Pohozaev type identities for an elliptic equation

Radu Ignat
Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie,
B.C. 187, 4 Place Jussieu, 75252 Paris Cedex 05, France
(e-mail: ignat@ann.jussieu.fr)

Abstract

We present some Pohozaev identities for the equation $-\Delta u=|u|^{p-1} u-\lambda u$ and as an application, we prove some nonexistence results.

1 Introduction

In this paper we present some Pohozaev type identities for the following nonlinear elliptic equation:

$$
\begin{equation*}
-\Delta_{g} u=|u|^{p-1} u-\lambda u \quad \text { on } \quad M \tag{1}
\end{equation*}
$$

Here, $p>1, \lambda \in \mathbb{R}$ and M is a ball in \mathbb{R}^{n} or on the unit sphere $S^{n}, n \geq 3$, equipped with the standard metric g and Δ_{g} stands for the Laplace-Beltrami operator on (M, g). The goal is to prove nonexistence results for (1) in different ranges of λ.

Motivated by the study of Brezis and Nirenberg [5], we first consider the Dirichlet problem associated to (1) in the unit ball $B_{1} \subset \mathbb{R}^{n}$, i.e.,

$$
\left\{\begin{array}{rlrl}
-\Delta u & =|u|^{p-1} u-\lambda u, & u \not \equiv 0 & \tag{2}\\
\text { in } \quad B_{1} \\
u & =0 & & \text { on } \partial B_{1} .
\end{array}\right.
$$

We prove the following identity:
Lemma 1 Let $\psi:[0, \infty) \rightarrow \mathbb{R}$ be a smooth function (with $\psi^{\prime}(0)=\psi^{\prime \prime}(0)=0$ if $n \geq 4$). If u is a solution of (2), then

$$
\begin{align*}
& \int_{B_{1}}\left\{r \psi^{\prime \prime \prime}(r)+3 \psi^{\prime \prime}(r)-\frac{(n-1)(n-3)}{r} \psi^{\prime}(r)-4 \lambda\left(r \psi^{\prime}(r)+\psi(r)\right)\right\} \frac{u^{2}}{2} d x \\
&= \psi(1) \int_{\partial B_{1}}\left|\frac{\partial u}{\partial r}\right|^{2} d \mathcal{H}^{n-1}(x)+2 \int_{B_{1}} r \psi^{\prime}(r)\left(|\nabla u|^{2}-\left|\frac{\partial u}{\partial r}\right|^{2}\right) d x \tag{3}\\
&-\int_{B_{1}}\left\{\frac{p+3}{p+1} r \psi^{\prime}(r)-\left(\frac{p-1}{p+1} n-2\right) \psi(r)\right\}|u|^{p+1} d x
\end{align*}
$$

where $r=|x|$ and $\frac{\partial u}{\partial r}(x)=\frac{x}{|x|} \cdot \nabla u(x)$ stands for the radial derivative of u.
As a consequence, we deduce the nonexistence result of Brezis and Nirenberg [5] for positive solutions of (2) in the supercritical case $p \geq \frac{n+2}{n-2}$:

Theorem 2 (Brezis and Nirenberg [5]) Let $p \geq \frac{n+2}{n-2}$ and $\lambda_{1}:=\lambda_{1}\left(-\Delta ; B_{1}\right)$ be the first eigenvalue of the Laplace operator with Dirichlet boundary condition in B_{1}. If one of the following two conditions is satisfied
(i)

$$
n=3 \quad \text { and } \quad \lambda \notin\left(-\lambda_{1},-\frac{\lambda_{1}}{4}\right)
$$

(ii)

$$
n \geq 4 \quad \text { and } \quad \lambda \notin\left(-\lambda_{1}, 0\right)
$$

then there is no positive solution of (2).
Remark 1 a) The set of positive and nodal radial solutions (regular or singular) of (2) is described by Benguria, Dolbeault and Esteban [2].
b) The question if there is no (nodal) solution of (2) for $n=3$ and $\lambda \in\left(-\frac{\lambda_{1}}{4}, 0\right)$ is still open.

Next we study the Dirichlet problem associated to (1) on a geodesic ball $D_{\theta^{*}}$ centered at the North pole in S^{3} of radius $\theta^{*} \in(0, \pi)$:

$$
\left\{\begin{align*}
-\Delta_{g} u & =|u|^{p-1} u-\lambda u, \quad u \not \equiv 0 & & \text { in } D_{\theta^{*}} \tag{4}\\
u & =0 & & \text { on } \partial D_{\theta^{*}}
\end{align*}\right.
$$

We want to obtain a similar identity to (3) for any solution u of (4). Using the stereographic projection $\Phi_{Q}: S^{3} \backslash\{Q\} \rightarrow \mathbb{R}^{3}$ with vertex at the South pole Q in S^{3}, the equation (4) writes as

$$
-\frac{1}{\rho^{3}} \operatorname{div}(\rho \nabla U)=|U|^{p-1} U-\lambda U \quad \text { in } \quad B_{R^{*}} \subset \mathbb{R}^{3}
$$

where $\rho(x)=\frac{2}{1+|x|^{2}}, U(x)=u\left(\Phi_{Q}^{-1}(x)\right)$ for every $x \in B_{R^{*}}$ and $R^{*}=\tan \frac{\theta^{*}}{2}$. The transformation

$$
v(x)=U(x) \sqrt{\rho(x)}
$$

turns (4) into

$$
\left\{\begin{align*}
-\Delta v & =\rho(x)^{\frac{5-p}{2}}|v|^{p-1} v+\frac{3-4 \lambda}{4} \rho^{2} v, \quad v \not \equiv 0 & & \text { in } B_{R^{*}} \tag{5}\\
v & =0 & & \text { on } \partial B_{R^{*}}
\end{align*}\right.
$$

We prove the following identity for a solution v of (5):
Lemma 3 Let $\psi:[0, \infty) \rightarrow \mathbb{R}$ be a smooth function. If v is a solution of (5), then

$$
\begin{align*}
\int_{B_{R^{*}}} & \left\{r \psi^{\prime \prime \prime}+3 \psi^{\prime \prime}+\frac{3-4 \lambda}{2}\left[r\left(1+r^{2}\right) \psi^{\prime}+\left(1-r^{2}\right) \psi\right] \rho^{3}(x)\right\} \frac{v^{2}}{2} d x \\
= & R^{*} \psi\left(R^{*}\right) \int_{\partial B_{R^{*}}}\left|\frac{\partial v}{\partial r}\right|^{2} d \mathcal{H}^{2}(x)+2 \int_{B_{R^{*}}} r \psi^{\prime}\left(|\nabla v|^{2}-\left|\frac{\partial v}{\partial r}\right|^{2}\right) d x \tag{6}\\
& -\int_{B_{R^{*}}}\left\{\left(1+\frac{2}{p+1}\right) r \psi^{\prime}-\frac{p-5}{p+1} \cdot \frac{1-r^{2}}{1+r^{2}} \psi\right\}|v|^{p+1} \rho(x)^{\frac{5-p}{2}} d x
\end{align*}
$$

From here, we deduce the result of Bandle and Benguria [1], i.e., to determine the range of values of the parameters θ^{*} and λ for which there exists no positive solution of (4) in the critical case $p=5$.

