ON AN OPEN PROBLEM ABOUT HOW TO RECOGNIZE CONSTANT FUNCTIONS

RADU IGNAT

Communicated by Haïm Brezis

Abstract. We find necessary and sufficient conditions for the function ω in order that any measurable function $f: \Omega \rightarrow \mathbb{R}$ which satisfies

$$
\begin{equation*}
\int_{\Omega} \int_{\Omega} \omega\left(\frac{|f(x)-f(y)|}{|x-y|}\right) \frac{d x d y}{|x-y|^{N}}<+\infty \tag{1}
\end{equation*}
$$

is constant (a.e. in Ω). We also study what regularity on f should be assumed so that for any function ω which is continuous, $\omega(0)=0$ and $\omega(t)>0$ for every $t>0$, if (1) holds, then f is a constant.

1. Introduction

In this paper we investigate an open question posed by Brezis in [2]. Its motivation came from the following result (see [2]):

Theorem 1.1. Let Ω be a domain (i.e. a connected open set) in \mathbb{R}^{N}. If $f: \Omega \rightarrow \mathbb{R}$ is a measurable function which satisfies

$$
\int_{\Omega} \int_{\Omega} \frac{|f(x)-f(y)|}{|x-y|} \frac{d x d y}{|x-y|^{N}}<+\infty
$$

then f is a constant (a.e. in Ω). More generally, if $p \geq 1$ and

$$
\int_{\Omega} \int_{\Omega} \frac{|f(x)-f(y)|^{p}}{|x-y|^{p}} \frac{d x d y}{|x-y|^{N}}<+\infty
$$

then the same conclusion holds.

We denote

$$
\mathcal{W}=\left\{\omega \in C\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right) \mid \omega(0)=0, \omega(t)>0, \forall t>0\right\}
$$

The following problem now arises:
Problem 1. Find a necessary and sufficient condition for $\omega \in \mathcal{W}$ so that any measurable function $f: \Omega \rightarrow \mathbb{R}$ which satisfies

$$
\begin{equation*}
\int_{\Omega} \int_{\Omega} \omega\left(\frac{|f(x)-f(y)|}{|x-y|}\right) \frac{d x d y}{|x-y|^{N}}<+\infty \tag{2}
\end{equation*}
$$

is constant (a.e. in Ω).
Observe that the restriction $\omega \in \mathcal{W}$ is natural. Indeed, the continuity of ω is needed to make the left hand side of (2) well-defined. Also, $\omega(0)=0$ (since for any constant function f, (2) should hold) and $\omega(t)>0, \forall t>0$ (if $\omega(t)=0$ for some $t>0$, take $N=1$ and $f(x)=t x)$. Henceforth it is assumed that $\omega \in \mathcal{W}$.

Three theorems are established concerning Problem 1. Theorem 1.2 gives a necessary condition and Theorems 1.3 and 1.4 provide sufficient conditions. The question whether the necessary condition in Theorem 1.2 is also sufficient remains open.

Theorem 1.2. Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain. Let $\omega \in \mathcal{W}$ be such that any measurable function $f: \Omega \rightarrow \mathbb{R}$ that satisfies (2) is constant (a.e. in Ω). Then $\int_{1}^{+\infty} \frac{\omega(t)}{t^{2}} d t=+\infty$.

Theorem 1.3. Let $\Omega \subset \mathbb{R}^{N}$ be a domain, $f: \Omega \rightarrow \mathbb{R}$ be a measurable function and $\omega \in \mathcal{W}$ such that $\liminf _{t \rightarrow+\infty} \frac{\omega(t)}{t}>0$. If (2) holds, then f is constant (a.e. in Ω).

Theorem 1.4. Let $\Omega \subset \mathbb{R}^{N}$ be a domain, $f: \Omega \rightarrow \mathbb{R}$ be a measurable function and $\omega \in \mathcal{W}$. Define $\phi:(0,+\infty) \mapsto(0,+\infty), \phi(t)=t^{-1} \omega(t)$ for all $t>0$. Assume that ω is a non-decreasing function such that

$$
\int_{1}^{+\infty} \frac{\omega(t)}{t^{2}} d t=+\infty \text { and } \sup _{0<s \leq t} \frac{\phi(t)}{\phi(s)}<+\infty
$$

If (2) holds, then f is constant (a.e. in Ω).
Open question 1. Is the condition $\int_{1}^{+\infty} \frac{\omega(t)}{t^{2}} d t=+\infty$ sufficient for Problem 1 (of course, under the assumption $\omega \in \mathcal{W}$)?

In the second part of the paper, we investigate the following problem:

Problem 2. What regularity on f should be assumed so that for any $\omega \in \mathcal{W}$, (2) implies f is a constant?

The motivation is clear: if we do not want any restriction on $\omega \in \mathcal{W}$, an additional condition on f should be imposed in order that (2) yields f to be a constant. We establish the following results for Problem 2. Theorem 1.5 establishes that the condition $f \in W_{l o c}^{1,1}(\Omega)$ guarantees that Problem 2 has a positive answer. The other two theorems deal with the question raised by Brezis in [2]: Is the continuity (or even the $C_{l o c}^{0, \alpha}$ regularity) of f sufficient for Problem 2? The answer is negative in general. In the end, we state another open question (related to the previous one).

Theorem 1.5. Let Ω be a domain in \mathbb{R}^{N} and $f \in W_{\text {loc }}^{1,1}(\Omega)$. For any $\omega \in \mathcal{W}$, if (2) holds, then f is constant a.e in Ω.

Theorem 1.6. Let Ω be the unit cube in \mathbb{R}^{N} i.e. $\Omega=(0,1)^{N}$. For every $0<\alpha<1$, there is a nonconstant α-Hölder continuous function $f:[0,1]^{N} \mapsto \mathbb{R}$ of bounded variation which satisfies (2), for every bounded function $\omega \in \mathcal{W}$.

Theorem 1.7. Let $\Omega=(0,1)^{N}$. For every $0<\alpha<1$, there is a nonconstant α-Hölder continuous function $f:[0,1]^{N} \mapsto \mathbb{R}$ of bounded variation which satisfies

$$
\int_{\Omega} \int_{\Omega} \frac{|f(x)-f(y)|^{\theta}}{|x-y|^{\theta}} \frac{d x d y}{|x-y|^{N}}<+\infty, \quad \forall \theta \in(0,1)
$$

Open question 2. Let $\omega \in \mathcal{W}$ be such that $\int_{1}^{+\infty} \frac{\omega(t)}{t^{2}} d t=+\infty$. Suppose f is continuous (or even $C_{\text {loc }}^{0, \alpha}$ for some $0<\alpha<1$) and satisfies (2). Is f constant?

In this paper, we also present some remarkable properties concerning a generalized Cantor set and Cantor function, results that we use in the proofs of the last theorems.

Acknowledgement. This paper was done when the author visited Rutgers University; he thanks the Mathematics Departement for its invitation and hospitality. The author thanks Prof. H. Brezis and A. Ponce for very useful comments.

2. Necessary condition for Problem 1

In this section we prove Theorem 1.2 i.e., the condition

$$
\int_{1}^{+\infty} \frac{\omega(t)}{t^{2}} d t=+\infty
$$

is necessary for Problem 1. Firstly, we present a preliminary result. It states that the above condition is needed in order to prevent f from being a step function.

Lemma 2.1. Let $\Omega=(-1,1) \times(0,1)^{N-1}$ and $\omega \in \mathcal{W}$. Let f be the characteristic function of the unit cube i.e. $f=\chi_{(0,1)^{N}}$. Then (2) holds if and only if $\int_{1}^{\infty} \frac{\omega(t)}{t^{2}} d t<+\infty$.

