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Abstract

We present some Pohozaev identities for the equation —Au = |u/P"'u — Au and as an
application, we prove some nonexistence results.
1 Introduction
In this paper we present some Pohozaev type identities for the following nonlinear elliptic equation:
~Agu=|uPfu—Mu on M. (1)

Here, p > 1, A € R and M is a ball in R™ or on the unit sphere S™, n > 3, equipped with the
standard metric g and A4 stands for the Laplace-Beltrami operator on (M, g). The goal is to prove
nonexistence results for (1) in different ranges of A.

Motivated by the study of Brezis and Nirenberg [5], we first consider the Dirichlet problem
associated to (1) in the unit ball B; C R", i.e.,

—Au = |ulP"ru—Adu, u#EO in By, @)
u = 0 on OBj.

We prove the following identity:

Lemma 1 Let ¢ : [0,00) — R be a smooth function (with ¢'(0) =¢"(0) =04ifn>4). Ifuisa
solution of (2), then

IREECEEICE
= ¢(1)/831 |%|2d7{"’1(x) +2/Bl i (r) (|Vu|2 - %L 2) dx (3)

- /B {iiw'“) ~ (Egn- 2)w<r)} jul?*! da,

2

D0 3) by an(ry(r) + w(r))} dr

0
where r = |z| and —u(:n) =L -Vu(z) stands for the radial derivative of w.

or ||

As a consequence, we deduce the nonexistence result of Brezis and Nirenberg [5] for positive

. . ey 12,
solutions of (2) in the supercritical case p > 7+5:



Theorem 2 (Brezis and Nirenberg [5]) Let p > "2 and Ay := A1(—A; By) be the first eigenvalue
of the Laplace operator with Dirichlet boundary condztwn in By. If one of the following two
conditions is satisfied

(i)
n=3 and Agé( )\1,—/211>,
(i)
n>4 and ¢ (—A,0),

then there is no positive solution of (2).

Remark 1 a) The set of positive and nodal radial solutions (regular or singular) of (2) is described
by Benguria, Dolbeault and Esteban [2].
b) The question if there is no (nodal) solution of (2) for n =3 and A € (—2%,0) is still open.

Next we study the Dirichlet problem associated to (1) on a geodesic ball Dy« centered at the
North pole in S3 of radius #* € (0,7):

—Agu = JulPlu—Ddu, w#EO in  Dpg-, (@)
u = 0 on ODgy-.

We want to obtain a similar identity to (3) for any solution u of (4). Using the stereographic
projection ®g : S3\ {Q} — R? with vertex at the South pole @ in S®, the equation (4) writes as

1 ,
3 div(pVU) = |UP7'U =AU in Bpg- C R?

where p(x) = ﬁ, U(z) = u(@él(m)) for every x € Br« and R* = tan %. The transformation

turns (4) into

—Av = /)(917)5’)7Tp|v|p_1v—&—%p%7 vED in Bgs, (5)
v = 0 on OBpg-.

We prove the following identity for a solution v of (5):

Lemma 3 Let ¢ : [0,00) — R be a smooth function. If v is a solution of (5), then

_ 2
/ {m”'+3w"+3 2 [r(1+r2)¢/+(1r2)¢]p3(x)} Y de
Bp*
. . 9 , 2 | Ov 2)
= By(R )/33R* ‘ | H( /BR* i (|VU| ’37“} & ©)

2 p—5 1—12 -
_/B {( el ,_p+1'1+r2w}|v|p+lp($) T
.

From here, we deduce the result of Bandle and Benguria [1], i.e., to determine the range of
values of the parameters 6* and A for which there exists no positive solution of (4) in the critical
case p = 5.



Theorem 4 (Bandle and Benguria [1]) Let p =5 and Dy« C S® be a geodesic ball of radius 0*.