Theorem 4 (Bandle and Benguria [1]) Let $p=5$ and $D_{\theta^{*}} \subset S^{3}$ be a geodesic ball of radius θ^{*}. Set $\lambda_{1}^{*}=\frac{\pi^{2}-\left(\theta^{*}\right)^{2}}{\left(\theta^{*}\right)^{2}}$ be the first eigenvalue of the Laplace-Beltrami operator with Dirichlet boundary condition in $D_{\theta^{*}}$ and $\mu_{1}^{*}=\frac{\pi^{2}-4\left(\theta^{*}\right)^{2}}{4\left(\theta^{*}\right)^{2}}$. If one of the following conditions is satisfied
(i)

$$
\lambda \leq \frac{3}{4} \quad \text { and } \quad \lambda \notin\left(-\lambda_{1}^{*},-\mu_{1}^{*}\right)
$$

(ii)

$$
\lambda>\frac{3}{4} \quad \text { and } \quad \theta^{*} \in\left(0, \frac{\pi}{2}\right]
$$

then there is no positive solution of (4). Moreover, there exists a curve in the strip $\left(\theta^{*}, \lambda\right) \subset$ $\left(\frac{\pi}{2}, \pi\right) \times\left(\frac{3}{4}, \infty\right)$, denoted by $\nu\left(\theta^{*}\right)=\lambda$ such that $\nu\left(\theta^{*}\right) \rightarrow \frac{3}{4}$ as $\theta^{*} \rightarrow \pi$ and for $\lambda \in\left(\frac{3}{4}, \nu\left(\theta^{*}\right)\right)$ there is no radial solution of (4) (see Figure 1).

Remark 2 (a) In [6], Brezis and Peletier proved that for any $\theta^{*} \in(\pi / 2, \pi)$, there exist positive radial solutions of (4) for λ sufficiently large; therefore, $\nu\left(\theta^{*}\right) \rightarrow+\infty$ as $\theta^{*} \rightarrow \pi / 2$.
(b) The question if there is no solution of (4) in the strip $\left(\theta^{*}, \lambda\right) \subset\left(\frac{\pi}{2}, \pi\right) \times\left(\frac{3}{4}, \infty\right)$ below the curve ν is still open (see discussion in Section 4).

Figure 1: Range of values of λ for nonexistence of positive radial solutions.
Finally, we deal with positive solutions of (1) in the case of the whole unit sphere $S^{n}, n \geq 3$:

$$
\left\{\begin{align*}
-\Delta_{g} u & =u^{p}-\lambda u \tag{7}\\
u & >0
\end{align*} \quad \text { on } \quad S^{n} .\right.
$$

For $\lambda \leq 0$, there is no solution of (7) (it directly follows by integration of (7) on S^{n}). Therefore, we consider the range $\lambda>0$. The goal is to present a simplified proof of the following Pohozaev type identity due to Gidas and Spruck [9]:

Lemma 5 (Gidas and Spruck [9]) Let $n \geq 3$ and u be a solution of (7). Set

$$
\begin{equation*}
w=u^{-2 /(n-2)} \tag{8}
\end{equation*}
$$

and

$$
J(x)=\frac{1}{w^{n-1}} \sum_{i, j=1}^{n}\left(\nabla_{i} \tilde{w}_{j}-\frac{1}{n} \Delta_{g} w \delta_{i j}\right)^{2} \geq 0
$$

where $\nabla_{i} \tilde{w}_{j}$ denotes the j component of the covariant derivative ∇_{i} of the vector field $\left(\frac{1}{\rho^{2}} \partial_{j} w\right)_{1 \leq j \leq n}$. For any $\gamma \in \mathbb{R}$ we have

$$
\begin{align*}
& \frac{(n-2)^{2}}{2} \int_{S^{n}} J(x) u^{-\gamma}+\gamma(1-\gamma) \int_{S^{n}} u^{-\gamma-\frac{2 n-2}{n-2}}|d u|^{4} \\
& +\frac{2(n-1)}{n}\left(\frac{n+2}{n-2}-p-\gamma \frac{n+2}{2(n-1)}\right) \int_{S^{n}} u^{p-\gamma-\frac{n}{n-2}}|d u|^{2} \tag{9}\\
& +2\left[n-1-\lambda\left(\frac{4(n-1)}{n(n-2)}-\gamma \frac{n+2}{2 n}\right)\right] \int_{S^{n}} u^{-\gamma-\frac{2}{n-2}}|d u|^{2}=0 .
\end{align*}
$$

From here, it follows the following uniqueness result for solutions of (7):
Corollary 6 Let $n \geq 3$. Assume that one of the following conditions holds:
(i) $1<p<\frac{n+2}{n-2}$ and

$$
\left\{\begin{array}{lll}
0<\lambda<\min \left\{\frac{n}{p-1}, a_{n}\right\} & \text { if } & n<8 \tag{10}\\
0<\lambda \leq \frac{n}{p-1} & \text { if } \quad n \geq 8
\end{array}\right.
$$

where

$$
a_{n}=\frac{2 n(n-1)(n-2)}{-n^{2}+8 n-4}
$$

(ii) $p=\frac{n+2}{n-2}$ and $0<\lambda<\frac{n(n-2)}{4}$.

Then the only solution of (7) is the trivial constant solution $\lambda^{1 /(p-1)}$.
This result was extended by M.F. Bidaut-Veron et L. Veron [3] using the Bochner-LichnerowiczWeitzenböck formula [10]:

Theorem 7 (Veron and Veron [3]) Assume that

$$
\begin{equation*}
1<p \leq \frac{n+2}{n-2} \quad \text { and } \quad 0<\lambda \leq \frac{n}{p-1} \tag{11}
\end{equation*}
$$

where at least one of the two inequalities (11) is strict. Then the only solution of (7) is the constant $\lambda^{1 /(p-1)}$.

Recently, Brezis and Li [4] proved Theorem 7 in the case of $\lambda \leq n(n-2) / 4$ using the theory of moving planes; they also showed that for subcritical exponent p, there exist nonconstant solutions of (7) if $\lambda>\frac{n}{p-1}$ with $\left|\lambda-\frac{n}{p-1}\right|$ small. For the critical exponent $p=\frac{n+2}{n-2}$, Corollary 6 and Theorem 7 are also sharp since there is a well-known branch of nonconstant solutions if $\lambda=\frac{n(n-2)}{4}$ (see [7]).

The outline of the paper is the following: we start with some preliminaries on the geometry of the unit sphere S^{n} that we use in the proof of Lemma 5. In Section 3, we prove Lemma 1 and Theorem 2. In Section 4, we show Lemma 3 and Theorem 4. Finally, we give a simplified proof of the Gidas-Spruck result.

