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Radu Ignat∗ Roger Moser†
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Abstract

We study a simplified model for the micromagnetic energy functional

in a specific asymptotic regime. The analysis includes a construction

of domain walls with an internal zigzag pattern and a lower bound for

the energy of a domain wall. Under certain conditions, the two results

yield matching upper and lower estimates for the asymptotic energy. The

combination of these then gives a Γ-convergence result.

AMS classification: 82D40, 49S05, 49Q20, 49J45
Keywords: singular perturbation, Γ-convergence, entropy, domain walls, mi-

crostructure.

1 Introduction

Ferromagnetic materials display a variety of different microstructures. Among
the most common phenomena are domain walls, i.e., layers of rapid changes
between domains of almost constant magnetization. The internal structure of
the domain walls is sometimes fairly simple (e.g., for a so-called Bloch wall),
but sometimes it has a rich structure, typically at a scale different from its
thickness. An example of such behavior is the cross-tie wall studied by several
authors [29, 30, 1, 14]. In this paper, we study a simple model for the free energy
of a ferromagnetic sample that gives rise to another type of domain walls with
internal microstructure. In this case, what we see is a zigzag pattern.

1.1 Micromagnetics

Our starting point is the theory of micromagnetics. Suppose that Σ ⊂ R
3

represents the shape of a ferromagnetic sample. Its magnetization is represented
by a vector field m : Σ → R

3. Below the Curie point, m has a constant length,
and after a renormalization, we may assume that |m| = 1 in Σ. Sometimes it is
convenient to think of m as a map into the unit sphere S2 rather than a vector
field. In the absence of an external magnetic field, the free energy of m is of the
form

E3D(m) = d2

ˆ

Σ

|∇m|2 dx+

ˆ

Σ

a(m) dx+

ˆ

R3

|H |2 dx.

∗Laboratoire de Mathématiques, Université Paris-Sud 11, bât. 425, 91405 Orsay, France
(e-mail: Radu.Ignat@math.u-psud.fr)

†Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, United King-
dom (e-mail: r.moser@bath.ac.uk)

1



The first term on the right hand side is called the exchange energy and models
quantum mechanic spin interaction. The parameter d is a material constant,
called the exchange length. The function a : S2 → [0,∞) is fixed and models
crystalline anisotropy, and the vector field H : R

3 → R
3 represents the stray

field induced by m. The latter is determined by the static Maxwell equations
{

∇×H = 0 in R
3,

∇ · (H +mχΣ) = 0 in R
3,

where χΣ is the characteristic function of Σ and mχΣ denotes the extension of
m by 0 outside of Σ. This gives rise to the formula

H = ∇(−∆)−1∇ · (mχΣ),

and thus the third energy term, the so-called magnetostatic energy, is
ˆ

R3

|H |2 dx = ‖∇ · (mχΣ)‖2
Ḣ−1(R3)

= sup

{

(
ˆ

Σ

m · ∇v dx
)2

: v ∈ C1
0 (R3) with ‖∇v‖L2(R3) ≤ 1

}

.

The various patterns observed in experiments are typically explained by
the competition between the three energy terms. The exchange energy favors
constant magnetizations, the anisotropy energy favors specific directions of m,
while the magnetostatic energy favors divergence free vector fields. The last
condition is the most subtle, as it involves not only the bulk charge ∇ · m in
Σ, but also a surface charge on the boundary of Σ if m is not tangent to ∂Σ.
This means that a simultaneous minimization of all three energy contributions
is typically impossible.

Depending on the relative sizes of the material constants involved and the
geometry of the sample, the theory gives rise to a variety of phenomena—which
can also be observed experimentally. Mathematically, the corresponding pat-
terns are usually obtained as limits or solutions of limiting problems in specific
asymptotic regimes. There is a rich literature on the subject, especially in the
context of thin films. The corresponding papers are too numerous to be listed
here, so we refer to some survey papers [15, 26].

1.2 A simplified model

We first reduce the complexity of the problem by passing from a 3-dimensional
domain Σ ⊂ R

3 to a 2-dimensional one ω ⊂ R
2. We study maps m : ω → S2,

which can also be interpreted as unit vector fields on a cylinder ω × R that are
constant in the third direction. (This represents a considerable simplification
and some of our results will not carry over directly to the three-dimensional case.
But the construction below can still give some insight into possible structures
in a 3D model.) We consider an anisotropy of the form a(m) = Qm2

2 for a
constant Q. We neglect the surface charges of the magnetostatic energy on the
boundary of ω, since we are interested in the structure of m in the interior of
ω. We work in the space

H1(ω;S2) =
{

m ∈ H1(ω; R3) : |m| = 1 a.e. in ω
}

.
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For m ∈ H1(ω;S2), we write

∇ ·m =
∂m1

∂x1
+
∂m2

∂x2
.

If Ḣ−1(ω) denotes the dual space of H1
0 (ω) with the norm

‖v‖Ḣ−1(ω) = sup

{
ˆ

ω

vu dx : u ∈ H1
0 (ω) with ‖∇u‖L2(ω) ≤ 1

}

,

then a natural 2-dimensional counterpart to the energy E3D is

E2D(m) =

ˆ

ω

(d2|∇m|2 +Qm2
2) dx+ ‖∇ ·m‖2

Ḣ−1(ω)
.

We study an asymptotic regime characterized by certain relations between
the constants d, Q, and the length scale of the 2-dimensional domain ω, mea-
sured in terms of ℓ = diamω. Before we give the details, it is convenient to
renormalize ω to unit size. We set Ω = ω/ℓ and m̃(x) = m(ℓx). Furthermore,
we set ǫ = d/(ℓ

√
Q) and η = 2d

√
Q/ℓ. Then

E2D(m) = 2ℓd
√

Q

(

1

2

ˆ

Ω

(

ǫ|∇m̃|2 +
m̃2

2

ǫ

)

dx+
1

η
‖∇ · m̃‖2

Ḣ−1(Ω)

)

.

The asymptotic regime that we study corresponds to the conditions that ǫ→ 0+,
while η is of the order ǫs for some number s ∈ (1, 2). From now on, we drop the
tilde and write m instead of m̃. Moreover, we renormalize the energy. Then we
obtain the functional that we study in the sequel:

Eǫ(m) =
1

2

ˆ

Ω

(

ǫ|∇m|2 +
1

ǫ
m2

2

)

dx+
1

ǫs
‖∇ ·m‖2

Ḣ−1(Ω)

for m ∈ H1(Ω;S2).

1.3 Limiting energy

Suppose that we have a family of maps mǫ ∈ H1(Ω;S2) with

lim sup
ǫ→0+

Eǫ(mǫ) <∞. (1)

What can we say about the asymptotic behavior of mǫ and the energy Eǫ(mǫ)
as ǫ→ 0+?

It is natural to study a question of this type in the framework of Γ-conver-
gence. To this end, we first need to fix a topology on the space of admissible
magnetizations. The topology of L1(Ω,R3) is often used in such a context,
but it turns out that Eǫ is not coercive enough to deduce compactness from
(1) in this space (cf. Proposition 5.1 below). Another possibility is the weak*
topology in L∞(Ω,R3). Clearly the limit m (as ǫ→ 0+) must have a vanishing
second component m2 and a vanishing distributional divergence ∇ · m = 0 in
Ω. However, we obtain more information about the limit if we first apply a
nonlinear transformation to m. In order to do so, we use spherical coordinates
(ϕ, ϑ) so that

m = (cosϕ cosϑ, sinϕ, cosϕ sinϑ).
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The quantity that we need to study is

ψ = sinϑ− ϑ cosϑ,

at least if we work in the hemisphere where |ϑ| ≤ π
2 . We will show that as long

as ϑ remains sufficiently small, the functional

E0(ψ) = sup

{
ˆ

Ω

∂v

∂x1
ψ dx : v ∈ C1

0 (Ω) with sup
Ω

|v| ≤ 1

}

can be identified as the limiting energy. For a sufficiently regular ψ, this is of
course

E0(ψ) =

ˆ

Ω

∣

∣

∣

∣

∂ψ

∂x1

∣

∣

∣

∣

dx.

