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ABSTRACT. We find necessary and sufficient conditions for the function w
in order that any measurable function f : Q — R which satisfies

TN ECE D

is constant (a.e. in ). We also study what regularity on f should be

assumed so that for any function w which is continuous, w(0) = 0 and
w(t) > 0 for every t > 0, if (1) holds, then f is a constant.

1. INTRODUCTION

In this paper we investigate an open question posed by Brezis in [2]. Its
motivation came from the following result (see [2]):

Theorem 1.1. Let ) be a domain (i.e. a connected open set) imRN. If f: Q — R
is a measurable function which satisfies

//If(fv)ff(y)l dedy _
/ lz—yl |z —yN ’

Q

then f is a constant (a.e. in Q). More generally, if p > 1 and

F() - F@)PP drdy
// Ty gV

Q

then the same conclusion holds.

2000 Mathematics Subject Classification. 46E35; 26 A30.
1
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We denote
W={weCRLR,)|w(0)=0,w(t) >0,Vt>0}.
The following problem now arises:

Problem 1. Find a necessary and sufficient condition for w € W so that any
measurable function f :Q — R which satisfies

o [

is constant (a.e. in Q).

Observe that the restriction w € W is natural. Indeed, the continuity of w is
needed to make the left hand side of (2) well-defined. Also, w(0) = 0 (since for
any constant function f, (2) should hold) and w(t) > 0,V¢ > 0 (if w(t) = 0 for
some t > 0, take N =1 and f(z) = ta). Henceforth it is assumed that w € W.

Three theorems are established concerning Problem 1. Theorem 1.2 gives a
necessary condition and Theorems 1.3 and 1.4 provide sufficient conditions. The
question whether the necessary condition in Theorem 1.2 is also sufficient remains
open.

Theorem 1.2. Let Q C RN be a bounded domain. Let w € W be such that any

measurable function f : Q — R that satisfies (2) is constant (a.e. in Q). Then
+00 w(t) _

A dt = +0.

2

Theorem 1.3. Let Q C RY be a domain, f : Q — R be a measurable function
and w € W such that liminf, | %") > 0. If (2) holds, then f is constant (a.e.

Theorem 1.4. Let Q C RYN be a domain, f : Q — R be a measurable function
and w € W. Define ¢ : (0, +00) — (0,+00), ¢(t) =t 1w(t) for allt > 0. Assume
that w is a non-decreasing function such that

+oo
/ w(t) dt = 400 and sup @ < +00.
1

2 0<s<t P(s)

If (2) holds, then f is constant (a.e. in ).

Open question 1. Is the condition ffLOO wt(;) dt = +oo sufficient for Problem 1

(of course, under the assumption w € W)?

In the second part of the paper, we investigate the following problem:
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Problem 2. What regularity on f should be assumed so that for any w € W, (2)
implies f is a constant?

The motivation is clear: if we do not want any restriction on w € W, an
additional condition on f should be imposed in order that (2) yields f to be a
constant. We establish the following results for Problem 2. Theorem 1.5 estab-
lishes that the condition f € VVlloc1 (Q2) guarantees that Problem 2 has a positive
answer. The other two theorems deal with the question raised by Brezis in [2]:
Is the continuity (or even the CZOO? reqularity) of [ sufficient for Problem 22 The

answer is negative in general. In the end, we state another open question (related
to the previous one).

Theorem 1.5. Let Q be a domain in RN and f € VVllocl(Q) For any w e W, if
(2) holds, then f is constant a.e in Q.

Theorem 1.6. Let Q be the unit cube in RY die. Q = (0,1)N. For every
0 < a < 1, there is a nonconstant a-Hélder continuous function f : [0,1]Y — R
of bounded variation which satisfies (2), for every bounded function w € W.