2 Preliminaries

In this section we introduce some notations that we use throughout of the paper. Let $P=$ $(0, \ldots, 0,1) \in \mathbb{R}^{n+1}$ and $Q=(0, \ldots, 0,-1) \in \mathbb{R}^{n+1}$ be the North and the South pole of S^{n} and set $\Omega_{P}=S^{n} \backslash\{P\}$ and $\Omega_{Q}=S^{n} \backslash\{Q\}$. The stereographic projection $\Phi_{P}: \Omega_{P} \rightarrow \mathbb{R}^{n}$ of pole P (respectively, $\Phi_{Q}: \Omega_{Q} \rightarrow \mathbb{R}^{n}$ of pole Q) is defined as

$$
\begin{aligned}
\Phi_{P}(y) & =\left(\frac{y_{1}}{1-y_{n+1}}, \ldots, \frac{y_{n}}{1-y_{n+1}}\right), \quad \forall y=\left(y_{1}, \ldots, y_{n+1}\right) \in \Omega_{P} \\
\text { (respectively, } \quad \Phi_{Q}(y) & \left.=\left(\frac{y_{1}}{1+y_{n+1}}, \ldots, \frac{y_{n}}{1+y_{n+1}}\right), \quad \forall y=\left(y_{1}, \ldots, y_{n+1}\right) \in \Omega_{Q}\right) .
\end{aligned}
$$

We easily check that Φ_{P} (respectively, Φ_{Q}) is a homeomorphism of Ω_{P} (respectively, Ω_{Q}) into \mathbb{R}^{n} and the inverse function $\Phi_{P}^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n+1}$ (respectively, $\Phi_{Q}^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n+1}$) is given by

$$
\begin{aligned}
& \Phi_{P}^{-1}(x)=\rho(x)\left(x_{1}, \ldots, x_{n}, \frac{|x|^{2}-1}{2}\right), \forall x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \\
&\text { (respectively, } \left.\quad \Phi_{Q}^{-1}(x)=\rho(x)\left(x_{1}, \ldots, x_{n}, \frac{1-|x|^{2}}{2}\right), \quad \forall x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}\right)
\end{aligned}
$$

where

$$
\rho(x)=\frac{2}{1+|x|^{2}}
$$

and $|x|^{2}=\sum_{i=1}^{n} x_{i}^{2}$ for any $x \in \mathbb{R}^{n}$. In the following we omit the argument of maps. In the local charts $\left(\Omega_{P}, \Phi_{P}\right)$ and $\left(\Omega_{Q}, \Phi_{Q}\right)$, the standard metric g on S^{n} writes as

$$
g_{i j}=\rho^{2} \delta_{i j}, 1 \leq i, j \leq n
$$

where $\delta_{i j}$ denotes the Kronecker's symbol. For a function $u: S^{n} \rightarrow \mathbb{R}$, we use the following notations:

$$
\begin{gathered}
u_{i}=\partial_{i} u, \tilde{u}_{i}=\frac{1}{\rho^{2}} u_{i}, 1 \leq i \leq n \\
|d u|^{2}=\sum_{i=1}^{n} u_{i} \tilde{u}_{i} \\
\Delta_{g} u=\frac{1}{\rho^{n}} \sum_{i=1}^{n} \partial_{i}\left(\rho^{n} \tilde{u}_{i}\right) .
\end{gathered}
$$

For $1 \leq i \leq n$, let ∇_{i} be the covariant derivative. The Cristoffel symbols are given by

$$
\Gamma_{i j}^{k}=\left\{\begin{array}{rll}
x_{k} \rho & \text { if } & i=j \neq k, \\
-x_{i} \rho & \text { if } & i=j=k, \\
-x_{j} \rho & \text { if } & i \neq j, i=k, \\
-x_{i} \rho & \text { if } & i \neq j, j=k .
\end{array}\right.
$$

If V_{i} are the components of a vector field V, we associate the vector field \tilde{V} of components $\tilde{V}_{i}=\frac{1}{\rho^{2}} V_{i}$. Standard computations yield that

$$
\left(\nabla_{i} V\right)_{j}=\partial_{i}\left(V_{j}\right)+\sum_{k=1}^{n} \Gamma_{i k}^{j} V_{k}, 1 \leq i, j \leq n,
$$

$$
\begin{gather*}
\sum_{i=1}^{n}\left(\nabla_{i} V\right)_{i}=\frac{1}{\rho^{n}} \sum_{i=1}^{n} \partial_{i}\left(\rho^{n} V_{i}\right) \tag{12}\\
\sum_{j=1}^{n}\left(\nabla_{j} \nabla_{i} V-\nabla_{i} \nabla_{j} V\right)_{j}=(n-1) \rho^{2} V_{i}, 1 \leq i \leq n . \tag{13}
\end{gather*}
$$

One can check that

$$
\begin{align*}
& \nabla_{i} \tilde{u}_{j}=\nabla_{j} \tilde{u}_{i}, 1 \leq i, j \leq n, \tag{14}\\
& \Delta_{g} u=\sum_{i=1}^{n} \nabla_{i} \tilde{u}_{i}, \tag{15}\\
& \partial_{i}\left(|d u|^{2}\right)=2 \sum_{j=1}^{n} u_{j} \nabla_{j} \tilde{u}_{i}, 1 \leq i \leq n, \tag{16}\\
& \sum_{i, j=1}^{n}\left(\partial_{i} \tilde{u}_{j} \nabla_{j} \tilde{u}_{i}+\tilde{u}_{j} \nabla_{j} \nabla_{i} \tilde{u}_{i}\right)=\sum_{i, j=1}^{n}\left(\nabla_{i} \tilde{u}_{j} \nabla_{j} \tilde{u}_{i}+\tilde{u}_{j} \partial_{j}\left(\nabla_{i} \tilde{u}_{i}\right)\right), \tag{17}
\end{align*}
$$

where $\nabla_{i} \tilde{u}_{j}$ denotes the j component of the covariant derivative ∇_{i} of the vector field with the components \tilde{u}_{j}.

3 The case of the unit ball in \mathbb{R}^{n}. Proof of Lemma 1 and Theorem 2

We start by proving identity (3):
Proof of Lemma 1. Let u be a solution of (2). Following the ideas of Brezis and Nirenberg [5], we first multiply (2) by $\psi(r) x \cdot \nabla u(x) \in C^{1}\left(B_{1}\right)$ (without any condition on ψ) and integrating by parts, we obtain:

$$
\begin{align*}
& -\int_{B_{1}}\left[r \psi^{\prime}-(n-2) \psi\right]|\nabla u|^{2} d x+\psi(1) \int_{\partial B_{1}}\left|\frac{\partial u}{\partial r}\right|^{2} d \mathcal{H}^{n-1}(x)+2 \int_{B_{1}} r \psi^{\prime}\left(|\nabla u|^{2}-\left|\frac{\partial u}{\partial r}\right|^{2}\right) d x \\
& \quad=\int_{B_{1}}\left(r \psi^{\prime}+n \psi\right)\left(\frac{2}{p+1}|u|^{p+1}-\lambda u^{2}\right) d x \tag{18}
\end{align*}
$$

Next we multiply (2) by $\left[r \psi^{\prime}-(n-2) \psi\right] u \in C^{1}\left(B_{1}\right)\left(\right.$ since $\psi^{\prime}(0)=0$ if $\left.n \geq 4\right)$ and it results by integration by parts:

$$
\begin{align*}
\int_{B_{1}} & {\left[r \psi^{\prime}-(n-2) \psi\right]|\nabla u|^{2} d x-\int_{B_{1}}\left[r \psi^{\prime \prime \prime}+3 \psi^{\prime \prime}-\frac{(n-1)(n-3)}{r} \psi^{\prime}\right] \frac{u^{2}}{2} d x } \tag{19}\\
& =\int_{B_{1}}\left[r \psi^{\prime}-(n-2) \psi\right]\left(|u|^{p+1}-\lambda u^{2}\right) d x
\end{align*}
$$

(Here, we used that $\psi^{\prime \prime}(0)=0$ if $n \geq 4$.) Combining (18) and (19), the conclusion follows immediately.