The lack of a penalization of ∂ψ
∂x2

means that we can have very rough limiting
configurations. On the other hand, almost every restriction to a horizontal line
Ω∩(R×{x2}) will be a function of bounded variation. There can be jumps, but
these jumps contribute to the energy proportionally to the jump height. It is
convenient to imagine here that the magnetization depends only on x1, and then
we can think of a jump as a domain wall. It is worth noting that in general, the
wall energy given by E0 is not achieved by a 1-dimensional transition between
the two states on either side of the wall. Instead, in order to obtain the optimal
limiting energy given by E0, a transition with an additional zigzag structure is
required.

1.4 Related models

The phenomenon studied in this paper depends crucially on the interaction be-
tween the anisotropy and the magnetostatic energy (but involving also the ex-
change energy). In particular, the spatial orientation of the anisotropy (relative
to the expected domain walls in the corresponding 3-dimensional configuration)
is important. If m2

2 is replaced by m2
3, then the limiting behavior is described

in terms of Bloch walls, which are 1-dimensional transition layers between two
mesoscopic directions of m within S2, as shown by Ignat and Merlet [21].

A related problem has been studied by Moser [27]. In a 3-dimensional model
with a different anisotropy, it is shown that similar zigzag walls are to be ex-
pected (unsurprisingly, as this is exactly a situation for which the phenomenon
is described in the physics literature [18, Chapter 3.6]). An upper bound is
given for the limiting wall energy through a zigzag construction similar to what
we explain later (see Section 3). A preliminary lower bound is also given, but
there is so far no Γ-convergence result, as the two estimates do not match.

If we ignore the magnetostatic energy in our model, then we obtain an
energy similar to the Ginzburg-Landau functionals studied by Bethuel, Brezis,
and Hélein [7] and many other authors, including André and Shafrir [4], Sandier
[31], Hang and Lin [17] in the context of S2-valued maps. On the other hand,
since the penalization of the magnetostatic energy is very strong, it is perhaps
more appropriate to compare our model with a theory involving the constraint
∇ ·m = 0. If Ω is simply connected, then under such a condition, there exists
a function u such that m = (∇⊥u,m3). The energy is then

Eǫ(m) =
1

2

ˆ

Ω

(

ǫ|∇2u|2 + ǫ|∇m3|2 +
1

ǫ

(

∂u

∂x1

)2
)

dx.
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This has some similarity to the functional

AGǫ(u) =
1

2

ˆ

Ω

(

ǫ|∇2u|2 +
1

ǫ
(1 − |∇u|2)2

)

dx

introduced by Aviles and Giga [5] and also studied by others [6, 25, 3, 13, 12,
9, 28]. A variant of the problem with applications to micromagnetics has been
considered by Jabin, Otto, and Perthame [24] and by De Lellis and Otto [12].

In contrast to the problem studied in this paper, the optimal transition pro-
files between two phases are 1-dimensional for the Aviles-Giga problem. This
is indeed the case for most problems involving phase transitions where the lim-
iting energy is explicitly known. In some cases, it is not difficult to see that it
will not be sufficient to study 1-dimensional transitions. For certain classes of
such problems, a Γ-limit has been described in terms of other variational prob-
lems by Fonseca and Popovici [16] and Conti, Fonseca, and Leoni [10]. But we
are aware of only one other situation where the Γ-limit is explicitly known for
a problem involving similar microstructures: the problem leading to cross-tie
walls in thin ferromagnetic films [29, 30, 1]. The cross-tie wall consists in a mix-
ture of vortices and Néel walls (1-dimensional transition layers similar to Bloch
walls, but taking values only in S1). Remarkably, the function sin θ − θ cos θ
plays an important role in that context as well, although this may be a mere
coincidence. We also mention some other works related to patterns in thin-film
micromagnetics that involve Néel walls and (interior or boundary) vortices (see
Ignat-Otto [22, 23], Ignat-Knüpfer [20]).

2 Main results

2.1 The periodic case

For simplicity, we first focus on the periodic situation

Ω = (−1, 1) × R/Z.

For a fixed transition angle θ ∈ (0, π/2), we set the mesoscopic directions

m± = (cos θ, 0,± sin θ) ∈ S2

and we consider magnetizations (periodic in the tangential direction x2 to the
wall) with the desired transition imposed at the boundary:

M = M(θ) :=
{

m ∈ H1(Ω, S2) : m(±1, ·) = m± in H1/2(R/Z)
}

.

Set
F (θ) = sin θ − θ cos θ.

The associated 2D stray field h(m) is assumed to be x2−periodic. Then the
stray field energy per unit length in x2-direction is given by:
ˆ

Ω

|h(m)|2 dx = ‖∇ ·m‖2
Ḣ−1

per(Ω)
(2)

= sup

{

(
ˆ

Ω

u∇ ·mdx

)2

: u ∈ H1
per(Ω) with ‖∇u‖L2(Ω) ≤ 1

}

,
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where
H1

per(Ω) =
{

u ∈ H1(Ω) : u(±1, ·) = 0 in H1/2(R/Z)
}

.

Here, we will always use the periodic stray field energy (2) as the last term in
the energy Eε:

Eε(m) =
ε

2

ˆ

Ω

|∇m|2 dx+
1

2ε

ˆ

Ω

m2
2 dx+

1

εs

ˆ

Ω

|h(m)|2 dx,

for s ∈ (1, 2). We state the following asymptotic minimal value of Eε on the set
M(θ) for small transition angles θ:

Theorem 2.1. There exists an angle θ0 ∈ (0, π2 ) such that the following holds:
for every θ ∈ (0, θ0],

min
mε∈M(θ)

Eε(mε) = 2F (θ) + o(1) as ε→ 0.

The idea of the proof is to match an upper bound coming from the zigzag
wall construction with a lower bound based on generalized entropies. Let us
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Figure 1: The zigzag pattern

explain the heuristics of deducing the limit energy in Theorem 2.1 (as an upper
bound). Let α ∈ [0, π2 ) and consider in R

3 the plane containing the two points
m± ∈ S2 so that ν = (cosα,− sinα, 0) is the normal vector to the plane. The
construction will involve a transition path from m− to m+ along the curve on
S2 within this plane (see Figure 1). More precisely, we define

b = cos θ cosα and σ = arcsin
sin θ√
1 − b2

;

the smallest arc connecting m± on the circle of radius
√

1 − b2 whose plane is
perpendicular to ν is given by

γ(t) = bν +
√

1 − b2(sinα cos t, cosα cos t, sin t) (3)

for −σ ≤ t ≤ σ. For a transition along γ = (γ1, γ2, γ3), the expected energy per
unit wall length is

K(α) =

ˆ σ

−σ

γ2(t)|γ̇(t)| dt.
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In order to keep the magnetostatic energy small, we will have to use this tran-
sition across pieces of a zigzag wall that are tilted with respect to {0} × (0, 1)
by the angle α. This increases the length of the wall by the factor 1

cosα , and in
the limit we expect the energy density

g(α) =
K(α)

cosα
. (4)

One can check that g is a decreasing function (see Proposition 6.1 in Appendix)
and conclude that

inf
0≤α<π

2

g(α) = lim
α→ π

2
−

g(α) = 2F (θ). (5)

We observe that the energy cost of a transition of small angle θ is cubic, so
that it is asymptotically cheaper than the quadratic energy cost of a Bloch wall
transition of the same angle.

We explain the precise construction that leads to the above wall energy in
Section 3. We thereby obtain an upper bound for the limiting energy (this
construction is done for arbitrary angles θ ∈ (0, π2 ]). We show in Section 4
that the upper bound is optimal at least when θ is small. To this end, we use
an “entropy method” introduced by Jin and Kohn [25], Aviles and Giga [6],
DeSimone, Kohn, Müller, and Otto [13] and used in a context similar to this
problem by Ignat and Merlet [21].

