A necessary condition in a De Giorgi type conjecture for elliptic systems in infinite strips

Radu Ignat * Antonin Monteil †

May 28, 2019

Dedicated to Haïm Brezis on his seventy-fifth anniversary
with esteem

Abstract

Given a bounded Lipschitz domain $\omega \subset \mathbb{R}^{d-1}$ and a lower semicontinuous function $W: \mathbb{R}^N \to \mathbb{R}_+ \cup \{+\infty\}$ that vanishes on a finite set and that is bounded from below by a positive constant at infinity, we show that every map $u: \mathbb{R} \times \omega \to \mathbb{R}^N$ with

$$\int_{\mathbb{R}\times\omega} (|\nabla u|^2 + W(u)) \, \mathrm{d}x_1 \, \mathrm{d}x' < +\infty$$

has a limit $u^{\pm} \in \{W = 0\}$ as $x_1 \to \pm \infty$. The convergence holds in $L^2(\omega)$ and almost everywhere in ω . We also prove a similar result for more general potentials W in the case where the considered maps u are divergence-free in Ω with ω being the (d-1)-torus and N = d.

Keywords. Nonlinear elliptic PDEs; De Giorgi conjecture; Energy estimates; Geodesic distance.

1 Introduction

Let $N \geq 1$, $d \geq 2$ and $\Omega = \mathbb{R} \times \omega$ be an infinite cylinder in \mathbb{R}^d , where $\omega \subset \mathbb{R}^{d-1}$ is an open connected bounded set with Lipschitz boundary. For a lower semicontinuous potential $W : \mathbb{R}^N \to \mathbb{R}_+ \cup \{+\infty\}$, we consider the functional

$$E(u) = \int_{\Omega} \left(|\nabla u|^2 + W(u) \right) dx, \quad u \in \dot{H}^1(\Omega, \mathbb{R}^N),$$
(1.1)

where $|\cdot|$ is the Euclidean norm and

$$\dot{H}^1(\Omega,\mathbb{R}^N) = \left\{ u \in H^1_{loc}(\Omega,\mathbb{R}^N) : \nabla u = (\partial_j u_i)_{1 \le i \le N, 1 \le j \le d} \in L^2(\Omega,\mathbb{R}^{N \times d}) \right\}.$$

A natural problem consists in studying optimal transition layers for the functional E between two wells u^{\pm} of W (i.e., $W(u^{\pm}) = 0$). In particular, motivated by the De Giorgi conjecture, one aim

^{*}Institut de Mathématiques de Toulouse & Institut Universitaire de France, UMR 5219, Université de Toulouse, CNRS, UPS IMT, F-31062 Toulouse Cedex 9, France. Email: Radu.Ignat@math.univ-toulouse.fr

[†]Institut de Recherche en Mathématique et Physique, Université catholique de Louvain, École de Mathématique, Chemin du Cyclotron 2, bte L7.01.02, 1348 Louvain-la-Neuve, Belgium. Email: Antonin.Monteil@uclouvain.be

is to analyse under which conditions on the potential W and on the dimensions d and N, every minimizer u of E connecting u^{\pm} as $x_1 \to \pm \infty$ is one-dimensional, i.e., depending only on x_1 . Obviously, such one-dimensional transition layers u coincide with their x'-average $\overline{u} : \mathbb{R} \to \mathbb{R}^N$ defined as

$$\overline{u}(x_1) := \int_{\omega} u(x_1, x') \, \mathrm{d}x', \quad x_1 \in \mathbb{R}, \tag{1.2}$$

where $x' = (x_2, ..., x_d)$ denotes the d-1 variables in ω and the x'-average symbol is denoted by $\int_{\omega} = \frac{1}{|\omega|} \int_{\omega}.$

1.1 Main results

The purpose of this note is to prove a necessary condition for finite energy configurations u provided that W satisfies the following two conditions:

- **(H1)** W has a finite number of wells, i.e., $\operatorname{card}(\{z \in \mathbb{R}^N : W(z) = 0\}) < \infty;$
- **(H2)** $\liminf_{|z|\to\infty} W(z) > 0.$

More precisely, we prove that under these assumptions, there exist two wells u^{\pm} of W such that $u(x_1,\cdot)$ converges to u^{\pm} in L^2 and a.e. in ω as $x_1 \to \pm \infty$; in particular, the x'-average \overline{u} (as a continuous map in \mathbb{R}) admits the limits $\overline{u}(\pm \infty) = u^{\pm}$ as $x_1 \to \pm \infty$. Here, $u(x_1,\cdot)$ stands for the trace of the Sobolev map $u \in \dot{H}^1(\Omega, \mathbb{R}^N)$ on the section $\{x_1\} \times \omega$ for every $x_1 \in \mathbb{R}$.

Theorem 1. Let $\Omega = \mathbb{R} \times \omega$, where $\omega \subset \mathbb{R}^{d-1}$ is an open connected bounded set with Lipschitz boundary. If $W : \mathbb{R}^N \to \mathbb{R}_+ \cup \{+\infty\}$ is a lower semicontinuous potential satisfying **(H1)** and **(H2)**, then every $u \in \dot{H}^1(\Omega, \mathbb{R}^N)$ with $E(u) < \infty$ connects two wells $u^{\pm} \in \mathbb{R}^N$ of W at $x_1 = \pm \infty$ (i.e., $W(u^{\pm}) = 0$) in the sense that

$$\lim_{x_1 \to \pm \infty} \|u(x_1, \cdot) - u^{\pm}\|_{L^2(\omega, \mathbb{R}^N)} = 0 \quad and \quad \lim_{x_1 \to \pm \infty} u(x_1, \cdot) = u^{\pm} \quad a.e. \text{ in } \omega.$$
 (1.3)

In particular,

$$\lim_{x_1 \to \pm \infty} \int_{\omega} u(x_1, x') \, \mathrm{d}x' = u^{\pm}.$$

Remark 2. i) As a consequence of the Poincaré-Wirtinger inequality², for $u \in \dot{H}^1(\Omega, \mathbb{R}^N)$ with $\bar{u}(\pm \infty) = u^{\pm}$, there exist two sequences $(R_n^+)_{n \in \mathbb{N}}$ and $(R_n^-)_{n \in \mathbb{N}}$ such that $(R_n^{\pm})_{n \in \mathbb{N}} \to \pm \infty$ and

$$||u(R_n^{\pm},\cdot) - u^{\pm}||_{H^1(\omega,\mathbb{R}^N)} \underset{n \to \infty}{\longrightarrow} 0 \tag{1.4}$$

(see [24, Lemma 3.2]).

- ii) Theorem 1 also holds true if ω is a closed (i.e., compact, connected without boundary) Riemannian manifold.
- iii) Theorem 1 also applies for maps u taking values into a closed set $\mathcal{N} \subset \mathbb{R}^N$ (e.g., \mathcal{N} could be a compact manifold embedded in \mathbb{R}^N). More precisely, if the potential $W: \mathbb{R}^N \to \mathbb{R}_+ \cup \{+\infty\}$ satisfies **(H1)**, **(H2)** and $\mathcal{N} := \{z \in \mathbb{R}^N : W(z) < +\infty\}$ is a closed set such that $W_{|\mathcal{N}}: \mathcal{N} \to \mathbb{R}_+$ is lower semicontinuous, then Theorem 1 handles the case where the nonlinear constraint $u \in \mathcal{N}$ is present.

 $^{^{1}}u^{-}$ and u^{+} could be equal.

²The assumption that ω is connected with Lipschitz boundary is needed for the Poincaré-Wirtinger inequality.

The result in Theorem 1 extends to slightly more general potentials W in the following context of divergence-free maps. For that, let d=N and $\Omega=\mathbb{R}\times\omega$ with $\omega=\mathbb{T}^{d-1}$ and $\mathbb{T}=\mathbb{R}/\mathbb{Z}$ being the flat torus. We consider maps $u\in H^1_{loc}(\Omega,\mathbb{R}^d)$ periodic in $x'\in\omega$ and divergence-free, i.e.,

$$\nabla \cdot u = 0$$
 in Ω .

Then the x'-average $\bar{u}: \mathbb{R} \to \mathbb{R}^d$ is continuous and its first component is constant, i.e., there is $a \in \mathbb{R}$ such that

$$\bar{u}_1(x_1) = a$$
 for every $x_1 \in \mathbb{R}$

(see [24, Lemma 3.1]). For such maps u, we consider potentials W satisfying the following two conditions:

 $\textbf{(H1)}_a\ W(a,\cdot) \text{ has a finite number of wells, i.e., } \operatorname{card}(\{z'\in\mathbb{R}^{d-1}\,:\,W(a,z')=0\})<\infty;$

$$(\mathbf{H2})_a \ \lim_{z_1 \to a, \, |z'| \to \infty} W(z_1, z') > 0.$$

In this context, we have proved in our previous paper [24] that the x'-average map \bar{u} admits limits u^{\pm} as $x_1 \to \pm \infty$, where $u_1^{\pm} = a$ and they are two wells of $W(a,\cdot)$, see [24, Lemma 3.7]. As in Theorem 1, we will prove that $u(x_1,\cdot)$ converges to u^{\pm} in L^2 and a.e. in ω as $x_1 \to \pm \infty$.