Proof. We denote $x=\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\left(x_{1}, x^{\prime}\right) \in \mathbb{R}^{N}$ and

$$
I=\int_{\Omega} \int_{\Omega} \omega\left(\frac{|f(x)-f(y)|}{|x-y|}\right) \frac{d x d y}{|x-y|^{N}}
$$

After a change of variable $t=x_{1}-y_{1}$ we get $I=2\left(I_{1}+I_{2}\right)$ where

$$
\begin{aligned}
& I_{1}=\int_{(0,1)^{N-1}} \int_{(0,1)^{N-1}} d x^{\prime} d y^{\prime} \int_{0}^{1} \omega\left(\frac{1}{\sqrt{\left|x^{\prime}-y^{\prime}\right|^{2}+t^{2}}}\right) \frac{t}{\left(\left|x^{\prime}-y^{\prime}\right|^{2}+t^{2}\right)^{\frac{N}{2}}} d t \\
& I_{2}=\int_{(0,1)^{N-1}} \int_{(0,1)^{N-1}} d x^{\prime} d y^{\prime} \int_{1}^{2} \omega\left(\frac{1}{\sqrt{\left|x^{\prime}-y^{\prime}\right|^{2}+t^{2}}}\right) \frac{2-t}{\left(\left|x^{\prime}-y^{\prime}\right|^{2}+t^{2}\right)^{\frac{N}{2}}} d t
\end{aligned}
$$

We remark that $\left|I_{2}\right| \leq\|\omega\|_{L^{\infty}[0,1]}$ and

$$
I_{1}=2^{N-1} \underbrace{\int_{0}^{1} \ldots \int_{0}^{1}}_{\mathrm{N} \text { times }} \omega\left(\frac{1}{|x|}\right) \frac{x_{1} \prod_{i=2}^{N}\left(1-x_{i}\right)}{|x|^{N}} d x
$$

If $N=1$, then $I_{1}=\int_{0}^{1} \omega\left(\frac{1}{x}\right) d x=\int_{1}^{\infty} \frac{\omega(z)}{z^{2}} d z$. If $N \geq 2$, after the change of variable $z=\frac{1}{\sqrt{x_{1}^{2}+\left|x^{\prime}\right|^{2}}}$ for each x^{\prime}, we get $I_{1}=2^{N-1}\left(I_{3}+I_{4}\right)$ where

$$
\begin{gathered}
I_{3}=\int_{\frac{1}{\sqrt{N}}}^{1} \omega(z) z^{N-3} \int_{(0,1)^{N-1}} \prod_{i=2}^{N}\left(1-x_{i}\right) \cdot \chi_{\left(\frac{1}{\sqrt{\left.\left|x^{\prime}\right|\right|^{2}+1}}, \frac{1}{\left|x^{\prime}\right|}\right)}(z) d x^{\prime} d z \\
I_{4}=\int_{1}^{\infty} \omega(z) z^{N-3} \int_{\substack{ \\
\left|x^{\prime}\right| \leq \frac{1}{z} \\
x^{\prime} \in[0,1]^{N-1}}} \prod_{i=2}^{N}\left(1-x_{i}\right) d x^{\prime} d z
\end{gathered}
$$

Note that $\left|I_{3}\right| \leq\|\omega\|_{L^{\infty}[0,1]}$. Therefore it is sufficient to show that $I_{4}<+\infty$ if and only if $\int_{1}^{\infty} \frac{\omega(t)}{t^{2}} d t<+\infty$. For $0<t<1$, define

$$
T_{N}(t)=\int_{\substack{x \in[0,1]^{N} \\|x| \leq t}} \prod_{i=1}^{N}\left(1-x_{i}\right) d x
$$

Then

$$
\int_{\left[0, \frac{t}{\sqrt{N}}\right]^{N}} \prod_{i=1}^{N}\left(1-x_{i}\right) d x \leq T_{N}(t) \leq \int_{[0, t]^{N}} \prod_{i=1}^{N}\left(1-x_{i}\right) d x
$$

so there is a constant $c_{N}=\left(\frac{1}{2 \sqrt{N}}\right)^{N}$ such that

$$
c_{N} t^{N} \leq T_{N}(t) \leq t^{N} \text { for all } t \in(0,1)
$$

This yields $I_{4} \approx \int_{1}^{\infty} \frac{\omega(z)}{z^{2}} d z$.
Proof of Theorem 1.2. Assume the contrary i.e. $\int_{1}^{+\infty} \frac{\omega(t)}{t^{2}} d t<+\infty$. Since Ω is bounded, $\Omega \subset(-r, r)^{N}$ for some $r>0$. For the simplicity, we suppose that $0 \in \Omega$. Take now the characteristic function $f=\chi_{(0, r) \times(-r, r)^{N-1}}$. By Lemma 2.1,

$$
\int_{(-r, r)^{N}} \int_{(-r, r)^{N}} \omega\left(\frac{|f(x)-f(y)|}{|x-y|}\right) \frac{d x d y}{|x-y|^{N}}<+\infty .
$$

Therefore (2) holds which contradicts the hypothesis that f is not constant on Ω.

3. Sufficient conditions for Problem 1

In this section, the proofs of Theorem 1.3 and Theorem 1.4 are presented. We call mollifiers in \mathbb{R}^{N}, any family $\left(\rho_{\varepsilon}\right)_{\varepsilon>0}$ of functions in $L_{l o c}^{1}(0, \infty)$ satisfying the following properties

$$
\left\{\begin{array}{l}
\rho_{\varepsilon} \geq 0 \text { a.e. in }(0,+\infty) \\
\int_{0}^{\infty} \rho_{\varepsilon}(t) t^{N-1} d t=1 \quad \forall \varepsilon>0 \\
\lim _{\varepsilon \rightarrow 0} \int_{\delta}^{\infty} \rho_{\varepsilon}(t) t^{N-1} d t=0 \quad \forall \delta>0 .
\end{array}\right.
$$

Recall the following result of Brezis (for the proof see e.g. [6] Proposition 1 and Lemma 4):

Theorem 3.1. Let $\Omega \subset \mathbb{R}^{N}$ be a domain, $\left(\rho_{\varepsilon}\right)$ be mollifiers in $\mathbb{R}^{N}, f \in L_{l o c}^{1}(\Omega)$ and $\omega \in \mathcal{W}$ be a convex function. If

$$
\lim _{\varepsilon \rightarrow 0} \int_{\Omega} \int_{\Omega} \omega\left(\frac{|f(x)-f(y)|}{|x-y|}\right) \rho_{\varepsilon}(|x-y|) d x d y=0
$$

then f is constant (a.e. in Ω).

Proof of Theorem 1.3. Firstly, since $\omega \in \mathcal{W}$ we can construct a convex function $\tilde{\omega} \in \mathcal{W}$ such that $\tilde{\omega}(t) \leq \omega(t), \forall t \in[0,1]$ and $\tilde{\omega}(t)=a t+b, \forall t \geq 1$ for some $a, b>0$. The hypothesis $\lim \inf _{t \rightarrow \infty} \frac{\omega(t)}{t}>0$ implies the existence of a constant $c>0$ such that $\omega(t) \geq c \tilde{\omega}(t), \forall t \geq 0$. Therefore

$$
\int_{\Omega} \int_{\Omega} \tilde{\omega}\left(\frac{|f(x)-f(y)|}{|x-y|}\right) \frac{d x d y}{|x-y|^{N}}<+\infty
$$

Consider the mollifiers in \mathbb{R}^{N}

$$
\rho_{\varepsilon}(t)= \begin{cases}\frac{\varepsilon}{t^{N-\varepsilon}} & \text { if } 0<t<1 \tag{3}\\ 0 & \text { if } t \geq 1\end{cases}
$$

By the dominated convergence theorem,

$$
\lim _{\varepsilon \rightarrow 0} \int_{\Omega} \int_{\Omega} \tilde{\omega}\left(\frac{|f(x)-f(y)|}{|x-y|}\right) \rho_{\varepsilon}(|x-y|) d x d y=0
$$

If $f \in L_{l o c}^{1}(\Omega)$, we conclude by Theorem 3.1. In the general case of a measurable function f, we consider

$$
f_{n}(x)=\left\{\begin{array}{ll}
f(x) & \text { if }|f(x)| \leq n \\
n & \text { if } f(x) \geq n \\
-n & \text { if } f(x) \leq-n
\end{array} .\right.
$$