72— (6%)2

Set A} = R be the first eigenvalue of the Laplace-Beltrami operator with Dirichlet boundary
condition in Do~ and pi = %. If one of the following conditions is satisfied
() )
A< and A ¢ (A —m),

(ii)

5]7
then there is no positive solution of (4). Moreover, there exists a curve in the strip (0*,\) C
(Z,7) x (2,00), denoted by v(0*) = X such that v(0*) — 3 as 0* — 7 and for X € (3,v(0%)) there
is no radial solution of (4) (see Figure 1).

)\>% and 0" € (0,

Remark 2 (a) In [6], Brezis and Peletier proved that for any 0* € (w/2,7), there exist positive
radial solutions of (4) for A sufficiently large; therefore, v(6*) — +oo as 0* — 7/2.

(b) The question if there is no solution of (4) in the strip (6*,A) C (%,7) x (2,00) below the
curve v is still open (see discussion in Section 4).
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v
<
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Figure 1: Range of values of A for nonexistence of positive radial solutions.

Finally, we deal with positive solutions of (1) in the case of the whole unit sphere S™, n > 3:

—Aju = v - n
{ w > 0 on S". (7
For A < 0, there is no solution of (7) (it directly follows by integration of (7) on S™). Therefore,

we consider the range A > 0. The goal is to present a simplified proof of the following Pohozaev
type identity due to Gidas and Spruck [9]:

Lemma 5 (Gidas and Spruck [9]) Let n > 3 and u be a solution of (7). Set

w =y 22 (8)
and
1 & 1
J(z) = " Zl(viwj - EAgw §i5)2 >0,
1,]=



where V;w; denotes the j component of the covariant derivative V; of the vector field (—plz 0jw) .
1<j<n
For any v € R we have

— 2 2n—2
L 22) J(@)u 7 + (1 - 7)/ u*”*ﬁ|du|4
Sn n
2(n—1) m+2 n+ 2 pey—=mg g 12
+ n (nf b 72(7171))/nu [dul )

2
4(77,71) n-+2 2 2
2ln—1- - 1753 | du|? =
+ [n )\(n(n—Q) T 5, )} /Snu |du|* =0

From here, it follows the following uniqueness result for solutions of (7):

Corollary 6 Let n > 3. Assume that one of the following conditions holds:
(i) 1 <p< ™2 and

0<)\<min{1%,an} if n<8§,
0<A< if n>8,
where
~2n(n—1)(n—2)

n — Y

—n?+8n—4

n

(ii) p=2+2 and0<)\<%.
Then the only solution of (7) is the trivial constant solution N/ ®=1).

This result was extended by M.F. Bidaut-Veron et L. Veron [3] using the Bochner-Lichnerowicz-
Weitzenbock formula [10]:

Theorem 7 (Veron and Veron [3]) Assume that

2
lep< ™2 and 0<r< (11)
n—2 p—1

where at least one of the two inequalities (11) is strict. Then the only solution of (7) is the constant
AL/ (0-1)

Recently, Brezis and Li [4] proved Theorem 7 in the case of A < n(n — 2)/4 using the theory of
moving planes; they also showed that for subcritical exponent p, there exist nonconstant solutions
of (7) if A > ;%5 with [\ — 23| small. For the critical exponent p = 242 Corollary 6 and

27
Theorem 7 are also sharp since there is a well-known branch of nonconstant solutions if A = %

(see [7]).

The outline of the paper is the following: we start with some preliminaries on the geometry of
the unit sphere S™ that we use in the proof of Lemma 5. In Section 3, we prove Lemma 1 and
Theorem 2. In Section 4, we show Lemma 3 and Theorem 4. Finally, we give a simplified proof of
the Gidas-Spruck result.



