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Abstract. We find necessary and sufficient conditions for the function ω

in order that any measurable function f : Ω → R which satisfies

(1)

∫

Ω

∫

Ω

ω

( |f(x)− f(y)|
|x− y|

)
dx dy

|x− y|N < +∞,

is constant (a.e. in Ω). We also study what regularity on f should be

assumed so that for any function ω which is continuous, ω(0) = 0 and

ω(t) > 0 for every t > 0, if (1) holds, then f is a constant.

1. Introduction

In this paper we investigate an open question posed by Brezis in [2]. Its
motivation came from the following result (see [2]):

Theorem 1.1. Let Ω be a domain (i.e. a connected open set) in RN . If f : Ω → R
is a measurable function which satisfies

∫

Ω

∫

Ω

|f(x)− f(y)|
|x− y|

dx dy

|x− y|N < +∞,

then f is a constant (a.e. in Ω). More generally, if p ≥ 1 and
∫

Ω

∫

Ω

|f(x)− f(y)|p
|x− y|p

dx dy

|x− y|N < +∞,

then the same conclusion holds.
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2 R. IGNAT

We denote

W = {ω ∈ C(R+,R+) |ω(0) = 0, ω(t) > 0, ∀t > 0} .

The following problem now arises:

Problem 1. Find a necessary and sufficient condition for ω ∈ W so that any
measurable function f : Ω → R which satisfies

(2)
∫

Ω

∫

Ω

ω

( |f(x)− f(y)|
|x− y|

)
dx dy

|x− y|N < +∞,

is constant (a.e. in Ω).

Observe that the restriction ω ∈ W is natural. Indeed, the continuity of ω is
needed to make the left hand side of (2) well-defined. Also, ω(0) = 0 (since for
any constant function f , (2) should hold) and ω(t) > 0, ∀t > 0 (if ω(t) = 0 for
some t > 0, take N = 1 and f(x) = tx). Henceforth it is assumed that ω ∈ W.

Three theorems are established concerning Problem 1. Theorem 1.2 gives a
necessary condition and Theorems 1.3 and 1.4 provide sufficient conditions. The
question whether the necessary condition in Theorem 1.2 is also sufficient remains
open.

Theorem 1.2. Let Ω ⊂ RN be a bounded domain. Let ω ∈ W be such that any
measurable function f : Ω → R that satisfies (2) is constant (a.e. in Ω). Then∫ +∞
1

ω(t)
t2 dt = +∞.

Theorem 1.3. Let Ω ⊂ RN be a domain, f : Ω → R be a measurable function
and ω ∈ W such that lim inft→+∞

ω(t)
t > 0. If (2) holds, then f is constant (a.e.

in Ω).

Theorem 1.4. Let Ω ⊂ RN be a domain, f : Ω → R be a measurable function
and ω ∈ W. Define φ : (0,+∞) 7→ (0, +∞), φ(t) = t−1ω(t) for all t > 0. Assume
that ω is a non-decreasing function such that

∫ +∞

1

ω(t)
t2

dt = +∞ and sup
0<s≤t

φ(t)
φ(s)

< +∞.

If (2) holds, then f is constant (a.e. in Ω).

Open question 1. Is the condition
∫ +∞
1

ω(t)
t2 dt = +∞ sufficient for Problem 1

(of course, under the assumption ω ∈ W)?

In the second part of the paper, we investigate the following problem:
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Problem 2. What regularity on f should be assumed so that for any ω ∈ W, (2)
implies f is a constant?

The motivation is clear: if we do not want any restriction on ω ∈ W, an
additional condition on f should be imposed in order that (2) yields f to be a
constant. We establish the following results for Problem 2. Theorem 1.5 estab-
lishes that the condition f ∈ W 1,1

loc (Ω) guarantees that Problem 2 has a positive
answer. The other two theorems deal with the question raised by Brezis in [2]:
Is the continuity (or even the C0,α

loc regularity) of f sufficient for Problem 2? The
answer is negative in general. In the end, we state another open question (related
to the previous one).

Theorem 1.5. Let Ω be a domain in RN and f ∈ W 1,1
loc (Ω). For any ω ∈ W, if

(2) holds, then f is constant a.e in Ω.

Theorem 1.6. Let Ω be the unit cube in RN i.e. Ω = (0, 1)N . For every
0 < α < 1, there is a nonconstant α-Hölder continuous function f : [0, 1]N 7→ R
of bounded variation which satisfies (2), for every bounded function ω ∈ W.

Theorem 1.7. Let Ω = (0, 1)N . For every 0 < α < 1, there is a nonconstant
α-Hölder continuous function f : [0, 1]N 7→ R of bounded variation which satisfies

∫

Ω

∫

Ω

|f(x)− f(y)|θ
|x− y|θ

dx dy

|x− y|N < +∞, ∀θ ∈ (0, 1).

Open question 2. Let ω ∈ W be such that
∫ +∞
1

ω(t)
t2 dt = +∞. Suppose f is

continuous (or even C0,α
loc for some 0 < α < 1) and satisfies (2). Is f constant?

In this paper, we also present some remarkable properties concerning a gener-
alized Cantor set and Cantor function, results that we use in the proofs of the
last theorems.