2.2 Γ−convergence for small transition angles

We now concentrate on families of uniformly bounded energy configurations
{mk = (mk,1,mk,2,mk,3) ∈ H1(Ω;S2)} in a smooth, bounded, simply-connected
domain Ω ⊂ R

2, i.e.,
lim sup
k→∞

Eǫk(mk) <∞, (6)

with εk → 0 as k → ∞. The aim is to establish the structure of limiting
configurations of such families and to determine their limit energy, according
to the Γ−convergence method. The first issue is to find out the appropriate
topology for the desired Γ−convergence result. Obviously, (6) entails mk,2 → 0
strongly in L2(Ω). However, as we will see in Proposition 5.1, families {mk}
satisfying (6) are in general not relatively compact in the strong L1 topology
and the limiting configurations m are not necessarily taking values into S2 (in
general, one only has |m| ≤ 1 a.e. in Ω). Therefore, one alternative would be to
choose the weak* L∞−topology for {(mk,1,mk,3)}. Rather than studying the
limiting behavior of (mk,1,mk,3), we focus on the quantity

ψk = f(mk), (7)

where f : S2 → R is the function defined by

f(m) =











F (arctan(m3/m1)) if m1 > 0,

2 + F (arctan(m3/m1)) if m1 < 0 and m3 ≥ 0,

−2 + F (arctan(m3/m1)) if m1 < 0 and m3 < 0,

(8)

extended continuously where m1 = 0 and m2 6= ±1 (here, arctan : R →
(−π

2 ,
π
2 )). This function has a discontinuity along the semicircle {m ∈ S2 :
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m3 = 0, m1 ≤ 0}, and from a geometric point of view, it would be more appro-
priate to regard f as a function from S2 into R/4Z. Since we work mostly in a
hemisphere below, we keep R as the target anyway. The discontinuities at the
poles ±e2, of course, are unavoidable. Since |ψk| ≤ 2 a.e. in Ω, we choose the
weak* L∞-topology for {ψk} as appropriate for the Γ−convergence result. We
define the limiting functional E0 : L∞(Ω) → [0,∞] by

E0(ψ) =

ˆ

Ω

∣

∣

∣

∣

∂ψ

∂x1

∣

∣

∣

∣

:= sup

{
ˆ

Ω

∂v

∂x1
ψ dx : v ∈ C1

0 (Ω) with sup
Ω

|v| ≤ 1

}

,

for every ψ ∈ L∞(Ω), i.e., E0(ψ) is the total variation of ψ in the x1-direction.
We prove the following Γ−convergence result for small transition angles:

Theorem 2.2. There exists an angle θ0 ∈ (0, π2 ) such that the following holds
true.

1) (Compactness and Lower bound) Let {εk} ⊂ (0,∞) with εk → 0 as k → ∞
and let {mk} ⊂ H1(Ω;S2) with (6). Consider the sequence {ψk} associated to
{mk} via (7). Then discarding a subsequence,

ψk
∗
⇀ ψ in L∞(Ω) and mk,2 → 0 in L2(Ω). (9)

If |ψk| ≤ F (θ0) a.e. in Ω and for every positive integer k, then

E0(ψ) ≤ lim inf
k→∞

Eǫk(mk).

2) (Upper bound) For every ψ ∈ L∞(Ω) with |ψ| ≤ F (θ0) a.e. in Ω, there
exist sequences {εk} ⊂ (0,∞) with εk → 0 and {mk} ⊂ H1(Ω;S2) such that (9)
holds and

E0(ψ) = lim
k→∞

Eǫk(mk).

The proof of this result is presented in Section 5.

3 Upper bound in Theorem 2.1: The zigzag wall

Let θ ∈ (0, π2 ] be an arbitrary angle. For the mesoscopic directions m± =
(cos θ, 0,± sin θ) ∈ S2, we show that the energy 2F (θ) can be achieved by a
zigzag transition layer in the limit ε → 0. To this end, we first reparametrize
the curve γ defined in (3) as follows. In the sequel, we will always use the
notation introduced in subsection 2.1.

Fix δ > 0. (This number will determine the length scale of the zigzag layer
Ωδ in our construction.) We define

ξδ(t) =

ˆ t

0

|γ̇(s)|
√

(γ2(s))2 + δ2
ds, −σ ≤ t ≤ σ.

Let Tδ = ξδ(σ) and note that −Tδ = ξδ(−σ) by symmetry. The function ξδ
is strictly increasing, and therefore we have an inverse ζδ = ξ−1

δ : [−Tδ, Tδ] →
[−σ, σ]. We compute

ζ̇δ =

√

(γ2 ◦ ζδ)2 + δ2

|γ̇ ◦ ζδ|
.
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Extend ζδ to R by ζδ(s) = ±σ for Tδ < ±s. Then the curve cδ = γ ◦ ζδ satisfies

|ċδ(s)| =
√

(cδ2(s))
2 + δ2, −Tδ < s < Tδ,

which means
1

2

ˆ ∞

−∞

(

|ċδ|2 + (cδ2)
2
)

ds → f(α)

as δ → 0.
We consider the layer Ωδ = (−1, 1) × (0, δ) and ν = (cosα,− sinα, 0). In

Ωδ, the vertical limit wall {0} × (0, δ) is tilted by the angle α so that the
transition between the directions m± corresponds to a Bloch wall transition in
the direction ν (see Figure 2). This layer of scale δ is to be reflected with respect
to the horizontal axis and then, the new layer of thickness 2δ is to be repeated
in a periodic way in the x2-direction in order to get the global zigzag pattern.
Therefore, for x ∈ Ωδ, we define a 1-dimensional transition layer in the normal
direction ν:

m̃ǫδ(x) = cδ
(x · ν

ε

)

.

The transition path from m− to m+ follows the curve γ in S2 within the plane
orthogonal to ν (as explained in subsection 2.1), so that

∇ · m̃ǫδ = 0 in Ωδ.

Moreover, we compute

lim
δ→0

lim
ǫ→0

1

2δ

ˆ

Ωδ

(

ǫ|∇m̃ǫδ|2 +
1

ǫ
(m̃ǫδ

2 )2
)

dx = g(α).

Notice that m̃ǫδ is locally constant away from the set Bǫδ := {x ∈ Ωδ : |x · ν| ≤
εTδ} (where the transition between m− and m+ takes place); more precisely,

m̃ǫδ ≡ m− on the left side of Ωδ \Bǫδ

and
m̃ǫδ ≡ m+ on the right side of Ωδ \Bǫδ.

In order to extend this layer periodically in the x2-direction (which will even-
tually yield a zigzag pattern), we need to replace m̃ǫδ by a new vector field
mǫδ ∈ H1(Ωδ;S

2) with mǫδ
2 = 0 on ∂Ωδ (see Figure 2). This is to avoid disconti-

nuities on ∂Ωδ∩({x2 = 0}∪{x2 = δ}). To this end, we set Lδ = (tanα+ 1
cosα )Tδ

and define

Aǫδ = (−Lδǫ, Lδǫ) × (0, Tδǫ) ∪ (δ tanα− Lδǫ, δ tanα+ Lδǫ) × (δ − Tδǫ, δ).

Modifying m̃ǫδ in Aǫδ, we can construct vector fields mǫδ ∈ H1(Ωδ;S
2) such

that mǫδ = m̃ǫδ in Ωδ\Aǫδ,

mǫδ
2 (x1, 0) = mǫδ

2 (x1, δ) = 0 for every x1 ∈ (−1, 1),

and so that

|∇mǫδ| ≤ C1

Tδǫ

9



α

ν

Tδε

Lδε

Tδε

Ωδ

Figure 2: The microstructure of
the zigzag layer for θ = π/2.
The arrows stand for the pro-
jection of the magnetization on
the horizontal plane.

for a constant C1 that depends only on θ and α. Hence we still have

lim
δ→0

lim
ǫ→0

1

2δ

ˆ

Ωδ

(

ǫ|∇mǫδ|2 +
1

ǫ
(mǫδ

2 )2
)

dx = g(α)

and also
ˆ

Ωδ

|∇ ·mǫδ|p dx ≤ C2(Tδǫ)
2−p

for every p ∈ [1,∞), where C2 is another constant depending only on θ and α.
Now we reflect mǫδ with respect to the horizontal axis: We extend mǫδ to

(−1, 1) × (−δ, δ) by

mǫδ
1 (x1,−x2) = mǫδ

1 (x1, x2),

mǫδ
2 (x1,−x2) = −mǫδ

2 (x1, x2),

mǫδ
3 (x1,−x2) = mǫδ

3 (x1, x2).