2 Preliminaries

In this section we introduce some notations that we use throughout of the paper. Let P =
(0,...,0,1) € R*"! and Q = (0,...,0,—1) € R™"! be the North and the South pole of S™ and
set Qp = 5™\ {P} and Qg = 5™ \ {Q}. The stereographic projection ®p : Qp — R™ of pole P
(respectively, ¢ : Qg — R™ of pole Q) is defined as

Y1 Yn
D = ey , Yy=W1,---,Yn e N
P(y) (1yn+1 1yn+1> Y= (Y1, Yn+1) € Up
. Y1 Yn
respectively, & = sy , Yy=(y1,...,Yn €Qg).
(resp v, 2q(y) <1+yn+1 1+yn+1) Y= 1, Ynt1) € Q)

We easily check that ®p (respectively, ®¢) is a homeomorphism of Qp (respectively, o) into R™
and the inverse function ®5' : R" — R™! (respectively, @51 : R" — R™*1) is given by

1 |l‘|2 -1
o (x) = p(x) | 21, .., Tn, 5 , Vo= (x1,...,2,) ER"
1— 2
(respectively, @51(33) = p(x) <x1, ey T, 2‘1" > , Vo= (x1,...,2,) € R"),
where
(@)= —2
P T ap?

n

and |z|? = me for any z € R™. In the following we omit the argument of maps. In the local
i=1

charts (Qp, ®p) and (Qg, ®g), the standard metric g on S™ writes as

gij = p*i;, 1<i,j<n

where §;; denotes the Kronecker’s symbol. For a function u : S — R, we use the following
notations:

- 1 .
ul-:aiu,ui:—Qui,lgzgn
p

n
|du|2 = Z uiﬂi,
i=1

1 o -
Agu=— Z@i(p ;).
P
For 1 <i < n, let V; be the covariant derivative. The Cristoffel symbols are given by
—Xip if i=7 =k,
—x;p if 1# 5,1 =k,

k _
Fij—

If V; are the components of a vector field V', we associate the vector field V of components V; = p%\/;.
Standard computations yield that

(ViV); = 0;(V;) + > T3 Vi, 1 <ij <,
k=1



n

Z(ViV)i = pinzai(p”‘/i)v (12)

i=1

Y (ViViV = ViV;V); = (n—1)p*V;, 1 <i <. (13)
j=1
One can check that
Vitu; = Vju;, 1 <4, <n, (14)
Agu=3" Vi, (15)
i=1

Oi(|dul®) =2 " u; Vi, 1 <i<n, (16)

j=1
Z (alﬂ]vjﬁl + ﬂjvjvszl) = Z (vzﬂjvjfbl + ﬂjaj(vzﬂl)% (17)

ij=1 Q=1

where V;u; denotes the j component of the covariant derivative V; of the vector field with the
components ;.

3 The case of the unit ball in R". Proof of Lemma 1 and
Theorem 2

We start by proving identity (3):

Proof of Lemma 1. Let u be a solution of (2). Following the ideas of Brezis and Nirenberg [5],
we first multiply (2) by 9(r)z - Vu(z) € C*(B;) (without any condition on ¢) and integrating by
parts, we obtain:

—/BI[M//—(n—2)1/)]|Vu|2dx+1/1(1)/0 | | dH" () + / (VUI2—|3u 2) da
—/Bl(m/) +m/))< 2 - )\u2> da.
(18)

Next we multiply (2) by [r — (n — 2)¢]u € C*(By) (since ¢'(0) = 0 if n > 4) and it results by
integration by parts:

/Bl[rw’—<n—2>w]|vu|2dx_/31 [rw,,,%w,,_(n_l)(n_g) .

Y| — dx
T 2 (19)

= [ v = = 2Dl - xe) d
B,

(Here, we used that ¢”(0) = 0 if n > 4.) Combining (18) and (19), the conclusion follows
immediately. (]

Using identity (3), we show Theorem 2:

Proof of Theorem 2. Let u be a positive solution of (2). Choosing 9 = 1, (3) becomes the
standard Pohozaev identity [11]:

-1
—2)\/ u2dm—(p n—2)/ up“dx:/ !aUQdH” Yz).
By p+1 Bi 8B,




Therefore, no solution exists for (2) if A > 0 and p > % Set ¢ be a positive eigenfunction
associated to the first eigenvalue Ay in B;. First, we prove the nonexistence result for A < —\;.