Acknowledgement. This paper was done when the author visited Rutgers Uni-
versity; he thanks the Mathematics Departement for its invitation and hospitality.
The author thanks Prof. H. Brezis and A. Ponce for very useful comments.

2. Necessary condition for Problem 1

In this section we prove Theorem 1.2 i.e., the condition
∫ +∞

1

ω(t)
t2

dt = +∞

is necessary for Problem 1. Firstly, we present a preliminary result. It states that
the above condition is needed in order to prevent f from being a step function.
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Lemma 2.1. Let Ω = (−1, 1) × (0, 1)N−1 and ω ∈ W. Let f be the character-
istic function of the unit cube i.e. f = χ(0,1)N . Then (2) holds if and only if∫∞
1

ω(t)
t2 dt < +∞.

Proof. We denote x = (x1, x2, . . . , xN ) = (x1, x
′) ∈ RN and

I =
∫

Ω

∫

Ω

ω

( |f(x)− f(y)|
|x− y|

)
dx dy

|x− y|N .

After a change of variable t = x1 − y1 we get I = 2(I1 + I2) where

I1 =
∫

(0,1)N−1

∫

(0,1)N−1

dx′ dy′
∫ 1

0

ω

(
1√

|x′ − y′|2 + t2

)
t

(|x′ − y′|2 + t2)
N
2

dt

I2 =
∫

(0,1)N−1

∫

(0,1)N−1

dx′ dy′
∫ 2

1

ω

(
1√

|x′ − y′|2 + t2

)
2− t

(|x′ − y′|2 + t2)
N
2

dt.

We remark that |I2| ≤ ||ω||L∞[0,1] and

I1 = 2N−1

∫ 1

0

. . .

∫ 1

0︸ ︷︷ ︸
N times

ω

(
1
|x|

) x1

N∏
i=2

(1− xi)

|x|N dx.

If N = 1, then I1 =
∫ 1

0
ω

(
1
x

)
dx =

∫∞
1

ω(z)
z2 dz. If N ≥ 2, after the change of

variable z = 1√
x2
1+|x′|2

for each x′, we get I1 = 2N−1(I3 + I4) where

I3 =
∫ 1

1√
N

ω(z)zN−3

∫

(0,1)N−1

N∏

i=2

(1− xi) · χ( 1√
|x′|2+1

, 1
|x′| )

(z) dx′ dz

I4 =
∫ ∞

1

ω(z)zN−3

∫

|x′|≤ 1
z

x′∈[0,1]N−1

N∏

i=2

(1− xi) dx′ dz.

Note that |I3| ≤ ||ω||L∞[0,1]. Therefore it is sufficient to show that I4 < +∞ if
and only if

∫∞
1

ω(t)
t2 dt < +∞. For 0 < t < 1, define

TN (t) =
∫

x∈[0,1]N

|x|≤t

N∏

i=1

(1− xi) dx.
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Then ∫

[0, t√
N

]N

N∏

i=1

(1− xi) dx ≤ TN (t) ≤
∫

[0,t]N

N∏

i=1

(1− xi) dx;

so there is a constant cN = ( 1
2
√

N
)N such that

cN tN ≤ TN (t) ≤ tN for all t ∈ (0, 1).

This yields I4 ≈
∫∞
1

ω(z)
z2 dz. ¤

Proof of Theorem 1.2. Assume the contrary i.e.
∫ +∞
1

ω(t)
t2 dt < +∞. Since

Ω is bounded, Ω ⊂ (−r, r)N for some r > 0. For the simplicity, we suppose that
0 ∈ Ω. Take now the characteristic function f = χ(0,r)×(−r,r)N−1 . By Lemma 2.1,

∫

(−r,r)N

∫

(−r,r)N

ω

( |f(x)− f(y)|
|x− y|

)
dx dy

|x− y|N < +∞.

Therefore (2) holds which contradicts the hypothesis that f is not constant on
Ω. ¤

3. Sufficient conditions for Problem 1

In this section, the proofs of Theorem 1.3 and Theorem 1.4 are presented. We
call mollifiers in RN , any family (ρε)ε>0 of functions in L1

loc(0,∞) satisfying the
following properties





ρε ≥ 0 a.e. in (0, +∞),∫ ∞

0

ρε(t) tN−1 dt = 1 ∀ε > 0,

lim
ε→0

∫ ∞

δ

ρε(t) tN−1 dt = 0 ∀δ > 0.

Recall the following result of Brezis (for the proof see e.g. [6] Proposition 1 and
Lemma 4):

Theorem 3.1. Let Ω ⊂ RN be a domain, (ρε) be mollifiers in RN , f ∈ L1
loc(Ω)

and ω ∈ W be a convex function. If

lim
ε→0

∫

Ω

∫

Ω

ω

( |f(x)− f(y)|
|x− y|

)
ρε(|x− y|) dx dy = 0

then f is constant (a.e. in Ω).
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Proof of Theorem 1.3. Firstly, since ω ∈ W we can construct a convex func-
tion ω̃ ∈ W such that ω̃(t) ≤ ω(t),∀t ∈ [0, 1] and ω̃(t) = at + b,∀t ≥ 1 for some
a, b > 0. The hypothesis lim inft→∞

ω(t)
t > 0 implies the existence of a constant

c > 0 such that ω(t) ≥ c ω̃(t), ∀t ≥ 0. Therefore
∫

Ω

∫

Ω

ω̃

( |f(x)− f(y)|
|x− y|

)
dx dy

|x− y|N < +∞.