(Since mǫδ
2 = 0 on ∂Ωδ, no discontinuities are induced in the reflected domain.)

Finally, we extend it to (−1, 1)×R periodically in x2. The resulting vector field
satisfies

lim
δ→0

lim
ǫ→0

ˆ

Ω

(

ε

2
|∇mǫδ|2 +

1

2ε
(mǫδ

2 )2
)

dx = g(α).

Furthermore, for any p ∈ [1, 4
s+2 ), the Sobolev embedding theorem implies the

existence of a universal constant C3 such that

ǫ−s‖∇ ·mǫδ‖2
Ḣ−1(Ω)

≤ C3ǫ
−s‖∇ ·mǫδ‖2

Lp(Ω) → 0 (10)

as ǫ → 0 for any δ > 0. Notice that the assumption s < 2 is essential here so
that a p exists in this interval. Hence

lim
δ→0

lim
ǫ→0

Eǫ(m
ǫδ) = g(α).

This construction works for any α < π
2 . If we have a given sequence ǫk → 0+,

by (5), we can apply a diagonal sequence argument for some angles αk → π
2
−

in order to find a sequence of vector fields mk ∈ H1(Ω;S2) such that

lim
k→∞

Eǫk(mk) = 2F (θ).

We highlight the fact that this result holds for arbitrary angles θ ∈ (0, π2 ].

10



4 Lower bound in Theorem 2.1

4.1 Entropies

In order to obtain the above lower bound we introduce (as in [21]) a class of
maps Φ for which

´

∇ · {Φ(m)} dx is controlled by the energy. This idea comes
from the concept of entropies (borrowed from the scalar conservation laws) and
was introduced by Jin and Kohn [25], Aviles and Giga [6], DeSimone, Kohn,
Müller, and Otto [13]. More precisely, we systematically study the particular
class of Lipschitz continuous maps Φ = (Φ1,Φ2) ∈ Lip(S2,R2) and α ∈ Lip(S2)
such that for every smooth m ∈ C∞(Ω, S2), there holds

∇ · {Φ(m)} + α(m)∇ ·m ≤ ε

2
|∇m|2 +

1

2ε
m2

2 a.e. in Ω, (11)

where ε > 0 is a small parameter. The condition (11) yields some necessary
pointwise bounds for an admissible triplet (Φ = (Φ1,Φ2), α).

Lemma 4.1. Let ε > 0 and (Φ = (Φ1,Φ2), α) ∈ Lip(S2,R2)×Lip(S2) satisfying
(11). For every τ ∈ [−π, π), we set

ντ = (− sin τ, cos τ, 0) ∈ S2 and Ψτ = − sin τ Φ1 + cos τ Φ2 ∈ Lip(S2).

Then for almost every point m ∈ S2, we have

|DΨτ (m) + α(m)Πmντ | ≤ |m2|, (12)

where DΨτ (m) ∈ TmS
2 is the gradient of Ψτ at m and Πm denotes the orthog-

onal projection onto TmS
2.

Proof. Let e1 = (1, 0, 0) and e2 = (0, 1, 0). We define the following operator L:
for a.e. m̃ ∈ S2 (that is a Lebesgue point of DΦ), L(m̃) : (Tm̃S

2)2 → R is the
linear functional such that for every v = (v1, v2) ∈ (Tm̃S

2)2,

L(m̃)(v) = L1(m̃)(v1) + L2(m̃)(v2),

with Lk(m̃)(vk) :=
(

DΦk(m̃) + α(m̃)Πm̃ek; vk

)

, k = 1, 2,

where (·; ·) denotes the scalar product in the Euclidean space R
3. Then for every

smooth map m ∈ C∞(Ω, S2), inequality (11) means that

L(m)(∂x1
m, ∂x2

m) = ∇ · {Φ(m)} + α(m)∇ ·m

≤ ε

2
|∇m|2 +

1

2ε
m2

2 for a.e. x ∈ Ω.
(13)

Now let x̃ ∈ Ω be fixed and m̃ ∈ S2 be a Lebesgue point of DΦ. For every
nonzero vector ṽ ∈ Tm̃S

2 \ {0} such that |ṽ| = |m̃2|/ε, we choose a smooth map
m such that m(x̃) = m̃ and (∂1m, ∂2m)(x̃) := (− sin τ ṽ, cos τ ṽ). Applying (13)
at x̃, we obtain

(

DΨτ (m̃) + α(m̃)Πm̃ντ ;
ṽ

|ṽ|
)

=
1

|ṽ|L(m̃)(− sin τ ṽ, cos τ ṽ) ≤ |m̃2|.

Since m̃ is an arbitrary point in a dense set of S2, the conclusion follows.
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4.2 Adapted triplet (Φ1, Φ2, α)

Inequality (11) is useful if Φ takes the appropriate values on the circle on S2

given by {m2 = 0}. More precisely, we introduce the following concept:

Definition 4.1. For θ ∈ (0, π/2], recall that

F (θ) = sin θ − θ cos θ and m± = (cos θ, 0,± sin θ) ∈ S2. (14)

We will say that a triplet (Φ = (Φ1,Φ2), α) ∈ Lip(S2,R2) × Lip(S2) is adapted
to the jump (m−,m+) if

Φ1(m
+) − Φ1(m

−) = 2F (θ) (15)

and there exists ε0 > 0 such that for any 0 < ε ≤ ε0, inequality (11) holds for
every map m ∈ C∞(Ω, S2).

We prove an existence result for walls of small transition angles θ ∈ [0, θ0],
where θ0 is determined in the proof of Proposition 4.1 (see Claim 1):

Proposition 4.1. There exist an angle θ0 ∈ (0, π2 ) and a Lipschitz triplet (Φ =
(Φ1,Φ2), α) that is adapted to the jump m± for every θ ∈ [0, θ0].

For the biggest jump ±e3, we prove a nonexistence result. This result sug-
gests that the zigzag pattern may not be optimal for large angles.

Proposition 4.2. There is no smooth triplet (Φ = (Φ1,Φ2), α) adapted to the
jump m± for θ = π/2.

In the proofs of Propositions 4.1 and 4.2, we will use spherical coordinates
on S2. Suppose m ∈ H1(Ω, S2) can be written in the form

m = (cosϕ cosϑ, sinϕ, cosϕ sinϑ) (16)

for two functions ϕ ∈ H1(Ω, [−π/2, π/2]) and ϑ ∈ H1(Ω,R), where the range of
ϑ is fixed by imposing the condition ϑ(x0) ∈ (−π, π] for some Lebesgue point
x0 ∈ Ω of m. Then we compute

|∇m|2 = |∇ϕ|2 + cos2 ϕ|∇ϑ|2 in L1(Ω)

and

∇ ·m = − sinϕ cosϑ
∂ϕ

∂x1
− cosϕ sinϑ

∂ϑ

∂x1
+ cosϕ

∂ϕ

∂x2
in L2(Ω).

Remark 1. i) In general, a vector field m ∈ H1(Ω, S2) cannot be written in
the form (16) with ϕ, ϑ ∈ H1(Ω,R). The standard example is the vortex type
configuration in the unit disk Ω := B2 ⊂ R

2:

(m1,m3)(x) = sin(
π

2
|x|) x|x| and m2(x) = cos(

π

2
|x|) for x ∈ B2.

Indeed, m ∈ H1(B2, S2) and the 2D vector field (m1,m3) has a topological degree
1 at the boundary ∂B2, which forbids the existence of a lifting ϑ ∈ H1(Ω,R)

such that (m1,m3)
|(m1,m3)|

= (cosϑ, sinϑ) a.e. in B2. (In fact, in this case, one can

12



find a lifting ϑ ∈ BV (B2,R) with a jump set concentrated on a radius of B2, see
e.g. [11, 19], while ϕ ∈ H1(Ω, [0, π/2]) is given by ϕ(x) = π

2 (1 − |x|), x ∈ B2.)
ii) However, a vector field m ∈ H1(Ω, S2) can be written in the form (16)

with ϑ ∈ H1(Ω) and ϕ ∈ H1(Ω, (−π/2, π/2)) if ess sup |m2| < 1. Indeed, if
we denote v = (m1,m3), then (|v|,m2) ∈ H1(Ω, S1) has a lifting ϕ ∈ H1(Ω),
i.e., (|v|,m2) = (cosϕ, sinϕ) (see [8]). Moreover, cosϕ = |v| ≥ 0, therefore the
range of ϕ satisfies Imϕ ⊂ [−π/2, π/2] + 2πZ. Since ϕ ∈ H1(Ω) ⊂ VMO(Ω),
we deduce that Imϕ is connected (here, Ω is supposed to be simply-connected);
thus, up to an additive constant, ϕ ∈ H1(Ω, (−π/2, π/2)) where we used that
ess sup | sinϕ| < 1. Then ess inf |v| > 0 so that v

|v| ∈ H1(Ω, S1) has a lifting

ϑ ∈ H1(Ω,R) and (16) holds. Obviously, up to an additive constant in 2πZ, we
can always assume that Imϑ ∩ [−π, π] 6= ∅. The representation (16) is unique
if one imposes ϑ(x0) ∈ (−π, π] for some Lebesgue point x0 ∈ Ω of m.