So $f_{n} \in L_{l o c}^{1}(\Omega), f_{n} \rightarrow f$ a.e. in Ω and

$$
\left|f_{n}(x)-f_{n}(y)\right| \leq|f(x)-f(y)| \quad \forall x, y \in \Omega
$$

Since $\tilde{\omega}$ is increasing, we get for all $n \geq 1$,

$$
\lim _{\varepsilon \rightarrow 0} \int_{\Omega} \int_{\Omega} \tilde{\omega}\left(\frac{\left|f_{n}(x)-f_{n}(y)\right|}{|x-y|}\right) \rho_{\varepsilon}(|x-y|) d x d y=0
$$

This yields $f_{n} \equiv c_{n}$ et $c_{n} \rightarrow f$ a.e. in Ω. Thus f is constant.
Proof of Theorem 1.4. Since ω is non-decreasing, using the same argument as in the proof of Theorem 1.3, it is sufficient to show that the conclusion holds for $f \in L_{\text {loc }}^{\infty}(\Omega)$. Firstly, assume that the function ϕ is non-increasing on $(0,+\infty)$. Take an arbitrary ball $\bar{B} \subset \Omega$. For simplicity, we suppose that $|f| \leq \frac{1}{2}$ a.e. in B. By these assumptions we get

$$
\int_{B} \int_{B} \frac{|f(x)-f(y)|}{|x-y|} \phi\left(\frac{1}{|x-y|}\right) \frac{d x d y}{|x-y|^{N}}<+\infty
$$

For each $\varepsilon>0$, set

$$
0<c_{\varepsilon}:=\int_{0}^{1} \phi\left(\frac{1}{t}\right) \frac{\varepsilon}{t^{1-\varepsilon}} d t \leq \phi(1)
$$

Consider the functions

$$
\rho_{\varepsilon}(t)=\left\{\begin{array}{ll}
\frac{1}{c_{\varepsilon}} \phi\left(\frac{1}{t}\right) \frac{\varepsilon}{t^{N-\varepsilon}} & \text { if } 0<t<1 \\
0 & \text { if } t \geq 1
\end{array} \quad \forall \varepsilon>0\right.
$$

Using the hypothesis that $\int_{0}^{1} \phi\left(\frac{1}{t}\right) \frac{d t}{t}=+\infty$, we see that $\left(\rho_{\varepsilon}\right)$ are mollifiers in \mathbb{R}^{N}. We also notice that $\lim _{\varepsilon \rightarrow 0} \frac{\varepsilon}{c_{\varepsilon}}=0$. By dominated convergence theorem we obtain

$$
\lim _{\varepsilon \rightarrow 0} \int_{B} \int_{B} \frac{|f(x)-f(y)|}{|x-y|} \rho_{\varepsilon}(|x-y|) d x d y=0 .
$$

Hence Theorem 3.1 implies f is constant (a.e. in B) and since Ω is connected, we conclude that f is constant (a.e. in Ω). We now consider the general case when $c:=\sup _{0<s \leq t} \frac{\phi(t)}{\phi(s)}<+\infty$. Set $\phi(0)=\frac{\phi(1)}{c}$ and define

$$
\tilde{\phi}:[0,+\infty) \mapsto(0,+\infty), \tilde{\phi}(t)=\min _{s \in[0, t]} \phi(s) \quad \forall t \geq 0 .
$$

So $\tilde{\phi}$ is continuous and non-increasing on $[0,+\infty)$ and $\tilde{\phi}(t) \leq \phi(t), \forall t>0$. From here,

$$
\int_{\Omega} \int_{\Omega} \frac{|f(x)-f(y)|}{|x-y|} \tilde{\phi}\left(\frac{|f(x)-f(y)|}{|x-y|}\right) \frac{d x d y}{|x-y|^{N}}<+\infty
$$

We also have that $\phi(t) \leq c^{2} \tilde{\phi}(t), \forall t \geq 1$ and thus $\int_{0}^{1} \tilde{\phi}\left(\frac{1}{t}\right) \frac{d t}{t}=+\infty$. By the previous case, f is constant (a.e. in Ω).

4. The case of $W_{l o c}^{1,1}$ Functions

In this section, we show that for $f \in W_{l o c}^{1,1}(\Omega)$ (in particular for Lipschitz functions), the answer to Problem 2 is positive. We will present two different approaches for solving this case.

Proof of Theorem 1.5. Let $x_{0} \in \Omega$. Take $r>0$ such that $\tilde{B}=B\left(x_{0}, 2 r\right) \subset \Omega$ and denote $B=B\left(x_{0}, r\right)$. Then $f \in W^{1,1}(B)$ i.e. $f \in L^{1}(B)$ and $\nabla f \in\left(L^{1}(B)\right)^{N}$. So it makes sense to speak of $f(x)$ and $\nabla f(x)$ for a.e. $x \in B$. Let $\sigma \in S^{N-1}$. By Fubini's theorem we find that for a.e. $x \in B$ there is a small $t_{x}>0$ such that
$I_{x}=\left\{x+t \sigma \mid t \in\left(-t_{x}, t_{x}\right)\right\} \subset B$ and $f \in W^{1,1}\left(I_{x}\right)$ i.e., f is absolutely continuous on I_{x}. Therefore for every $\sigma \in S^{N-1}$,

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{f(x+t \sigma)-f(x)}{t}=\nabla f(x) \cdot \sigma \quad \text { for a.e. } \quad x \in B . \tag{4}
\end{equation*}
$$

Write

$$
\int_{\tilde{B}} \int_{\tilde{B}} \omega\left(\frac{|f(x)-f(y)|}{|x-y|}\right) \frac{d x d y}{|x-y|^{N}} \geq \int_{B} d x \int_{S^{N-1}} d \sigma \int_{0}^{r} \omega\left(\frac{|f(x+t \sigma)-f(x)|}{t}\right) \frac{d t}{t}
$$

and by (2) deduce that for a.e. $x \in B$ and for a.e. $\sigma \in S^{N-1}$,

$$
\int_{0}^{r} \omega\left(\frac{|f(x+t \sigma)-f(x)|}{t}\right) \frac{d t}{t}<+\infty
$$

Using $\int_{0}^{r} \frac{d t}{t}=\infty$, we get

$$
\liminf _{t \rightarrow 0} \omega\left(\frac{|f(x+t \sigma)-f(x)|}{t}\right)=0
$$

ω being continuous, by (4) one can find N linear independent directions $\left(\sigma_{i}\right)_{1 \leq i \leq N}$ such that $\omega\left(\left|\nabla f(x) \cdot \sigma_{i}\right|\right)=0$ for a.e. $x \in B$ and for every $i \in\{1, \ldots, N\}$. This implies $\nabla f=0$ a.e. in B. By the Poincaré-Wirtinger inequality, we have that

$$
\left\|f-\frac{1}{|B|} \int_{B} f\right\|_{L^{1}(B)} \leq C\|\nabla f\|_{L^{1}(B)}=0
$$

i.e. f is constant (a.e. in B). Since x_{0} was arbitrarly chosen and Ω is connected, we conclude that f is constant (a.e. in Ω).

Remark. One could prove this result using another method, as follows. Define $\tilde{\omega}:[0,+\infty) \mapsto[0,1], \tilde{\omega}(t)=\min (\omega(t), 1)$ for every $t \geq 0$. Take an arbitrary ball $\bar{B} \subset \Omega$. Then

$$
\int_{B} \int_{B} \tilde{\omega}\left(\frac{|f(x)-f(y)|}{|x-y|}\right) \frac{d x d y}{|x-y|^{N}}<+\infty
$$

Consider the mollifiers (3) in \mathbb{R}^{N}. By the dominated convergence theorem, we obtain

$$
\lim _{\varepsilon \rightarrow 0} \int_{B} \int_{B} \tilde{\omega}\left(\frac{|f(x)-f(y)|}{|x-y|}\right) \rho_{\varepsilon}(|x-y|) d x d y=0
$$

On the other hand, one can show that for a bounded continuous function $\tilde{\omega}$ on $[0,+\infty)$ and $f \in W^{1,1}(B)$,

$$
\lim _{\varepsilon \rightarrow 0} \int_{B} \int_{B} \tilde{\omega}\left(\frac{|f(x)-f(y)|}{|x-y|}\right) \rho_{\varepsilon}(|x-y|) d x d y=\int_{B} \int_{S^{N-1}} \tilde{\omega}(|\nabla f(x) \cdot \sigma|) d x d \sigma
$$

(see e.g. [6] Lemma 5). As before, this yields $\nabla f=0$ a.e. in B for every ball $\bar{B} \subset \Omega$; since $f \in W_{l o c}^{1,1}(\Omega)$ and Ω is connected, f is constant (a.e. in Ω).