Consider the mollifiers in RN

(3) ρε(t) =
{

ε
tN−ε if 0 < t < 1
0 if t ≥ 1

.

By the dominated convergence theorem,

lim
ε→0

∫

Ω

∫

Ω

ω̃

( |f(x)− f(y)|
|x− y|

)
ρε(|x− y|) dx dy = 0.

If f ∈ L1
loc(Ω), we conclude by Theorem 3.1. In the general case of a measurable

function f , we consider

fn(x) =





f(x) if |f(x)| ≤ n

n if f(x) ≥ n

−n if f(x) ≤ −n

.

So fn ∈ L1
loc(Ω), fn → f a.e. in Ω and

|fn(x)− fn(y)| ≤ |f(x)− f(y)| ∀x, y ∈ Ω.

Since ω̃ is increasing, we get for all n ≥ 1,

lim
ε→0

∫

Ω

∫

Ω

ω̃

( |fn(x)− fn(y)|
|x− y|

)
ρε(|x− y|) dx dy = 0.

This yields fn ≡ cn et cn → f a.e. in Ω. Thus f is constant. ¤

Proof of Theorem 1.4. Since ω is non-decreasing, using the same argument
as in the proof of Theorem 1.3, it is sufficient to show that the conclusion holds
for f ∈ L∞loc(Ω). Firstly, assume that the function φ is non-increasing on (0, +∞).
Take an arbitrary ball B̄ ⊂ Ω. For simplicity, we suppose that |f | ≤ 1

2 a.e. in B.
By these assumptions we get

∫

B

∫

B

|f(x)− f(y)|
|x− y| φ

(
1

|x− y|
)

dx dy

|x− y|N < +∞.



ON AN OPEN PROBLEM ABOUT HOW TO RECOGNIZE CONSTANT FUNCTIONS 7

For each ε > 0, set

0 < cε :=
∫ 1

0

φ

(
1
t

)
ε

t1−ε
dt ≤ φ(1).

Consider the functions

ρε(t) =
{ 1

cε
φ

(
1
t

)
ε

tN−ε if 0 < t < 1
0 if t ≥ 1

∀ε > 0.

Using the hypothesis that
∫ 1

0
φ

(
1
t

)
dt
t = +∞, we see that (ρε) are mollifiers in

RN . We also notice that limε→0
ε
cε

= 0. By dominated convergence theorem we
obtain

lim
ε→0

∫

B

∫

B

|f(x)− f(y)|
|x− y| ρε(|x− y|) dx dy = 0.

Hence Theorem 3.1 implies f is constant (a.e. in B) and since Ω is connected, we
conclude that f is constant (a.e. in Ω). We now consider the general case when
c := sup0<s≤t

φ(t)
φ(s) < +∞. Set φ(0) = φ(1)

c and define

φ̃ : [0,+∞) 7→ (0, +∞), φ̃(t) = min
s∈[0,t]

φ(s) ∀t ≥ 0.

So φ̃ is continuous and non-increasing on [0,+∞) and φ̃(t) ≤ φ(t), ∀t > 0. From
here, ∫

Ω

∫

Ω

|f(x)− f(y)|
|x− y| φ̃

( |f(x)− f(y)|
|x− y|

)
dx dy

|x− y|N < +∞.

We also have that φ(t) ≤ c2 φ̃(t), ∀t ≥ 1 and thus
∫ 1

0
φ̃

(
1
t

)
dt
t = +∞. By the

previous case, f is constant (a.e. in Ω). ¤

4. The case of W 1,1
loc functions

In this section, we show that for f ∈ W 1,1
loc (Ω) (in particular for Lipschitz

functions), the answer to Problem 2 is positive. We will present two different
approaches for solving this case.

Proof of Theorem 1.5. Let x0 ∈ Ω. Take r > 0 such that B̃ = B(x0, 2r) ⊂ Ω
and denote B = B(x0, r). Then f ∈ W 1,1(B) i.e. f ∈ L1(B) and∇f ∈ (

L1(B)
)N .

So it makes sense to speak of f(x) and ∇f(x) for a.e. x ∈ B. Let σ ∈ SN−1. By
Fubini’s theorem we find that for a.e. x ∈ B there is a small tx > 0 such that
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Ix = {x+ tσ | t ∈ (−tx, tx)} ⊂ B and f ∈ W 1,1(Ix) i.e., f is absolutely continuous
on Ix. Therefore for every σ ∈ SN−1,

(4) lim
t→0

f(x + tσ)− f(x)
t

= ∇f(x) · σ for a.e. x ∈ B.