Theorem 3. Let $\Omega = \mathbb{R} \times \omega$ with $\omega = \mathbb{T}^{d-1}$ the (d-1)-dimensional torus and $u \in H^1_{loc}(\Omega, \mathbb{R}^d)$ such that $E(u) < \infty$ and $\bar{u}_1 = a$ in \mathbb{R} for some $a \in \mathbb{R}$. If $W : \mathbb{R}^d \to \mathbb{R}_+ \cup \{+\infty\}$ is a lower semicontinuous potential satisfying $(\mathbf{H1})_a$ and $(\mathbf{H2})_a$, then there exist two wells $u^{\pm} \in \mathbb{R}^d$ of W such that (1.3) holds true and $u_1^{\pm} = a$. In particular, $\bar{u}(\pm \infty) = u^{\pm}$.

Note that we don't assume that u is divergence-free in Theorem 3, only the assumption that \bar{u}_1 is constant.

1.2 Motivation

Our main result is motivated by the well-known De Giorgi conjecture that consists in investigating the one-dimensional symmetry of critical points of the functional E, i.e., solutions $u: \Omega \to \mathbb{R}^N$ to the nonlinear elliptic system

$$\begin{cases} \Delta u = \frac{1}{2} \nabla W(u) & \text{in } \Omega, \\ \frac{\partial u}{\partial u} = 0 & \text{on } \partial \Omega = \mathbb{R} \times \partial \omega, \end{cases}$$
 (1.5)

where W is assumed to be locally Lipschitz in (1.5) and ν is the unit outer normal vector field at $\partial \omega$. Theorem 1 states in particular that solutions u of finite energy satisfy the boundary condition (1.3) for two wells u^{\pm} of W. A natural question related to the De Giorgi conjecture arises in this context:

Question: Under which assumptions on the potential W and the dimensions d and N, is it true that every global minimizer u of E connecting two wells³ of W is one-dimensional symmetric, i.e., $u = u(x_1)$?

Link with the Gibbons and De Giorgi conjectures. i) In the scalar case N = 1 (d is arbitrary) and $W(u) = \frac{1}{2}(1 - u^2)^2$, the answer to the above question is positive provided that the limits (1.3) are replaced by uniform convergence (see [12, 17]); within these uniform boundary conditions, the problem is called the Gibbons conjecture. We mention that many articles have been written on

³We say that u connects two wells u^{\pm} of W if (1.3) is satisfied.

Gibbons' conjecture in the case of the entire space $\Omega = \mathbb{R}^d$: more precisely, if a solution⁴ $u : \mathbb{R}^d \to \mathbb{R}$ of the PDE

 $\Delta u = \frac{1}{2} \frac{dW}{du}(u) \quad \text{in} \quad \mathbb{R}^d \tag{1.6}$

satisfies the convergence $\lim_{x_1\to\pm\infty} u(x_1,x')=\pm 1$ uniformly in $x'\in\mathbb{R}^{d-1}$ and $|u|\leq 1$ in \mathbb{R}^d , then u is one-dimensional (see [5, 6, 11, 18]).

Let us now speak about the long standing De Giorgi conjecture in the scalar case N=1. It predicts that any bounded solution u of (1.6) that is monotone in the x_1 variable is one-dimensional in dimension $d \leq 8$, i.e., the level sets $\{u=\lambda\}$ of u are hyperplanes. The conjecture has been solved in dimension d=2 by Ghoussoub-Gui [21], using a Liouville-type theorem and monotonicity formulas. Using similar techniques, Ambrosio-Cabré [4] extended these results to dimension d=3, while Ghoussoub-Gui [22] showed that the conjecture is true for d=4 and d=5 under some antisymmetry condition on u. The conjecture was finally proved by Savin [31] in dimension $d\leq 8$ under the additional condition $\lim_{x_1\to\pm\infty}u(x_1,x')=\pm 1$ pointwise in $x'\in\mathbb{R}^{d-1}$, the proof being based on fine regularity results on the level sets of u. Lately, Del Pino-Kowalczyk-Wei [13] gave a counterexample to the De Giorgi conjecture in dimension $d\geq 9$, which satisfies the pointwise limit conditions $\lim_{x_1\to\pm\infty}u(x_1,x')=\pm 1$ for a.e. $x'\in\mathbb{R}^{d-1}$. It would be interesting to investigate whether these results transfer (or not) to the context of the strip $\Omega=\mathbb{R}\times\omega$ as stated in Question. Theorem 1 proves that the pointwise convergence as $x_1\to\pm\infty$ is a necessary condition in the context of a strip $\mathbb{R}\times\omega$ and for finite energy configurations.

ii) Less results are available for the vector-valued case $N \geq 2$. In the case $\Omega = \mathbb{R}^d$, N = 2 and $W(u_1, u_2) = \frac{1}{2}(u_1^2 - 1)^2 + \frac{1}{2}(u_2^2 - 1)^2 + \Lambda u_1^2 u_2^2 - \frac{1}{2}$ with $\Lambda \geq 1$ (so $W \geq 0$ and W has exactly four wells $\{(0, \pm 1), (\pm 1, 0)\}$, thus, **(H1)** and **(H2)** are satisfied), the Gibbons and De Giorgi conjectures corresponding to the system (1.5) are discussed in [19]. Several other phase separation models (e.g., arising in a binary mixture of Bose-Einstein condensates) are studied in the vectorial case where W has a non-discrete set of zeros (see e.g., [7, 8, 20]).

We recall that in the study of the De Giorgi conjecture for (1.6), i.e., N=1, there is a link between monotonicity of solutions (e.g., the condition $\partial_1 u > 0$), stability (i.e., the second variation of the corresponding energy at u is nonnegative), and local minimality of u (in the sense that the energy does not decrease under compactly supported perturbations of u). We refer to [2, Section 4] for a fine study of these properties. In particular, it is shown that the monotonicity condition in the De Giorgi conjecture implies that u is a local minimizer of the energy (see [2, Theorem 4.4]). Therefore, it is natural to study Question under the monotonicity condition in x_1 (instead of the global minimality condition on u).

Link with micromagnetic models. We have studied Question in the context of divergence-free maps $u: \mathbb{R} \times \omega \to \mathbb{R}^N$ where d=N and $\omega=\mathbb{T}^{d-1}$ is the (d-1)-dimensional torus, see [24]. By developing a theory of calibrations, we have succeeded to give sufficient conditions on the potential W in order that the answer to Question is positive, in particular in the case where $(\mathbf{H1})_a$ and $(\mathbf{H2})_a$ are satisfied, see [24, Theorem 2.11]. In that context, Question is related to some reduced model in micromagnetics in the regime where the so-called stray-field energy is strongly penalized favoring the divergence constraint $\nabla \cdot u = 0$ of the magnetization u (the unit-length constraint on u being relaxed in the system). In the theory of micromagnetics, a challenging question concerns the symmetry of domain walls. Indeed, much effort has been devoted lately to identifying on the one hand, the domain walls that have one-dimensional symmetry, such as the so-called symmetric Néel and symmetric Bloch walls (see e.g. [14, 26, 23]), and on the other hand, the domain walls involving microstructures, such as the so-called cross-tie walls (see e.g., [3, 30]), the zigzag walls

⁴Here, u needs not be a global minimizer of E within the boundary condition (1.3), nor monotone in x_1 , i.e., $\partial_1 u > 0$. Obviously, this result applies also to global minimizers, as $|u| \leq 1$ in \mathbb{R}^d by the maximum principle.

(see e.g., [25, 29]) or the asymmetric Néel / Bloch walls (see e.g. [16, 15]). Thus, answering to Question would give a general approach in identifying the anisotropy potentials W for which the domain walls are one-dimensional in the elliptic system (1.5).

Link with heteroclinic connections. One dimensional 5 solutions $u=u(x_1)$ of the system (1.5) are called heteroclinic connections. Given two wells u^{\pm} of a potential W satisfying (H1) and (H2), it is known that there exists a heteroclinic connection $\gamma: \mathbb{R} \to \mathbb{R}^N$ obtained by minimizing $\int_{\mathbb{R}} \left| \frac{d}{dx_1} \gamma \right|^2 + W(\gamma) dx_1$ under the condition $\gamma(\pm \infty) = u^{\pm}$ (see [27, 33, 34]). In the vectorial case $N \geq 2$, this connection may not be unique in the sense that there could exist two (minimizing) heteroclinic connections γ_1, γ_2 such that $\gamma_i(\pm \infty) = u^{\pm}$ for i = 1, 2 but $\gamma_1(\cdot)$ and $\gamma_2(\cdot - \tau)$ are distinct for every $\tau \in \mathbb{R}$. If this is the case, at least in dimension d = 2 and $\Omega = \mathbb{R}^2$, there also exists a solution u to $\Delta u = \frac{1}{2}\nabla W(u)$ which realizes an interpolation between γ_1 and γ_2 in the following sense (see [32, 1, 28]):

$$\begin{cases} u(x_1,x_2) \to u^\pm & \text{as } x_1 \to \pm \infty \text{ uniformly in } x_2, \\ u(x_1,x_2) \to \gamma_1(x_1) & \text{as } x_2 \to -\infty \text{ uniformly in } x_1, \\ u(x_1,x_2) \to \gamma_2(x_1) & \text{as } x_2 \to +\infty \text{ uniformly in } x_1. \end{cases}$$

Moreover, this solution is energy local minimizing, i.e., the energy cannot decrease by compactly supported perturbations of u. Solutions to the system $\Delta u = \frac{1}{2}\nabla W(u)$ naturally arise when looking at the local behavior of a transition layer near a point at the interface between two wells u^{\pm} ; solutions satisfying the preceding boundary conditions correspond to the case of an interface point where the 1D connection passes from γ_1 to γ_2 . The existence of such stable entire solutions to the Allen-Cahn system makes a significative difference with the scalar case, i.e. N=1, where only 1D solutions are present by the De Giorgi conjecture.