Theorem 1.7. Let Q = (0,1)N. For every 0 < a < 1, there is a nonconstant
a-Hélder continuous function f : [0,1]Y — R of bounded variation which satisfies

|f(x) — f(y)|? dady
< 400, Ve (0,1).
/é le —yl® |z —yN

Q

Open question 2. Let w € W be such that f1+°° “’t(;) dt = +oo. Suppose f is
continuous (or even C°

oo for some 0 < a < 1) and satisfies (2). Is f constant?

In this paper, we also present some remarkable properties concerning a gener-
alized Cantor set and Cantor function, results that we use in the proofs of the
last theorems.

Acknowledgement. This paper was done when the author visited Rutgers Uni-
versity; he thanks the Mathematics Departement for its invitation and hospitality.
The author thanks Prof. H. Brezis and A. Ponce for very useful comments.

2. NECESSARY CONDITION FOR PROBLEM 1

In this section we prove Theorem 1.2 i.e., the condition
+oo
w(t
/ w(t) dt = +o0
2
1

is necessary for Problem 1. Firstly, we present a preliminary result. It states that
the above condition is needed in order to prevent f from being a step function.
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Lemma 2.1. Let Q = (—1,1) x (0,1)N~! and w € W. Let f be the character-
istic function of the unit cube i.e. f = x1)~v. Then (2) holds if and only if

I 28 gt < +oo.

PRrROOF. We denote z = (z1,22,...,2x5) = (z1,2') € RY and

I‘// <|f |x—yy)> xdfczlfffv'

After a change of variable t = z1 — y1 we get I = 2(I; + I) where

c ot 1 t
dx’ dy w ~ dt
0 /|:C’fy"2+t2 (|Q:’fy’|2+t2)7

(0’1)N71 (0’1)N—1

2
1 2—1
I, = / / dw’dy’/ w( > - dt
1 /‘$,—y/|2+t2 (|x/_y/|2+t2)7

(0,1)N=1 (0,1)N =1
We remark that |I5| < [|w|[e[0,1] and

1 H( ;)
I =2N-1 da.
/ / (m) T
N times
If N =1, then I = folw (1) de = [° wzfz) dz. If N > 2, after the change of
variable z = \/ﬁ for each 2/, we get I = 2NV ~1(I3 + I,) where
fL’l xr
1 N
_ N-3 N /
I; = /L w(2)z / H(l =) X( |$/1|2+1,ﬁ)(z) dz' dz
N (0,1)N-1 =2
00 N
I, = / w(z)zN 73 / H(l — x;)dx’ dz.
' jorj<t 12
z/€[0,1]N -1

Note that |I3] < ||w||pe[0,1). Therefore it is sufficient to show that I, < 4-oo if
and only if [ w(t)dt < 4o00. For 0 < t < 1, define
N
Tn(t) = / [[a - ) da.

z€[0,1]N =1
|z|<t
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Then
N

N
/ H(l—xi)dmgTN(t) < / H(l—mi)dm;
[0, 75!

Y yi=1 04N =1
so there is a constant ¢y = (ﬁ)N such that
N N
ent” <Tn(t) <t for all t € (0,1).

This yields Iy ~ [ “2) gz, O

Z

+oo w(t

PROOF OF THEOREM 1.2. Assume the contrary ie. [ dt < +oo. Since
Q) is bounded, Q C (—r,7)" for some r > 0. For the s1mphc1ty, we suppose that
0 € Q. Take now the characteristic function f = x(o)x(—r,,)¥-1. By Lemma 2.1,

/ / ( x—;(y)')mdfiyw“w

(=r,r)N (=r,r)N

Therefore (2) holds which contradicts the hypothesis that f is not constant on
Q. O

3. SUFFICIENT CONDITIONS FOR PROBLEM 1

In this section, the proofs of Theorem 1.3 and Theorem 1.4 are presented. We

call mollifiers in RN any family (p)eso of functions in L} (0, 00) satisfying the

loc
following properties

pe > 0 a.e. in (0, 400),
/ pe()tN"rdt =1 Ve >0,
0

oo
lim pe(t)tN"rdt =0 V&> 0.
e—0 Js
Recall the following result of Brezis (for the proof see e.g. [6] Proposition 1 and
Lemma 4):

Theorem 3.1. Let Q C RY be a domain, (p:) be mollifiers in RN, f € L} (Q)
and w € W be a convex function. If

;g}%// (lf Iy )|>ps(lw—y|)dmdy=0

Q Q

then f is constant (a.e. in Q).