Write∫

B̃

∫

B̃

ω
( |f(x)− f(y)|

|x− y|
) dx dy

|x− y|N ≥
∫

B

dx

∫

SN−1

dσ

∫ r

0

ω
( |f(x + tσ)− f(x)|

t

)dt

t

and by (2) deduce that for a.e. x ∈ B and for a.e. σ ∈ SN−1,
∫ r

0

ω

( |f(x + tσ)− f(x)|
t

)
dt

t
< +∞.

Using
∫ r

0
dt
t = ∞, we get

lim inf
t→0

ω

( |f(x + tσ)− f(x)|
t

)
= 0.

ω being continuous, by (4) one can find N linear independent directions (σi)1≤i≤N

such that ω (|∇f(x) · σi|) = 0 for a.e. x ∈ B and for every i ∈ {1, ..., N}. This
implies ∇f = 0 a.e. in B. By the Poincaré-Wirtinger inequality, we have that∥∥∥∥f − 1

|B|
∫

B

f

∥∥∥∥
L1(B)

≤ C ‖∇f‖L1(B) = 0

i.e. f is constant (a.e. in B). Since x0 was arbitrarly chosen and Ω is connected,
we conclude that f is constant (a.e. in Ω). ¤

Remark. One could prove this result using another method, as follows. Define
ω̃ : [0,+∞) 7→ [0, 1], ω̃(t) = min(ω(t), 1) for every t ≥ 0. Take an arbitrary ball
B̄ ⊂ Ω. Then ∫

B

∫

B

ω̃

( |f(x)− f(y)|
|x− y|

)
dx dy

|x− y|N < +∞.

Consider the mollifiers (3) in RN . By the dominated convergence theorem, we
obtain

lim
ε→0

∫

B

∫

B

ω̃

( |f(x)− f(y)|
|x− y|

)
ρε (|x− y|) dx dy = 0.

On the other hand, one can show that for a bounded continuous function ω̃ on
[0,+∞) and f ∈ W 1,1(B),

lim
ε→0

∫

B

∫

B

ω̃

( |f(x)− f(y)|
|x− y|

)
ρε (|x− y|) dx dy =

∫

B

∫

SN−1

ω̃ (|∇f(x) · σ|) dx dσ
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(see e.g. [6] Lemma 5). As before, this yields ∇f = 0 a.e. in B for every ball
B̄ ⊂ Ω; since f ∈ W 1,1

loc (Ω) and Ω is connected, f is constant (a.e. in Ω).

5. Some generalized Cantor sets and Cantor functions

Let 0 < β < 1. We recall the definition of some general Cantor sets, called
here β-Cantor sets, all homeomorphic to the standard one and which can be
obtained by deleting a sequence of pairwise disjoint open intervals from the
interior of the segment I

(0)
0 = [0, 1], as follows (see [5]). Firstly, remove the

centered open interval from I
(0)
0 which has length β = β ·

∣∣∣I(0)
0

∣∣∣ i.e., delete

the interval J
(1)
0 =

(
1−β

2 , 1+β
2

)
and leave two segments I

(1)
0 =

[
0, 1−β

2

]
and

I
(1)
1 =

[
1+β

2 , 1
]
. The second step consists in deleting the open subinterval of

length β ·
∣∣∣I(1)

0

∣∣∣ = β ·
∣∣∣I(1)

1

∣∣∣ = β 1−β
2 from the center of each of the segments I

(1)
0

and I
(1)
1 , namely J

(2)
0 =

(
(1−β)2

4 , 1−β2

4

)
and J

(2)
1 = 1− J

(2)
0 ; thus, there remains

22 segments, denoted I
(2)
0 , I

(2)
1 , I

(2)
2 and I

(2)
3 . We iterate this procedure; at the

(n+1) step, remove the centered open subinterval J
(n+1)
k of length β ·

∣∣∣I(n)
k

∣∣∣ from

each segment I
(n)
k = [a(n)

k , b
(n)
k ] and leave the two segments

I
(n+1)
2k = [a(n+1)

2k , b
(n+1)
2k ] and I

(n+1)
2k+1 = [a(n+1)

2k+1 , b
(n+1)
2k+1 ] for k = 0, 1, . . . , 2n − 1.

The limit set is the β-Cantor set, denoted by Cβ . It is a compact set, containing
an uncountable infinity of points; it has Lebesgue measure zero and it is nowhere
dense (i.e. it has no interior). We will give the specific form of Cβ . In order to
do that, let us consider σn and δn the length of the removed interval J

(n)
k and

respectively, of the remaining segment I
(n)
k at the n step. A simple computation
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yields

δn =
(

1− β

2

)n

, σn = βδn−1 ∀n ≥ 1 (here δ0 = 1).

Set εn = δn + σn. Then one can deduce (see [5]) that

Cβ =

{ ∞∑

k=1

αkεk |αk ∈ {0, 1}, k = 0, 1, . . .

}
.

In fact, the binary decomposition

j = αn + 2αn−1 + · · ·+ 2n−1α1 = (α1 . . . αn)2

gives a
(n)
j =

n∑
k=1

αkεk and b
(n)
j = a

(n)
j +

∑
k≥n+1

εk.