Using identity (3), we show Theorem 2:
Proof of Theorem 2. Let u be a positive solution of (2). Choosing $\psi=1$, (3) becomes the standard Pohozaev identity [11]:

$$
-2 \lambda \int_{B_{1}} u^{2} d x-\left(\frac{p-1}{p+1} n-2\right) \int_{B_{1}} u^{p+1} d x=\int_{\partial B_{1}}\left|\frac{\partial u}{\partial r}\right|^{2} d \mathcal{H}^{n-1}(x)
$$

Therefore, no solution exists for (2) if $\lambda \geq 0$ and $p \geq \frac{n+2}{n-2}$. Set φ be a positive eigenfunction associated to the first eigenvalue λ_{1} in B_{1}. First, we prove the nonexistence result for $\lambda \leq-\lambda_{1}$. Indeed, multiplying (2) by φ, we deduce:

$$
\lambda_{1} \int_{B_{1}} u \varphi=-\int_{B_{1}} u \Delta \varphi=-\int_{B_{1}} \Delta u \varphi=\int_{B_{1}}\left(u^{p}-\lambda u\right) \varphi .
$$

That is,

$$
\int_{B_{1}}\left[u^{p}-\left(\lambda+\lambda_{1}\right) u\right] \varphi=0
$$

therefore, we get a contradiction with $u>0$. Now we treat the remaining case: $n=3$ and $\lambda \in\left[-\frac{\lambda_{1}}{4}, 0\right)$ where $\lambda_{1}=\pi^{2}$. By the symmetry result of Gidas, Ni and Nirenberg [8] applied for positive solutions of (2), we know that u is radial. Then (3) becomes:

$$
\begin{align*}
\int_{B_{1}} & \left\{r \psi^{\prime \prime \prime}+3 \psi^{\prime \prime}-4 \lambda\left(r \psi^{\prime}+\psi\right)\right\} \frac{u^{2}}{2} d x \\
& =\psi(1) \int_{\partial B_{1}}\left|\frac{\partial u}{\partial r}\right|^{2} d \mathcal{H}^{2}(x)-\int_{B_{1}}\left\{\frac{p+3}{p+1} r \psi^{\prime}-\frac{p-5}{p+1} \psi\right\} u^{p+1} d x \tag{20}
\end{align*}
$$

for any smooth function $\psi:[0, \infty) \rightarrow \mathbb{R}$. Following the argument in [5], we choose the smooth function

$$
\psi(r)=\frac{\sin (2 \sqrt{|\lambda|} r)}{r}>0, \forall r \in[0,1)
$$

Then

$$
\begin{aligned}
& r \psi^{\prime \prime \prime}+3 \psi^{\prime \prime}-4 \lambda\left(r \psi^{\prime}+\psi\right)=0 \\
& \text { and } \quad r \psi^{\prime}=\frac{2 \sqrt{|\lambda|} r \cos (2 \sqrt{|\lambda|} r)-\sin (2 \sqrt{|\lambda|} r)}{r}<0, \forall r \in(0,1] .
\end{aligned}
$$

Since $p \geq 5$,(20) leads to a contradiction.
Now we discuss the case $n=3$ and $p=5$, i.e.,

$$
\left\{\begin{array}{rlrll}
-\Delta u & =u^{5}-\lambda u, & u \not \equiv 0 & & \text { in } \tag{21}\\
& B_{1} \subset \mathbb{R}^{3} \\
u & =0 & & \text { on } & \\
\partial B_{1} .
\end{array}\right.
$$

Our aim is to present a list of properties for a solution u. We start by proving another identity 'à la Pohozaev' related to (3):

Lemma 8 Let $\psi:[0, \infty) \rightarrow \mathbb{R}$ be a smooth function. If u is a solution of (21), then

$$
\begin{align*}
& -\int_{B_{1}}\left\{r \psi^{\prime \prime \prime}(r)+5 \psi^{\prime \prime}(r)+\frac{4}{r} \psi^{\prime}(r)+4 \lambda\left(r \psi^{\prime}(r)+\psi(r)\right)\right\} \frac{u^{2}}{2} d x \\
& \quad=\psi(1) \int_{\partial B_{1}}\left|\frac{\partial u}{\partial r}\right|^{2} d \mathcal{H}^{2}(x)-2 \int_{B_{1}} r \psi^{\prime}(r)\left(\left|\frac{\partial u}{\partial r}\right|^{2}+\lambda u^{2}-\frac{1}{3} u^{6}\right) d x \tag{22}
\end{align*}
$$

Proof. First, identity (3) writes in the case $n=3$ and $p=5$ as

$$
\begin{align*}
\int_{B_{1}} & \left\{r \psi^{\prime \prime \prime}(r)+3 \psi^{\prime \prime}(r)-4 \lambda\left(r \psi^{\prime}(r)+\psi(r)\right)\right\} \frac{u^{2}}{2} d x \\
& =\psi(1) \int_{\partial B_{1}}\left|\frac{\partial u}{\partial r}\right|^{2} d \mathcal{H}^{2}(x)+\int_{0}^{1} r \psi^{\prime}(r) \int_{\partial B_{r}}\left(2\left|\nabla_{S^{2}} u\right|^{2}-\frac{4}{3} u^{6}\right) d \mathcal{H}^{2} d r \tag{23}
\end{align*}
$$

where

$$
\nabla_{S^{2}} u=\frac{\partial u}{\partial \theta} \frac{\vec{\theta}}{r}+\frac{\partial u}{\partial \varphi} \frac{\vec{\varphi}}{r \sin \theta}, \quad \nabla u=\frac{\partial u}{\partial r} \vec{r}+\nabla_{S^{2}} u
$$

are written in the spherical coordinates $(r, \theta, \varphi) \in(0,1) \times(0, \pi) \times(0,2 \pi)$. We compute the last term in (23): multiplying (21) by u and integrating by parts in the variables θ and φ on ∂B_{r}, $r \in(0,1)$, we obtain:

$$
\begin{equation*}
\int_{0}^{1} r \psi^{\prime}(r) \int_{\partial B_{r}}\left(2\left|\nabla_{S^{2}} u\right|^{2}-\frac{4}{3} u^{6}\right) d \mathcal{H}^{2} d r=\int_{B_{1}} r \psi^{\prime}(r)\left[\frac{2}{3} u^{6}-2 \lambda u^{2}+\frac{2}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial u}{\partial r}\right) u\right] d x \tag{24}
\end{equation*}
$$