5. Some generalized Cantor sets and Cantor functions

Let $0<\beta<1$. We recall the definition of some general Cantor sets, called here β-Cantor sets, all homeomorphic to the standard one and which can be obtained by deleting a sequence of pairwise disjoint open intervals from the interior of the segment $I_{0}^{(0)}=[0,1]$, as follows (see [5]). Firstly, remove the centered open interval from $I_{0}^{(0)}$ which has length $\beta=\beta \cdot\left|I_{0}^{(0)}\right|$ i.e., delete the interval $J_{0}^{(1)}=\left(\frac{1-\beta}{2}, \frac{1+\beta}{2}\right)$ and leave two segments $I_{0}^{(1)}=\left[0, \frac{1-\beta}{2}\right]$ and $I_{1}^{(1)}=\left[\frac{1+\beta}{2}, 1\right]$. The second step consists in deleting the open subinterval of
length $\beta \cdot\left|I_{0}^{(1)}\right|=\beta \cdot\left|I_{1}^{(1)}\right|=\beta \frac{1-\beta}{2}$ from the center of each of the segments $I_{0}^{(1)}$ and $I_{1}^{(1)}$, namely $J_{0}^{(2)}=\left(\frac{(1-\beta)^{2}}{4}, \frac{1-\beta^{2}}{4}\right)$ and $J_{1}^{(2)}=1-J_{0}^{(2)}$; thus, there remains 2^{2} segments, denoted $I_{0}^{(2)}, I_{1}^{(2)}, I_{2}^{(2)}$ and $I_{3}^{(2)}$. We iterate this procedure; at the $(n+1)$ step, remove the centered open subinterval $J_{k}^{(n+1)}$ of length $\beta \cdot\left|I_{k}^{(n)}\right|$ from each segment $I_{k}^{(n)}=\left[a_{k}^{(n)}, b_{k}^{(n)}\right]$ and leave the two segments

$$
I_{2 k}^{(n+1)}=\left[a_{2 k}^{(n+1)}, b_{2 k}^{(n+1)}\right] \text { and } I_{2 k+1}^{(n+1)}=\left[a_{2 k+1}^{(n+1)}, b_{2 k+1}^{(n+1)}\right] \text { for } k=0,1, \ldots, 2^{n}-1 .
$$

The limit set is the β-Cantor set, denoted by C_{β}. It is a compact set, containing an uncountable infinity of points; it has Lebesgue measure zero and it is nowhere dense (i.e. it has no interior). We will give the specific form of C_{β}. In order to do that, let us consider σ_{n} and δ_{n} the length of the removed interval $J_{k}^{(n)}$ and respectively, of the remaining segment $I_{k}^{(n)}$ at the n step. A simple computation
yields

$$
\delta_{n}=\left(\frac{1-\beta}{2}\right)^{n}, \sigma_{n}=\beta \delta_{n-1} \quad \forall n \geq 1\left(\text { here } \delta_{0}=1\right)
$$

Set $\varepsilon_{n}=\delta_{n}+\sigma_{n}$. Then one can deduce (see [5]) that

$$
C_{\beta}=\left\{\sum_{k=1}^{\infty} \alpha_{k} \varepsilon_{k} \mid \alpha_{k} \in\{0,1\}, k=0,1, \ldots\right\}
$$

In fact, the binary decomposition

$$
j=\alpha_{n}+2 \alpha_{n-1}+\cdots+2^{n-1} \alpha_{1}=\left(\alpha_{1} \ldots \alpha_{n}\right)_{2}
$$

gives $a_{j}^{(n)}=\sum_{k=1}^{n} \alpha_{k} \varepsilon_{k}$ and $b_{j}^{(n)}=a_{j}^{(n)}+\sum_{k \geq n+1} \varepsilon_{k}$.
We define now the β-Cantor function, denoted here by $f_{\beta}($ see $[3])$. Set $f_{\beta}(0)=$ 0 and $f_{\beta}(1)=1$. So f_{β} is specified at the endpoints of $I_{0}^{(0)}$. Define $f_{\beta}(x)=\frac{1}{2}$ if $x \in c l J_{0}^{(1)}$. Thus $f_{\beta}(x)$ is the average of the values of f_{β} at the endpoints of $I_{0}^{(0)}$ when x belongs to the removed interval $J_{0}^{(1)}$ and f_{β} is specified at the endpoints of $I_{0}^{(1)}$ and $I_{1}^{(1)}$. At the $n+1$ step, define $f_{\beta} \equiv \frac{f_{\beta}\left(b_{k}^{(n)}\right)-f_{\beta}\left(a_{k}^{(n)}\right)}{2}$ on the closure of
each $J_{k}^{(n+1)}$, the removed interval from $I_{k}^{(n)}=\left[a_{k}^{(n)}, b_{k}^{(n)}\right]$. By that, f_{β} is defined in every endpoint of $I_{2 k}^{(n+1)}$ and $I_{2 k+1}^{(n+1)}$ for $k=0,1, \ldots, 2^{n}-1$; then we can iterate the process.

Suppose f_{β} is not yet defined at x. At each n step, x is in the interior of exactly one of the 2^{n} retained segments, say $\left[a_{n}, b_{n}\right.$] of length δ_{n}. Moreover, $b_{n}=a_{n}+\delta_{n}, f_{\beta}\left(b_{n}\right)=f_{\beta}\left(a_{n}\right)+2^{-n}, a_{n} \leq a_{n+1}<b_{n+1} \leq b_{n}$ and $f_{\beta}\left(a_{n}\right) \leq f_{\beta}\left(a_{n+1}\right)<f_{\beta}\left(b_{n+1}\right) \leq f_{\beta}\left(b_{n}\right)$; then $f_{\beta}(x)$ is defined by

$$
\lim _{n \rightarrow \infty} f_{\beta}\left(a_{n}\right)=f_{\beta}(x)=\lim _{n \rightarrow \infty} f_{\beta}\left(b_{n}\right)
$$

Furthermore, f_{β} is a continuous, nondecreasing map of $[0,1]$ onto $[0,1]$ (so f_{β} is a function of bounded variation on $[0,1])$ and $f_{\beta}^{\prime}(x)=0$ for a.e. $x \in[0,1]$. One can easily check that on the β-Cantor set we have

$$
f_{\beta}\left(\sum_{k=1}^{\infty} \alpha_{k} \varepsilon_{k}\right)=\sum_{k=1}^{\infty} \alpha_{k} 2^{-k}
$$

We now show that each β-Cantor function is Hölder continuous with Hölder exponent equal to the Hausdorff dimension of C_{β} i.e. $H_{\beta}=\frac{1}{1-\log _{2}(1-\beta)}$ (see also [4]).
Theorem 5.1. The β-Cantor function is α-Hölder if and only if $0<\alpha \leq H_{\beta}$.
Proof. Since C_{β} is nowhere dense and f_{β} is continuous, it is sufficient to prove that for every $\alpha \leq H_{\beta}$, there exists $l_{\alpha}>0$ such that

$$
\begin{equation*}
\left|f_{\beta}(x)-f_{\beta}(y)\right| \leq l_{\alpha}|x-y|^{\alpha} \quad \forall x, y \in[0,1] \backslash C_{\beta} \tag{5}
\end{equation*}
$$

Take $x<y, x, y \in[0,1] \backslash C_{\beta}$ i.e. x and y are in the interior of two removed intervals in the construction of C_{β}, say (b, a) and (\tilde{b}, \tilde{a}). Write $a=\sum_{k=1}^{n} \alpha_{k} \varepsilon_{k}, \alpha_{k} \in\{0,1\}$, $\alpha_{n}=1$ and $\tilde{a}=\sum_{j=1}^{m} \gamma_{j} \varepsilon_{j}, \gamma_{j} \in\{0,1\}, \gamma_{m}=1$. Then $b=a-\sigma_{n}, \tilde{b}=\tilde{a}-\sigma_{m}$. If the two removed intervals coincide, then $f_{\beta}(x)=f_{\beta}(y)$ and (5) is obvious. Otherwise, $a<\tilde{b}$. Take $s \geq 1$ such that $\alpha_{j}=\gamma_{j}$ for $j=1, \ldots, s-1$ and $\alpha_{s} \neq \gamma_{s}$ (we may consider $\left.\alpha_{j}=0, \forall j>n\right)$. Thus $\gamma_{s}=1, \alpha_{s}=0$ and $s \leq m$.