2 Pointwise convergence and convergence of the x'-average

In this section we prove that under the assumptions in Theorem 1, the x'-average \overline{u} (as a continuous map in \mathbb{R}) has limits $\overline{u}(\pm\infty) = u^{\pm}$ as $x_1 \to \pm\infty$ corresponding to two wells of W. For that, we will follow the strategy that we developed in our previous paper (see [24, Section 3.1]). The idea consists in introducing an "averaged" potential V in \mathbb{R}^N with $W \geq V \geq 0$ and $\{V = 0\} = \{W = 0\}$ (see Lemma 4), and a new functional E_V associated to the x'-average \overline{u} of a map u such that $\frac{1}{|\omega|}E(u) \geq E_V(\overline{u})$. This can be seen as a dimension reduction technique since the new map \overline{u} has only one variable. We will prove that every transition layer \overline{u} connecting two wells u^{\pm} has the energy $E_V(\overline{u})$ bounded from below by the geodesic pseudo-distance geod_V between the wells u^{\pm} (see Lemma 6). As the Euclidean distance in \mathbb{R}^N is absolutely continuous with respect to geod_V (see Lemma 5), we will conclude that \overline{u} admits limits at $\pm\infty$ given by two wells of W (see Lemma 7). Note that in Section 3, we will give a second proof of the claim $\overline{u}(\pm\infty) = u^{\pm}$ without using the geodesic pseudo-distance geod_V .

We first introduce the energy functional E (defined in (1.1)) restricted to appropriate subsets $A \subset \Omega$ (e.g., A can be a subset of the form $I \times \omega$ for an interval $I \subset \mathbb{R}$, or a section $\{x_1\} \times \omega$): for every map $u \in \dot{H}^1(A, \mathbb{R}^N)$, we set

$$E(u, A) := \int_{A} |\nabla u|^2 + W(u) \, \mathrm{d}x,$$

so that for $A = \Omega$, we have E(u) = E(u, A). For any interval $I \subset \mathbb{R}$, the Jensen inequality yields

$$E(u, I \times \omega) = \int_I \int_{\omega} \left(|\partial_1 u|^2 + |\nabla' u|^2 + W(u) \right) dx' dx_1 \ge |\omega| \int_I \left| \frac{\mathrm{d}}{\mathrm{d}x_1} \overline{u}(x_1) \right|^2 + e(u(x_1, \cdot)) dx_1,$$

⁵If $u = u(x_1)$, the Neumann condition $\frac{\partial u}{\partial v} = 0$ is automatically satisfied.

where $\nabla' = (\partial_2, \dots, \partial_d)$, \bar{u} is the x'-average of u given in (1.2) and the x'-average energy e is defined by

$$e(v) := \int_{\omega} (|\nabla' v|^2 + W(v)) dx'$$
 for all $v \in H^1(\omega, \mathbb{R}^N)$.

Introducing the averaged potential $V: \mathbb{R}^N \to \mathbb{R}_+ \cup \{+\infty\}$ defined for all $z \in \mathbb{R}^N$ by

$$V(z) := \inf \left\{ e(v) : v \in H^1(\omega, \mathbb{R}^N), \, \int_{\omega} v \, \mathrm{d}x' = z \right\} \ge 0, \tag{2.1}$$

we have

$$E(u, I \times \omega) \ge |\omega| \int_{I} \left(\left| \frac{\mathrm{d}}{\mathrm{d}x_{1}} \overline{u}(x_{1}) \right|^{2} + V(\overline{u}(x_{1})) \right) \mathrm{d}x_{1}. \tag{2.2}$$

This observation is the starting point in the proof of the following lemma:

Lemma 4. Let $W : \mathbb{R}^N \to \mathbb{R}_+ \cup \{+\infty\}$ be a lower semicontinuous function satisfying **(H2)**. Then the averaged potential $V : \mathbb{R}^N \to \mathbb{R}_+ \cup \{+\infty\}$ defined in (2.1) satisfies the following:

- 1. V is lower semicontinuous in \mathbb{R}^N .
- 2. for all $z \in \mathbb{R}^N$, $V(z) \leq W(z)$, the infimum in (2.1) is achieved and $V(z) = 0 \Leftrightarrow W(z) = 0$,
- 3. $V_{\infty} := \liminf_{|z| \to \infty} V(z) > 0$,
- 4. for every interval $I \subset \mathbb{R}$ and for every $u \in \dot{H}^1(I \times \omega, \mathbb{R}^N)$, one has

$$\frac{1}{|\omega|}E(u,I\times\omega)\geq E_V(\overline{u},I),\quad E_V(\overline{u},I):=\int_I\left|\frac{\mathrm{d}}{\mathrm{d}x_1}\overline{u}(x_1)\right|^2+V(\overline{u}(x_1))\,\mathrm{d}x_1.$$

The new energy $E_V(\bar{u}) := E_V(\bar{u}, \mathbb{R})$ associated to the x'-average \bar{u} will play an important role for proving the existence of the two limits $\bar{u}(\pm \infty)$.

Proof of Lemma 4. The claim 4 follows from (2.2). We divide the rest of the proof in three steps.

STEP 1: PROOF OF CLAIM 2. Clearly, for all $z \in \mathbb{R}^N$, one has $V(z) \leq e(z) = W(z)$. By the compact embedding $H^1(\omega) \hookrightarrow L^1(\omega)$, the lower semicontinuity of W, Fatou's lemma and the lower semicontinuity of the L^2 norm in the weak L^2 -topology (see [9]), we deduce that e is lower semicontinuous in the weak $H^1(\omega, \mathbb{R}^N)$ -topology. Then the direct method in the calculus of variations implies that the infimum is achieved in (2.1) (infimum that could be equal to $+\infty$ as W can take the value $+\infty$).

If W(z) = 0, then V(z) = 0 (as $0 \le V \le W$ in \mathbb{R}^N). Conversely, if V(z) = 0 with $z \in \mathbb{R}^N$, then a minimizer $v \in H^1(\omega, \mathbb{R}^N)$ in (2.1) satisfies V(z) = e(v) = 0 so that $v \equiv z$ and W(z) = 0.

STEP 2: V IS LOWER SEMICONTINUOUS IN \mathbb{R}^N . Let $(z_n)_{n\in\mathbb{N}}$ be a sequence converging to z in \mathbb{R}^N . We need to show that

$$V(z) \le \liminf_{n \to \infty} V(z_n).$$

Without loss of generality, one can assume that $(V(z_n))_{n\in\mathbb{N}}$ is a bounded sequence that converges to $\liminf_{n\to\infty}V(z_n)$. By Step 1, for each $n\in\mathbb{N}$, there exists $v_n\in H^1(\omega,\mathbb{R}^N)$ such that

$$\oint_{\omega} v_n \, \mathrm{d}x' = z_n$$
 and $e(v_n) = V(z_n)$.

⁶In particular, if W satisfies (H1), then V satisfies (H1), too.

Since $(z_n)_{n\in\mathbb{N}}$ and $(e(v_n))_{n\in\mathbb{N}}$ are bounded, we deduce that $(v_n)_{n\in\mathbb{N}}$ is bounded in $H^1(\omega,\mathbb{R}^N)$ by the Poincaré-Wirtinger inequality. Thus, up to extraction, one can assume that $(v_n)_{n\in\mathbb{N}}$ converges weakly in H^1 , strongly in L^1 and a.e. in ω to a limit $v \in H^1(\omega,\mathbb{R}^N)$. In particular, $f_\omega v \, \mathrm{d}x' = z$. Since e is lower semicontinuous in weak $H^1(\omega,\mathbb{R}^N)$ -topology (by Step 1), we conclude

$$V(z) \le e(v) \le \liminf_{n \to \infty} e(v_n) = \liminf_{n \to \infty} V(z_n).$$

STEP 3: PROOF OF CLAIM 3. Assume by contradiction that there exists a sequence $(z_n)_{n\in\mathbb{N}}\subset\mathbb{R}^N$ such that $|z_n|\to\infty$ and $V(z_n)\to0$ as $n\to\infty$. Then, there exists a sequence of maps $(w_n)_{n\in\mathbb{N}}$ in $H^1(\omega,\mathbb{R}^N)$ satisfying

$$\int_{\omega} w_n(x') \, \mathrm{d}x' = 0 \quad \text{for each } n \in \mathbb{N} \quad \text{and} \quad e(z_n + w_n) \underset{n \to \infty}{\longrightarrow} 0.$$

By the Poincaré-Wirtinger inequality, we have that $(w_n)_{n\in\mathbb{N}}$ is bounded in H^1 . Thus, up to extraction, one can assume that it converges weakly in H^1 , strongly in L^1 and a.e. to a map $w \in H^1(\omega, \mathbb{R}^N)$. We claim that w is constant since

$$\int_{\omega} |\nabla' w|^2 dx' \le \liminf_{n \to \infty} \int_{\omega} |\nabla' w_n|^2 dx' \le \liminf_{n \to \infty} e(z_n + w_n) = 0.$$

We deduce $w \equiv 0$ since $\int_{\omega} w = \lim_{n \to \infty} \int_{\omega} w_n = 0$. Thus $w_n \to 0$ a.e and **(H2)** implies that for a.e. $x' \in \omega$,

$$\liminf_{n\to\infty} W(z_n + w_n(x')) \ge \liminf_{|z|\to\infty} W(z) > 0,$$

which contradicts the fact that $e(z_n + w_n) \to 0$.