6 R. IGNAT

PROOF OF THEOREM 1.3. Firstly, since w € W we can construct a convex func-
tion @ € W such that &(t) < w(t),Vt € [0,1] and @(t) = at + b,Vt > 1 for some

a,b > 0. The hypothesis liminf;_, th) > 0 implies the existence of a constant

¢ > 0 such that w(t) > co(t), V¢ > 0. Therefore

é / o (o) ot <+

Consider the mollifiers in RN

3) p(t)_{tjfa ifo<t<1

0 ift>1

By the dominated convergence theorem,

iy [ [ (W) pella — yl) ddy = 0.
Q Q

If f € L}, (), we conclude by Theorem 3.1. In the general case of a measurable

function f, we consider

fl@) i |f(@) <n
= n it f(z)
—n if f(x)
So fn € Lt .(Q), fn — f ae. in Q and

[fn(@) = fu()] < [f(2) = f(Y)] Va,y € Q.

Since @ is increasing, we get for all n > 1,

lim égw ('fn(x)_f”(y)'> pe(|z —y|) dzdy = 0.

=0 |z -yl
This yields f, = ¢, et ¢, — f a.e. in Q. Thus f is constant. O

PrOOF OF THEOREM 1.4. Since w is non-decreasing, using the same argument
as in the proof of Theorem 1.3, it is sufficient to show that the conclusion holds
for f € L2 (). Firstly, assume that the function ¢ is non-increasing on (0, +00).

Take an arbitrary ball B C Q. For simplicity, we suppose that |f| < % a.e. in B.
By these assumptions we get

/ é Ot () pf < e

B
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1
0<%:=Z;¢(1>ﬂﬂJﬁg¢uy

Consider the functions

pg(t):{ Cz¢(t)tN*6 fo<t< v

For each £ > 0, set

0 ift>1 e>0.

Using the hypothesis that fol 10) (%) % = +o00, we see that (p.) are mollifiers in

RY. We also notice that lim._,g = = 0. By dominated convergence theorem we

obtain
lim//Wpsﬂx—dezdy—O.
BB

e—0

Hence Theorem 3.1 implies f is constant (a.e. in B) and since 2 is connected, we
conclude that f is constant (a.e. in Q). We now consider the general case when

C 1= SUPpcs<y % < +o0. Set ¢(0) = @ and define

¢ : [0,+00) — (0,400), ¢(t) = min ¢(s) Vi > 0.
s€0,t]

So ¢ is continuous and non-increasing on [0, +00) and ¢(t) < ¢(t),Vt > 0. From

here,
If(z) = fW)l - (1f(x) = fy)]\ drdy
/é w3 ‘b( v =] >|x—y|N<+°°'

Q

We also have that ¢(t) < ¢2é(t),Vt > 1 and thus fol ) (+) d — 10, By the

t =
previous case, f is constant (a.e. in Q). (]

4. THE CASE OF W'l FUNCTIONS

loc

In this section, we show that for f € VVlloc1 () (in particular for Lipschitz
functions), the answer to Problem 2 is positive. We will present two different

approaches for solving this case.