If $s<n$, we get

$$
\begin{aligned}
f_{\beta}(y)-f_{\beta}(x) & =\sum_{j=1}^{m} \gamma_{j} 2^{-j}-\sum_{k=1}^{n} \alpha_{k} 2^{-k} \\
& =2^{-n}+\sum_{j=s+1}^{m} \gamma_{j} 2^{-j}+\sum_{k=s+1}^{n}\left(1-\alpha_{k}\right) 2^{-k} \\
y-x \geq \tilde{b}-a & =\sum_{j=1}^{m} \gamma_{j} \varepsilon_{j}-\sigma_{m}-\sum_{k=1}^{n} \alpha_{k} \varepsilon_{k} \\
& \geq \delta_{n}+\sum_{j=s+1}^{m} \gamma_{j} \delta_{j}+\sum_{k=s+1}^{n}\left(1-\alpha_{k}\right) \delta_{k}
\end{aligned}
$$

(here we used $\varepsilon_{s}=\sigma_{s}+\delta_{s}=\sigma_{s}+\varepsilon_{s+1}+\cdots+\varepsilon_{n}+\delta_{n}$). Otherwise, $s>n$ (since $s \neq n)$ and we have

$$
\begin{aligned}
f_{\beta}(y)-f_{\beta}(x) & =\sum_{j=s}^{m} \gamma_{j} 2^{-j}, \\
y-x \geq \tilde{b}-a & =\sum_{j=s}^{m} \gamma_{j} \varepsilon_{j}-\sigma_{m} \geq \sum_{j=s}^{m} \gamma_{j} \delta_{j} .
\end{aligned}
$$

So in both cases, we can write

$$
f_{\beta}(y)-f_{\beta}(x)=\sum_{j=1}^{M} h_{j} 2^{-j} \text { and } y-x \geq \sum_{j=1}^{M} h_{j} \delta_{j}
$$

where $M \geq 1, h_{j} \in\{0,1,2\}, j=1, \ldots, M$. We distinguish three cases:
Case 1: $0<\alpha<H_{\beta}$. Set $\varepsilon=H_{\beta}-\alpha>0$. By Hölder's inequality, we get

$$
\sum_{j=1}^{M} h_{j} 2^{-j}=\sum_{j=1}^{M} h_{j}^{\alpha} \delta_{j}^{\alpha} h_{j}^{1-\alpha} \delta_{j}^{\varepsilon} \leq\left(\sum_{j=1}^{M} h_{j} \delta_{j}\right)^{\alpha}\left(\sum_{j=1}^{M} h_{j} \delta_{j}^{\frac{\varepsilon}{1-\alpha}}\right)^{1-\alpha}
$$

Since $h_{j} \in\{0,1,2\}$, we deduce

$$
\sum_{j=1}^{M} h_{j} \delta_{j}^{\frac{\varepsilon}{1-\alpha}} \leq 2 \sum_{j \geq 1}\left(\delta_{1}^{\frac{\varepsilon}{1-\alpha}}\right)^{j}=: l_{\alpha}^{\frac{1}{1-\alpha}}<+\infty
$$

So $|f(x)-f(y)| \leq l_{\alpha}|x-y|^{\alpha}$.
Case 2: $\alpha=H_{\beta}$ i.e. $\delta_{j}^{\alpha}=2^{-j}, \forall j \geq 0$. Take the smallest $j_{0} \geq 1$ such that $h_{j_{0}} \neq 0$.
Then

$$
\frac{\sum_{j=j_{0}}^{M} h_{j} \delta_{j}^{\alpha}}{\left(\sum_{j=j_{0}}^{M} h_{j} \delta_{j}\right)^{\alpha}} \leq \frac{2 \sum_{j \geq j_{0}} \delta_{j}^{\alpha}}{\delta_{j_{0}}^{\alpha}}=2 \sum_{j \geq 0} 2^{-j}=4
$$

Thus, (5) is satisfied.
Case 3: $\alpha>H_{\beta}$. Take $x=\varepsilon_{n}$ and $y=\delta_{n-1}=\sum_{k \geq n} \varepsilon_{k}$. Then

$$
\frac{f(y)-f(x)}{|y-x|^{\alpha}}=\frac{2^{-n}}{\left|\delta_{n-1}-\varepsilon_{n}\right|^{\alpha}}=\frac{2^{-n}}{\delta_{n}^{\alpha}} \rightarrow \infty \text { if } n \rightarrow \infty
$$

So, in this case, f_{β} is not an α-Hölder continuous function.

6. Some counter-EXAMPLES

In this section, we present some counter-examples for Problem 2 in the case of regularity $C^{0, \alpha}$. We will assume that Ω is the unit cube in \mathbb{R}^{N} i.e. $\Omega=(0,1)^{N}$.

Theorem 6.1. For every $\alpha \in(0,1)$, there is a nonconstant α-Hölder function $f:[0,1]^{N} \mapsto \mathbb{R}$ of bounded variation which satisfies (2), for all $\omega \in \mathcal{W}$ with the property that $\omega(t) \leq \frac{1}{t}, \forall t>0$.

Proof. : Let $\alpha \in(0,1)$. Consider the unique $\beta \in(0,1)$ such that $\alpha=H_{\beta}$.
Case 1: $N=1$. Let f be the β-Cantor function. Take an arbitrary $\omega \in \mathcal{W}$ such that $\omega(t) \leq \frac{1}{t}, \forall t>0$. Denote by \mathcal{J} the (countable) set of all removed intervals in the construction of the β-Cantor set i.e.

$$
\mathcal{J}=\left\{J_{k}^{(n+1)}: n \geq 0, k=0,1, \ldots, 2^{n}-1\right\}
$$

We have

$$
\begin{aligned}
I & =\int_{0}^{1} \int_{0}^{1} \omega\left(\frac{|f(x)-f(y)|}{|x-y|}\right) \frac{d x d y}{|x-y|} \\
& =\sum_{J \in \mathcal{J}} \sum_{\tilde{J} \in \mathcal{J}} \int_{J} \int_{\tilde{J}} \omega\left(\frac{|f(x)-f(y)|}{|x-y|}\right) \frac{d x d y}{|x-y|} \\
& =2 \sum_{\substack{J, \tilde{J} \in \mathcal{J} \\
J<\tilde{J}}} \int_{J} \int_{\tilde{J}} \omega\left(\frac{|f(x)-f(y)|}{|x-y|}\right) \frac{d x d y}{|x-y|}
\end{aligned}
$$

