

{
p + 3
p + 1

rψ′ − p− 5
p + 1

ψ

}
up+1 dx,

(20)

for any smooth function ψ : [0,∞) → R. Following the argument in [5], we choose the smooth
function

ψ(r) =
sin(2

√
|λ| r)

r
> 0, ∀r ∈ [0, 1).

Then

rψ′′′ + 3ψ′′ − 4λ(rψ′ + ψ) = 0,

and rψ′ =
2
√
|λ| r cos(2

√
|λ| r)− sin(2

√
|λ| r)

r
< 0, ∀r ∈ (0, 1].

Since p ≥ 5, (20) leads to a contradiction. ¤
Now we discuss the case n = 3 and p = 5, i.e.,

{ −∆u = u5 − λu, u ≡/ 0 in B1 ⊂ R3,
u = 0 on ∂B1.

(21)

Our aim is to present a list of properties for a solution u. We start by proving another identity ‘à
la Pohozaev’ related to (3):

Lemma 8 Let ψ : [0,∞) → R be a smooth function. If u is a solution of (21), then

−
∫

B1

{
rψ′′′(r) + 5ψ′′(r) +

4
r
ψ′(r) + 4λ

(
rψ′(r) + ψ(r)

)} u2

2
dx

= ψ(1)
∫

∂B1

∣∣∂u

∂r

∣∣2 dH2(x)− 2
∫

B1

rψ′(r)
(∣∣∂u

∂r

∣∣2 + λu2 − 1
3
u6

)
dx.

(22)

Proof. First, identity (3) writes in the case n = 3 and p = 5 as
∫

B1

{
rψ′′′(r) + 3ψ′′(r)− 4λ

(
rψ′(r) + ψ(r)

)} u2

2
dx

= ψ(1)
∫

∂B1

∣∣∂u

∂r

∣∣2 dH2(x) +
∫ 1

0

rψ′(r)
∫

∂Br

(
2|∇S2u|2 − 4

3
u6

)
dH2dr,

(23)
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where

∇S2u =
∂u

∂θ

~θ

r
+

∂u

∂ϕ

~ϕ

r sin θ
, ∇u =

∂u

∂r
~r +∇S2u

are written in the spherical coordinates (r, θ, ϕ) ∈ (0, 1) × (0, π) × (0, 2π). We compute the last
term in (23): multiplying (21) by u and integrating by parts in the variables θ and ϕ on ∂Br,
r ∈ (0, 1), we obtain:

∫ 1

0

rψ′(r)
∫

∂Br

(
2|∇S2u|2 − 4

3
u6

)
dH2dr =

∫

B1

rψ′(r)
[
2
3
u6 − 2λu2 +

2
r2

∂

∂r

(
r2 ∂u

∂r

)
u

]
dx.

(24)
If we integrate by parts the last term in (24) with respect to r, we get that

∫

B1

2ψ′(r)
r

∂

∂r

(
r2 ∂u

∂r

)
u dx =

∫

B1

{
rψ′′′(r) + 4ψ′′(r) +

2
r
ψ′(r)

}
u2 dx− 2

∫

B1

rψ′(r)
∣∣∂u

∂r

∣∣2 dx.

(25)
Combining (23), (24) and (25), we conclude with (22). ¤

By Lemmas 1 and 8, we obtain the following properties:

Proposition 9 If u is a solution of (21), then:

(i) ∫

∂B1

∣∣∂u

∂r

∣∣2 dH2(x) = 2λ

∫

B1

u2 dx.

(ii) If ψ : [0,∞) → R is a smooth function, then
∫

B1

{
rψ′′′(r) + 4ψ′′(r) +

2
r
ψ′(r)

}
u2 dx = 2

∫

B1

rψ′(r)
(∣∣∇u

∣∣2 + λu2 − u6
)

dx.

(iii) If λ < 0 and ψ(r) = sin(2
√
|λ| r)

r , ∀r ∈ [0, 1), then

ψ(1)
∫

∂B1

∣∣∂u

∂r

∣∣2 dH2(x) + 2
∫

B1

rψ′(r)
(
|∇S2u|2 − 2

3
u6

)
dx = 0.