Indeed, multiplying (2) by ¢, we deduce:
/\1/ ugpz—/ uAgazf/ Augpz/ (uP — Au)p.
B1 Bl Bl Bl

/ [u? — (A + A Julep = O;
B1

therefore, we get a contradiction with w > 0. Now we treat the remaining case: n = 3 and
AE [—);Tl, 0) where \; = 72, By the symmetry result of Gidas, Ni and Nirenberg [8] applied for
positive solutions of (2), we know that u is radial. Then (3) becomes:

That is,

2
{r” 430" AN + )} - da
B,

ou 2 p+3 p—>5 }
— (1 U2 g2 —/ ’_ P g
wm/aBl!ar! (2) Bl{pﬂrw e T

(20)

for any smooth function ¢ : [0,00) — R. Following the argument in [5], we choose the smooth
function

in(24/|A
W(r) = M >0, vr € [0,1).
Then
rY 43U — AN + 1) =0,
VAP 2¢/|A| ) —sin(2+/|A
and o = YA eos@VIAT) Zsin@VIAID) e gy,
r
Since p > 5, (20) leads to a contradiction. ]
Now we discuss the case n =3 and p =5, i.e.,
~Au = u—du, u#EO in B; C R?, (21)
u = 0 on 831

Our aim is to present a list of properties for a solution u. We start by proving another identity ‘a
la Pohozaev’ related to (3):

Lemma 8 Let ¢ : [0,00) — R be a smooth function. If u is a solution of (21), then

4 u?
_ / {m//”(r) + 5" (r) + ;1//(7“) +4AN(ry! (r) + 1/)(7"))} 5 dx
B

(22)
0 , 0 1
=(1) /aB1 |8—1:‘2d7'l2(x) — 2/31 ri’(r) <|87:|2 + u? — 3u6) dx.
Proof. First, identity (3) writes in the case n =3 and p =5 as
2
/ [ () + 307 (r) — A (0 (1) + ()} - d
. (23)

. ou 2 2 ! / 2 4 6 2
= (1) /aB1 ‘E| dH (:E)—i-/o ry’(r) /BB (2|V52u| U > dH=dr,

r



where

oul  du %) ou _,
Vs = oa T Gprsme VT g T VsU

are written in the spherical coordinates (r,6,¢) € (0,1) x (0,7) x (0,27). We compute the last
term in (23): multiplying (21) by w and integrating by parts in the variables § and ¢ on 9B,
€ (0,1), we obtain:

! / 4 , 2 0 5 0u
/0 r'(r) /BBT (2|Vszu|2 _ 3u6> dH?dr = /B1 T’ (r) { — 22?4+ 29 ( 87") u] dr.

If we integrate by parts the last term in (24) with respect to r, we get that

2¢'(r) 0 u _ " " 2, / Ou 2
/317“87‘ <T287">de_/31{ " (r) + 4" (r )"‘;1/) (r)}qux—Q/Blmb (r)|a| dz.

(25)
Combining (23), (24) and (25), we conclude with (22). O

By Lemmas 1 and 8, we obtain the following properties:

Proposition 9 If u is a solution of (21), then:
(i)
/ | | dH?(x) = 2\ u? de.
OB Bl

(ii) If ¢ : [0,00) — R is a smooth function, then

/B{ V" (r) + 4" (r )+i¢/(7’)}u2daz:2/ ! (r (|Vu| + 2 —u ) dz.

(117) If A <0 and (r) =

) 2
o) [ (Ge a2 [t (9 = 3 ) do =

(iv) If A <0 and ¥(r) =1 [] wdt7 Vr € [0,1), then

¢(1)/83| > dH? (z) 72/ ! (r <au|2+)\u2;u6)da¢.

Proof. The first point (i) follows from (3) by taking ¢» = 1. The identity in (i) comes by
subtracting (23) from (22). Notice that the following ODE:

@YD v ¢ (0,1), then

2
Tw/// +4w// + ;wl _ O

has the solution .
v(r)=c + 72 +czlnr.