PROOF OF THEOREM 1.5. Let 2 € Q. Take r > 0 such that B = B(zo,2r) C Q
and denote B = B(xg,7). Then f € W1(B)ie. f € LY(B)and Vf € (LI(B))N.
So it makes sense to speak of f(z) and Vf(x) for a.e. x € B. Let 0 € SV~1. By

Fubini’s theorem we find that for a.e. x € B there is a small ¢, > 0 such that
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I, ={z+to|t € (—tyty)} C Band f € Whi(L,) i.e., f is absolutely continuous
on I,. Therefore for every o € SV—1,

" iy L21) = 0
Write
If(x)—-f(yﬂ da dy |f (2 —+ta) f()]\ dt
/[‘”( e /d‘”/d"/ )%
B B
and by (2) deduce that for a.e. z € B and for a.e. ¢ € SV 1

/Orw <|f(x+t0t)—f($)|> % < 400

Using [, % = oo, we get

lim inf w (|f(m +to) - f(ac)|> =0.
t—0 t

w being continuous, by (4) one can find N linear independent directions (0;)1<i<n
such that w (|Vf(z)-0;]) = 0 for a.e. & € B and for every i € {1,..., N}. This
implies Vf = 0 a.e. in B. By the Poincaré-Wirtinger inequality, we have that

f|;|/f
B

i.e. f is constant (a.e. in B). Since zp was arbitrarly chosen and {2 is connected,
we conclude that f is constant (a.e. in ). O

=Vf(z)-oc forae z€B.

<CIVlipE =0
L1(B)

Remark. One could prove this result using another method, as follows. Define
@ : [0,400) — [0,1], ©(t) = min(w(t),1) for every ¢ > 0. Take an arbitrary ball

B c Q. Then
//@<U@%J@N>ch@ < oo
lz -yl lz —y|V
B B

Consider the mollifiers (3) in RY. By the dominated convergence theorem, we

obtain
i [ [ (W) pe (jz — yl) ddy = 0.
B B

On the other hand, one can show that for a bounded continuous function @ on
[0, 4+00) andfeW“( )

131// (=IO oy ety = [ [ 0950 o)) drdo

B SN-1
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(see e.g. [6] Lemma 5). As before, this yields Vf = 0 a.e. in B for every ball
B C Q; since f € W2 () and Q is connected, f is constant (a.c. in Q).

5. SOME GENERALIZED CANTOR SETS AND CANTOR FUNCTIONS

Let 0 < 8 < 1. We recall the definition of some general Cantor sets, called
here (B-Cantor sets, all homeomorphic to the standard one and which can be
obtained by deleting a sequence of pairwise disjoint open intervals from the
interior of the segment I(go) = [0,1], as follows (see [5]). Firstly, remove the

centered open interval from I(go) which has length 6 = 3 - I(()O)‘ i.e., delete

the interval J{ = (%, #) and leave two segments I.") = [0, %] and

Il(l) = [#, 1]. The second step consists in deleting the open subinterval of

length 3 - ‘Iél)‘ =4 ‘11(1)‘ = ﬂ% from the center of each of the segments Iél)
and Ifl), namely JéQ) = (%, #) and J1(2) =1- JéQ); thus, there remains

2?2 segments, denoted 162)711(2),12(2) and 1352). We iterate this procedure; at the

(n+1) step, remove the centered open subinterval .J énﬂ) of length (- ‘I Ign) from
each segment I ’En) = [a;”), b;cn)] and leave the two segments
n+1 n+1 n+1 n+1 n+1 n+1 n
I2(k ) = [agk ),bék )] and I2(k+1) = [aékﬂ),békﬂ)] for k=0,1,...,2" — 1.

The limit set is the 3-Cantor set, denoted by Cg. It is a compact set, containing
an uncountable infinity of points; it has Lebesgue measure zero and it is nowhere
dense (i.e. it has no interior). We will give the specific form of Cj3. In order to

do that, let us consider o, and §,, the length of the removed interval J,g") and

)

respectively, of the remaining segment I ,g" at the n step. A simple computation
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yields
2
Set &, = 6, + 05, Then one can deduce (see [5]) that

ng{Zak€k|ak6{0,1},]{;20,1,...}.

k=1

Op = <16> , On = B0p—1 Vn>1 (heredy =1).