(iv) If λ < 0 and ψ(r) = 1
r

∫ r

0

sinh(2
√
|λ| t)

t dt, ∀r ∈ [0, 1), then

ψ(1)
∫

∂B1

∣∣∂u

∂r

∣∣2 dH2(x) = 2
∫

B1

rψ′(r)
(∣∣∂u

∂r

∣∣2 + λu2 − 1
3
u6

)
dx.

Proof. The first point (i) follows from (3) by taking ψ ≡ 1. The identity in (ii) comes by
subtracting (23) from (22). Notice that the following ODE:

rψ′′′ + 4ψ′′ +
2
r
ψ′ = 0

has the solution
ψ(r) = c1 +

c2

r
+ c3 ln r.

(If we approximate ψ = 1/r by smooth functions, we obtain by (ii) the obvious relation
∫

B1
(
∣∣∇u

∣∣2+
λu2 − u6) dx = 0.) Point (iii) follows from (23) since ψ is the solution of the ODE:

(rψ)′′′ − 4λ(rψ)′ = 0.
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Similarly, (iv) comes from (22) since g = (rψ)′ satisfies the ODE:

−g′′ − 2
r
g′ = 4λg.

¤

4 The case of caps in S3. Proof of Lemma 3 and Theorem 4

First we present the proof of identity (6):

Proof of Lemma 3. Let v be a solution of (5). Following the same argument as in the proof of
Lemma 1, we multiply (5) by ψ(r)x · ∇v(x) ∈ C1(BR∗) and integrating by parts, we obtain:

−
∫

BR∗
(rψ′ − ψ)|∇v|2 dx + R∗ψ(R∗)

∫

∂BR∗

∣∣∂v

∂r

∣∣2 dH2 + 2
∫

BR∗
rψ′

(
|∇v|2 − ∣∣∂v

∂r

∣∣2
)

dx

=
3− 4λ

8

∫

BR∗

[
r(1 + r2)ψ′ + (3− r2)ψ

]
ρ3(x)v2 dx

+
2

p + 1

∫

BR∗

{
rψ′ +

(
3 +

(p− 5)r2

1 + r2

)
ψ

}
|v|p+1ρ(x)

5−p
2 dx.

(26)

Then, multiplying (5) by (rψ′ − ψ)v ∈ C1(BR∗), we obtain:
∫

BR∗
(rψ′ − ψ)|∇v|2 dx−

∫

BR∗
(rψ′′′ + 3ψ′′)

v2

2
dx

=
∫

BR∗
(rψ′ − ψ)

(
ρ(x)

5−p
2 |v|p+1 +

3− 4λ

4
ρ2v2

)
dx.

(27)

By summation of (26) and (27), we get the identity (6). ¤
As an application, we give the proof of Theorem 4:

Proof of Theorem 4. Let u be a positive solution of (4). As in the proof of Theorem 2,
multiplying (4) with a positive eigenfunction associated to λ∗1, we obtain that no positive solution
of (4) exists if λ ≤ −λ∗1. Set v(x) = u(Φ−1

Q (x))
√

ρ(x) be the corresponding solution of (5). We
distinguish the following two cases:

(i) λ ∈ [−µ∗1,
3
4

]
. Since λ ≤ 3

4 , by the symmetry result in [8] applied for positive solutions of
(5), we deduce that v is radial. Therefore, (6) becomes:

∫

BR∗

{
rψ′′′ + 3ψ′′ +

3− 4λ

2
[
r(1 + r2)ψ′ + (1− r2)ψ

]
ρ3(x)

}
v2

2
dx

= R∗ψ(R∗)
∫

∂BR∗

∣∣∂v

∂r

∣∣2 dH2(x)− 4
3

∫

BR∗
rψ′v6dx.

(28)

Set
w =

√
4(1− λ) (29)

and we use the change of variable

θ = 2 arctan r for r ∈ [0, R∗].