(If we approximate 1) = 1/r by smooth functions, we obtain by (%) the obvious relation | B, (|Vu|2+
Au? —u®)dx = 0.) Point (7ii) follows from (23) since 1) is the solution of the ODE:

()" = 4A(ry)' =



Similarly, (4v) comes from (22) since g = (1))’ satisfies the ODE:

1

2
9" —=g' = 4)g.
T
O

4 The case of caps in S®. Proof of Lemma 3 and Theorem 4

First we present the proof of identity (6):

Proof of Lemma 3. Let v be a solution of (5). Following the same argument as in the proof of
Lemma 1, we multiply (5) by ¥ (r)x - Vu(z) € C'(Bg~) and integrating by parts, we obtain:

_ I 2 * * 2 / 2 @2
/BR*W )|Vol*dz + R w(R)/aBm|a | dH +2/er¢ (|W| |5, ) d

- 3 _84>\ / [7"(1 + 7y + (3 —r )z/J] P> (x)v? do (26)
B
52 .

Then, multiplying (5) by (r¢’ —)v € C*(Bg+), we obtain:

2

[, e [ e s

e (27)
! sep i1, 34N 5 o
= (r" =) [ p(x) = JulP™ + —p“v* | dz.
Bp= 4
By summation of (26) and (27), we get the identity (6). O

As an application, we give the proof of Theorem 4:

Proof of Theorem 4. Let u be a positive solution of (4). As in the proof of Theorem 2,
multiplying (4) with a positive eigenfunction associated to A}, we obtain that no positive solution
of (4) exists if A < —A}. Set v(x) = u(@él(x))\/p(x) be the corresponding solution of (5). We
distinguish the following two cases:

(i) xe [—u’{, %] . Since A < %, by the symmetry result in [8] applied for positive solutions of
(5), we deduce that v is radial. Therefore, (6) becomes:

_ 2
/ {w'uswu R r2)¢]p3(x)} Y do
Bp*
r (28)
o * 2 7% /1,6
sz(R)/aBR*} | dH?(a 3/}3R*r@/}vd:17.
Set
w=/4(1 = \) (29)

and we use the change of variable
6 =2arctanr for re€0,R"].

Remark that w > 1 and the assumption A > —puj turns into wd* < w. Like in the proof of

Theorem 2, we choose the smooth function

_ sin(w0) X
V(r) = — = >0,V € (0,0").




Then 3_
"+ 30+ S (L r?)e + (1= )] P (r) = 0. (30)

Moreover,

w cos(wh) sin @ — cos O sin(wb)

(14 tan? §)sin* 6

(r) =2 <0,V € (0,6%).

Indeed, if we denote
F(0) = wcos(wb) sin § — cos 6 sin(wh),
then F(0) = 0 and F’(0) = (4X — 3) sin @ sin(wh) < 0 for every 6 € (0,0*); therefore, we conclude
that F(f) <0 on (0,60*). Using (28), we obtain a contradiction.
(i) A>2 and 6% €(0,%],ie., R* <1.If we take ¢ = 1, (6) writes as:

PR a-mp@ea - [ 3P aew
4 Bps OB px

Therefore, the nonexistence result also follows in this situation.

Using a similar argument as Bandle and Benguria [1], we prove the nonexistence of radial
(nodal) solutions u below a curve A = v(6*) in the region (\,0%) € (2,00) x (%, 7). We distinguish
three cases:

(I) A= 1. We consider m(#) := afl — 6% and

m(6)

vir) = 2 (31)
where a € (7/2,7) is to be chosen in such a way that
Y(r) >0 and ¢'(r) <0 (32)
for every 0 < 6 < a. This is equivalent with G(6) > 0, V6 € (0,a) where
G(0) = cosOm(#) — sin Om/(9). (33)

Since G(0) = 0, we ask that G'(§) = sinf(6* — af + 2) > 0 for every § € (0,a); for example,
a =2v2 =2.828.... Bandle and Benguria [1] numerically found a better value a = 3.042. Since
(30) holds, by (28), we get a contradiction. Therefore, for the largest a we set v(a) = 1.