We define now the β-Cantor function, denoted here by fβ (see [3]). Set fβ(0) =
0 and fβ(1) = 1. So fβ is specified at the endpoints of I

(0)
0 . Define fβ(x) = 1

2 if
x ∈ clJ

(1)
0 . Thus fβ(x) is the average of the values of fβ at the endpoints of I

(0)
0

when x belongs to the removed interval J
(1)
0 and fβ is specified at the endpoints

of I
(1)
0 and I

(1)
1 . At the n + 1 step, define fβ ≡ fβ(b

(n)
k )−fβ(a

(n)
k )

2 on the closure of

each J
(n+1)
k , the removed interval from I

(n)
k = [a(n)

k , b
(n)
k ]. By that, fβ is defined

in every endpoint of I
(n+1)
2k and I

(n+1)
2k+1 for k = 0, 1, . . . , 2n−1; then we can iterate

the process.
Suppose fβ is not yet defined at x. At each n step, x is in the interior

of exactly one of the 2n retained segments, say [an, bn] of length δn. More-
over, bn = an + δn, fβ(bn) = fβ(an) + 2−n, an ≤ an+1 < bn+1 ≤ bn and
fβ(an) ≤ fβ(an+1) < fβ(bn+1) ≤ fβ(bn); then fβ(x) is defined by

lim
n→∞

fβ(an) = fβ(x) = lim
n→∞

fβ(bn).
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Furthermore, fβ is a continuous, nondecreasing map of [0, 1] onto [0, 1] (so fβ

is a function of bounded variation on [0, 1] ) and f ′β(x) = 0 for a.e. x ∈ [0, 1]. One
can easily check that on the β-Cantor set we have

fβ

( ∞∑

k=1

αkεk

)
=

∞∑

k=1

αk2−k.

We now show that each β-Cantor function is Hölder continuous with Hölder
exponent equal to the Hausdorff dimension of Cβ i.e. Hβ = 1

1−log2(1−β) (see also
[4]).

Theorem 5.1. The β-Cantor function is α-Hölder if and only if 0 < α ≤ Hβ.

Proof. Since Cβ is nowhere dense and fβ is continuous, it is sufficient to prove
that for every α ≤ Hβ , there exists lα > 0 such that

(5) |fβ(x)− fβ(y)| ≤ lα|x− y|α ∀x, y ∈ [0, 1]\Cβ .

Take x < y, x, y ∈ [0, 1]\Cβ i.e. x and y are in the interior of two removed intervals

in the construction of Cβ , say (b, a) and (b̃, ã). Write a =
n∑

k=1

αkεk,αk ∈ {0, 1},

αn = 1 and ã =
m∑

j=1

γjεj , γj ∈ {0, 1}, γm = 1. Then b = a− σn, b̃ = ã− σm. If the

two removed intervals coincide, then fβ(x) = fβ(y) and (5) is obvious. Otherwise,
a < b̃. Take s ≥ 1 such that αj = γj for j = 1, . . . , s − 1 and αs 6= γs (we may
consider αj = 0, ∀j > n). Thus γs = 1, αs = 0 and s ≤ m.

If s < n, we get

fβ(y)− fβ(x) =
m∑

j=1

γj2−j −
n∑

k=1

αk2−k

= 2−n +
m∑

j=s+1

γj2−j +
n∑

k=s+1

(1− αk)2−k,

y − x ≥ b̃− a =
m∑

j=1

γj εj − σm −
n∑

k=1

αkεk

≥ δn +
m∑

j=s+1

γj δj +
n∑

k=s+1

(1− αk)δk
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(here we used εs = σs + δs = σs + εs+1 + · · ·+ εn + δn ). Otherwise, s > n (since
s 6= n) and we have

fβ(y)− fβ(x) =
m∑

j=s

γj2−j ,

y − x ≥ b̃− a =
m∑

j=s

γ
j
εj − σm ≥

m∑

j=s

γ
j
δj .

So in both cases, we can write

fβ(y)− fβ(x) =
M∑

j=1

hj2−j and y − x ≥
M∑

j=1

hjδj

where M ≥ 1, hj ∈ {0, 1, 2}, j = 1, . . . ,M. We distinguish three cases:
Case 1 : 0 < α < Hβ . Set ε = Hβ − α > 0. By Hölder’s inequality, we get

M∑

j=1

hj2−j =
M∑

j=1

hα
j δα

j h1−α
j δε

j ≤
( M∑

j=1

hjδj

)α( M∑

j=1

hjδ
ε

1−α

j

)1−α

.

Since hj ∈ {0, 1, 2}, we deduce

M∑

j=1

hjδ
ε

1−α

j ≤ 2
∑

j≥1

(
δ

ε
1−α

1

)j

=: lα
1

1−α < +∞.

So |f(x)− f(y)| ≤ lα|x− y|α.

Case 2 : α = Hβ i.e. δα
j = 2−j , ∀j ≥ 0. Take the smallest j0 ≥ 1 such that hj0 6= 0.

Then
M∑

j=j0

hjδ
α
j

(
M∑

j=j0

hjδj

)α ≤
2

∑
j≥j0

δα
j

δα
j0

= 2
∑

j≥0

2−j = 4.