(we denote $J=(b, a)<\tilde{J}=(\tilde{b}, \tilde{a})$ if $a<\tilde{b})$. We want to prove that $I<+\infty$. Take two removed intervals $J=(b, a)$ and $\tilde{J}=(\tilde{b}, \tilde{a})$ such that $J<\tilde{J}$. Write $a=\sum_{k=1}^{n} \alpha_{k} \varepsilon_{k}, \alpha_{k} \in\{0,1\}, \alpha_{n}=1$ and $\tilde{a}=\sum_{j=1}^{m} \gamma_{j} \varepsilon_{j}, \gamma_{j} \in\{0,1\}, \gamma_{m}=1$; here $b=a-\sigma_{n}, \tilde{b}=\tilde{a}-\sigma_{m}$. Take $r=\left.f\right|_{\tilde{J}}-\left.f\right|_{J}=\sum_{j=1}^{m} \gamma_{j} 2^{-j}-\sum_{k=1}^{n} \alpha_{k} 2^{-k}>0 . \quad W e$ use these notations in the rest of the paper. Since $\omega(t) \leq \frac{1}{t}, \forall t>0$ we get

$$
\int_{J} \int_{\tilde{J}} \omega\left(\frac{|f(x)-f(y)|}{|x-y|}\right) \frac{d x d y}{|x-y|} \leq \int_{J} \int_{\tilde{J}} \frac{d x d y}{r}=\frac{|J| \cdot|\tilde{J}|}{r}=\frac{\sigma_{n} \sigma_{m}}{r} .
$$

The aim is to estimate

$$
S=\sum_{\substack{J<\tilde{J} \\ J, \tilde{J} \in \mathcal{J}}} \frac{|J| \cdot|\tilde{J}|}{\left.f\right|_{\tilde{J}}-\left.f\right|_{J}}
$$

Firstly, consider the interval $J=(b, a)$ fix. Let $\tilde{J}=(\tilde{b}, \tilde{a})$ be a variable removed interval (in the construction of C_{β}) such that $\tilde{J}>J$ (i.e. $a<\tilde{a}$). Each time, we consider the first s step (in the construction of C_{β}) when J and \tilde{J} do not belong anymore to the same remaining interval; that means the biggest $1 \leq s \leq n$ such that $\alpha_{j}=\gamma_{j}$ for $j=1, \ldots, s-1$ (if $\alpha_{1} \neq \gamma_{1}$ then $s=1$). Notice that $s \leq m$, $\gamma_{s}=1$ and $\alpha_{s}=\gamma_{s} \Longleftrightarrow s=n$.

If $s<m$ i.e. $\operatorname{dist}(J, \tilde{J}) \geq \delta_{m}$ then

$$
r=\left.f\right|_{\tilde{J}}-\left.f\right|_{J}=\sum_{j=1}^{m} \gamma_{j} 2^{-j}-\sum_{k=1}^{n} \alpha_{k} 2^{-k} \geq \sum_{j=s+1}^{m} \gamma_{j} 2^{-j}
$$

If we sum up over these \tilde{J}, we get:

$$
\begin{aligned}
\sum_{\substack{\tilde{J} \in \mathcal{J}, J<\tilde{J} \\
\operatorname{dist}(J, \tilde{J}) \geq \delta_{m}}} \frac{|\tilde{J}|}{\left.f\right|_{\tilde{J}}-\left.f\right|_{J}} & =\sum_{s=1}^{n} \sum_{m \geq s+1} \sum_{\substack{ \\
\gamma_{j} \in\{0,1\}, \gamma_{s}=\gamma_{m}=1 \\
s+1 \leq j \leq m-1}} \frac{\sigma_{m}}{r} \\
& \leq \sum_{s=1}^{n} \sum_{m \geq s+1} \sigma_{m} \sum_{\substack{\gamma_{j} \in\{0,1\}, \gamma_{m}=1 \\
s+1 \leq j \leq m-1}} \frac{1}{\sum_{j=s+1}^{m} \gamma_{j} 2^{-j}} \\
& \leq \sum_{s=1}^{n} \sum_{m \geq s+1} \sigma_{m} 2^{m} \sum_{j=1}^{2^{m-s}-1} \frac{1}{j} \\
& \leq \sum_{s=1}^{n} \sum_{m \geq s+1} \sigma_{m} 2^{m}(m-s) \\
& \leq n L
\end{aligned}
$$

where $L=\sum_{m \geq 1} \sigma_{m} 2^{m} m=\frac{\beta}{\delta_{1}} \sum_{m \geq 1}(1-\beta)^{m} m<+\infty$.
Otherwise, $s=m$ i.e. $\operatorname{dist}(J, \tilde{J})<\delta_{m}$. Thus $s<n$ and

$$
r=\left.f\right|_{\tilde{J}}-\left.f\right|_{J}=2^{-s}-\sum_{k=s+1}^{n} \alpha_{k} 2^{-k}=\sum_{k=s+1}^{n-1}\left(1-\alpha_{k}\right) 2^{-k}+2^{-n}
$$

We get

$$
\sum_{\substack{\tilde{J} \in \mathcal{J}, J<\tilde{J} \\ \operatorname{dist}(J, \tilde{J})<\delta_{m}}} \frac{|\tilde{J}|}{\left.f\right|_{\tilde{J}}-\left.f\right|_{J}}=\sum_{s=1}^{n-1} \frac{\sigma_{s}}{\sum_{k=s+1}^{n-1}\left(1-\alpha_{k}\right) 2^{-k}+2^{-n}}
$$

Finally, if we let J be variable in \mathcal{J}, we deduce

$$
\begin{aligned}
S & \leq \sum_{n \geq 1} \sum_{\substack{\alpha_{k} \in\{0,1\} \\
1 \leq k \leq n-1}} \sigma_{n}\left(n L+\sum_{s=1}^{n-1} \frac{\sigma_{s}}{\sum_{k=s+1}^{n-1}\left(1-\alpha_{k}\right) 2^{-k}+2^{-n}}\right) \\
& =\sum_{n \geq 1} n \sigma_{n} 2^{n-1} L+\sum_{n \geq 1} \sigma_{n} 2^{n} \sum_{s=1}^{n-1} \sigma_{s} \sum_{\substack{\tilde{\alpha}_{k} \in\{0,1\} \\
1 \leq k \leq n-1}} \frac{1}{1+\sum_{k=1}^{n-s-1} \tilde{\alpha}_{k} 2^{k}} \\
& \leq L^{2}+\sum_{n \geq 1} \sigma_{n} \cdot 2^{n} \sum_{s=1}^{n-1} \sigma_{s} 2^{s}(n-s) \\
& \leq 2 L^{2} .
\end{aligned}
$$

Case 2: $N \geq 2$. We denote $x=\left(x_{1}, x^{\prime}\right)=\left(x_{1}, x_{2}, \ldots, x_{N}\right) \in[0,1]^{N}$. Take $f(x)=f_{\beta}\left(x_{1}\right), \forall x \in[0,1]^{N}$. So $f \in C^{0, \alpha} \cap B V(\Omega)$. Choose any $\omega \in \mathcal{W}$ with the property that $\omega(t) \leq \frac{1}{t}$ for all $t>0$. Firstly, remark that

$$
\begin{aligned}
I & =\int_{(0,1)^{N}} \int_{(0,1)^{N}} \omega\left(\frac{|f(x)-f(y)|}{|x-y|}\right) \frac{d x d y}{|x-y|^{N}} \\
& =2^{N-1} \int_{0}^{1} \int_{0}^{1} \int_{\substack{(0,1)^{N-1}}} \omega\left(\frac{\left|f_{\beta}\left(x_{1}\right)-f_{\beta}\left(y_{1}\right)\right|}{\sqrt{\left|x^{\prime}\right|^{2}+\left(x_{1}-y_{1}\right)^{2}}}\right) \frac{\prod_{i=2}^{N}\left(1-x_{i}\right) d x_{1} d y_{1} d x^{\prime}}{\left(\left|x^{\prime}\right|^{2}+\left(x_{1}-y_{1}\right)^{2}\right)^{\frac{N}{2}}} \\
& \leq 2^{N} \sum_{\substack{J, \tilde{J} \in \mathcal{J} \\
J<\tilde{J}}} \int_{J} \int_{\tilde{J}} \int_{\substack{(0,1)^{N-1}}} \omega\left(\frac{\left|f_{\beta}\left(x_{1}\right)-f_{\beta}\left(y_{1}\right)\right|}{\sqrt{\left|x^{\prime}\right|^{2}+\left(x_{1}-y_{1}\right)^{2}}}\right) \frac{d x_{1} d y_{1} d x^{\prime}}{\left(\left|x^{\prime}\right|^{2}+\left(x_{1}-y_{1}\right)^{2}\right)^{\frac{N}{2}}} \\
& \leq 2^{N}\left|S^{N-2}\right| \sum_{\substack{J, \tilde{J} \in \mathcal{J} \\
J<\tilde{J}}} \frac{1}{\left.f_{\beta}\right|_{\tilde{J}}-\left.f_{\beta}\right|_{J}} \int_{J} \int_{\tilde{J}} d x_{1} d y_{1} \int_{0}^{N-1} \frac{t^{N-2}}{\left(t^{2}+\left(x_{1}-y_{1}\right)^{2}\right)^{\frac{N-1}{2}}} d t .
\end{aligned}
$$