For every lower semicontinuous function $W: \mathbb{R}^N \to \mathbb{R}_+ \cup \{+\infty\}$ satisfying **(H1)** and **(H2)**, we introduce the geodesic pseudo-distance geod_W in \mathbb{R}^N endowed with the singular pseudo-metric $4Wg_0, g_0$ being the standard Euclidean metric in \mathbb{R}^N ; this geodesic pseudo-distance (that can take the value $+\infty$) is defined for every $x, y \in \mathbb{R}^N$ by

$$\operatorname{geod}_W(x,y) := \inf\bigg\{\int_{-1}^1 2\sqrt{W(\sigma(t))} |\dot{\sigma}|(t) \, \mathrm{d}t \ : \ \sigma \in \operatorname{Lip}_{ploc}([-1,1],\mathbb{R}^N), \ \sigma(-1) = x, \ \sigma(1) = y\bigg\}, \tag{2.3}$$

where $\operatorname{Lip}_{ploc}([-1,1],\mathbb{R}^N)$ is the set of continuous and **piecewise locally Lipschitz** curves ⁷ on [-1,1]:

$$\operatorname{Lip}_{ploc}([-1,1],\mathbb{R}^N) := \Big\{ \sigma \in \mathcal{C}^0([-1,1],\mathbb{R}^N) : \text{there is a partition } -1 = t_1 < \dots < t_{k+1} = 1, \\ \text{with } \sigma \in \operatorname{Lip}_{loc}((t_i,t_{i+1})) \text{ for every } 1 \leq i \leq k \Big\}.$$

By pseudo-distance, we mean that $geod_W$ satisfies all the axioms of a distance; the only difference with respect to the standard definition is that a pseudo-distance can take the value $+\infty$. We will prove that $geod_W$ yields a lower bound for the energy E (see Lemma 6); this plays an important role in the proof of our claim $\overline{u}(\pm\infty) = u^{\pm}$.

We start by proving some elementary facts about the pseudo-metric structure induced by $geod_W$ on \mathbb{R}^N :

⁷In general, we cannot hope that a minimizing sequence in (2.3) is better than piecewise locally Lipschitz because W is not assumed locally bounded ($\dot{\sigma}$ is the derivative of σ). However, in the case of a locally bounded W, we could use a regularization procedure in order to restrict to Lipschitz curves σ .

Lemma 5. Let $W: \mathbb{R}^N \to \mathbb{R}_+ \cup \{+\infty\}$ be a lower semicontinuous function satisfying **(H1)** and **(H2)**. Then the function $\operatorname{geod}_W: \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}_+ \cup \{+\infty\}$ defines a pseudo-distance over \mathbb{R}^N and the Euclidean distance is absolutely continuous with respect to geod_W , i.e., for every $\delta > 0$, there exists $\varepsilon > 0$ such that for every $x, y \in \mathbb{R}^N$ with $\operatorname{geod}_W(x, y) < \varepsilon$, we have $|x - y| < \delta$.

Proof of Lemma 5. In proving that $\operatorname{geod}_W: \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}_+ \cup \{+\infty\}$ defines a pseudo-distance over \mathbb{R}^N , the only non-trivial axiom to check is the non-degeneracy, i.e., $\operatorname{geod}_W(x,y) > 0$ whenever $x \neq y$. In fact, we prove the stronger property that for every $\delta > 0$, there exists $\varepsilon > 0$ such that for every $x, y \in \mathbb{R}^N$, $|x - y| \geq \delta$ implies $\operatorname{geod}_W(x,y) \geq \varepsilon$ which also yields the absolute continuity of the Euclidean distance with respect to geod_W . For that, we recall that the set $\{W = 0\}$ is finite (by **(H1)**); therefore, w.l.o.g. we can assume that $\delta > 0$ is small enough so that the open balls $B(p, \delta/2)$, for $p \in \{W = 0\}$, are disjoint. We consider the following disjoint union of balls

$$\Sigma_{\delta} := \bigsqcup_{p \in \{W=0\}} B(p, \frac{\delta}{4}),$$

the distance between each ball being larger than $\delta/2$. We now take two points $x,y \in \mathbb{R}^N$ with $|x-y| \geq \delta$. In order to obtain a lower bound on $\operatorname{geod}_W(x,y)$, we take an arbitrary continuous and piecewise locally Lipschitz curve $\sigma: [-1,1] \to \mathbb{R}^N$ such that $\sigma(-1) = x$ and $\sigma(1) = y$. As $|x-y| \geq \delta$ (so no ball in Σ_δ can contain both x and y), by connectedness, the image $\sigma([-1,1])$ cannot be contained in Σ_δ . Thus, there exists $t_0 \in [-1,1]$ with $\sigma(t_0) \notin \Sigma_\delta$. It implies that $B(\sigma(t_0), \delta/8) \cap \Sigma_{\delta/2} = \emptyset$. Moreover, since $|x-y| \geq \delta$, we have either $|\sigma(t_0) - x| \geq \delta/2$ or $|\sigma(t_0) - y| \geq \delta/2$; w.l.o.g., we may assume that $|\sigma(t_0) - y| \geq \delta/2$. Then the (continuous) curve $\sigma|_{[t_0,1]}$ has to get out of the ball $B(\sigma(t_0), \delta/8)$; in particular, it has length larger than $\delta/8$ and

$$\int_{-1}^{1} 2\sqrt{W(\sigma(t))} |\dot{\sigma}|(t) dt \ge \frac{\delta}{4} \inf_{z \in B(\sigma(t_0), \delta/8)} \sqrt{W(z)} \ge \frac{\delta}{4} \inf_{z \in \mathbb{R}^N \setminus \Sigma_{\delta/2}} \sqrt{W(z)}.$$

Since W is lower semicontinuous and bounded from below at infinity (by **(H2)**), we deduce that W is bounded from below by a constant $c_{\delta} > 0$ on $\mathbb{R}^N \setminus \Sigma_{\delta/2}$. Taking the infimum over curves $\sigma \in \operatorname{Lip}_{ploc}([-1,1],\mathbb{R}^N)$ connecting x to y, we deduce from the preceding lower bound that

$$\operatorname{geod}_W(x,y) \ge \frac{\delta\sqrt{c_\delta}}{4} > 0.$$

This finishes the proof of the result.

We now use a regularization argument to derive the following lower bound on the energy:

Lemma 6. Let $W: \mathbb{R}^N \to \mathbb{R}_+ \cup \{+\infty\}$ be a lower semicontinuous function. Then, for every interval $I \subset \mathbb{R}$ and every map $\sigma \in \dot{H}^1(I, \mathbb{R}^N)$ having limits $\sigma(\inf I)$ and $\sigma(\sup I)$ at the endpoints of I, we have

$$E_W(\sigma, I) := \int_I \left(|\dot{\sigma}(t)|^2 + W(\sigma(t)) \right) dt \ge \operatorname{geod}_W \left(\sigma(\inf I), \sigma(\sup I) \right). \tag{2.4}$$

Proof of Lemma 6. W.l.o.g. we assume that I is an open interval. Since $\dot{H}^1(I,\mathbb{R}^N) \subset W^{1,1}_{loc}(I,\mathbb{R}^N)$, we can define the arc-length $s: I \to J := s(I) \subset \mathbb{R}$ by

$$s(t) := \int_{t_0}^t |\dot{\sigma}|(x_1) \, \mathrm{d}x_1, \quad t \in I,$$

where $t_0 \in I$ is fixed. Thus s is a nondecreasing continuous function with $\dot{s} = |\dot{\sigma}|$ a.e. in I. Then the arc-length reparametrization of σ , i.e.

$$\tilde{\sigma}(s(t)) := \sigma(t), \quad t \in I,$$

is well-defined and provides a Lipschitz curve $\tilde{\sigma}: J \to \mathbb{R}^N$ with constant speed on the interval J, i.e. $|\dot{\tilde{\sigma}}| = 1$ a.e., and such that $\tilde{\sigma}(\inf J) = \sigma(\inf I)$ and $\tilde{\sigma}(\sup J) = \sigma(\sup I)$. W.l.o.g. we may assume that σ is not constant, so J has a nonempty interior. Then we consider an arbitrary function $\varphi \in \operatorname{Lip}_{loc}((-1,1), \operatorname{int} J)$ which is nondecreasing and surjective onto the interior of the interval J and we set

$$\gamma(t) := \tilde{\sigma}(\varphi(t)), \quad t \in (-1, 1).$$

So γ is a locally Lipschitz map that is continuous on [-1,1] as $\tilde{\sigma}$ admits limits at inf J and $\sup J$; thus, $\gamma \in \operatorname{Lip}_{nloc}([-1,1],\mathbb{R}^N)$. The changes of variable $s := \varphi(t)$, resp. s := s(t), yield

$$\int_{-1}^{1} 2\sqrt{W(\gamma(t))} |\dot{\gamma}|(t) dt = \int_{J} 2\sqrt{W(\tilde{\sigma}(s))} |\dot{\tilde{\sigma}}|(s) ds = \int_{I} 2\sqrt{W(\sigma(t))} |\dot{\sigma}|(t) dt.$$

Combined with $\gamma(-1) = \sigma(\inf I)$ and $\gamma(1) = \sigma(\sup I)$, the definition of geod_W and the Young inequality imply

$$E_W(\sigma, I) \ge \int_I 2\sqrt{W(\sigma(t))} |\dot{\sigma}|(t) dt = \int_{-1}^1 2\sqrt{W(\gamma(t))} |\dot{\gamma}|(t) dt \ge \operatorname{geod}_W (\sigma(\inf I), \sigma(\sup I)).$$

This completes the proof.