Thus, (5) is satisfied.
Case 3 : α > Hβ . Take x = εn and y = δn−1 =

∑
k≥n

εk. Then

f(y)− f(x)
|y − x|α =

2−n

|δn−1 − εn|α =
2−n

δα
n

→∞ if n →∞.

So, in this case, fβ is not an α-Hölder continuous function. ¤
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6. Some counter-examples

In this section, we present some counter-examples for Problem 2 in the case of
regularity C0,α. We will assume that Ω is the unit cube in RN i.e. Ω = (0, 1)N .

Theorem 6.1. For every α ∈ (0, 1), there is a nonconstant α-Hölder function
f : [0, 1]N 7→ R of bounded variation which satisfies (2), for all ω ∈ W with the
property that ω(t) ≤ 1

t ,∀t > 0.

Proof. : Let α ∈ (0, 1). Consider the unique β ∈ (0, 1) such that α = Hβ .
Case 1 : N = 1. Let f be the β-Cantor function. Take an arbitrary ω ∈ W such
that ω(t) ≤ 1

t , ∀t > 0. Denote by J the (countable) set of all removed intervals
in the construction of the β-Cantor set i.e.

J =
{

J
(n+1)
k : n ≥ 0, k = 0, 1, . . . , 2n − 1

}
.

We have

I =
∫ 1

0

∫ 1

0

ω

( |f(x)− f(y)|
|x− y|

)
dx dy

|x− y|

=
∑

J∈J

∑

J̃∈J

∫

J

∫

J̃

ω

( |f(x)− f(y)|
|x− y|

)
dx dy

|x− y|

= 2
∑

J,J̃∈J
J<J̃

∫

J

∫

J̃

ω

( |f(x)− f(y)|
|x− y|

)
dx dy

|x− y|

(we denote J = (b, a) < J̃ = (b̃, ã) if a < b̃). We want to prove that I < +∞.
Take two removed intervals J = (b, a) and J̃ = (b̃, ã) such that J < J̃ . Write

a =
n∑

k=1

αkεk, αk ∈ {0, 1}, αn = 1 and ã =
m∑

j=1

γjεj , γj ∈ {0, 1}, γm = 1 ; here

b = a − σn, b̃ = ã − σm. Take r = f |J̃ − f |J =
m∑

j=1

γj2−j −
n∑

k=1

αk2−k > 0. We

use these notations in the rest of the paper. Since ω(t) ≤ 1
t , ∀t > 0 we get

∫

J

∫

J̃

ω

( |f(x)− f(y)|
|x− y|

)
dx dy

|x− y| ≤
∫

J

∫

J̃

dx dy

r
=
|J | · |J̃ |

r
=

σnσm

r
.

The aim is to estimate

S =
∑

J<J̃

J,J̃∈J

|J | · |J̃ |
f |J̃ − f |J .
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Firstly, consider the interval J = (b, a) fix. Let J̃ = (b̃, ã) be a variable removed
interval (in the construction of Cβ) such that J̃ > J (i.e. a < ã). Each time, we
consider the first s step (in the construction of Cβ) when J and J̃ do not belong
anymore to the same remaining interval; that means the biggest 1 ≤ s ≤ n such
that αj = γj for j = 1, . . . , s − 1 (if α1 6= γ1 then s = 1). Notice that s ≤ m,
γs = 1 and αs = γs ⇐⇒ s = n.

If s < m i.e. dist(J, J̃) ≥ δm then

r = f |J̃ − f |J =
m∑

j=1

γj2−j −
n∑

k=1

αk2−k ≥
m∑

j=s+1

γj2−j .

If we sum up over these J̃ , we get:

∑

J̃∈J ,J<J̃

dist(J,J̃)≥δm

|J̃ |
f |J̃ − f |J =

n∑
s=1

∑

m≥s+1

∑

γj∈{0,1},γs=γm=1

s+1≤j≤m−1

σm

r

≤
n∑

s=1

∑

m≥s+1

σm

∑

γj∈{0,1},γm=1

s+1≤j≤m−1

1
m∑

j=s+1

γj2−j

≤
n∑

s=1

∑

m≥s+1

σm2m
2m−s−1∑

j=1

1
j

≤
n∑

s=1

∑

m≥s+1

σm2m(m− s)

≤ nL

where L =
∑

m≥1

σm2mm = β
δ1

∑
m≥1

(1− β)mm < +∞.

Otherwise, s = m i.e. dist(J, J̃) < δm. Thus s < n and

r = f |J̃ − f |J = 2−s −
n∑

k=s+1

αk2−k =
n−1∑

k=s+1

(1− αk)2−k + 2−n.

We get

∑

J̃∈J ,J<J̃

dist(J,J̃)<δm

|J̃ |
f |J̃ − f |J =

n−1∑
s=1

σs

n−1∑
k=s+1

(1− αk)2−k + 2−n

.
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Finally, if we let J be variable in J , we deduce

S ≤
∑

n≥1

∑

αk∈{0,1}
1≤k≤n−1

σn

(
nL +

n−1∑
s=1

σs

n−1∑
k=s+1

(1− αk)2−k + 2−n

)

=
∑

n≥1

nσn2n−1L +
∑

n≥1

σn2n
n−1∑
s=1

σs

∑

α̃k∈{0,1}
1≤k≤n−1

1

1 +
n−s−1∑

k=1

α̃k2k

≤ L2 +
∑

n≥1

σn · 2n
n−1∑
s=1

σs2s(n− s)

≤ 2L2.