4.3 Existence of an adapted triplet for small angles

Proof of Proposition 4.1. We divide the proof in several steps:

Step 1. An “almost” adapted triplet (Φ = (Φ1,Φ2), α). There is no general
recipe for finding an adapted triplet (Φ = (Φ1,Φ2), α) for a transition angle
θ. However, Lemma 4.1 gives some useful constraints when trying to construct
a triplet adapted to a certain range of angles θ. In particular, Φ1 and α are
determined on the circle S2 ∩ {m2 = 0}: in the spherical coordinates (φ, θ), we
use the anzatz that Φ1(0, ·) is an odd function in θ ∈ [−π, π]. Then (12) (for
τ = 0 and τ = π

2 ) and (15) lead to

Φ1(0, θ) = F (θ), α(0, θ) = θ and
∂Φ2

∂θ
(0, θ) = 0.

Motivated by these facts, we consider the following triplet (Φ = (Φ1,Φ2), α) :
R

2 → R
3 with all components written in the spherical coordinates (16):

Φ1(φ, θ) = F (θ) cos3 φ+G(θ) sin2 φ cosφ,

Φ2(φ, θ) = −θ sinφ cos2 φ,

and
α(φ, θ) = θ cos2 φ,

where G : R → R is defined by

G(θ) =
3

2
sin θ − θ cos θ, θ ∈ R.

Let m ∈ C∞(Ω, S2) be a smooth vector field that can be written in the form
(16) for two smooth functions ϕ, ϑ ∈ C∞(Ω,R) (this representation is unique
when we impose the condition ϑ(x0) ∈ (−π, π] for some fixed point x0 ∈ Ω).
We compute

∇ · [Φ(m)] + α(m)∇ ·m = −G(ϑ) sin3 ϕ
∂ϕ

∂x1
+G′(ϑ) sin2 ϕ cosϕ

∂ϑ

∂x1

+ 2ϑ sin2 ϕ cosϕ
∂ϕ

∂x2
− sinϕ cos2 ϕ

∂ϑ

∂x2
.
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In particular, if we define ℓ : R
2 → R with

ℓ(φ, θ) = (G(θ))2 sin4 φ+ (G′(θ))2 sin2 φ+ 4θ2 sin2 φ cos2 φ+ cos2 φ

for every (φ, θ) ∈ R
2, then we obtain

0 ≤ ℓ(φ, θ) ≤ 1 for every φ ∈ R, |θ| ≤ θ̃0, (17)

where θ̃0 is defined in Step 2, and

|∇ · [Φ(m)] + α(m)∇ ·m| ≤
√

ℓ(ϕ, ϑ)|m2||∇m|.

It follows that the triplet (Φ = (Φ1,Φ2), α) is “almost” adapted for angles
θ ∈ [0, θ̃0] in the sense that (15) holds for θ ∈ [0, π/2], but (11) holds only
for vector fields m satisfying (16) for smooth functions ϕ, ϑ with the constraint
that |ϑ| ≤ θ̃0 in Ω. (The inequality (11) is indeed satisfied, since by Young’s
inequality,

|m2||∇m| ≤ ε

2
|∇m|2 +

1

2ε
m2

2 in Ω

for every ε > 0.)

Step 2. Estimate of θ̃0. The transition angle θ̃0 ∈ (0, π/2] is the largest angle
where (17) holds for every φ ∈ [−π/2, π/2] and |θ| ≤ θ̃0. We want to determine
this angle θ̃0. For a fixed θ, setting t := sin2 φ ∈ [0, 1], the function ℓ can be
seen as a polynomial function of second degree in t, i.e.,

ℓ(φ, θ) = a(θ)t2 + b(θ)t+ 1,

where a(θ) = (G(θ))2 − 4θ2 and b(θ) = (G′(θ))2 + 4θ2 − 1. First we show that
a(θ) ≤ 0 for θ ∈ [−π/2, π/2]. Indeed, setting

ã(θ) = G(θ) − 2θ =
3

2
sin θ − θ(cos θ + 2),

we compute that ã′′(θ) = 1
2 sin θ+ θ cos θ ≥ 0 for θ ∈ [0, π/2]. Thus, ã is convex

on [0, π/2]; since ã(0) = 0 and ã(π/2) ≤ 0, we conclude that ã ≤ 0 in [0, π/2],
which implies that a has the same property on [0, π/2]. Since the function a
is even, we conclude that a ≤ 0 in [−π/2, π/2]. Observe now that ℓ(φ, θ) = 1
if t = 0. In order that ℓ(φ, θ) ≤ 1 for every t ∈ [0, 1], one should impose that
b(θ) ≤ 0 for every |θ| ≤ θ̃0. (We see that b(0) = −3/4 so that θ̃0 > 0.) The
optimal θ̃0 ∈ [0, π/2] is given by the condition b(θ̃0) = 0, i.e.,

(G′(θ̃0))
2 + 4θ̃20 = 1, i.e., θ̃0 = 0.3948752981179... (18)

Step 3. An adapted triplet (Ψ, β) for any transition angle θ ∈ [0, θ0]. Motivated
by Step 1, we now truncate the triplet (Φ, α) constructed above at a level θ0 <
θ̃0, where θ0 ∈ (0, π/2) will be given later (see Claim 1). Consider the map
Φ̃ : R

2 → R
2 and the function α̃ : R

2 → R given by:

Φ̃1(φ, θ) = F̃ (cos θ) cos3 φ+ G̃(θ) sin2 φ cosφ,

Φ̃2(φ, θ) = F̃ ′(cos θ) sinφ cos2 φ
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and
α̃(φ, θ) = −F̃ ′(cos θ) cos2 φ,

where F̃ : [−1, 1] → R is the C1 function defined by

F̃ (t) =

{

q0
2 (t+ 1)2 if t ∈ [−1, 0],

− q0+θ0
2 cos θ0

t2 + q0t+ q0
2 if t ∈ [0, 1]

with

q0 =
2 sin θ0 − θ0 cos θ0

1 + cos θ0

and G̃ : R → R is the 2π−periodic, even Lipschitz function defined by

G̃(θ) = G(θ0)
θ − π

θ0 − π
, θ ∈ [0, π]

(see Figure 3). Observe that for θ0 > 0 small, then q0 > 0 is small so that
‖F̃‖L∞ , ‖F̃ ′‖L∞ and ‖F̃ ′′‖L∞ are small together with ‖G̃‖L∞ and ‖G̃′‖L∞.

�

1

F(  ) 0

cos
 0

-1

~
F

�

G

-

~

Figure 3: The functions F̃ and G̃.

We define (Ψ, β) : (−π
2 ,

π
2 )×(−π, π) → R

3 as follows: for every φ ∈ (−π
2 ,

π
2 ),

Ψ(φ, θ) =











−Φ̃(φ, θ) if − π < θ < −θ0,
Φ(φ, θ) if − θ0 ≤ θ ≤ θ0,

Φ̃(φ, θ) if π > θ > θ0,

and

β(φ, θ) =











−α̃(φ, θ) if − π < θ < −θ0,
α(φ, θ) if − θ0 ≤ θ ≤ θ0,

α̃(φ, θ) if π > θ > θ0.