If we integrate by parts the last term in (24) with respect to r, we get that

$$
\begin{equation*}
\int_{B_{1}} \frac{2 \psi^{\prime}(r)}{r} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial u}{\partial r}\right) u d x=\int_{B_{1}}\left\{r \psi^{\prime \prime \prime}(r)+4 \psi^{\prime \prime}(r)+\frac{2}{r} \psi^{\prime}(r)\right\} u^{2} d x-2 \int_{B_{1}} r \psi^{\prime}(r)\left|\frac{\partial u}{\partial r}\right|^{2} d x \tag{25}
\end{equation*}
$$

Combining (23), (24) and (25), we conclude with (22).
By Lemmas 1 and 8, we obtain the following properties:
Proposition 9 If u is a solution of (21), then:
(i)

$$
\int_{\partial B_{1}}\left|\frac{\partial u}{\partial r}\right|^{2} d \mathcal{H}^{2}(x)=2 \lambda \int_{B_{1}} u^{2} d x
$$

(ii) If $\psi:[0, \infty) \rightarrow \mathbb{R}$ is a smooth function, then

$$
\int_{B_{1}}\left\{r \psi^{\prime \prime \prime}(r)+4 \psi^{\prime \prime}(r)+\frac{2}{r} \psi^{\prime}(r)\right\} u^{2} d x=2 \int_{B_{1}} r \psi^{\prime}(r)\left(|\nabla u|^{2}+\lambda u^{2}-u^{6}\right) d x
$$

(iii) If $\lambda<0$ and $\psi(r)=\frac{\sin (2 \sqrt{|\lambda|} r)}{r}, \forall r \in[0,1)$, then

$$
\psi(1) \int_{\partial B_{1}}\left|\frac{\partial u}{\partial r}\right|^{2} d \mathcal{H}^{2}(x)+2 \int_{B_{1}} r \psi^{\prime}(r)\left(\left|\nabla_{S^{2}} u\right|^{2}-\frac{2}{3} u^{6}\right) d x=0 .
$$

(iv) If $\lambda<0$ and $\psi(r)=\frac{1}{r} \int_{0}^{r} \frac{\sinh (2 \sqrt{|\lambda|} t)}{t} d t, \forall r \in[0,1)$, then

$$
\psi(1) \int_{\partial B_{1}}\left|\frac{\partial u}{\partial r}\right|^{2} d \mathcal{H}^{2}(x)=2 \int_{B_{1}} r \psi^{\prime}(r)\left(\left|\frac{\partial u}{\partial r}\right|^{2}+\lambda u^{2}-\frac{1}{3} u^{6}\right) d x
$$

Proof. The first point (i) follows from (3) by taking $\psi \equiv 1$. The identity in (ii) comes by subtracting (23) from (22). Notice that the following ODE:

$$
r \psi^{\prime \prime \prime}+4 \psi^{\prime \prime}+\frac{2}{r} \psi^{\prime}=0
$$

has the solution

$$
\psi(r)=c_{1}+\frac{c_{2}}{r}+c_{3} \ln r
$$

(If we approximate $\psi=1 / r$ by smooth functions, we obtain by (ii) the obvious relation $\int_{B_{1}}\left(|\nabla u|^{2}+\right.$ $\left.\lambda u^{2}-u^{6}\right) d x=0$.) Point (iii) follows from (23) since ψ is the solution of the ODE:

$$
(r \psi)^{\prime \prime \prime}-4 \lambda(r \psi)^{\prime}=0
$$

Similarly, (iv) comes from (22) since $g=(r \psi)^{\prime}$ satisfies the ODE:

$$
-g^{\prime \prime}-\frac{2}{r} g^{\prime}=4 \lambda g
$$

4 The case of caps in S^{3}. Proof of Lemma 3 and Theorem 4

First we present the proof of identity (6):
Proof of Lemma 3. Let v be a solution of (5). Following the same argument as in the proof of Lemma 1 , we multiply (5) by $\psi(r) x \cdot \nabla v(x) \in C^{1}\left(B_{R^{*}}\right)$ and integrating by parts, we obtain:

$$
\begin{align*}
-\int_{B_{R^{*}}} & \left(r \psi^{\prime}-\psi\right)|\nabla v|^{2} d x+R^{*} \psi\left(R^{*}\right) \int_{\partial B_{R^{*}}}\left|\frac{\partial v}{\partial r}\right|^{2} d \mathcal{H}^{2}+2 \int_{B_{R^{*}}} r \psi^{\prime}\left(|\nabla v|^{2}-\left|\frac{\partial v}{\partial r}\right|^{2}\right) d x \\
= & \frac{3-4 \lambda}{8} \int_{B_{R^{*}}}\left[r\left(1+r^{2}\right) \psi^{\prime}+\left(3-r^{2}\right) \psi\right] \rho^{3}(x) v^{2} d x \tag{26}\\
& +\frac{2}{p+1} \int_{B_{R^{*}}}\left\{r \psi^{\prime}+\left(3+\frac{(p-5) r^{2}}{1+r^{2}}\right) \psi\right\}|v|^{p+1} \rho(x)^{\frac{5-p}{2}} d x
\end{align*}
$$

Then, multiplying (5) by $\left(r \psi^{\prime}-\psi\right) v \in C^{1}\left(B_{R^{*}}\right)$, we obtain:

$$
\begin{align*}
\int_{B_{R^{*}}} & \left(r \psi^{\prime}-\psi\right)|\nabla v|^{2} d x-\int_{B_{R^{*}}}\left(r \psi^{\prime \prime \prime}+3 \psi^{\prime \prime}\right) \frac{v^{2}}{2} d x \\
& =\int_{B_{R^{*}}}\left(r \psi^{\prime}-\psi\right)\left(\rho(x)^{\frac{5-p}{2}}|v|^{p+1}+\frac{3-4 \lambda}{4} \rho^{2} v^{2}\right) d x \tag{27}
\end{align*}
$$