The convergence of the x'-average in Theorem 1 stating that $\overline{u}(\pm \infty) = u^{\pm}$ is a consequence of the following lemma:

Lemma 7. Let $W: \mathbb{R}^N \to \mathbb{R}_+ \cup \{+\infty\}$ be a lower semicontinuous function satisfying **(H1)** and **(H2)**. Then for every map $\sigma \in \dot{H}^1(\mathbb{R}, \mathbb{R}^N)$ such that $E_W(\sigma, \mathbb{R}) < +\infty$ with E_W defined at (2.4), there exist two wells u^- , $u^+ \in \{W = 0\}$ such that $\lim_{N \to \infty} \sigma(t) = u^{\pm}$.

Proof of Lemma 7. We use the fact that the energy bound $E_W(\sigma, \mathbb{R}) < +\infty$ yields a bound on the total variation of $\sigma : \mathbb{R} \to \mathbb{R}^N$ where \mathbb{R}^N is endowed with the pseudo-metric geod_W . More precisely, for every sequence $t_1 < \cdots < t_k$ in \mathbb{R} , we have by Lemma 6:

$$\sum_{i=1}^k \operatorname{geod}_W(\sigma(t_{i+1}), \sigma(t_i)) \le \sum_{i=1}^k E_W(\sigma, [t_i, t_{i+1}]) \le E_W(\sigma, \mathbb{R}) < +\infty.$$

In particular, for every $\varepsilon > 0$, there exists R > 0 such that for all $t, s \in \mathbb{R}$ with $t, s \geq R$ or $t, s \leq -R$, one has $\operatorname{geod}_W(\sigma(t), \sigma(s)) < \varepsilon$. Since by Lemma 5, smallness of $\operatorname{geod}_W(x, y)$ implies smallness of |x - y|, we deduce that σ has a limit $u^{\pm} \in \mathbb{R}^N$ at $\pm \infty$. Since $W(\sigma(\cdot))$ is integrable in \mathbb{R} , we have furthermore that $W(u^{\pm}) = 0$.

Now we can prove the convergence of the x'-average \bar{u} at $\pm \infty$ as stated in Theorem 1:

Proof of the convergence in x'-average in Theorem 1. By Lemma 4, we have $E_V(\overline{u}, \mathbb{R}) < +\infty$ for the lower semicontinuous function $V : \mathbb{R}^N \to \mathbb{R}_+ \cup \{+\infty\}$ satisfying **(H1)** and **(H2)**. By Lemma 7 applied to E_V , we deduce that there exists $u^{\pm} \in \{V = 0\} = \{W = 0\}$ such that $\lim_{t \to \pm \infty} \overline{u}(t) = u^{\pm}$.

The pointwise convergence of $u(x_1,\cdot)$ as $x_1 \to \pm \infty$ stated in Theorem 1 is proved in the following:

Proof of the pointwise convergence in Theorem 1. We prove that $u(x_1,\cdot)$ converges a.e. in ω to $u^{\pm} \in \{W = 0\}$ as $x_1 \to \pm \infty$, where u^{\pm} are the limits $\bar{u}(\pm \infty)$ of the x'-average \bar{u} proved above. For that, we have by Fubini's theorem:

$$E(u) \ge \int_{\Omega} |\partial_1 u|^2 + W(u) \, dx \ge \int_{\omega} E_W(u(\cdot, x'), \mathbb{R}) \, dx'$$

with the usual notation

$$E_W(\sigma, \mathbb{R}) = \int_{\mathbb{R}} |\dot{\sigma}|^2 + W(\sigma) \, dx_1, \quad \sigma \in \dot{H}^1(\mathbb{R}, \mathbb{R}^N).$$

As $E(u) < \infty$, we deduce that $E_W(u(\cdot, x'), \mathbb{R}) < \infty$ for a.e. $x' \in \omega$. By Lemma 7, we deduce that for a.e. $x' \in \omega$, there exist two wells $u^{\pm}(x')$ of W such that

$$\lim_{x_1 \to \pm \infty} u(x_1, x') = u^{\pm}(x'). \tag{2.5}$$

By (1.4), as $\bar{u}(\pm \infty) = u^{\pm}$, we know that $\|u(R_n^{\pm}, \cdot) - u^{\pm}\|_{L^2(\omega, \mathbb{R}^N)} \to 0$ as $n \to \infty$ for two sequences $R_n^{\pm} \to \pm \infty$. Up to a subsequence, we deduce that $u(R_n^{\pm}, \cdot) \to u^{\pm}$ a.e. in ω as $n \to \infty$. By (2.5), we conclude that $u^{\pm}(x') = u^{\pm}$ for a.e. $x' \in \omega$.

3 The L^2 convergence

In this section, we prove that $u(x_1,\cdot)$ converges in $L^2(\omega,\mathbb{R}^N)$ to u^{\pm} as $x_1 \to \pm \infty$. The idea is to go beyond the averaging procedure in Section 2 and keep the full information given by the x'-average energy e introduced at Section 2 over the set $H^1(\omega,\mathbb{R}^N)$. More precisely, we extend e to the space $L^2(\omega,\mathbb{R}^N)$ as follows

$$e(v) = \begin{cases} \int_{\omega} \left(|\nabla' v|^2 + W(v) \right) dx' & \text{if } v \in H^1(\omega, \mathbb{R}^N), \\ +\infty & \text{if } v \in L^2(\omega, \mathbb{R}^N) \setminus H^1(\omega, \mathbb{R}^N). \end{cases}$$
(3.1)

In particular, we have for every $u \in \dot{H}^1(\Omega, \mathbb{R}^N)$,

$$E(u) = \int_{\mathbb{R}} \left(\|\partial_1 u(x_1, \cdot)\|_{L^2(\omega, \mathbb{R}^N)}^2 + |\omega| e(u(x_1, \cdot)) \right) dx_1.$$
 (3.2)

In the sequel, we will also need the following properties of the energy e:

Lemma 8. If $W: \mathbb{R}^N \to \mathbb{R}_+ \cup \{+\infty\}$ is a lower semicontinuous function satisfying **(H2)**, then

- 1. e is lower semicontinuous in $L^2(\omega, \mathbb{R}^N)$,
- 2. the sets of zeros of e and W coincide; moreover $\Sigma := \{e = 0\} = \{W = 0\} \subset \mathbb{R}^N$ is compact,
- 3. for every $\varepsilon > 0$, we have

$$k_{\varepsilon} := \inf \left\{ e(v) : v \in L^2(\omega, \mathbb{R}^N) \text{ with } d_{L^2}(v, \Sigma) \ge \varepsilon \right\} > 0.$$

Proof. We divide the proof in several steps:

STEP 1. LOWER SEMICONTINUITY OF e IN $L^2(\omega, \mathbb{R}^N)$. Indeed, let $v_n \to v$ in $L^2(\omega, \mathbb{R}^N)$. W.l.o.g., we may assume that $(e(v_n))_n$ is bounded, in particular, $(v_n)_n$ is bounded in $H^1(\omega, \mathbb{R}^N)$; thus, $(v_n)_n$ converges to v weakly in $H^1(\omega, \mathbb{R}^N)$. By Step 1 in the proof of Lemma 4, we know that $e|_{H^1(\omega, \mathbb{R}^N)}$ is lower semicontinuous w.r.t. the weak H^1 topology and the conclusion follows.

STEP 2. ZEROS OF e. The equality of the zero sets of e and W is straightforward thanks to the connectedness of ω . Thanks to the assumption (**H2**), the set of zeros Σ of W is bounded and by the lower semicontinuity and non-negativity of W, the set of zeros Σ of W is closed; thus, Σ is compact in \mathbb{R}^N .

STEP 3. WE PROVE THAT $k_{\varepsilon} > 0$. Assume by contradiction that $k_{\varepsilon} = 0$ for some $\varepsilon > 0$. Then there exists a minimizing sequence $v_n \in L^2(\omega, \mathbb{R}^N)$ such that $d_{L^2}(v_n, \Sigma) \geq \varepsilon$ for every $n \in \mathbb{N}$ and $\lim_{n \to \infty} e(v_n) = 0$. W.l.o.g., we may assume that $v_n \in H^1(\omega, \mathbb{R}^N)$ for every n as $||v_n||_{\dot{H}^1} \to 0$. Denoting $\overline{v_n}$ the (x'-)average of v_n , the Poincaré-Wirtinger inequality implies that the sequence $(w_n := v_n - \overline{v_n})_n$ converges in $H^1(\omega, \mathbb{R}^N)$ to 0. Up to extracting a subsequence, we may assume that $w_n \to 0$ for a.e. $x' \in \omega$.

Claim: The sequence $(\overline{v_n})_n$ is bounded in \mathbb{R}^N .

Indeed, assume by contradiction that there exists a subsequence of $(\overline{v_n})_n$ (still denoted by $(\overline{v_n})_n$) such that $|\overline{v_n}| \to \infty$ as $n \to \infty$. As W is l.s.c. and $w_n \to 0$ for a.e. $x' \in \omega$, the assumption (**H2**) implies

$$\liminf_{n\to\infty} W(v_n(x')) = \liminf_{n\to\infty} W(w_n(x') + \overline{v_n}) \ge \liminf_{|z|\to\infty} W(z) > 0 \quad \text{for a.e. } x' \in \omega$$

which by integration over $x' \in \omega$ contradicts the assumption $e(v_n) \to 0$. This finishes the proof of the claim.