Then we extend this triplet to (Ψ, β) : R
2 → R

3 that is π−periodic in φ and
2π−periodic in θ. Observe that (Ψ, β) is a Lipschitz triplet on R

2 and satisfies
(15) for every mesoscopic wall m± = (cos θ, 0,± sin θ) with θ ∈ [0, θ0]. There-
fore, it makes sense to see the triplet as defined on S2, i.e., (Ψ, β) : S2 → R

3.
The aim is to show that (Ψ, β) is an adapted triplet for angles wall θ ∈ [0, θ0].

Step 4. Proof of (11) for (Ψ, β). Let m ∈ C∞(Ω, S2) and we will prove that
(11) holds for (Ψ, β) for a.e. x0 ∈ Ω.

Case 1: |m2(x0)| < 1. There exists a closed ball B ⊂ Ω centered at x0 such that
|m2(x)| < 1 for every x ∈ B. As explained in Remark 1 (ii), m can be written

15



in the spherical coordinates (16) for some smooth ϕ ∈ C∞(B, [−π/2, π/2]) and
ϑ ∈ C∞(B,R) with the range of ϑ determined by ϑ(x0) ∈ (−π, π] and this
representation is unique. Then we compute, as in Step 1, that a.e. in B:

1

sinϕ

(

∇ · [Φ̃(m)] + α̃(m)∇ ·m
)

=
(

− 3F̃ (cosϑ) cos2 ϕ+ G̃(ϑ)(2 cos2 ϕ− sin2 ϕ) + F̃ ′(cosϑ) cos2 ϕ cosϑ
) ∂ϕ

∂x1

− 2F̃ ′(cosϑ) sinϕ cosϕ
∂ϕ

∂x2
+ G̃′(θ) sinϕ cosϕ

∂ϑ

∂x1
− F̃ ′′(cosϑ) cos2 ϕ sinϑ

∂ϑ

∂x2
.

Defining ℓ̃ : R
2 → R by

ℓ̃(φ, θ) =
(

− 3F̃ (cos θ) cos2 φ+ G̃(θ)(2 cos2 φ− sin2 φ) + F̃ ′(cos θ) cos2 φ cos θ
)2

+ 4

(

F̃ ′(cos θ) sinφ cosφ
)2

+
(

G̃′(θ) sinφ
)2

+
(

F̃ ′′(cos θ) cosφ sin θ

)2

,

we find

∣

∣

∣
∇ · [Φ̃(m)] + α̃(m)∇ ·m

∣

∣

∣
≤
√

ℓ̃(ϕ, ϑ)|m2||∇m| a.e. in B.

Claim 1. 0 ≤ ℓ̃(φ, θ) ≤ 1 for every φ, θ ∈ R if θ0 > 0 is small.

The proof of Claim 1 is a straightforward consequence of the definition of func-
tions F̃ and G̃. Our angle θ0 is the maximal angle θ0 ∈ (0, θ̃0] (where θ̃0 is given
at Step 2) that satisfies the constraint ℓ̃(φ, θ) ≤ 1 for every φ, θ ∈ R.

We conclude that inequality (11) is indeed satisfied for (Φ̃, α̃) and m in B.
Together with Step 1, since θ0 < θ̃0, we conclude that (11) holds for the triplet
(Ψ, β) and m in B (in particular, at x0).

Case 2: |m2(x0)| = 1, i.e., m(x0) is one of the poles P± = (0,±1, 0). Notice
that Ψ(P±) = 0 and β(P±) = 0. We may assume that both sides of (11) are well-
defined at x0, because the chain rule applies almost everywhere [2, Corollary 3.2].
If ∇m(x0) = 0, then (11) is trivially satisfied at x0. Otherwise, ∇m(x0) 6= 0. By
the implicit function theorem, the set {x0 ∈ Ω : m(x0) ∈ {P±}, ∇m(x0) 6= 0} is
a countable union of curves, in particular of vanishing L2−measure. Therefore,
we conclude that (11) holds for a.e. x0 ∈ Ω.

As consequence, we prove Theorem 2.1:

Proof of Theorem 2.1. Let θ ∈ (0, θ0]. First, by Schoen-Uhlenbeck’s density
result and the continuity of Eε on H1, it is enough to prove the theorem for
smooth vector fields mε ∈M(θ). By Proposition 4.1, we choose a triplet (Φ, α)
adapted to the jump m±. Integrating (11) on Ω, one gets

ˆ

Ω

∇ · {Φ(mε)} dx+

ˆ

Ω

α(mε)∇ ·mε dx ≤ Eε(mε).
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Since mε is periodic in x2, integration by parts yields

ˆ

Ω

∇ · {Φ(mε)} dx = Φ1(m
+) − Φ1(m

−) = 2F (θ),

while by duality, we deduce

∣

∣

∣

∣

ˆ

Ω

α(mε)∇ ·mε dx

∣

∣

∣

∣

≤ ‖∇ ·mε‖Ḣ−1
per(Ω)‖∇α‖L∞‖∇mε‖L2(Ω)

≤ o(1)Eε(mε)

as ε → 0 (the assumption s > 1 is essential here). Therefore, minM(θ)Eε ≥
2F (θ) + o(1) as ε → 0. In Section 3, we saw that the reverse inequality also
holds, so that the conclusion is now straightforward.

4.4 Non-existence of smooth adapted triplet for the max-

imal jump

Proof of Proposition 4.2. Assume for contradiction that there exists a triplet
(Φ = (Φ1,Φ2), α) ∈ Lip(S2,R3) adapted to the wall ±e3 and of class C2 away
from the poles ±e3. Fix τ ∈ (−π, π]. As in Lemma 4.1, we define

ντ = (− sin τ, cos τ, 0)

and
Ψτ = − sin τΦ1 + cos τΦ2.

Furthermore, consider the semicircle

Cτ =
{

m ∈ S2 : m · ντ = 0, m · ν⊥τ < 0
}

,

where ν⊥τ = −(cos τ, sin τ, 0). By Lemma 4.1, we have

|DΨτ (m) + α(m)Πmντ |2 ≤ m2
2, m ∈ S2. (19)

We choose a new set of spherical coordinates (s, t) ∈ [−π/2, π/2]× [−π, π] such
that

m = (cos s cos t, cos s sin t, sin s) ∈ S2

and we identify Φ(m) := Φ(s, t) and α(m) := α(s, t). Then (19) becomes

(

∂Ψτ

∂s
(m) + (sin τ sin s cos t− cos τ sin s sin t)α(m)

)2

+

(

∂Ψτ

∂t (m)

cos s
+ (sin τ sin t+ cos τ cos t)α(m)

)2

≤ cos2 s sin2 t. (20)

On Cτ , this means

(

∂Ψτ

∂s
(m)

)2

+

(

∂Ψτ

∂t (m)

cos s
+ α(m)

)2

≤ cos2 s sin2 τ on Cτ . (21)
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As a consequence, note that if τ = 0, then Ψτ ≡ Φ2 is constant on Cτ . In
particular, Φ2 takes the same value at the poles ±e3, i.e.,

Φ2(e3) = Φ2(−e3).

Combined with our assumption Φ1(e3)−Φ1(−e3) = 2, we deduce Ψτ (π/2, τ)−
Ψτ (−π/2, τ) = −2 sin τ for every τ ∈ (−π, π]. Combined with (21), we deduce

2| sin τ | ≤
ˆ π/2

−π/2

∣

∣

∣

∣

∂Ψτ

∂s

∣

∣

∣

∣

ds ≤ | sin τ |
ˆ π/2

−π/2

cos s ds = 2| sin τ |.

It follows that
∂Ψτ

∂s
(s, τ) = − sin τ cos s on Cτ (22)

and
∂Ψτ

∂t
= −α(s, τ) cos s on Cτ . (23)

(The sign in (22) is determined by the fact that Ψτ (π/2, τ) < Ψτ (−π/2, τ)
whenever sin τ > 0.) Moreover, on Cτ , we have equality in (20). Hence for
every s ∈ (−π/2, π/2), the function

t 7→
(

∂Ψτ

∂s
(s, t) + (sin τ sin s cos t− cos τ sin s sin t)α(s, t)

)2

− cos2 s sin2 t

has a maximum (= 0) at t = τ . Differentiating in t at t = τ , we obtain

(

∂2Ψτ

∂s∂t
(s, τ) − α(s, τ) sin s

)

∂Ψτ

∂s
(s, τ) − sin τ cos τ cos2 s = 0.