In fact, the binary decomposition
j=an + 20, 1+ +2" g = (a1 ... an)2

gives a§n) = > ayer and bg-n) = agn) + > e
k=1 k>n+1
We define now the 3-Cantor function, denoted here by fz (see [3]). Set f3(0) =
0 and fg(1) = 1. So fgs is specified at the endpoints of Iéo). Define fg(z) = 3 if
x € clJél). Thus fs(z) is the average of the values of fg at the endpoints of ISO)

when x belongs to the removed interval Jo(l) and f3 is specified at the endpoints
(n)y_p_ oo (m)
of I(()l) and Ifl). At the n 4 1 step, define f3 = M on the closure of

each J,E"H), the removed interval from [ ,in) = [a,in), b,(cn)]. By that, fg is defined
in every endpoint of IQ(ZH) and Iéz_ﬁ) for k=0,1,...,2" —1; then we can iterate
the process.

Suppose f3 is not yet defined at x. At each n step, x is in the interior
of exactly one of the 2" retained segments, say [an,,b,] of length &,. More-
over, by, = an + 0n, fa(bn) = falan) +27", ap < apnt1 < bpp1 < b, and

falan) < falant1) < fa(bnt1) < f3(by); then fg(x) is defined by
Jim_fg(an) = fp(x) = lim f5(bn).
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Furthermore, fg is a continuous, nondecreasing map of [0, 1] onto [0, 1] (so fg
is a function of bounded variation on [0, 1] ) and f3(z) = 0 for a.e. = € [0, 1]. One
can easily check that on the §-Cantor set we have

fﬁ (Z ozkek) = Zak27k~
k=1 k=1

We now show that each (-Cantor function is Holder continuous with Holder
exponent equal to the Hausdorff dimension of Cg i.e. Hg =

[4])-

Theorem 5.1. The 3-Cantor function is a-Hélder if and only if 0 < o < Hg.

1
m (See also

PROOF. Since Cp is nowhere dense and f3 is continuous, it is sufficient to prove
that for every a < Hg, there exists [, > 0 such that

(5) [fa(x) = fo()| < lalz —y|* Yo,y €[0,1\Cp.
Take z < y,z,y € [0,1]\Cg i.e. z and y are in the interior of two removed intervals

~ n
in the construction of Cg, say (b,a) and (b,a). Write a = > ageg, ai € {0,1},
k=1

a, =land a= 3 vj&;,7 € {0,1},7, =1. Then b = a — oy, b=a—om. If the
=1

two removed intervals coincide, then fg(z) = f3(y) and (5) is obvious. Otherwise,
a < b. Take s > 1 such that a; = ; for j =1,...,5s — 1 and a, # 75 (we may
consider aj =0,V > n). Thus v, =1, oy = 0 and s < m.

If s < n, we get

m

J(0) ~ fola) = 307277 = S o2
Jj=1 k=1

=2"" 4+ Z ’}/j27j + Z (1 — Oék)27k,

j=s+1 k=s+1

m n
yfxzbfa:Z'yjsjfamfZaksk
j=1 k=1

> 0p + Z ’Yj5j+ Z (1*0[16)51C

j=s+1 k=s+1
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(here we used €5 = 05 + 05 = 05+ €541 + -+ -+ &n + p ). Otherwise, s > n (since
s #n) and we have

faly) = fa(z) =D 7277,
Jj=s
y—le;fa:Z’yjeijmEZ%(Sj.
Jj=s Jj=s

So in both cases, we can write
M _ M
foy) = falw) = > h279 andy —z > > hyd;
j=1 j=1

where M >1,h; € {0,1,2},5 =1,..., M. We distinguish three cases:
Case 1: 0 < o < Hg. Set ¢ = Hg — « > 0. By Holder’s inequality, we get

M
th I = Zh“éahl 55 < (Zhjaj) (Zh ST )
j=1

Since h; € {0,1,2}, we deduce

Zh s <2y (5;50)3 = 1o < 00,

Jj=1

11—«

So ‘f(x) - f(y)‘ < loz|'r - y|at
Case 2: o= Hglie. 6§ =277,Vj > 0. Take the smallest jo > 1 such that h;, # 0.
Then

S he 2y 6

J jo Jj=Jjo - -
< ——= 222 i=4q.