As a consequence of the claim, we deduce that $(v_n)_{n\in\mathbb{N}}$ is bounded in $H^1(\omega,\mathbb{R}^N)$. In particular, $(v_n)_{n\in\mathbb{N}}$ has a subsequence that converges in $L^2(\omega,\mathbb{R}^N)$ to a map $v\in H^1(\omega,\mathbb{R}^N)$ and we deduce $d_{L^2}(v,\Sigma)\geq \varepsilon$, in particular, v is not a zero of e, i.e., e(v)>0. As e is l.s.c. in $L^2(\omega,\mathbb{R}^N)$, we have $0=\lim_{n\to\infty}e(v_n)\geq e(v)$, which contradicts that e(v)>0.

Now we prove the L^2 -convergence of $u(x_1,\cdot)$ to u^{\pm} as $x_1 \to \pm \infty$:

Proof of the L^2 -convergence in Theorem 1. Take $u \in H^1_{loc}(\Omega, \mathbb{R}^N)$ such that $E(u) < +\infty$ and set $\sigma(t) := u(t, \cdot) \in H^1(\omega, \mathbb{R}^N)$ for a.e. $t \in \mathbb{R}$. We prove that $\sigma(t)$ converges in $L^2(\omega, \mathbb{R}^N)$ to a limit that is a zero in Σ as $t \to +\infty$ (the proof of the convergence as $t \to -\infty$ is similar). Moreover, we will see that these limits are in fact the zeros u^{\pm} of W given by the x'-average \bar{u} and the a.e. convergence of $u(x_1, \cdot)$ as $x_1 \to \pm \infty$.

STEP 1: CONTINUITY. We prove that $t \in \mathbb{R} \mapsto \sigma(t) \in L^2(\omega, \mathbb{R}^N)$ is continuous in \mathbb{R} , and moreover, it is a $\frac{1}{2}$ -Hölder map. Indeed, for a.e. $t, s \in \mathbb{R}$, we have

$$d_{L^{2}}(\sigma(t), \sigma(s))^{2} = \int_{\mathcal{U}} \left| \int_{t}^{s} \partial_{x_{1}} u(x_{1}, x') \, \mathrm{d}x_{1} \right|^{2} \, \mathrm{d}x' \le |t - s| \|\partial_{x_{1}} u\|_{L^{2}(\Omega, \mathbb{R}^{N})}^{2}.$$

STEP 2: CONVERGENCE OF A SUBSEQUENCE $(\sigma(t_n))_n$ TO SOME $u^+ \in \Sigma$. Since $e(\sigma(\cdot)) \in L^1(\mathbb{R})$ by (3.2), there is a sequence $(t_n)_{n \in \mathbb{N}} \to +\infty$ such that $\lim_{n \to \infty} e(\sigma(t_n)) = 0$. Exactly like in Step 3 in the proof of Lemma 8, we deduce that $(\sigma(t_n))_{n \in \mathbb{N}}$ has a subsequence that converges strongly in $L^2(\omega, \mathbb{R}^N)$ to some map $\sigma_\infty \in L^2(\omega, \mathbb{R}^N)$ (the assumption **(H2)** is essential here). Since e is l.s.c. in L^2 and $e \ge 0$ in L^2 , we deduce that $e(\sigma_\infty) = 0$ and so, there exists $u^+ \in \Sigma$ such that $\sigma_\infty \equiv u^+$.

STEP 3: CONVERGENCE TO u^+ IN L^2 As $t \to +\infty$. Assume by contradiction that $\sigma(t)$ does not converge in $L^2(\omega, \mathbb{R}^N)$ to u^+ as $t \to \infty$. Then there is a sequence $(s_n)_{n \in \mathbb{N}} \to +\infty$ such that $\varepsilon := \inf_{n \in \mathbb{N}} d_{L^2}(\sigma(s_n), u^+) > 0$. Now, by Step 1, the curve $t \in [s_n, +\infty) \mapsto \sigma(t) \in L^2(\omega, \mathbb{R}^N)$ is continuous. Moreover, $\sigma(s_n)$ doesn't belong to the L^2 -ball centered at u^+ with radius $\frac{3\varepsilon}{4}$. By Step 2, it has to enter (at some time $t > s_n$) in the L^2 -ball centered at u^+ with radius $\frac{\varepsilon}{4}$. Therefore, the curve $\sigma_{|(s_n, +\infty)}$ has to cross the ring $\mathcal{R} := B_{L^2}(u^+, \frac{3\varepsilon}{4}) \setminus B_{L^2}(u^+, \frac{\varepsilon}{4})$, so it has L^2 -length larger than $\frac{\varepsilon}{2}$, i.e.,

$$\int_{\{t \in (s_n, +\infty) : \sigma(t) \in \mathcal{R}\}} \|\partial_{x_1} u(t, \cdot)\|_{L^2(\omega, \mathbb{R}^N)} dt = \int_{\{t \in (s_n, +\infty) : \sigma(t) \in \mathcal{R}\}} \|\dot{\sigma}\|_{L^2(\omega, \mathbb{R}^N)} dt \ge \frac{\varepsilon}{2}.$$

Moreover, by the third claim in Lemma 8, we know that $e(\sigma(t)) \ge k_{\varepsilon/4}$ if $\sigma(t) \in \mathcal{R}$ (up to lowering ε , we may assume that the other zeros of Σ are placed at distance larger than 2ε from u^+ , the assumption (H1) is essential here). We obtain

$$\int_{s_n}^{+\infty} \sqrt{e(u(t,\cdot))} \|\partial_{x_1} u(t,\cdot)\|_{L^2(\omega,\mathbb{R}^N)} dt \ge \int_{\{t \in (s_n,+\infty) : \sigma(t) \in \mathcal{R}\}} \sqrt{e(u(t,\cdot))} \|\partial_{x_1} u(t,\cdot)\|_{L^2(\omega,\mathbb{R}^N)} dt$$

$$\ge \frac{\varepsilon}{2} \sqrt{k_{\varepsilon/4}}.$$
(3.3)

This is a contradiction with the assumption $E(u) < +\infty$ implying by (3.2):

$$2|\omega|^{\frac{1}{2}} \int_{s_n}^{+\infty} \sqrt{e(u(t,\cdot))} \|\partial_{x_1} u(t,\cdot)\|_{L^2(\omega,\mathbb{R}^N)} dt \le \int_{s_n}^{+\infty} \left(|\omega| e(u(t,\cdot)) + \|\partial_{x_1} u(t,\cdot)\|_{L^2(\omega,\mathbb{R}^N)}^2 \right) dt$$

$$\underset{n \to \infty}{\longrightarrow} 0.$$

Step 4: The L^2 limits u^{\pm} coincide with the average limits $\bar{u}(\pm \infty)$. This is clear as L^2 convergence implies convergence in average.

Remark 9. i) The above proof does not use (so, it is independent of) the almost everywhere convergence of $u(x_1, \cdot)$ as $x_1 \to \pm \infty$ or the convergence of the x'-average \bar{u} . Therefore, thanks to this proof, one can obtain as a direct consequence the convergence of the x'-average \bar{u} as well as the almost everywhere convergence of $u(x_1, \cdot)$ as $x_1 \to \pm \infty$.

- ii) Also, the above proof applies to Lemma 7 leading to a second method that does not use the geodesic distance $geod_W$.
- iii) Behind the above proof, the notion of geodesic distance over $L^2(\omega, \mathbb{R}^N)$ with the degenerate weight \sqrt{e} is hidden (see (3.3)). Therefore, one could repeat the arguments in the first proof of Theorem 1 based on this geodesic distance.

The above argument can also be used directly to obtain a second proof for the existence of limits of \bar{u} at $\pm \infty$ without using the geodesic pseudo-distance geod_W (as presented in the proof in Section 2). For completeness, we redo the proof in the sequel:

Second proof of the convergence in x'-average in Theorem 1. Let $u \in \dot{H}^1(\Omega, \mathbb{R}^N)$ such that $E(u) < \infty$. We want to prove that the x'-average \bar{u} admits a limit u^+ as $x_1 \to \infty$ and $W(u^+) = 0$ (the proof of the convergence as $x_1 \to -\infty$ is similar). Let V and E_V given by Lemma 4. Recall that $\Sigma := \{V = 0\} = \{W = 0\}$ and $E_V(\bar{u}) \leq \frac{1}{|\omega|} E(u) < \infty$.

⁸As the L^2 -convergence implies almost everywhere convergence of $u(x_1, \cdot)$ only up to a subsequence, one should repeat the argument in the proof of the a.e. convergence in Theorem 1 at page 10.

Step 1. We prove that for every $\varepsilon > 0$,

$$\kappa_{\varepsilon} := \inf \{ V(z) : z \in \mathbb{R}^N, d_{\mathbb{R}^N}(z, \Sigma) \ge \varepsilon \} > 0.$$

Assume by contradiction that there exists a sequence $(z_n)_n$ such that $V(z_n) \to 0$ and $d_{\mathbb{R}^N}(z_n, \Sigma) \ge \varepsilon$. By the third claim in Lemma 4, we deduce that $(z_n)_n$ is bounded, so that, up to a subsequence, $z_n \to z$ for some $z \in \mathbb{R}^N$ yielding $d_{\mathbb{R}^N}(z, \Sigma) \ge \varepsilon$ and V(z) = 0, i.e., $z \in \Sigma$ (since V is l.s.c. and $V \ge 0$) which is a contradiction.

STEP 2. THERE EXISTS A SEQUENCE $(\bar{u}(t_n))_n$ CONVERGING TO A WELL $u^+ \in \Sigma$. Indeed, as $V(\bar{u}) \in L^1(\mathbb{R})$, there exists a sequence $t_n \to \infty$ with $V(\bar{u}(t_n)) \to 0$. By **(H2)**, $(\bar{u}(t_n))_n$ is bounded, so that up to a subsequence, $\bar{u}(t_n) \to u^+$ as $n \to \infty$ for some point $u^+ \in \mathbb{R}^N$. As V is l.s.c. and $V \ge 0$, we deduce that $V(u^+) = 0$, i.e., $u^+ \in \Sigma$.