Combined with (22), we obtain

∂2Ψτ

∂s∂t
(s, τ) = α(s, τ) sin s− cos τ cos s, s ∈ (−π/2, π/2), τ ∈ (−π, π) \ {0}.

Differentiating (23), we also find

∂2Ψτ

∂s∂t
(s, τ) = α(s, τ) sin s− ∂α

∂s
(s, τ) cos s.

(The hypothesis Ψ ∈ C2 and α ∈ C1 is needed in the above two identities.)
Therefore,

∂α

∂s
(s, τ) = cos τ, s ∈ (−π/2, π/2), τ ∈ [−π, π].

Integrating in s, the continuity of α in S2 yields

α(s, τ) = s cos τ + c(τ) s ∈ [−π/2, π/2], τ ∈ [−π, π],

for some function c = c(τ) depending only on τ . The contradiction arises when
we evaluate α at the poles ±e3:

α(e3) − α(−e3) = α(π/2, τ) − α(−π/2, τ) = π cos τ

which is absurd since the above LHS cannot depend on τ .
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5 Proof of Γ−convergence result in Theorem 2.2

We start by proving compactness and lower bound for our energy in the context
of an arbitrary domain Ω:

Proof of Theorem 2.2 1). It is straightforward to check (9). Suppose now that
|ψk| ≤ F (θ0) a.e. in Ω. Again, by Schoen-Uhlenbeck’s density result, due to
the continuity of Eεk

on H1, we can assume that mk ∈ C1(Ω, S2). Let (Ψ =
(Ψ1,Ψ2), β) be the triplet constructed in the proof of Proposition 4.1. By the
definition of Ψ, there exists a constant C such that |F (θ)−Ψ1(m)| ≤ C|m2| for
every point m = (cosφ cos θ, sinφ, cosφ sin θ) with |θ| ≤ θ0 and φ ∈ [−π/2, π/2].
By (9), the condition |ψk| ≤ F (θ0) in Ω then yields limk Ψ1(mk) = limk ψk = ψ
weakly* in L∞(Ω). Let v ∈ C1

0 (Ω). By (11), integration by parts yields:

∣

∣

∣

∣

ˆ

Ω

(

∇v · Ψ(mk) − vβ(mk)∇ ·mk

)

dx

∣

∣

∣

∣

≤ sup
Ω

|v|Eǫk(mk). (24)

By definition of Ψ2 and (9), we deduce that

ˆ

Ω

∂v

∂x2
Ψ2(mk) dx→ 0 as k → ∞.

Moreover, since

lim sup
k→∞

ǫk‖vβ(mk)‖2
H1

0
(Ω) <∞ and lim sup

k→∞
ε−sk ‖∇ ·mk‖2

Ḣ−1
per(Ω)

<∞,

by duality, it follows that

ˆ

Ω

vβ(mk)∇ ·mk dx→ 0

as well. Combining with (24), it follows that

ˆ

Ω

∂v

∂x1
ψ dx = lim

k→∞

ˆ

Ω

∂v

∂x1
Ψ1(mk) dx ≤ sup

Ω
|v| lim inf

k→∞
Eǫk(mk);

thus, E0(ψ) ≤ lim infk→∞ Eǫk(mk).

Let us now prove the recovery sequence step for the Γ−convergence:

Proof of Theorem 2.2 2). For simplicity, we set Ω = (−1, 1)2 (all the following
arguments adapt to a general smooth bounded simply-connected domain Ω).
Suppose that ψ ∈ L∞(Ω) with |ψ| ≤ F (θ0) almost everywhere and E0(ψ) <∞.
Then it follows that the distributional derivative of ψ with respect to x1 is
represented by a Radon measure ∂ψ

∂x1
on Ω, and

E0(ψ) =

∣

∣

∣

∣

∂ψ

∂x1

∣

∣

∣

∣

(Ω).

We want to construct a sequence

mk = (cosϕk cosϑk, sinϕk, cosϕk sinϑk), k ∈ N,
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such that |ϑk| ≤ θ0 in Ω and

F (ϑk) = ψk
∗
⇀ ψ in L∞(Ω) as k → ∞

and a corresponding sequence ǫk → 0 such that

lim sup
k→∞

Eǫk(mk) ≤ E0(ψ).

Step 1. Approximating ψ by step functions {ψ̃ℓ}ℓ∈N. Fix ℓ ∈ N. We divide Ω in
squares of length 2−ℓ, i.e.,

Qℓij = (si, si+1) × (sj , sj+1),

where si = 2−ℓi for i = −2ℓ, . . . , 2ℓ − 1. Consider the mean values

aℓij =

 sj+1

sj

ψ(si+1, x2) dx2 ∈ [−F (θ0), F (θ0)], i, j = −2ℓ, . . . , 2ℓ − 1.

Define the rectangles P ℓij ⊂ Qℓij by

P ℓij = (si, si+1) ×
(

sj, sj + 2−ℓ−1(1 +
aℓij
F (θ0)

)

)

and let χℓij be the characteristic function of P ℓij . Let ψ̃ℓ : Ω → {±F (θ0)} be the
following step function:

ψ̃ℓ = F (θ0)

(

− 1 + 2

2ℓ−1
∑

i,j=−2ℓ

χℓij

)

.

The choice of P ℓij was made so that

 

Qℓ
ij

ψ̃ℓ dx = aℓij .

We claim that {ψ̃ℓ} converges weakly* to ψ in L∞(Ω). This can be seen as
follows. Note first that
∣

∣

∣

∣

∣

ˆ

Qℓ
ij

ψ dx− 2−2ℓaℓij

∣

∣

∣

∣

∣

= 2−2ℓ

∣

∣

∣

∣

∣

 sj+1

sj

 si+1

si

(

ψ(x1, x2) − ψ(si+1, x2)
)

dx1dx2

∣

∣

∣

∣

∣

≤ 2−ℓ
∣

∣

∣

∣

∂ψ

∂x1

∣

∣

∣

∣

(Qℓij).

Thus for any v ∈ C1(Ω), we have

∣

∣

∣

∣

ˆ

Ω

(

ψ − ψ̃ℓ
)

v dx

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

2ℓ−1
∑

i,j=−2ℓ

(

ˆ

Qℓ
ij

ψ dx− 2−2ℓaℓij

)

v(si, sj)

∣

∣

∣

∣

∣

∣

+ 16F (θ0)2
−ℓ‖∇v‖L∞(Ω)

≤ 2−ℓ
(

E0(ψ) + 16F (θ0)

)

‖v‖C1(Ω).
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Since the sequence {ψ̃ℓ}ℓ∈N is bounded in L∞(Ω), there exists a subsequence
which converges weakly*. But by the above estimates, the limit of any such
subsequence must be ψ. Hence we have weak* convergence to ψ of the entire
sequence.

Step 2. Recovery sequence for each step function ψ̃ℓ. For a fixed ℓ, we now want
to construct a sequence

mℓ
k = (cosϕℓk cosϑℓk, sinϕ

ℓ
k, cosϕℓk sinϑℓk), k ∈ N, (25)

such that
F (ϑℓk)

∗
⇀ ψ̃ℓ as k → ∞

weakly* in L∞(Ω). The construction, if carried out in detail, is technically
quite complicated, but not difficult in principle, and the underlying ideas have
been discussed in the previous sections. We therefore give a description of the
construction rather than the full technical details. We expect that this will be
more illuminating to the reader.

Zigzag construction for vertical jumps. Fix δ > 0. Consider the jump set of ψ̃ℓ

and note that it consists of horizontal and vertical line segments. Consider first
a vertical piece, say {si}×(sj+r, sj+q) for some fixed indices i and j and r < q

with r, q ∈ (0, 2−ℓ). Suppose that ψ̃ℓ = −F (θ0) in (si−1, si) × (sj + r, sj + q)

and ψ̃ℓ = F (θ0) in (si, si+1)× (sj + r, sj + q), say. Then there exists a constant
c > 0, such that the construction from Section 3 for a transition between the
mesoscopic directions (cos θ0, 0,− sin θ0) and (cos θ0, 0, sin θ0) yields a family of
maps m̂ǫ with

m̂ǫ = (cos θ0, 0,− sin θ0) in (si−1, si − cǫ) × (sj + r, sj + q),

m̂ǫ = (cos θ0, 0, sin θ0) in (si + cǫ, si+1) × (sj + r, sj + q),

and

lim sup
ǫ→0

ˆ si+1

si−1

ˆ sj+q

sj+r

(

ǫ

2
|∇m̂ǫ|2 +

m̂2
ǫ,2

2ǫ

)

dx1 dx2 ≤ (2F (θ0) + δ)(q − r).