Z h;jd; J° §20

Jj=Jjo

Thus, (5) is satisfied.

Case 8: o> Hg. Take v = ¢, and y = 6,1 = ) £). Then
k>n

f(y>_f(x): 27" :ﬂ_)ooifnﬁoo.

|y7‘r|a |5n—1 *€n|a o

So, in this case, f3 is not an a-Holder continuous function. O
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6. SOME COUNTER-EXAMPLES

In this section, we present some counter-examples for Problem 2 in the case of
regularity C%®. We will assume that 2 is the unit cube in RV ie. Q = (0,1)¥

Theorem 6.1. For every a € (0,1), there is a nonconstant a-Holder function
f:[0,1]Y — R of bounded variation which satisfies (2), for all w € W with the

property that w(t) < t,Vt > 0.

PROOF. : Let a € (0,1). Consider the unique 3 € (0,1) such that o = Hg.

Case 1: N = 1. Let f be the §-Cantor function. Take an arbitrary w € W such
that w(t) < 1,Vt > 0. Denote by J the (countable) set of all removed intervals
in the construction of the #-Cantor set i.e.

J:{J,g"“):n20,k=0,1,...,2"—1}.

I*/ / ( |x—y|(y)|>|ix—d3|

-5 [ (PR

JET jeg

= 3 [ fe (PR

J,Jedg
J<J

We have

(we denote J = (b,a) < J = (b,a) if a < b). We want to prove that I < +oo.
Take two removed intervals J = (b,a) and J = (b,a) such that J < J. Write

n
a= > apeg, o € {0,1}, a, =1 and @ = > v;e5, v; € {0,1}, v = 1 ; here
k=1 =1

b=a—0,,b=a—omn. Take r = fl;— fly= Y 7277 — > o278 > 0. We
j=1 k=1

use these notations in the rest of the paper. Since w(t) < %Nt > 0 we get

/]/]w (If(ﬁ:;“'(y ) |Z$—dZ| // dady _|J| .|j| _ o,

The aim is to estimate

- X

J<J
J,Jeg
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Firstly, consider the interval J =
interval (in the construction of C) such that J > J (i.e. a < a). Each time, we
consider the first s step (in the construction of C3) when J and J do not belong
anymore to the same remaining interval; that means the biggest 1 < s < n such
that a; = «; for j = 1,...,5s =1 (if oy # 71 then s = 1).

vs = 1 and ag =

=s

R. IGNAT

S =n.

If s < mie. dist(J,J) > 6, then

m
—flo=>_ 2
j=1

If we sum up over these J, we get:

where L = > 0,2™m

Otherwise, s = m i.e. dist(J,

We get

>

Jeg,a<J

dist(J,J)>8m

m>1

>

Jeg,i<J

I
f5 =1l

—fly=2""~

-y

fly

IN

HM:

(b,a) fix. Let J =

2.

SR

>

s=1 m>s+1 'YJG{O 1}77 =Ym=1
s+1<5<m—1

>

1 7 €{0,1},ym=1

(b,@) be a variable removed

Notice that s < m,

ZakQ k> Z 7277

Jj=s+1

Om

1

> 2

s+1<j<m—1 j=s+1

27na 1

n

<. >
s=1 m>s+1 j=1
n

<Y T um—s)
s=1 m>s+1

<nL

= £ X (1-p)m < +oo.
m>1

k=s+1

dist(J,J)<8m

J) < O

i Ozk27k =

:Z n—1

So(1—ag)27F + 2—n.