Remark that w ≥ 1 and the assumption λ ≥ −µ∗1 turns into wθ∗ ≤ π. Like in the proof of
Theorem 2, we choose the smooth function

ψ(r) =
sin(wθ)

sin θ
> 0, ∀θ ∈ (0, θ∗).
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Then
rψ′′′ + 3ψ′′ +

3− 4λ

2
[
r(1 + r2)ψ′ + (1− r2)ψ

]
ρ3(r) = 0. (30)

Moreover,

ψ′(r) = 2
w cos(wθ) sin θ − cos θ sin(wθ)

(1 + tan2 θ
2 ) sin2 θ

≤ 0, ∀θ ∈ (0, θ∗).

Indeed, if we denote
F (θ) = w cos(wθ) sin θ − cos θ sin(wθ),

then F (0) = 0 and F ′(θ) = (4λ − 3) sin θ sin(wθ) ≤ 0 for every θ ∈ (0, θ∗); therefore, we conclude
that F (θ) ≤ 0 on (0, θ∗). Using (28), we obtain a contradiction.

(ii) λ > 3
4 and θ∗ ∈ (0, π

2 ], i.e., R∗ ≤ 1. If we take ψ = 1, (6) writes as:

3− 4λ

4

∫

BR∗
(1− r2)ρ3(x)v2 dx = R∗

∫

∂BR∗

∣∣∂v

∂r

∣∣2 dH2(x).

Therefore, the nonexistence result also follows in this situation.
Using a similar argument as Bandle and Benguria [1], we prove the nonexistence of radial

(nodal) solutions u below a curve λ = ν(θ∗) in the region (λ, θ∗) ∈ ( 3
4 ,∞)× (π

2 , π). We distinguish
three cases:

(I) λ = 1. We consider m(θ) := aθ − θ2 and

ψ(r) =
m(θ)
sin θ

(31)

where a ∈ (π/2, π) is to be chosen in such a way that

ψ(r) ≥ 0 and ψ′(r) ≤ 0 (32)

for every 0 < θ < a. This is equivalent with G(θ) > 0, ∀θ ∈ (0, a) where

G(θ) = cos θm(θ)− sin θm′(θ). (33)

Since G(0) = 0, we ask that G′(θ) = sin θ(θ2 − aθ + 2) ≥ 0 for every θ ∈ (0, a); for example,
a = 2

√
2 = 2.828 . . . . Bandle and Benguria [1] numerically found a better value a = 3.042. Since

(30) holds, by (28), we get a contradiction. Therefore, for the largest a we set ν(a) = 1.
(II) λ ∈ ( 3

4 , 1). Let w ∈ (0, 1) be given by (29). We consider

m(θ) := sin(wθ)− a cos(wθ) + a

and ψ be defined as in (31) where a is to be chosen in such a way that (32) holds for the largest
range of θ. Denote it by ν−1(λ). Then (30) is satisfied and by (28), we deduce that no radial
(nodal) solution of (4) exists if θ∗ < ν−1(λ). Let us check that

ν−1(λ) >
π

2
.

For that, we take a negative a in the interval

a ∈
(

sin(wπ/2)
cos(wπ/2)− 1

1−w2

,−cos(wπ/2)
sin(wπ/2)

)
. (34)

Notice that a is well defined since w2 + cos(wπ/2) ≤ 1 for every w ∈ (0, 1). We want to prove that
(32) holds in (0, θa) for some θa > π/2. We have that

m′(θ) = w
(
cos(wθ) + a sin(wθ)

)
and m′′(θ) = w2

(
a cos(wθ)− sin(wθ)

)
.

10



Therefore, m′′(θ) ≤ 0 for θ ∈ [0, π/2], i.e., m is concave. Since m(0) = 0 and m(π/2) > 0 (by
(34)), we get that m ≥ 0 in [0, θa) for θa > π/2 and close to π/2. The same argument yields that

(m + m′′)(θ) = (1− w2)
(
sin(wθ)− a cos(wθ)

)
+ a

is concave in [0, π/2]. The choice (34) leads to (m + m′′)(π/2) > 0. Since (m + m′′)(0) = aw2 < 0,
we deduce that m + m′′ changes sign just once in (0, π/2). Define G as in (33); then

G′(θ) = − sin θ (m + m′′)(θ).