The divergence of m̂ǫ satisfies an estimate similar to (10). Moreover, arctan
m̂ǫ,3

m̂ǫ,1
∈

[−θ0, θ0].
Bloch wall for horizontal jumps. If we have a horizontal piece of the jump
set, say (si, si+1) × {sj + q} with ψ̃ℓ = −F (θ0) in (si, si+1) × (sj , sj + q) and

ψ̃ℓ = F (θ0) in (si, si+1)× (sj + q, sj+1), then we use a Bloch wall instead of the
zigzag wall. That is, we choose a function v ∈ C∞(R, [−θ0, θ0]) with v ≡ −θ0
in (−∞,−1] and v ≡ θ0 in [1,∞), and we set

m̌ǫ(x1, x2) =

(

cos v

(

x2 − sj − q

cǫ

)

, 0, sin v

(

x2 − sj − q

cǫ

))

,

for some c > 0. Then

lim sup
ǫ→0

ˆ si+1

si

ˆ sj+1

sj

(

ǫ

2
|∇m̌ǫ|2 +

m̌2
ǫ,2

2ǫ

)

dx1 dx2 .
1

c
.
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If the constant c = c(δ) is chosen sufficiently large, then we have

lim sup
ǫ→0

ˆ si+1

si

ˆ sj+1

sj

(

ǫ

2
|∇m̌ǫ|2 +

m̌2
ǫ,2

2ǫ

)

dx1 dx2 ≤ δ.

Moreover, a vector field of this form is divergence free.

Final construction. Now we construct a family of unit vector fields m̃ǫ : Ω → S2

that behaves like m̂ǫ near the vertical jump set and like m̌ǫ near the horizontal
jumps. This requires a modification at the corners. The situation here is not
essentially different, however, from the internal corners of the zigzag wall. Thus
we can use the same arguments as in section 3 again and we obtain an estimate
of the form

ˆ

Ω

|∇ · m̃ǫ|p dx ≤ C1ǫ
2−p

for a constant C1 > 0 that is independent of ǫ. Thus the contribution of the
magnetostatic energy will be negligible in the limit ǫ → 0. We then obtain
another constant C2, independent of δ, such that

lim sup
ǫ→0

Eǫ(m̃ǫ) ≤ E0(ψ̃
ℓ) + C2δ.

Letting δ → 0, we can now construct a sequence {mℓ
k}k∈N of the form (25) with

F (ϑℓk)
∗
⇀ ψ̃ℓ as k → ∞

weakly* in L∞(Ω), and a corresponding sequence ǫk → 0 with

lim
k→∞

Eǫk(mℓ
k) ≤ E0(ψ̃

ℓ) = 2−ℓ
2ℓ−2
∑

i=−2ℓ

2ℓ−1
∑

j=−2ℓ

|aℓi+1,j − aℓij |

≤
2ℓ−1
∑

i=−2ℓ+1

ˆ 1

−1

|ψ(si+1, x2) − ψ(si, x2)| dx2 ≤ E0(ψ).

We are working in a bounded subset of L∞(Ω), where the weak*-topology
is metrizable. Therefore, we can construct another diagonal sequence with the
desired properties.

Remark 2. The construction does not depend on the assumption that |ψ| ≤
F (θ0) and can also be done in the more general context of |ψ| ≤ 1 almost
everywhere. This will yield a sequence, however, that is not compatible with the
results we proved for the lower bound (see Section 4). This is why we presented
above the more restrictive condition.

Let us end this section by showing why the loss of compactness in strong
L1−topology does occur in our model:

Proposition 5.1. There exist sequences {εk} ⊂ (0,∞) with εk → 0 and
{mk} ⊂ H1(Ω;S2) such that

lim
k→∞

Eǫk(mk) = 0

and {mk} is not relatively compact in L1(Ω).
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Proof. The idea is to construct sequences of magnetizations mk having 2k+1−1
Bloch wall transitions between the poles ±e3, each transition concentrating on
horizontal segments so that their energy is very small. As before, we restrict
to the case Ω = (−1, 1)2. For each k ∈ N, we set sj = 2−kj for j = −2k +
1, . . . , 2k − 1. On each horizontal segment (−1, 1)×{sj} we place a mesoscopic
transition between the directions ±e3. At the microscopic level, this transition
is replaced by a smooth Bloch wall. More precisely, we choose an odd function
v ∈ C∞(R, [−π

2 ,
π
2 ]) with v ≡ −π

2 in (−∞,−1] and v ≡ π
2 in [1,∞). Then we set

for every odd j ∈ {−2k+1, . . . , 2k−1}, x1 ∈ (−1, 1), x2 ∈ (sj−2−2k, sj+2−2k):

mk = mk(x2) =

(

cos

(

(−1)
j−1

2 v

(

x2 − sj
cǫ

))

, 0, sin

(

(−1)
j−1

2 v

(

x2 − sj
cǫ

)))

,

for some c ≥ 1, ε > 0 so that 2−2k ≥ cε. (One completes the definition of mk in
the remaining parts of Ω by the obvious constant ±e3 so that mk is continuous.)
Then the vector field mk is divergence free, m2,k = 0 and

Eε(mk) =

ˆ

Ω

ǫ

2
|∇mk|2 dx1 dx2 .

2k

c
.

If the constant c = c(k) is chosen sufficiently large and ε := εk = 2−2k/c, then
we have

Eεk
(mk) ≤

1

k
.

A standard computation shows that mk ⇀ (0, 0, 0) weakly in L2(Ω) so that
{mk} cannot be relatively compact in L1(Ω, S2).

6 Appendix

Let us prove that the energy density g defined in (4) achieves the minimum as
α→ π

2
−:

Proposition 6.1. The function g : [0, π2 ) → R defined in (4) is decreasing and

inf
0≤α<π

2

g(α) = 2F (θ).

Proof. Recall that the expected energy per unit wall length is given by

K(α) =

ˆ σ

−σ

γ2(t)|γ̇(t)| dt =

ˆ σ

−σ

(

√

1 − b2 cosα cos t− b sinα
)

√

1 − b2 dt

= 2
√

1 − b2
(

cosα sin θ − bσ sinα

)

= 2 cosα
√

1 − cos2 θ cos2 α

(

sin θ − cos θ sinα arcsin
sin θ√

1 − cos2 θ cos2 α

)

.

We have g(α) = K(α)
cosα . That is,

g(α) = 2
√

1 − cos2 θ cos2 α

(

sin θ − cos θ sinα arcsin
sin θ√

1 − cos2 θ cos2 α

)

.
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First we prove that this function is decreasing in α ∈ [0, π2 ). To see this, set

y := y(α) =
sin θ√

1 − cos2 θ cos2 α

which is a decreasing function in α ∈ [0, π2 ). Then

g(α) = 2 sin2 θg̃(y) with g̃(y) =
1

y2

(

y −
√

1 − y2 arcsin y
)

.

We have 0 < sin θ ≤ y ≤ 1 and

g̃′(y) = − 2

y2
+

2 − y2

y3
√

1 − y2
arcsin y.

We show that g̃′ ≥ 0 in (sin θ, 1); indeed, we have 2−y2 ≥ 2
√

1 − y2 for |y| ≤ 1,
therefore,

g̃′(y) ≥ − 2

y2
+

2

y3
arcsiny =

2

y3
(arcsin y − y) ≥ 0.

Thus, we find that g̃ is increasing and g is a decreasing function. We conclude
that

inf
0≤α<π

2

g(α) = lim
α→ π

2
−

g(α) = 2(sin θ − θ cos θ).
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versité de Tours, 1999.

26