On the other hand, we have

$$
\int_{0}^{N-1} \frac{t^{N-2} d t}{\left(t^{2}+\left(x_{1}-y_{1}\right)^{2}\right)^{\frac{N-1}{2}}} \leq 2 \int_{0}^{N-1} \frac{d t}{y_{1}-x_{1}+t} \leq 2\left(\ln N+\ln \frac{1}{y_{1}-x_{1}}\right)
$$

for every $0 \leq x_{1}<y_{1} \leq 1$. Therefore there is a constant $c=c(N)>0$ such that

$$
I \leq c(N)\left(\sum_{\substack{J, \tilde{J} \in \mathcal{J} \\ J<\tilde{J}}} \frac{|J| \cdot|\tilde{J}|}{\left.f_{\beta}\right|_{\tilde{J}}-\left.f_{\beta}\right|_{J}}+\sum_{\substack{J, \tilde{J} \in \mathcal{J} \\ J<\tilde{J}}} \frac{|J| \cdot|\tilde{J}|}{\left.f_{\beta}\right|_{\tilde{J}}-\left.f_{\beta}\right|_{J}} \ln \frac{1}{\operatorname{dist}(J, \tilde{J})}\right)
$$

We have already proved that the first sum converges; it remains to show that the second one is convergent, too. As before, fix $J=(b, a)$ and let $\tilde{J}=(\tilde{b}, \tilde{a})$ be such that $J<\tilde{J}$; write $a=\sum_{k=1}^{n} \alpha_{k} \varepsilon_{k}, b=a-\sigma_{n}$ and $\tilde{a}=\sum_{j=1}^{m} \gamma_{j} \varepsilon_{j}, \tilde{b}=\tilde{a}-\sigma_{m}$. Set $r=\left.f_{\beta}\right|_{\tilde{J}}-\left.f_{\beta}\right|_{J}$. We have that $\operatorname{dist}(J, \tilde{J})=\tilde{b}-a$. Using the same argument as in the case $N=1$, we get

$$
\begin{aligned}
\sum_{\substack{\tilde{J} \in \mathcal{J}, J<\tilde{J} \\
\operatorname{dist}(J, \tilde{J}) \geq \delta_{m}}} \frac{|\tilde{J}|}{\left.f_{\beta}\right|_{\tilde{J}}-\left.f_{\beta}\right|_{J}} \ln \frac{1}{\operatorname{dist}(J, \tilde{J})} & \leq \sum_{s=1}^{n} \sum_{m \geq s+1} \sum_{\substack{\gamma_{j} \in\{0,1\}, \gamma_{m}=1 \\
s+1 \leq j \leq m-1}} \frac{\sigma_{m}}{r} \ln \frac{1}{\delta_{m}} \\
& \leq \sum_{s=1}^{n} \sum_{m \geq s+1} m \sigma_{m} 2^{m} \sum_{j=1}^{2^{m-s}-1} \frac{1}{j} \ln \frac{1}{\delta_{1}} \\
& \leq n \tilde{L} \ln \frac{1}{\delta_{1}}
\end{aligned}
$$

where $\tilde{L}=\sum_{m \geq 1} \sigma_{m} 2^{m} m^{2}<+\infty$. Since $\operatorname{dist}(J, \tilde{J}) \geq \min \left(\delta_{n}, \delta_{m}\right)$, it results

$$
\sum_{\substack{\tilde{J} \in \mathcal{J}, J<\tilde{J} \\ \operatorname{dist}(J, \tilde{J})<\delta_{m}}} \frac{|\tilde{J}|}{\left.f_{\beta}\right|_{\tilde{J}}-\left.f_{\beta}\right|_{J}} \ln \frac{1}{\operatorname{dist}(J, \tilde{J})} \leq \sum_{s=1}^{n-1} \frac{\sigma_{s}}{\sum_{k=s+1}^{n-1}\left(1-\alpha_{k}\right) 2^{-k}+2^{-n}} \ln \frac{1}{\delta_{n}}
$$

Similarly, allowing J to be variable in \mathcal{J} we conclude that:

$$
\sum_{\substack{J, \tilde{J} \in \mathcal{J} \\ J<\tilde{J}}} \frac{|J| \cdot|\tilde{J}|}{\left.f_{\beta}\right|_{\tilde{J}}-\left.f_{\beta}\right|_{J}} \ln \frac{1}{\operatorname{dist}(J, \tilde{J})} \leq 2 L \tilde{L} \ln \frac{1}{\delta_{1}}
$$

We now prove Theorem 1.7:
Proof of Theorem 1.7. Let $\alpha \in(0,1)$. Take $\beta \in(0,1)$ such that $\alpha=H_{\beta}$.

Case 1: $N=1$. Let f be the β-Cantor function. Choose an arbitrary $\theta \in(0,1)$ and set $\omega(t)=t^{\theta}, \forall t \geq 0$. Like in the previous proof, we want to show that

$$
\sum_{\substack{J, \tilde{J} \in \mathcal{J} \\ J<\tilde{J}}} \int_{J} \int_{\tilde{J}} \omega\left(\frac{|f(x)-f(y)|}{|x-y|}\right) \frac{d x d y}{|x-y|}<+\infty
$$

As before, consider the interval $J=(b, a)$ fix. Let $\tilde{J}=(\tilde{b}, \tilde{a})$ be a variable removed interval such that $a<\tilde{a}$. Each time, we consider the first s step (in the construction of C_{β}) when J and \tilde{J} do not belong anymore to the same remaining interval. Let us denote $p=\frac{1}{\delta_{1}}>2$ and we use the same notations $r=\left.f\right|_{\tilde{J}}-\left.f\right|_{J}$, $b=a-\sigma_{n}, \tilde{b}=\tilde{a}-\sigma_{m}, a=\sum_{k=1}^{n} \alpha_{k} \varepsilon_{k}, \alpha_{k} \in\{0,1\}, \alpha_{n}=1$ and $\tilde{a}=\sum_{j=1}^{m} \gamma_{j} \varepsilon_{j}$, $\gamma_{j} \in\{0,1\}, \gamma_{m}=1$.