n—1

k=s+1

n—1

Os

(-

Thus s < n and

do(—ap2F 2

s=1
k=s+1
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Finally, if we let J be variable in J, we deduce

X el

n>1 a,€{0,1} s=1 3 (1—ag)27F 42"
1<k<n-1 k=s+1
n—1 1

S DTELIRD SED LA pi—

n>1 n>1 s=1 ake{() 1} 1+ Z aka

1<k<n-—1 k=1
n—1

<L2+Zon 2"22052S n—s)

n>1
< 2L

Case 2: N > 2. We denote x = (v1,2') = (21,29,...,2n) € [0,1]V. Take

f(z) = fs(z1),Vz € [0,1]N. So f € C%*N BV(Q2). Choose any w € W with the
property that w(t) < % for all ¢ > 0. Firstly, remark that

= [ e

(0,H)N (0,)N

11— z;)dzy dy, da’

=2 /01 /01 / (\|/]|Cﬁ’|zl) I{ﬁ(y;3|)2) i(:|;|2 + (21 — yl)g)%

(0,)N—1

<oV § // /1 (%ﬂ’él) fﬁ(yl)) >(|x/|zdj1(;lfl_di)2)g

JJET g j (0,1)N

J<J
N|gN-2 Z i
< 2N|gN-2| //dm dyl/ vy db-
JJje jfﬂ|J fﬂ|J 0 2+ (z1—y1)?) 2
J<J

On the other hand, we have

N-1 N—2 N-1
t dt dt 1
/ — §2/ 7 <1nN+1n )
0 (t2+( 0 yl—m1+t Y — 1

1 —y1)?) ?
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for every 0 < 1 < y; < 1. Therefore there is a constant ¢ = ¢(IN) > 0 such that

o(N Y J[-1J] 1 )
I= ( Z faly— fals Z fﬁlJ f,8|J1 dist(J, J)

JJjeg JJeg
J<J J<J

We have already proved that the first sum converges; it remains to show that the

second one is convergent too. As before, fix J = (b,a) and let J = (b,@) be such

that J < J; write a = Zakek, b=a—o0, and a = nyjej,l;—a—am Set
k=1 j=1

r = fs|; — fsls. We have that dist(J, J) = b— a. Using the same argument as in

the case N =1, we get

|| 1 . Om, 1
2 fali— fals dz’st(J,j)SZ 2 2. Thla

Jeg.j<J s=1 m>s+1 v;€{0,1},ym=1
dist(J,J) > s+1<j<m—1
=11
< om Zln—
Y me Y bl
s=1 m>s+1 j=1
<nLl !
nLln —
o1
where L = 3. ,2™m? < +oc. Since dist(.J,J) > min(d,,dy), it results
m>1
|J| i Os 1
Z In—.
- )
Jeg,J<J fﬁ|] f6|J dlSt s=1 Z (1_ak)2—k+2_n n
k=s+

dist(J,J)<m

Similarly, allowing J to be variable in J we conclude that:

> S WO Y S
— fal;— fals  dist(J,J) 01

J<J

We now prove Theorem 1.7:

PROOF OF THEOREM 1.7. Let a € (0,1). Take 8 € (0, 1) such that o = Hg.
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Case 1: N =1. Let f be the g-Cantor function. Choose an arbitrary 6 € (0, 1)
and set w(t) = t?,Vt > 0. Like in the previous proof, we want to show that

2 / / (|f |m—y|(y>|> |Zx—dzy/| e

JJjeg
J<J

As before, consider the interval J = (b,a) fix. Let J = (b,a) be a variable
removed interval such that a < a. Each time, we consider the first s step (in the
construction of C3) when J and J do not belong anymore to the same remaining
interval. Let us denote p = % > 2 and we use the same notations r = f|; — f|,