By summation of (26) and (27), we get the identity (6).
As an application, we give the proof of Theorem 4:
Proof of Theorem 4. Let u be a positive solution of (4). As in the proof of Theorem 2, multiplying (4) with a positive eigenfunction associated to λ_{1}^{*}, we obtain that no positive solution of (4) exists if $\lambda \leq-\lambda_{1}^{*}$. Set $v(x)=u\left(\Phi_{Q}^{-1}(x)\right) \sqrt{\rho(x)}$ be the corresponding solution of (5). We distinguish the following two cases:
(i) $\lambda \in\left[-\mu_{1}^{*}, \frac{3}{4}\right]$. Since $\lambda \leq \frac{3}{4}$, by the symmetry result in [8] applied for positive solutions of (5), we deduce that v is radial. Therefore, (6) becomes:

$$
\begin{align*}
\int_{B_{R^{*}}} & \left\{r \psi^{\prime \prime \prime}+3 \psi^{\prime \prime}+\frac{3-4 \lambda}{2}\left[r\left(1+r^{2}\right) \psi^{\prime}+\left(1-r^{2}\right) \psi\right] \rho^{3}(x)\right\} \frac{v^{2}}{2} d x \\
& =R^{*} \psi\left(R^{*}\right) \int_{\partial B_{R^{*}}}\left|\frac{\partial v}{\partial r}\right|^{2} d \mathcal{H}^{2}(x)-\frac{4}{3} \int_{B_{R^{*}}} r \psi^{\prime} v^{6} d x \tag{28}
\end{align*}
$$

Set

$$
\begin{equation*}
w=\sqrt{4(1-\lambda)} \tag{29}
\end{equation*}
$$

and we use the change of variable

$$
\theta=2 \arctan r \quad \text { for } \quad r \in\left[0, R^{*}\right] .
$$

Remark that $w \geq 1$ and the assumption $\lambda \geq-\mu_{1}^{*}$ turns into $w \theta^{*} \leq \pi$. Like in the proof of Theorem 2, we choose the smooth function

$$
\psi(r)=\frac{\sin (w \theta)}{\sin \theta}>0, \forall \theta \in\left(0, \theta^{*}\right)
$$

Then

$$
\begin{equation*}
r \psi^{\prime \prime \prime}+3 \psi^{\prime \prime}+\frac{3-4 \lambda}{2}\left[r\left(1+r^{2}\right) \psi^{\prime}+\left(1-r^{2}\right) \psi\right] \rho^{3}(r)=0 \tag{30}
\end{equation*}
$$

Moreover,

$$
\psi^{\prime}(r)=2 \frac{w \cos (w \theta) \sin \theta-\cos \theta \sin (w \theta)}{\left(1+\tan ^{2} \frac{\theta}{2}\right) \sin ^{2} \theta} \leq 0, \forall \theta \in\left(0, \theta^{*}\right)
$$

Indeed, if we denote

$$
F(\theta)=w \cos (w \theta) \sin \theta-\cos \theta \sin (w \theta)
$$

then $F(0)=0$ and $F^{\prime}(\theta)=(4 \lambda-3) \sin \theta \sin (w \theta) \leq 0$ for every $\theta \in\left(0, \theta^{*}\right)$; therefore, we conclude that $F(\theta) \leq 0$ on $\left(0, \theta^{*}\right)$. Using (28), we obtain a contradiction.
(ii) $\lambda>\frac{3}{4}$ and $\theta^{*} \in\left(0, \frac{\pi}{2}\right]$, i.e., $R^{*} \leq 1$. If we take $\psi=1$, (6) writes as:

$$
\frac{3-4 \lambda}{4} \int_{B_{R^{*}}}\left(1-r^{2}\right) \rho^{3}(x) v^{2} d x=R^{*} \int_{\partial B_{R^{*}}}\left|\frac{\partial v}{\partial r}\right|^{2} d \mathcal{H}^{2}(x)
$$

Therefore, the nonexistence result also follows in this situation.
Using a similar argument as Bandle and Benguria [1], we prove the nonexistence of radial (nodal) solutions u below a curve $\lambda=\nu\left(\theta^{*}\right)$ in the region $\left(\lambda, \theta^{*}\right) \in\left(\frac{3}{4}, \infty\right) \times\left(\frac{\pi}{2}, \pi\right)$. We distinguish three cases:
(I) $\quad \lambda=1$. We consider $m(\theta):=a \theta-\theta^{2}$ and

$$
\begin{equation*}
\psi(r)=\frac{m(\theta)}{\sin \theta} \tag{31}
\end{equation*}
$$

where $a \in(\pi / 2, \pi)$ is to be chosen in such a way that

$$
\begin{equation*}
\psi(r) \geq 0 \quad \text { and } \quad \psi^{\prime}(r) \leq 0 \tag{32}
\end{equation*}
$$

for every $0<\theta<a$. This is equivalent with $G(\theta)>0, \forall \theta \in(0, a)$ where

$$
\begin{equation*}
G(\theta)=\cos \theta m(\theta)-\sin \theta m^{\prime}(\theta) \tag{33}
\end{equation*}
$$

Since $G(0)=0$, we ask that $G^{\prime}(\theta)=\sin \theta\left(\theta^{2}-a \theta+2\right) \geq 0$ for every $\theta \in(0, a)$; for example, $a=2 \sqrt{2}=2.828 \ldots$ Bandle and Benguria [1] numerically found a better value $a=3.042$. Since (30) holds, by (28), we get a contradiction. Therefore, for the largest a we set $\nu(a)=1$.
(II) $\lambda \in\left(\frac{3}{4}, 1\right)$. Let $w \in(0,1)$ be given by (29). We consider

$$
m(\theta):=\sin (w \theta)-a \cos (w \theta)+a
$$

and ψ be defined as in (31) where a is to be chosen in such a way that (32) holds for the largest range of θ. Denote it by $\nu^{-1}(\lambda)$. Then (30) is satisfied and by (28), we deduce that no radial (nodal) solution of (4) exists if $\theta^{*}<\nu^{-1}(\lambda)$. Let us check that

$$
\nu^{-1}(\lambda)>\frac{\pi}{2}
$$

For that, we take a negative a in the interval

$$
\begin{equation*}
a \in\left(\frac{\sin (w \pi / 2)}{\cos (w \pi / 2)-\frac{1}{1-w^{2}}},-\frac{\cos (w \pi / 2)}{\sin (w \pi / 2)}\right) . \tag{34}
\end{equation*}
$$

Notice that a is well defined since $w^{2}+\cos (w \pi / 2) \leq 1$ for every $w \in(0,1)$. We want to prove that (32) holds in $\left(0, \theta_{a}\right)$ for some $\theta_{a}>\pi / 2$. We have that

$$
m^{\prime}(\theta)=w(\cos (w \theta)+a \sin (w \theta)) \quad \text { and } \quad m^{\prime \prime}(\theta)=w^{2}(a \cos (w \theta)-\sin (w \theta))
$$