Case 2 : N ≥ 2. We denote x = (x1, x
′) = (x1, x2, . . . , xN ) ∈ [0, 1]N . Take

f(x) = fβ(x1), ∀x ∈ [0, 1]N . So f ∈ C0,α ∩ BV (Ω). Choose any ω ∈ W with the
property that ω(t) ≤ 1

t for all t > 0. Firstly, remark that

I =
∫

(0,1)N

∫

(0,1)N

ω

( |f(x)− f(y)|
|x− y|

)
dx dy

|x− y|N

= 2N−1

∫ 1

0

∫ 1

0

∫

(0,1)N−1

ω

( |fβ(x1)− fβ(y1)|√
|x′|2 + (x1 − y1)2

)
N∏

i=2

(1− xi) dx1 dy1 dx′

(|x′|2 + (x1 − y1)2)
N
2

≤ 2N
∑

J,J̃∈J
J<J̃

∫

J

∫

J̃

∫

(0,1)N−1

ω

( |fβ(x1)− fβ(y1)|√
|x′|2 + (x1 − y1)2

)
dx1 dy1 dx′

(|x′|2 + (x1 − y1)2)
N
2

≤ 2N |SN−2|
∑

J,J̃∈J
J<J̃

1
fβ |J̃ − fβ |J

∫

J

∫

J̃

dx1 dy1

∫ N−1

0

tN−2

(t2 + (x1 − y1)2)
N−1

2

dt.

On the other hand, we have

∫ N−1

0

tN−2 dt

(t2 + (x1 − y1)2)
N−1

2

≤ 2
∫ N−1

0

dt

y1 − x1 + t
≤ 2

(
ln N + ln

1
y1 − x1

)
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for every 0 ≤ x1 < y1 ≤ 1. Therefore there is a constant c = c(N) > 0 such that

I ≤ c(N)
( ∑

J,J̃∈J
J<J̃

|J | · |J̃ |
fβ |J̃ − fβ |J +

∑

J,J̃∈J
J<J̃

|J | · |J̃ |
fβ |J̃ − fβ |J ln

1
dist(J, J̃)

)
.

We have already proved that the first sum converges; it remains to show that the
second one is convergent, too. As before, fix J = (b, a) and let J̃ = (b̃, ã) be such

that J < J̃ ; write a =
n∑

k=1

αkεk, b = a − σn and ã =
m∑

j=1

γjεj , b̃ = ã − σm. Set

r = fβ |J̃ − fβ |J . We have that dist(J, J̃) = b̃− a. Using the same argument as in
the case N = 1, we get

∑

J̃∈J ,J<J̃

dist(J,J̃)≥δm

|J̃ |
fβ |J̃ − fβ |J ln

1
dist(J, J̃)

≤
n∑

s=1

∑

m≥s+1

∑

γj∈{0,1},γm=1

s+1≤j≤m−1

σm

r
ln

1
δm

≤
n∑

s=1

∑

m≥s+1

mσm2m
2m−s−1∑

j=1

1
j

ln
1
δ1

≤ nL̃ ln
1
δ1

where L̃ =
∑

m≥1

σm2mm2 < +∞. Since dist(J, J̃) ≥ min(δn, δm), it results

∑

J̃∈J ,J<J̃

dist(J,J̃)<δm

|J̃ |
fβ |J̃ − fβ |J ln

1
dist(J, J̃)

≤
n−1∑
s=1

σs

n−1∑
k=s+1

(1− αk)2−k + 2−n

ln
1
δn

.

Similarly, allowing J to be variable in J we conclude that:

∑

J,J̃∈J
J<J̃

|J | · |J̃ |
fβ |J̃ − fβ |J ln

1
dist(J, J̃)

≤ 2L L̃ ln
1
δ1

.

¤

We now prove Theorem 1.7:

Proof of Theorem 1.7. Let α ∈ (0, 1). Take β ∈ (0, 1) such that α = Hβ .
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Case 1 : N = 1. Let f be the β-Cantor function. Choose an arbitrary θ ∈ (0, 1)
and set ω(t) = tθ,∀t ≥ 0. Like in the previous proof, we want to show that

∑

J,J̃∈J
J<J̃

∫

J

∫

J̃

ω

( |f(x)− f(y)|
|x− y|

)
dx dy

|x− y| < +∞.

As before, consider the interval J = (b, a) fix. Let J̃ = (b̃, ã) be a variable
removed interval such that a < ã. Each time, we consider the first s step (in the
construction of Cβ) when J and J̃ do not belong anymore to the same remaining
interval. Let us denote p = 1

δ1
> 2 and we use the same notations r = f |J̃ − f |J ,

b = a − σn, b̃ = ã − σm, a =
n∑

k=1

αkεk, αk ∈ {0, 1}, αn = 1 and ã =
m∑

j=1

γjεj ,

γj ∈ {0, 1}, γm = 1.