STEP 3: CONVERGENCE OF \bar{u} TO u^+ AS $x_1 \to +\infty$. Assume by contradiction that $\bar{u}(x_1)$ does not converge to u^+ as $x_1 \to \infty$. Then there is a sequence $(s_n)_{n \in \mathbb{N}} \to +\infty$ such that $\varepsilon := \inf_{n \in \mathbb{N}} d_{\mathbb{R}^N}(\bar{u}(s_n), u^+) > 0$. As $\bar{u} : [s_n, +\infty) \to \mathbb{R}^N$ is continuous, by Step 2, it has to get out of the ball $B(\bar{u}(s_n), \varepsilon/4)$ and it has to enter in the ball $B(u^+, \varepsilon/4)$. Therefore, \bar{u} has to cross the ring $\mathcal{R} := B(u^+, \frac{3\varepsilon}{4}) \setminus B(u^+, \frac{\varepsilon}{4}) \subset \mathbb{R}^N$. Moreover, by Step 1, we know that $V(\bar{u}(x_1)) \geq \kappa_{\varepsilon/4}$ if $\bar{u}(x_1) \in \mathcal{R}$ (where we assumed w.l.o.g. that $\varepsilon > 0$ is small enough so that the other zeros of Σ are placed at distance larger than 2ε from u^+). We obtain

$$\int_{s_n}^{+\infty} \sqrt{V(\bar{u}(x_1))} \left| \frac{\mathrm{d}}{\mathrm{d}x_1} \overline{u}(x_1) \right| \, \mathrm{d}x_1 \ge \int_{\{x_1 \in (s_n, +\infty) : \bar{u}(x_1) \in \mathcal{R}\}} \sqrt{V(\bar{u}(x_1))} \left| \frac{\mathrm{d}}{\mathrm{d}x_1} \overline{u}(x_1) \right| \, \mathrm{d}x_1 \ge \frac{\varepsilon}{2} \sqrt{\kappa_{\varepsilon/4}}.$$

This is a contradiction with the assumption $E_V(\bar{u}) < +\infty$ implying

$$2\int_{s_n}^{+\infty} \sqrt{V(\bar{u}(x_1))} \left| \frac{\mathrm{d}}{\mathrm{d}x_1} \overline{u}(x_1) \right| \mathrm{d}x_1 \le \int_{s_n}^{+\infty} \left(\left| \frac{\mathrm{d}}{\mathrm{d}x_1} \overline{u}(x_1) \right|^2 + V(\bar{u}(x_1)) \right) \mathrm{d}x_1 \underset{n \to \infty}{\longrightarrow} 0.$$

4 Proof of Theorem 3

In this section, we consider $d=N,\ \Omega=\mathbb{R}\times\omega$ with $\omega=\mathbb{T}^{d-1}$ and $u\in H^1_{loc}(\Omega,\mathbb{R}^d)$ periodic in $x'\in\omega$ with $\bar{u}_1=a$ in \mathbb{R} for some constant $a\in\mathbb{R}$ (recall that \bar{u} is the x'-average of u). Note that $|\omega|=1$. We set

$$L_a^2(\omega, \mathbb{R}^d) := \left\{ v = (v_1, \dots, v_d) \in L^2(\omega, \mathbb{R}^d) : \int_{\omega} v_1 \, dx' = a \right\}$$

and $H^1_a(\omega,\mathbb{R}^d):=H^1\cap L^2_a(\omega,\mathbb{R}^d)$. Note that for a.e. $x_1\in\mathbb{R},\ u(x_1,\cdot)\in H^1_a(\omega,\mathbb{R}^d)$. We define the following energy e_a on the convex closed subset $L^2_a(\omega,\mathbb{R}^d)$ of $L^2(\omega,\mathbb{R}^d)$:

$$e_{a}(v) = \begin{cases} \int_{\omega} \left(|\nabla' v|^{2} + W(v) \right) dx' & \text{if } v \in H_{a}^{1}(\omega, \mathbb{R}^{d}), \\ +\infty & \text{if } v \in L_{a}^{2}(\omega, \mathbb{R}^{d}) \setminus H^{1}(\omega, \mathbb{R}^{d}). \end{cases}$$
(4.1)

In particular, we have for every $u \in \dot{H}^1(\Omega, \mathbb{R}^d)$ with $\bar{u}_1 = a$:

$$E(u) = \int_{\mathbb{R}} \left(\|\partial_1 u(x_1, \cdot)\|_{L^2(\omega, \mathbb{R}^d)}^2 + e_a(u(x_1, \cdot)) \right) dx_1.$$
 (4.2)

The aim is to adapt the proof of Theorem 1 given in Section 3 to Theorem 3. We start by transfering the properties of the energy e in Lemma 8 to the energy e_a defined in $L_a^2(\omega, \mathbb{R}^d)$. More precisely, if $W : \mathbb{R}^d \to \mathbb{R}_+ \cup \{+\infty\}$ is a lower semicontinuous function, then e_a is lower semicontinuous in $L_a^2(\omega, \mathbb{R}^d)$ endowed with the strong L^2 -norm and the sets of zeros of e_a and $W(a, \cdot)$ coincide, i.e.,

$$\Sigma^a := \{ v \in L_a^2(\omega, \mathbb{R}^d) : e_a(v) = 0 \} = \{ z = (a, z') \in \mathbb{R}^d : W(a, z') = 0 \}.$$

If in addition W satisfies $(\mathbf{H2})_a$, then Σ^a is compact in \mathbb{R}^d and for every $\varepsilon > 0$, we have

$$k_{\varepsilon}^{a} := \inf \left\{ e_{a}(v) : v \in L_{a}^{2}(\omega, \mathbb{R}^{d}) \text{ with } d_{L^{2}}(v, \Sigma^{a}) \geq \varepsilon \right\} > 0$$

(the proof of these properties follows by the same arguments presented in the proof of Lemma 8).

Proof of Theorem 3. Let $u \in H^1_{loc}(\Omega,\mathbb{R}^d)$ such that $E(u) < +\infty$ and $\bar{u}_1 = a$ in \mathbb{R} . We set $\sigma(t) := u(t,\cdot) \in H^1_a(\omega,\mathbb{R}^d)$ for a.e. $t \in \mathbb{R}$. We prove that $\sigma(t)$ converges in $L^2(\omega,\mathbb{R}^d)$ to a limit that is a zero in Σ^a as $t \to +\infty$ (the proof of the convergence as $t \to -\infty$ is similar). As in Steps 1 and 2 in the proof of the L^2 -convergence in Theorem 1, we have that $t \in \mathbb{R} \mapsto \sigma(t) \in L^2_a(\omega,\mathbb{R}^d)$ is a $\frac{1}{2}$ -Hölder continuous map in \mathbb{R} and there is a sequence $(t_n)_{n \in \mathbb{N}} \to +\infty$ such that $\sigma(t_n) \to u^+$ in $L^2(\omega,\mathbb{R}^d)$ for a well $u^+ \in \Sigma^a$ (the assumption $(\mathbf{H2})_a$ is essential here). In order to prove the convergence of $\sigma(t)$ to u^+ in L^2 as $t \to +\infty$, we argue by contradiction. If $\sigma(t)$ does not converge in $L^2(\omega,\mathbb{R}^d)$ to u^+ as $t \to \infty$, then there is a sequence $(s_n)_{n \in \mathbb{N}} \to +\infty$ such that $\varepsilon := \inf_{n \in \mathbb{N}} d_{L^2}(\sigma(s_n), u^+) > 0$. We repeat the argument in Step 3 in the proof of the L^2 -convergence in Theorem 1 by restricting ourselves to $L^2_a(\omega,\mathbb{R}^d)$ endowed by the strong L^2 topology. More precisely, the continuous curve $t \in [s_n, +\infty) \mapsto \sigma(t) \in L^2_a(\omega,\mathbb{R}^d)$ has to cross the ring $\mathcal{R}_a := \left(B_{L^2}(u^+, \frac{3\varepsilon}{4}) \setminus B_{L^2}(u^+, \frac{\varepsilon}{4})\right) \cap L^2_a(\omega,\mathbb{R}^d)$, so it has L^2 -length larger than $\frac{\varepsilon}{2}$, i.e.,

$$\int_{\{t \in (s_n, +\infty) : \sigma(t) \in \mathcal{R}_a\}} \|\partial_{x_1} u(t, \cdot)\|_{L^2(\omega, \mathbb{R}^d)} dt = \int_{\{t \in (s_n, +\infty) : \sigma(t) \in \mathcal{R}_a\}} \|\dot{\sigma}\|_{L^2(\omega, \mathbb{R}^d)} dt \ge \frac{\varepsilon}{2}.$$

As $e(\sigma(t)) \ge k_{\varepsilon/4}^a$ if $\sigma(t) \in \mathcal{R}_a$ (up to lowering ε , we may assume that the other zeros of Σ^a are placed at distance larger than 2ε from u^+ , the assumption (H1)_a is essential here), we obtain

$$\int_{\{t \in (s_n, +\infty) : \sigma(t) \in \mathcal{R}_a\}} \sqrt{e_a(u(t, \cdot))} \|\partial_{x_1} u(t, \cdot)\|_{L^2(\omega, \mathbb{R}^d)} dt \ge \frac{\varepsilon}{2} \sqrt{k_{\varepsilon/4}^a}.$$