Therefore, $m^{\prime \prime}(\theta) \leq 0$ for $\theta \in[0, \pi / 2]$, i.e., m is concave. Since $m(0)=0$ and $m(\pi / 2)>0$ (by (34)), we get that $m \geq 0$ in $\left[0, \theta_{a}\right)$ for $\theta_{a}>\pi / 2$ and close to $\pi / 2$. The same argument yields that

$$
\left(m+m^{\prime \prime}\right)(\theta)=\left(1-w^{2}\right)(\sin (w \theta)-a \cos (w \theta))+a
$$

is concave in $[0, \pi / 2]$. The choice (34) leads to $\left(m+m^{\prime \prime}\right)(\pi / 2)>0$. Since $\left(m+m^{\prime \prime}\right)(0)=a w^{2}<0$, we deduce that $m+m^{\prime \prime}$ changes sign just once in $(0, \pi / 2)$. Define G as in (33); then

$$
G^{\prime}(\theta)=-\sin \theta\left(m+m^{\prime \prime}\right)(\theta)
$$

Hence, G^{\prime} also changes sign once in $(0, \pi / 2)$ and $G^{\prime} \geq 0$ for θ close to 0 . Since $G(0)=0$ and $G(\pi / 2)=-m^{\prime}(\pi / 2)>0($ by $(34))$, we obtain

$$
G(\theta) \geq \min \{G(0), G(\pi / 2)\} \geq 0, \forall \theta \in\left(0, \theta_{a}\right)
$$

i.e., (32) is satisfied in $\left(0, \theta_{a}\right)$. Finally, we check that

$$
\nu^{-1}(\lambda) \rightarrow \pi \quad \text { as } \quad \lambda \downarrow \frac{3}{4}
$$

Indeed, let $\varepsilon>0$ be very small. We consider λ be close to $\frac{3}{4}$ such that $1-w^{2}=O\left(\varepsilon^{2}\right)$. Choose $a<0$ with $|a|=O(\varepsilon)$. Then $m^{\prime \prime}(\theta) \geq 0$ in an interval $\left(0, \theta_{\varepsilon}\right)$ with $\theta_{\varepsilon} \rightarrow \pi$ as $\varepsilon \rightarrow 0$. Therefore m is concave in $\left(0, \theta_{\varepsilon}\right)$, and eventually by shrinking that interval, we can assume that $m\left(\theta_{\varepsilon}\right)>0$, and thus, m is positive in $\left(0, \theta_{\varepsilon}\right)$. Now notice that $m+m^{\prime \prime}<0$ in $(0, \pi)$ and hence, G is positive in $(0, \pi)$. We conclude that (32) holds in the interval $\left(0, \theta_{\varepsilon}\right)$ that tends to $(0, \pi)$ as $\varepsilon \rightarrow 0$.
(III) $\lambda \in(1, \infty)$. Set $w=\sqrt{-4(1-\lambda)}$. Consider

$$
m(\theta):=\sinh (w \theta)-a \cosh (w \theta)+a
$$

and ψ be as in (31) where a is to be chosen in such a way that (32) holds for the largest range of θ. Denote it by $\nu^{-1}(\lambda)$. The same argument as before gives that $\nu^{-1}(\lambda)>\pi / 2$, i.e., ν is well-defined; for that, it suffices to choose a positive a in the interval

$$
a \in\left(\frac{\cosh (w \pi / 2)}{\sinh (w \pi / 2)}, \frac{\sinh (w \pi / 2)}{\cosh (w \pi / 2)-\frac{1}{1+w^{2}}}\right)
$$

Since (30) is satisfied, we conclude by (28) that no radial (nodal) solution of (4) exists if $\theta^{*}<$ $\nu^{-1}(\lambda)$.

Notice that for $\theta^{*} \in(\pi / 2, \pi)$, we don't know in general if a positive solution of (4) is radial; moreover, for λ large enough, non-radial solutions do exist as announced by Bandle and Wei. As mentioned in Remark 2, it would be interesting to see if no solution of (4) exists below the curve ν in the strip $\left(\theta^{*}, \lambda\right) \subset\left(\frac{\pi}{2}, \pi\right) \times\left(\frac{3}{4}, \infty\right)$. We believe that the answer to this question is related to the open question raised in Remark 1.

5 The simplified proof of the Gidas-Spruck result

In the following we present the proof of Lemma 5:
Proof of Lemma 5. The relation (8) between w and u leads to

$$
\begin{equation*}
w_{i}=-\frac{2}{n-2} u^{-n /(n-2)} u_{i} \quad \text { and } \quad|d w|^{2}=\frac{4}{(n-2)^{2}} u^{-2 n /(n-2)}|d u|^{2} \tag{35}
\end{equation*}
$$

By (7), w satisfies

$$
\begin{equation*}
-\frac{1}{n} w \Delta_{g} w+\frac{1}{2}|d w|^{2}=\frac{2}{n(n-2)}\left(\lambda w^{2}-w^{\frac{n-2}{2}\left(\frac{n+2}{n-2}-p\right)}\right) \tag{36}
\end{equation*}
$$

which writes in terms of u as

$$
\begin{equation*}
\Delta_{g} w=\frac{2 n}{(n-2)^{2}} u^{-2(n-1) /(n-2)}|d u|^{2}+\frac{2}{n-2}\left(u^{p-\frac{n}{n-2}}-\lambda u^{-\frac{2}{n-2}}\right) \tag{37}
\end{equation*}
$$

We will use the vector field defined in [9] that has the components

$$
\begin{equation*}
V_{i}=\frac{1}{w^{n-1}}\left(\frac{1}{2} \partial_{i}\left(|d w|^{2}\right)-\frac{1}{n} w_{i} \Delta_{g} w\right) \tag{38}
\end{equation*}
$$

Using the equations (35) and (37), the expression of V_{i} in function of u writes as

$$
\begin{gather*}
V_{i}=\frac{2}{(n-2)^{2}}\left[\partial_{i}\left(u^{-2 /(n-2)}|d u|^{2}\right)+(n-2) \partial_{i}\left(u^{-2 /(n-2)}\right)|d u|^{2}\right. \\
\left.+\frac{2}{n}\left(u^{p-\frac{2}{n-2}}-\lambda u^{\frac{n-4}{n-2}}\right) u_{i}\right] . \tag{39}
\end{gather*}
$$

Notice that by (14) and (15), we have that

$$
J(x)=\frac{1}{w^{n-1}}\left(\sum_{i, j=1}^{n} \nabla_{i} \tilde{w}_{j} \nabla_{j} \tilde{w}_{i}-\frac{1}{n}\left(\Delta_{g} w\right)^{2}\right)
$$

Now we compute the co-differential of the vector $\tilde{V}=\frac{1}{\rho^{2}} V$:

$$
\begin{aligned}
& \sum_{i=1}^{n} \nabla_{i} \tilde{V}_{i}= \sum_{i=1}^{n} \nabla_{i}\left[\frac{1}{w^{n-1}}\left(\frac{1}{2 \rho^{2}} \partial_{i}\left(|d w|^{2}\right)-\frac{1}{n} \tilde{w}_{i} \Delta_{g} w\right)\right] \\
& \stackrel{(15),(16)}{=} \frac{1}{w^{n-1}}\left[\sum_{i, j=1}^{n}\left(\tilde{w}_{j} \nabla_{i} \nabla_{j} \tilde{w}_{i}+\partial_{i}\left(\tilde{w}_{j}\right) \nabla_{j} \tilde{w}_{i}\right)-\frac{1}{n}\left(\Delta_{g} w\right)^{2}-\frac{1}{n} \sum_{i=1}^{n} \tilde{w}_{i} \partial_{i}\left(\Delta_{g} w\right)\right] \\
&+\sum_{i=1}^{n} \partial_{i}\left(\frac{1}{w^{n-1}}\right)\left[\frac{1}{2 \rho^{2}} \partial_{i}\left(|d w|^{2}\right)-\frac{1}{n} \tilde{w}_{i} \Delta_{g} w\right] \\
& \stackrel{(13),(17)}{=} J(x)+\frac{n-1}{w^{n-1}} \rho^{2} \sum_{j=1}^{n} \tilde{w}_{j}^{2}+\frac{n-1}{n w^{n-1}} \sum_{i=1}^{n} \tilde{w}_{i} \partial_{i}\left(\Delta_{g} w\right) \\
&-\sum_{i=1}^{n} \frac{(n-1) w_{i}}{w^{n}}\left[\frac{1}{2 \rho^{2}} \partial_{i}\left(|d w|^{2}\right)-\frac{1}{n} \tilde{w}_{i} \Delta_{g} w\right] \\
& \stackrel{(36)}{=} J(x)+\frac{n-1}{w^{n-1}}|d w|^{2} \\
&+\frac{2(n-1)}{n(n-2)}\left[\left(\frac{n+2}{2}-p \frac{n-2}{2}\right) w^{-\frac{n}{2}-p \frac{n-2}{2}}-2 \lambda w^{1-n}\right]|d w|^{2}
\end{aligned}
$$

In terms of u, the co-differential of \tilde{V} becomes

$$
\begin{align*}
\sum_{i=1}^{n} \nabla_{i} \tilde{V}_{i} \stackrel{(35)}{=} J(x) & +\frac{4(n-1)}{(n-2)^{2}} u^{-2 /(n-2)}|d u|^{2} \tag{40}\\
& +\frac{8(n-1)}{n(n-2)^{3}}\left[\left(\frac{n+2}{2}-p \frac{n-2}{2}\right) u^{p-\frac{n}{n-2}}-2 \lambda u^{-2 /(n-2)}\right]|d u|^{2}
\end{align*}
$$

Now let $\gamma \in \mathbb{R}$. Integration by parts yields

$$
\begin{equation*}
0=\int_{S^{n}} \sum_{i=1}^{n} \nabla_{i}\left(u^{-\gamma} \tilde{V}\right)_{i}=\int_{S^{n}} u^{-\gamma} \sum_{i=1}^{n} \nabla_{i} \tilde{V}_{i}-\gamma \int_{S^{n}} u^{-\gamma-1} \sum_{i=1}^{n} u_{i} \tilde{V}_{i} . \tag{41}
\end{equation*}
$$

By (39), integrating by parts, we deduce:

$$
\begin{aligned}
& \frac{(n-2)^{2}}{2} \int_{S^{n}} u^{-\gamma-1} \sum_{i=1}^{n} u_{i} \tilde{V}_{i}=-\int_{S^{n}} \sum_{i=1}^{n} \nabla_{i}\left(u^{-\gamma-1} \tilde{u}_{i}\right) u^{-2 /(n-2)}|d u|^{2}-2 \int_{S^{n}} u^{-\gamma-2(n-1) /(n-2)}|d u|^{4} \\
&+\frac{2}{n} \int_{S^{n}}\left(u^{p-\gamma-\frac{n}{n-2}}-\lambda u^{-\gamma-\frac{2}{n-2}}\right)|d u|^{2} \\
& \stackrel{(7)}{=}(\gamma-1) \int_{S^{n}} u^{-\gamma-2(n-1) /(n-2)}|d u|^{4} \\
&+\frac{n+2}{n} \int_{S^{n}}\left(u^{p-\gamma-\frac{n}{n-2}}-\lambda u^{-\gamma-\frac{2}{n-2}}\right)|d u|^{2} .
\end{aligned}
$$

The conclusion follows by (40) and (41).
Corollary 6 is a trivial consequence of Lemma 5:
Proof of Corollary 6. Suppose that hypothesis (i) holds. Set

$$
\gamma_{0}=\frac{2(n-1)}{n+2}\left(\frac{n+2}{n-2}-p\right)
$$

If $n \geq 8$, then $0<\gamma_{0}<1$ and

$$
\begin{equation*}
\lambda\left(\frac{4(n-1)}{n(n-2)}-\gamma_{0} \frac{n+2}{2 n}\right) \leq n-1 \tag{42}
\end{equation*}
$$

provided that $\lambda \leq \frac{n}{p-1}$. Applying (9) for γ_{0}, we conclude that the second term in (9) must vanish, that means u is constant. If $3 \leq n<8$, an easy computation shows that

$$
a_{n} \geq \frac{n}{p-1} \quad \Leftrightarrow \quad p \geq \frac{n(n+2)}{2(n-1)(n-2)} \quad \Leftrightarrow \quad \gamma_{0} \leq 1
$$

Therefore, if $a_{n} \geq \frac{n}{p-1}$, we choose $\gamma=\gamma_{0}$ in (9) and we deduce that the last term in (9) must be zero, i.e., u is constant provided that $\lambda<\frac{n}{p-1}$. Otherwise, (9) for $\gamma=1$ also yields that the last term vanishes and the conclusion follows. Now suppose that (ii) holds. Then for $\gamma=0$, (9) shows that the last term is zero, that is u must be constant provided that $\lambda<\frac{n}{p-1}$.

Remark 3 When $\left\{n \geq 8, p \in\left(1, \frac{n+2}{n-2}\right)\right\}$ and $\left\{3 \leq n<8, p \in\left(\frac{n(n+2)}{2(n-1)(n-2)}, \frac{n+2}{n-2}\right)\right\}$, Corollary 6 is sharp.

References

[1] Bandle, Catherine, Benguria, Rafael, The Brézis-Nirenberg problem on \mathbb{S}^{3}, J. Differential Equations 178 (2002), 264-279.
[2] Benguria, Rafael D., Dolbeault, Jean, Esteban, Maria J., Classification of the solutions of semilinear elliptic problems in a ball, J. Differential Equations 167 (2000) (2), 438-466.
[3] Bidaut-Véron, Marie-Françoise, Véron, Laurent, Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math. 106 (1991), 489539.
[4] Brezis, Haïm, Li, Yanyan, Some nonlinear elliptic equations have only constant solutions, preprint .
[5] Brezis, Haïm, Nirenberg, Louis, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477.
[6] Brezis, Haïm, Peletier, Lambertus A., Elliptic equations with critical exponent on spherical caps of \mathbf{S}^{3}, J. Analyse Math., to appear .
[7] Crandall, Michael G., Rabinowitz, Paul H., Bifurcation from simple eigenvalues, J. Functional Analysis 8 (1971), 321-340.
[8] Gidas, Basilis, Ni, Wei Ming, Nirenberg, Louis, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243.
[9] Gidas, Basilis, Spruck, Joel, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1981), 525-598.
[10] Lichnerowicz, André, Géométrie des groupes de transformations, Travaux et Recherches Mathématiques, III. Dunod, Paris, 1958.
[11] Pohožaev, Stanislav I., On the eigenfunctions of the equation $\Delta u+\lambda f(u)=0$, Dokl. Akad. Nauk SSSR 165 (1965), 36-39.