~ n m
b=a—op, b=a—0m, a =Y arek, ap € {0,1}, a,, =1 and a = ) ¢y,

k=1 j=1
7 € {01}, ym = L.
If dist(J, J) > 0, ie. 5 < m, we distinguish two cases:
i) dist(J,J) > 0, i.e. s <n. Here we have b — a > o, and r < 2751, We write:

E(J,J) ://w (If(m>—f<y)|) dz dy
, ] |z —yl |z — y
/ / O-’I’Lo-m dt dZ < r‘go-na.m
b —a —|—ton + zo‘m)1+0 = (5 _ a)1+9.
If we sum up over these J, we get:

> B(J.J) < oy

) om L
O (23—10-S>9

‘ﬁm‘

Jeg, < m>s+1  ~;€{0,1}
dist(J,J)>maz{6m,0n} s+1<j<m—1
n—1 m—s
1 2
<nd gy © (3)
s=1 8 m>s+1
n—2 D 50
<3 (5) I
s=0

f(n—1)
—

mq
where for ¢ > 0 we denote L, = (%) < 400 and ¢ = ¢(f,0) is a constant
m>0

that depends only on § and 6.
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i) dist(J,J) < 8, i.c. s =n. In this case,

1 6
B(J,J) S/ _ TOnOmdt
o (b—a+to,)t?

Wehaveb—a= Y. 7jgj—om> Y. vid;andr= Y ~;277. From here,

j=n+1 j=n+1 j=n+1
we obtain

~ P no
> B <cLiliaon(})
Jeg,Jj>J

S <dist(J,J)<bn
where ¢ = ¢(3,0) is a constant that depends only on 8 and 6. If we let J be
variable in J, we deduce

SO B0y S on(g)”e

JJeg, < n>1 a,e{0,1}
dist(J,J)>8.m, 1<k<n-—1
2 n(1-0)
<Y (2)
n>1 p
< 400.

Otherwise, dist(J, J) < 6, i.e. s =m. Thus m < n,

n n—1
b—a=0,, — Z aRER > Z (1 — ag)dg + 0n

k=m+1 k=m+1
n—1 1 0
~ r’onom dz
r= 1—0az)27%+27" and E(J,J S/ = nom .
/c:zm:ﬂ( . ) 0 (b—a+zom)t?
We get
n—1 2
-1 .1 am( Sl —ap)27F+ 2_”) dz
=, k=m+1
> o <e Y [k
jega<i m=1 ( S (1= )y + 6, + zo—m)
dist(J,J)<8m k=m+1

Finally, if we let J be variable in J, we find

Y. B(JJ) < (B0 LoMig
JJeg,J<J
dist(J,J)<8m
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n(1-0)
where Mi_g= > n <2> < +o0.
n>1 P

Case 2: N > 2. Let f(z) = fa(x1),Vz € [0,1]V. As before, take 6 € (0,1) and
set w(t) = t?,Vt > 0. Write

S =l

(0,1)N (0,1)N

|f5(z1) = fa(y1)| dxy dyy dz’
<L ( >(|$'|2

N
JJeT J(OJ)N 1 \/l l|2 xl _y1)2 +({E1 _yl)Q) :
J<J
N-1 (N2
< 2N|sN=2| Z // d$1dy1/ vy 4t
Jieg 0 (t* + (x1 —y1)?) 2
J<J

(here we denote r = fg|; — fg|s). On the other hand, we have

N-—1 tN=2 gy N-1 dt 4
/ N+0 < 4/ 240 < 1+0
0 2+ (z1 —1)2) 2 0 (y1 — 21 +1) (y1 — 1)

for every 0 < 1 < y; < 1. Therefore there is a constant ¢ = ¢(IN) > 0 such that

|fa(x1) fﬁ(y1)> dzidy
T<olN Z// ( T AT

J,Jeg
J<J

By Case 1, the conclusion follows. O

Theorem 1.6 is a consequence of the previous two “counter-examples”; indeed,
for some 0 < < 1 a bounded function w satisfies w(t) < [|w||ge - (T + %) for
every t > 0.
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