(II) A€ (2,1). Let w € (0,1) be given by (29). We consider

m(0) := sin(wh) — a cos(wld) + a

and 1 be defined as in (31) where a is to be chosen in such a way that (32) holds for the largest
range of §. Denote it by »~}(\). Then (30) is satisfied and by (28), we deduce that no radial
(nodal) solution of (4) exists if * < v=(\). Let us check that

-1 E
v (A) > 5"

For that, we take a negative a in the interval

e < sin(wm/2) cos(ww/2)> .

cos(wrm/2) — 15" sin(wr/2) (34)

Notice that a is well defined since w? + cos(wm/2) < 1 for every w € (0,1). We want to prove that
(32) holds in (0, 6,) for some 6, > 7/2. We have that

m'(0) = w(cos(wh) + asin(wd)) and m”(0) = w?(acos(wh) — sin(wb)).

10



Therefore, m”(8) < 0 for 0 € [0,7/2], i.e., m is concave. Since m(0) = 0 and m(7/2) > 0 (by
(34)), we get that m > 0 in [0,6,) for 6, > 7/2 and close to 7/2. The same argument yields that

(m+m")(0) = (1 — w?)(sin(wd) — acos(wh)) +a

is concave in [0, 7/2]. The choice (34) leads to (m +m")(7/2) > 0. Since (m +m")(0) = aw? < 0,
we deduce that m + m” changes sign just once in (0,7/2). Define G as in (33); then

G'(0) = —sinf (m +m”)(0).

Hence, G’ also changes sign once in (0,7/2) and G' > 0 for # close to 0. Since G(0) = 0 and
G(m/2) = —m/(7/2) > 0 (by (34)), we obtain

G(0) > min{G(0),G(r/2)} >0, V0 € (0,60,),

i.e., (32) is satisfied in (0,6,). Finally, we check that
—1 3
v (A)—m as A 7

Indeed, let € > 0 be very small. We consider \ be close to % such that 1 —w? = O(g?). Choose
a < 0 with |a| = O(g). Then m”(f) > 0 in an interval (0,6.) with 6. — 7 as ¢ — 0. Therefore
m is concave in (0, 6.), and eventually by shrinking that interval, we can assume that m(6;) > 0,
and thus, m is positive in (0,6.). Now notice that m +m” < 0 in (0,7) and hence, G is positive
n (0,7). We conclude that (32) holds in the interval (0, 6.) that tends to (0,7) as ¢ — 0.

(III) X € (1,00). Set w = «/—4 1 —X). Consider
m(0) := sinh(wh) — a cosh(wh) + a

and ¥ be as in (31) where a is to be chosen in such a way that (32) holds for the largest range of 6.
Denote it by v~!()\). The same argument as before gives that v=1(\) > /2, i.e., v is well-defined;
for that, it suffices to choose a positive a in the interval

c cosh(wm/2) sinh(wm/2) .
sinh(wm/2) " cosh(wm/2) —

_1
1+w?

Since (30) is satisfied, we conclude by (28) that no radial (nodal) solution of (4) exists if 6* <
v=r(N). d

Notice that for 6* € (7/2,7), we don’t know in general if a positive solution of (4) is radial;
moreover, for A large enough, non-radial solutions do exist as announced by Bandle and Wei. As
mentioned in Remark 2, it would be interesting to see if no solution of (4) exists below the curve
v in the strip (0*,)\) C (2 ,m) x (2,00). We believe that the answer to this question is related to
the open question raised in Remark 1.