This is a contradiction with (4.2):

$$2\int_{s_n}^{+\infty} \sqrt{e_a(u(t,\cdot))} \|\partial_{x_1} u(t,\cdot)\|_{L^2(\omega,\mathbb{R}^d)} dt \le \int_{s_n}^{+\infty} \left(e_a(u(t,\cdot)) + \|\partial_{x_1} u(t,\cdot)\|_{L^2}^2\right) dt \underset{n\to\infty}{\longrightarrow} 0.$$

Clearly, the L^2 convergence implies also the convergence in average of $\sigma(t)$ over ω as $t \to \infty$ as well as the a.e. convergence $\sigma(t) \to u^+$ in ω but only up to a subsequence. For the full almost everywhere convergence of $u(x_1, \cdot) \to u^+$, we proceed as follows. First, by the Poincaré-Wirtinger inequality on $\omega = \mathbb{T}^{d-1}$, we have for a.e. $x_1 \in \mathbb{R}$,

$$\int_{\omega} |\nabla' u_1(x_1, x')|^2 dx' \ge 4\pi^2 \int_{\omega} |u_1(x_1, x') - \bar{u}_1(x_1)|^2 dx' = 4\pi^2 \int_{\omega} |u_1(x_1, x') - a|^2 dx'.$$

By Fubini's theorem, we deduce that

$$E(u) \ge \int_{\Omega} \left(|\partial_1 u|^2 + |\nabla' u_1|^2 + W(u) \right) dx \ge \int_{\mathbb{T}^{d-1}} E_{W_a}(u(\cdot, x'), \mathbb{R}) dx',$$

where $W_a(z) := W(z) + 4\pi^2 |z_1 - a|^2$ and, as usual,

$$E_{W_a}(\sigma, \mathbb{R}) = \int_{\mathbb{R}} (|\dot{\sigma}|^2 + W_a(\sigma)) \, \mathrm{d}x_1, \quad \sigma \in \dot{H}^1(\mathbb{R}, \mathbb{R}^N).$$

Hence, $E_{W_a}(u(\cdot, x'), \mathbb{R}) < \infty$ for a.e. $x' \in \omega$. Note that W_a is lower semicontinuous and satisfies assumptions (**H1**) (the set of zeros of W_a coincides with Σ^a , which is finite by (**H1**)_a) and the coercivity condition (**H2**) (thanks to (**H2**)_a). Thus, Lemma 7 implies that for a.e. $x' \in \omega$, there exist two wells $u^{\pm}(x')$ of W_a such that

$$\lim_{x_1 \to \pm \infty} u(x_1, x') = u^{\pm}(x'). \tag{4.3}$$

By (1.4), as $\bar{u}(\pm \infty) = u^{\pm}$, we know that $\|u(R_n^{\pm}, \cdot) - u^{\pm}\|_{L^2(\omega, \mathbb{R}^N)} \to 0$ as $n \to \infty$ for two sequences $(R_n^{\pm})_{n \in \mathbb{N}} \to \pm \infty$. Up to a subsequence, we deduce that $u(R_n^{\pm}, \cdot) \to u^{\pm}$ a.e. in ω as $n \to \infty$. By (4.3), we conclude that $u^{\pm}(x') = u^{\pm}$ for a.e. $x' \in \omega$.

Acknowledgment. R.I. acknowledges partial support by the ANR project ANR-14-CE25-0009-01

References

- [1] S. Alama, L. Bronsard and C. Gui. Stationary layered solutions for an Allen–Cahn system with multiple well potential. *Calc. Var. Partial Differential Equations* 5 (1997), no. 4, 359–390.
- [2] G. Alberti, L. Ambrosio and X. Cabré. On a long-standing conjecture of E. De Giorgi: symmetry in 3D for general nonlinearities and a local minimality property. *Acta Applicandae Mathematica* **65** (2001) (1-3), 9–33.
- [3] F. Alouges, T. Rivière and S. Serfaty. Néel and cross-tie wall energies for planar micromagnetic configurations. *ESAIM Control Optim. Calc. Var.* 8 (2002), 31–68.
- [4] L. Ambrosio and X. Cabré. Entire solutions of semilinear elliptic equations in \mathbb{R}^3 and a conjecture of De Giorgi. J. Eur. Math. Soc. 13 (2000) (4), 725–739.
- [5] M. T. Barlow, R. F. Bass and C. Gui. The Liouville property and a conjecture of De Giorgi. Comm. Pure Appl. Math. 53 (2000) (8), 1007–1038.
- [6] H. Berestycki, F. Hamel and R. Monneau. One-dimensional symmetry of bounded entire solutions of some elliptic equations. Duke Math. J. 103 (2000), 375–396.
- [7] H. Berestycki, T.-C. Lin, J. Wei and C. Zhao. On phase-separation models: asymptotics and qualitative properties. *Archive for Rational Mechanics and Analysis* **208** (2013) (1), 163–200.
- [8] H. Berestycki, S. Terracini, K. Wang and J. Wei. On entire solutions of an elliptic system modeling phase separations. *Advances in Mathematics* **243** (2013), 102–126.
- [9] H. Brezis. Analyse fonctionnelle. Théorie et applications. Masson, Paris, 1983.
- [10] H. Brezis and P. Mironescu. Sur une conjecture de E. De Giorgi relative à l'énergie de Ginzburg-Landau. C. R. Acad. Sci. Paris Ser. I Math. 319 (1994), 167–170.
- [11] L. A. Caffarelli and A. Córdoba. Uniform convergence of a singular perturbation problem. *Comm. Pure Appl. Math.* **48** (1995), 1–12.

- [12] G. Carbou. Unicité et minimalité des solutions d'une équation de Ginzburg-Landau, Ann. Inst. H. Poincaré, Analyse non linéaire, 12 (1995), 305–318.
- [13] M. Del Pino, M. Kowalczyk and J. Wei. On De Giorgi's conjecture in dimension $N \geq 9$. Annals of Mathematics 174 (2011) (3), 1485–1569.
- [14] A. DeSimone, H. Knüpfer and F. Otto. 2-d stability of the Néel wall. *Calc. Var. Partial Differential Equations* **27** (2006), 233–253.
- [15] L. Döring and R. Ignat. Asymmetric domain walls of small angle in soft ferromagnetic films. *Arch. Ration. Mech. Anal.* **220** (2016), 889–936.
- [16] L. Döring, R. Ignat and F. Otto. A reduced model for domain walls in soft ferromagnetic films at the cross-over from symmetric to asymmetric wall types. *J. Eur. Math. Soc. (JEMS)* **16** (2014) (7), 1377–1422.
- [17] A. Farina. Some remarks on a conjecture of De Giorgi. Calc. Var. Partial Differential Equations 8 (1999), 233–245.
- [18] A. Farina. Symmetry for solutions of semilinear elliptic equations in \mathbb{R}^N and related conjectures. Ricerche di Matematica XLVIII (1999), 129–154.
- [19] A. Farina, B. Sciunzi and N. Soave. Monotonicity and rigidity of solutions to some elliptic systems with uniform limits. *arXiv:1704.06430* (2017).
- [20] M. Fazly and N. Ghoussoub. De Giorgi type results for elliptic systems. *Calculus of Variations and Partial Differential Equations* 47 (2013) (3-4), 1–15.
- [21] N. Ghoussoub and C. Gui. On a conjecture of De Giorgi and some related problems. *Mathematische Annalen* **311** (1998) (3), 481–491.
- [22] N. Ghoussoub and C. Gui. On De Giorgi's conjecture in dimensions 4 and 5. Annals of mathematics 157 (2003) (1), 313–334.
- [23] R. Ignat and B. Merlet. Lower bound for the energy of Bloch walls in micromagnetics. *Arch. Ration. Mech. Anal.* **199** (2011) (2), 369–406.
- [24] R. Ignat and A. Monteil. A De Giorgi type conjecture for minimal solutions to a nonlinear Stokes equation, *Comm. Pure Appl. Math.*, accepted (2018).
- [25] R. Ignat and R. Moser. A zigzag pattern in micromagnetics. J. Math. Pures Appl. 98 (2012) (2), 139–159.
- [26] R. Ignat and F. Otto. A compactness result in thin-film micromagnetics and the optimality of the Néel wall. J. Eur. Math. Soc. (JEMS) 10 (2008), 909–956.
- [27] A. Monteil and F. Santambrogio. Metric methods for heteroclinic connections. Math. Methods Appl. Sci. 41 (2018) (3), 1019–1024.
- [28] A. Monteil and F. Santambrogio. Heteroclinic connections in infinite dimensional spaces. To appear in Indiana Univ. Math. J.
- [29] R. Moser. On the energy of domain walls in ferromagnetism. *Interfaces Free Bound.*, **11** (2009) 399–419.
- [30] T. Rivière and S. Serfaty. Limiting domain wall energy for a problem related to micromagnetics. *Comm. Pure Appl. Math.* **54** (2001) (3), 294–338.

- [31] O. Savin. Regularity of flat level sets in phase transitions. *Annals of Mathematics* **169** (2009) (1), 41–78.
- [32] M. Schatzman. Asymmetric heteroclinic double layers. ESAIM Control Optim. Calc. Var. 8 (2002), no. 2, 965–1005.
- [33] C. Sourdis. The heteroclinic connection problem for general double-well potentials. *Mediter-ranean Journal of Mathematics* **13** (2016) (6), 4693–4710.
- [34] A. Zuniga and P. Sternberg. On the heteroclinic connection problem for multi-well gradient systems. *Journal of Differential Equations* **261** (2016) (7), 3987–4007.