Hence, G′ also changes sign once in (0, π/2) and G′ ≥ 0 for θ close to 0. Since G(0) = 0 and
G(π/2) = −m′(π/2) > 0 (by (34)), we obtain

G(θ) ≥ min{G(0), G(π/2)} ≥ 0, ∀θ ∈ (0, θa),

i.e., (32) is satisfied in (0, θa). Finally, we check that

ν−1(λ) → π as λ ↓ 3
4
.

Indeed, let ε > 0 be very small. We consider λ be close to 3
4 such that 1 − w2 = O(ε2). Choose

a < 0 with |a| = O(ε). Then m′′(θ) ≥ 0 in an interval (0, θε) with θε → π as ε → 0. Therefore
m is concave in (0, θε), and eventually by shrinking that interval, we can assume that m(θε) > 0,
and thus, m is positive in (0, θε). Now notice that m + m′′ < 0 in (0, π) and hence, G is positive
in (0, π). We conclude that (32) holds in the interval (0, θε) that tends to (0, π) as ε → 0.

(III) λ ∈ (1,∞). Set w =
√
−4(1− λ). Consider

m(θ) := sinh(wθ)− a cosh(wθ) + a

and ψ be as in (31) where a is to be chosen in such a way that (32) holds for the largest range of θ.
Denote it by ν−1(λ). The same argument as before gives that ν−1(λ) > π/2, i.e., ν is well-defined;
for that, it suffices to choose a positive a in the interval

a ∈
(

cosh(wπ/2)
sinh(wπ/2)

,
sinh(wπ/2)

cosh(wπ/2)− 1
1+w2

)
.

Since (30) is satisfied, we conclude by (28) that no radial (nodal) solution of (4) exists if θ∗ <
ν−1(λ). ¤

Notice that for θ∗ ∈ (π/2, π), we don’t know in general if a positive solution of (4) is radial;
moreover, for λ large enough, non-radial solutions do exist as announced by Bandle and Wei. As
mentioned in Remark 2, it would be interesting to see if no solution of (4) exists below the curve
ν in the strip (θ∗, λ) ⊂ (

π
2 , π

)× (
3
4 ,∞)

. We believe that the answer to this question is related to
the open question raised in Remark 1.

5 The simplified proof of the Gidas-Spruck result

In the following we present the proof of Lemma 5:

Proof of Lemma 5. The relation (8) between w and u leads to

wi = − 2
n− 2

u−n/(n−2)ui and |dw|2 =
4

(n− 2)2
u−2n/(n−2)|du|2. (35)
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By (7), w satisfies

− 1
n

w∆gw +
1
2
|dw|2 =

2
n(n− 2)

(
λw2 − w

n−2
2

(
n+2
n−2−p

))
(36)

which writes in terms of u as

∆gw =
2n

(n− 2)2
u−2(n−1)/(n−2)|du|2 +

2
n− 2

(
up− n

n−2 − λu−
2

n−2

)
. (37)

We will use the vector field defined in [9] that has the components

Vi =
1

wn−1

(
1
2
∂i(|dw|2)− 1

n
wi∆gw

)
. (38)

Using the equations (35) and (37), the expression of Vi in function of u writes as

Vi =
2

(n− 2)2

[
∂i

(
u−2/(n−2)|du|2) + (n− 2)∂i

(
u−2/(n−2)

)|du|2

+
2
n

(
up− 2

n−2 − λu
n−4
n−2

)
ui

]
.

(39)

Notice that by (14) and (15), we have that

J(x) =
1

wn−1




n∑

i,j=1

∇iw̃j∇jw̃i − 1
n

(∆gw)2


 .