5 The simplified proof of the Gidas-Spruck result

In the following we present the proof of Lemma 5:

Proof of Lemma 5. The relation (8) between w and u leads to

2
w; = ————u "Dy, and  |dw|? =
n—2

4

—2n/(n—2) d 2
(n—2)2u |du)=. (35)

11



By (7), w satisfies

1 1 2 n—2( nt+2
——wA “Jdw]? = —— [ M?® —w 2 (5%-») 36
n” gw—|—2|w| n(n—2)(w v (36)
which writes in terms of u as
2n —2(n—1)/(n—2 2 2 —_n_ 2
Agw = = 2)2u (n=1/(n=2)) gy|? 4 — (up =2 — Ay n*?) . (37)
We will use the vector field defined in [9] that has the components
1 1 1
V= — <23i(|dw|2) - nwiAgw) ) (38)

Using the equations (35) and (37), the expression of V; in function of u writes as

2

TR

[@ (U—Q/(n—2)|du‘2) + (n—2)0; (u—z/(n_2))|du|2
(39)

+ E(up_% - )\u:i;)ui]

Notice that by (14) and (15), we have that

1 - |
1 Z Viwjvjwi — E(Agw)Q

wn

J(z) =

i,5=1

Now we compute the co-differential of the vector V = p%V:

n ~ n . X N
;VM B ; v [um—l(gpzai(dwﬂ - nwiAgw)}

. N 5 N 1 R
Z (ijZ-iji + 6¢(wj)iji) — E(Agw)Q — E Zwiai(Agw)

ij=1 i=1

- 1 1 1.
T Z@(W) {2/)2311(|dWI2) - nwiAgw]
=1

(15),(16) 1

wnfl

(13),(17)

n—1 LI n—1 < _
s+ Bh 3 e 2L S )
j=1 i=1

(=Dwi [ 1 0 o 1
-y 77 0i(ldul®) = A gu

(36) n—1 2
2 () + S ldul

2n—1) [, n+2 n—2
n(n — 2) {( 2 P

n

)w*?*pnT_2 — 2)\w1”] |dw|?.

In terms of u, the co-differential of V' becomes
4(n—1)
(n—2)?

8n—-1) [,n+2 n-—2
n(n — 2)3 [( 2 P

S vl 2 @) + = )| g ?
i=1

(40)

- JuP~ w2 — 2/\u_2/("_2)] |dul?.
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Now let v € R. Integration by parts yields

O:/ ivi(“_’yf/)i Z/ u_”ivﬁé—v/ u_'y_liuﬂ;;. (41)
"=l s i=1 sm i=1

By (39), integrating by parts, we deduce:

—92)2 n B n
%/ w1 ZuiVi = —/ ZVz—(uﬂ’lﬂi)u”/(””)Idu|2 _ 2/ u Y21/ (n=2)| gy |4
5" i=1 "=l

n

+%/ (wP=1 " — )\u_ﬂf_ﬁ)\du\2

L (’Y . 1)/ u7772(n71)/(n72)|du|4
2 n
+ 2 i / (uP™7 7w — Au777£)|du|2.

n
The conclusion follows by (40) and (41). O

—
—

Corollary 6 is a trivial consequence of Lemma 5:
Proof of Corollary 6. Suppose that hypothesis (i) holds. Set

_2(n—1) n—|—2_
= n+2 n—2 P

If n > 8, then 0 < 79 < 1 and

4n—1) _%n+2)

n(n — 2) 2n sn-l (42)

provided that A < ﬁ. Applying (9) for ~g, we conclude that the second term in (9) must vanish,
that means u is constant. If 3 < n < 8, an easy computation shows that

n n(n + 2)
n>—— & > <1.
=0 b= —1Dm—2) 0=
Therefore, if a, > ;3, we choose v =79 in (9) and we deduce that the last term in (9) must be

zero, i.e., u is constant provided that A\ < p%l. Otherwise, (9) for v = 1 also yields that the last

term vanishes and the conclusion follows. Now suppose that (i7) holds. Then for v = 0, (9) shows

that the last term is zero, that is u must be constant provided that A\ < p%l. O
2

Remark 3 When {n > 8, p € (1, %)} and {3<n<8,pe (%, Z—Jjg)}, Corollary 6

is sharp.
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