If dist(J, J̃) ≥ δm i.e. s < m, we distinguish two cases:
i) dist(J, J̃) ≥ δn i.e. s < n. Here we have b̃− a ≥ σs and r ≤ 2−s+1. We write:

E(J, J̃) =
∫

J

∫

J̃

ω

( |f(x)− f(y)|
|x− y|

)
dx dy

|x− y|

=
∫ 1

0

∫ 1

0

ω(r)σnσm dt dz

(b̃− a + tσn + zσm)1+θ
≤ rθσnσm

(b̃− a)1+θ
.

If we sum up over these J̃ , we get:

∑

J̃∈J ,J<J̃

dist(J,J̃)≥max{δm,δn}

E(J, J̃) ≤ σn

n−1∑
s=1

∑

m≥s+1

∑

γj∈{0,1}
s+1≤j≤m−1

σm

σs

1
(2s−1σs)θ

≤ σn

n−1∑
s=1

1
(2s−1σs)θ

∑

m≥s+1

(
2
p

)m−s

≤ cσn

n−2∑
s=0

(p

2

)sθ

L1

≤ cσnL1

(p

2

)θ(n−1)

where for q > 0 we denote Lq =
∑

m≥0

(
2
p

)mq

< +∞ and c = c(β, θ) is a constant

that depends only on β and θ.
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ii) dist(J, J̃) < δn i.e. s = n. In this case,

E(J, J̃) ≤
∫ 1

0

rθσnσm dt

(b̃− a + tσn)1+θ
.

We have b̃− a =
m∑

j=n+1

γjεj − σm ≥
m∑

j=n+1

γjδj and r =
m∑

j=n+1

γj2−j . From here,

we obtain ∑

J̃∈J ,J̃>J

δm≤dist(J,J̃)<δn

E(J, J̃) ≤ cLθ L1−θ σn

(p

2

)nθ

where c = c(β, θ) is a constant that depends only on β and θ. If we let J be
variable in J , we deduce

∑

J,J̃∈J ,J<J̃

dist(J,J̃)≥δm

E(J, J̃) ≤ c(β, θ)
∑

n≥1

∑

αk∈{0,1}
1≤k≤n−1

σn

(p

2

)nθ

≤ c(β, θ)
∑

n≥1

(
2
p

)n(1−θ)

< +∞.

Otherwise, dist(J, J̃) < δm i.e. s = m. Thus m < n,

b̃− a = δm −
n∑

k=m+1

αkεk ≥
n−1∑

k=m+1

(1− αk)δk + δn

r =
n−1∑

k=m+1

(1− αk)2−k + 2−n and E(J, J̃) ≤
∫ 1

0

rθσnσm dz

(b̃− a + zσm)1+θ
.

We get

∑

J̃∈J ,J<J̃

dist(J,J̃)<δm

E(J, J̃) ≤ σn

n−1∑
m=1

∫ 1

0

σm

( n−1∑
k=m+1

(1− αk)2−k + 2−n
)θ

dz

( n−1∑
k=m+1

(1− αk)δk + δn + zσm

)1+θ
.

Finally, if we let J be variable in J , we find
∑

J,J̃∈J ,J<J̃

dist(J,J̃)<δm

E(J, J̃) ≤ c(β, θ)LθM1−θ
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where M1−θ =
∑
n≥1

n
(

2
p

)n(1−θ)

< +∞.

Case 2 : N ≥ 2. Let f(x) = fβ(x1),∀x ∈ [0, 1]N . As before, take θ ∈ (0, 1) and
set ω(t) = tθ, ∀t ≥ 0. Write

I =
∫

(0,1)N

∫

(0,1)N

ω

( |f(x)− f(y)|
|x− y|

)
dx dy

|x− y|N

≤ 2N
∑

J,J̃∈J
J<J̃

∫

J

∫

J̃

∫

(0,1)N−1

ω

( |fβ(x1)− fβ(y1)|√
|x′|2 + (x1 − y1)2

)
dx1 dy1 dx′

(|x′|2 + (x1 − y1)2)
N
2

≤ 2N |SN−2|
∑

J,J̃∈J
J<J̃

∫

J

∫

J̃

ω(r) dx1 dy1

∫ N−1

0

tN−2

(t2 + (x1 − y1)2)
N+θ

2

dt

(here we denote r = fβ |J̃ − fβ |J ). On the other hand, we have
∫ N−1

0

tN−2 dt

(t2 + (x1 − y1)2)
N+θ

2

≤ 4
∫ N−1

0

dt

(y1 − x1 + t)2+θ
≤ 4

(y1 − x1)1+θ

for every 0 ≤ x1 < y1 ≤ 1. Therefore there is a constant c = c(N) > 0 such that

I ≤ c(N)
∑

J,J̃∈J
J<J̃

∫

J

∫

J̃

ω

( |fβ(x1)− fβ(y1)|
|x1 − y1|

)
dx1dy1

|x1 − y1| .

By Case 1, the conclusion follows. ¤

Theorem 1.6 is a consequence of the previous two “counter-examples”; indeed,
for some 0 < θ < 1 a bounded function ω satisfies ω(t) ≤ ||ω||L∞ · ( 1

t + tθ
)

for
every t > 0.
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