Now we compute the co-differential of the vector Ṽ = 1
ρ2 V :

n∑

i=1

∇iṼi =
n∑

i=1

∇i

[
1

wn−1

( 1
2ρ2

∂i(|dw|2)− 1
n

w̃i∆gw
)]

(15),(16)
=

1
wn−1




n∑

i,j=1

(
w̃j∇i∇jw̃i + ∂i(w̃j)∇jw̃i

)− 1
n

(∆gw)2 − 1
n

n∑

i=1

w̃i∂i(∆gw)




+
n∑

i=1

∂i

( 1
wn−1

) [
1

2ρ2
∂i(|dw|2)− 1

n
w̃i∆gw

]

(13),(17)
= J(x) +

n− 1
wn−1

ρ2
n∑

j=1

w̃2
j +

n− 1
nwn−1

n∑

i=1

w̃i∂i(∆gw)

−
n∑

i=1

(n− 1)wi

wn

[
1

2ρ2
∂i(|dw|2)− 1

n
w̃i∆gw

]

(36)
= J(x) +

n− 1
wn−1

|dw|2

+
2(n− 1)
n(n− 2)

[(n + 2
2

− p
n− 2

2
)
w−

n
2−p n−2

2 − 2λw1−n

]
|dw|2.

In terms of u, the co-differential of Ṽ becomes
n∑

i=1

∇iṼi
(35)
= J(x) +

4(n− 1)
(n− 2)2

u−2/(n−2)|du|2

+
8(n− 1)
n(n− 2)3

[(n + 2
2

− p
n− 2

2
)
up− n

n−2 − 2λu−2/(n−2)

]
|du|2.

(40)
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Now let γ ∈ R. Integration by parts yields

0 =
∫

Sn

n∑

i=1

∇i(u−γ Ṽ )i =
∫

Sn

u−γ
n∑

i=1

∇iṼi − γ

∫

Sn

u−γ−1
n∑

i=1

uiṼi. (41)

By (39), integrating by parts, we deduce:

(n− 2)2

2

∫

Sn

u−γ−1
n∑

i=1

uiṼi = −
∫

Sn

n∑

i=1

∇i(u−γ−1ũi)u−2/(n−2)|du|2 − 2
∫

Sn

u−γ−2(n−1)/(n−2)|du|4

+
2
n

∫

Sn

(
up−γ− n

n−2 − λu−γ− 2
n−2

)|du|2

(7)
= (γ − 1)

∫

Sn

u−γ−2(n−1)/(n−2)|du|4

+
n + 2

n

∫

Sn

(
up−γ− n

n−2 − λu−γ− 2
n−2

)|du|2.

The conclusion follows by (40) and (41). ¤
Corollary 6 is a trivial consequence of Lemma 5:

Proof of Corollary 6. Suppose that hypothesis (i) holds. Set

γ0 =
2(n− 1)
n + 2

(
n + 2
n− 2

− p

)
.

If n ≥ 8, then 0 < γ0 < 1 and

λ
( 4(n− 1)
n(n− 2)

− γ0
n + 2
2n

) ≤ n− 1 (42)

provided that λ ≤ n
p−1 . Applying (9) for γ0, we conclude that the second term in (9) must vanish,

that means u is constant. If 3 ≤ n < 8, an easy computation shows that

an ≥ n

p− 1
⇔ p ≥ n(n + 2)

2(n− 1)(n− 2)
⇔ γ0 ≤ 1.

Therefore, if an ≥ n
p−1 , we choose γ = γ0 in (9) and we deduce that the last term in (9) must be

zero, i.e., u is constant provided that λ < n
p−1 . Otherwise, (9) for γ = 1 also yields that the last

term vanishes and the conclusion follows. Now suppose that (ii) holds. Then for γ = 0, (9) shows
that the last term is zero, that is u must be constant provided that λ < n

p−1 . ¤

Remark 3 When
{
n ≥ 8, p ∈ (1,

n + 2
n− 2

)
}

and
{
3 ≤ n < 8, p ∈ ( n(n+2)

2(n−1)(n−2) ,
n+2
n−2 )

}
, Corollary 6

is sharp.
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