If $\operatorname{dist}(J, \tilde{J}) \geq \delta_{m}$ i.e. $s<m$, we distinguish two cases:
i) $\operatorname{dist}(J, \tilde{J}) \geq \delta_{n}$ i.e. $s<n$. Here we have $\tilde{b}-a \geq \sigma_{s}$ and $r \leq 2^{-s+1}$. We write:

$$
\begin{aligned}
E(J, \tilde{J}) & =\int_{J} \int_{\tilde{J}} \omega\left(\frac{|f(x)-f(y)|}{|x-y|}\right) \frac{d x d y}{|x-y|} \\
& =\int_{0}^{1} \int_{0}^{1} \frac{\omega(r) \sigma_{n} \sigma_{m} d t d z}{\left(\tilde{b}-a+t \sigma_{n}+z \sigma_{m}\right)^{1+\theta}} \leq \frac{r^{\theta} \sigma_{n} \sigma_{m}}{(\tilde{b}-a)^{1+\theta}} .
\end{aligned}
$$

If we sum up over these \tilde{J}, we get:

$$
\begin{aligned}
\sum_{\substack{\tilde{J} \in \mathcal{J}, J<\tilde{J} \\
(J, \tilde{J}) \geq \max \left\{\delta_{m}, \delta_{n}\right\}}} E(J, \tilde{J}) & \leq \sigma_{n} \sum_{s=1}^{n-1} \sum_{m \geq s+1} \sum_{\substack{\gamma_{j} \in\{0,1\} \\
s+1 \leq j \leq m-1}} \frac{\sigma_{m}}{\sigma_{s}} \frac{1}{\left(2^{s-1} \sigma_{s}\right)^{\theta}} \\
& \leq \sigma_{n} \sum_{s=1}^{n-1} \frac{1}{\left(2^{s-1} \sigma_{s}\right)^{\theta}} \sum_{m \geq s+1}\left(\frac{2}{p}\right)^{m-s} \\
& \leq c \sigma_{n} \sum_{s=0}^{n-2}\left(\frac{p}{2}\right)^{s \theta} L_{1} \\
& \leq c \sigma_{n} L_{1}\left(\frac{p}{2}\right)^{\theta(n-1)}
\end{aligned}
$$

where for $q>0$ we denote $L_{q}=\sum_{m \geq 0}\left(\frac{2}{p}\right)^{m q}<+\infty$ and $c=c(\beta, \theta)$ is a constant that depends only on β and θ.
ii) $\operatorname{dist}(J, \tilde{J})<\delta_{n}$ i.e. $s=n$. In this case,

$$
E(J, \tilde{J}) \leq \int_{0}^{1} \frac{r^{\theta} \sigma_{n} \sigma_{m} d t}{\left(\tilde{b}-a+t \sigma_{n}\right)^{1+\theta}}
$$

We have $\tilde{b}-a=\sum_{j=n+1}^{m} \gamma_{j} \varepsilon_{j}-\sigma_{m} \geq \sum_{j=n+1}^{m} \gamma_{j} \delta_{j}$ and $r=\sum_{j=n+1}^{m} \gamma_{j} 2^{-j}$. From here, we obtain

$$
\sum_{\substack{\tilde{J} \in \mathcal{J}, \tilde{J}>J \\ n \leq \operatorname{dist}(J, \tilde{J})<\delta_{n}}} E(J, \tilde{J}) \leq c L_{\theta} L_{1-\theta} \sigma_{n}\left(\frac{p}{2}\right)^{n \theta}
$$

where $c=c(\beta, \theta)$ is a constant that depends only on β and θ. If we let J be variable in \mathcal{J}, we deduce

$$
\begin{aligned}
\sum_{\substack{J, \tilde{J} \in \mathcal{J}, J<\tilde{J} \\
\operatorname{dist}(J, \tilde{J}) \geq \delta_{m}}} E(J, \tilde{J}) & \leq c(\beta, \theta) \sum_{n \geq 1} \sum_{\substack{\alpha_{k} \in\{0,1\} \\
1 \leq k \leq n-1}} \sigma_{n}\left(\frac{p}{2}\right)^{n \theta} \\
& \leq c(\beta, \theta) \sum_{n \geq 1}\left(\frac{2}{p}\right)^{n(1-\theta)} \\
& <+\infty
\end{aligned}
$$

Otherwise, $\operatorname{dist}(J, \tilde{J})<\delta_{m}$ i.e. $s=m$. Thus $m<n$,

$$
\begin{gathered}
\tilde{b}-a=\delta_{m}-\sum_{k=m+1}^{n} \alpha_{k} \varepsilon_{k} \geq \sum_{k=m+1}^{n-1}\left(1-\alpha_{k}\right) \delta_{k}+\delta_{n} \\
r=\sum_{k=m+1}^{n-1}\left(1-\alpha_{k}\right) 2^{-k}+2^{-n} \text { and } E(J, \tilde{J}) \leq \int_{0}^{1} \frac{r^{\theta} \sigma_{n} \sigma_{m} d z}{\left(\tilde{b}-a+z \sigma_{m}\right)^{1+\theta}} .
\end{gathered}
$$

We get

$$
\sum_{\substack{\tilde{J} \in \mathcal{J}, J<\tilde{J} \\ \operatorname{dist}(J, \tilde{J})<\delta_{m}}} E(J, \tilde{J}) \leq \sigma_{n} \sum_{m=1}^{n-1} \int_{0}^{1} \frac{\sigma_{m}\left(\sum_{k=m+1}^{n-1}\left(1-\alpha_{k}\right) 2^{-k}+2^{-n}\right)^{\theta} d z}{\left(\sum_{k=m+1}^{n-1}\left(1-\alpha_{k}\right) \delta_{k}+\delta_{n}+z \sigma_{m}\right)^{1+\theta}}
$$

Finally, if we let J be variable in \mathcal{J}, we find

$$
\sum_{\substack{J, \tilde{J} \in \mathcal{J}, J<\tilde{J} \\ \operatorname{dist}(J, \tilde{J})<\delta_{m}}} E(J, \tilde{J}) \leq c(\beta, \theta) L_{\theta} M_{1-\theta}
$$

where $M_{1-\theta}=\sum_{n \geq 1} n\left(\frac{2}{p}\right)^{n(1-\theta)}<+\infty$.
Case 2: $N \geq 2$. Let $f(x)=f_{\beta}\left(x_{1}\right), \forall x \in[0,1]^{N}$. As before, take $\theta \in(0,1)$ and set $\omega(t)=t^{\theta}, \forall t \geq 0$. Write

$$
\begin{aligned}
I & =\int_{(0,1)^{N}} \int_{(0,1)^{N}} \omega\left(\frac{|f(x)-f(y)|}{|x-y|}\right) \frac{d x d y}{|x-y|^{N}} \\
& \leq 2^{N} \sum_{\substack{J, \tilde{J} \in \mathcal{J} \\
J<\tilde{J}}} \int_{J} \int_{\tilde{J}} \int_{(0,1)^{N-1}} \omega\left(\frac{\left|f_{\beta}\left(x_{1}\right)-f_{\beta}\left(y_{1}\right)\right|}{\sqrt{\left|x^{\prime}\right|^{2}+\left(x_{1}-y_{1}\right)^{2}}}\right) \frac{d x_{1} d y_{1} d x^{\prime}}{\left(\left|x^{\prime}\right|^{2}+\left(x_{1}-y_{1}\right)^{2}\right)^{\frac{N}{2}}} \\
& \leq 2^{N}\left|S^{N-2}\right| \sum_{\substack{J, \tilde{J} \in \mathcal{J} \\
J<\tilde{J}}} \int_{J} \int_{\tilde{J}} \omega(r) d x_{1} d y_{1} \int_{0}^{N-1} \frac{t^{N-2}}{\left(t^{2}+\left(x_{1}-y_{1}\right)^{2}\right)^{\frac{N+\theta}{2}}} d t
\end{aligned}
$$

(here we denote $r=\left.f_{\beta}\right|_{\tilde{J}}-\left.f_{\beta}\right|_{J}$). On the other hand, we have

$$
\int_{0}^{N-1} \frac{t^{N-2} d t}{\left(t^{2}+\left(x_{1}-y_{1}\right)^{2}\right)^{\frac{N+\theta}{2}}} \leq 4 \int_{0}^{N-1} \frac{d t}{\left(y_{1}-x_{1}+t\right)^{2+\theta}} \leq \frac{4}{\left(y_{1}-x_{1}\right)^{1+\theta}}
$$

for every $0 \leq x_{1}<y_{1} \leq 1$. Therefore there is a constant $c=c(N)>0$ such that

$$
I \leq c(N) \sum_{\substack{J, \tilde{J} \in \mathcal{J} \\ J<\tilde{J}}} \int_{J} \int_{\tilde{J}} \omega\left(\frac{\left|f_{\beta}\left(x_{1}\right)-f_{\beta}\left(y_{1}\right)\right|}{\left|x_{1}-y_{1}\right|}\right) \frac{d x_{1} d y_{1}}{\left|x_{1}-y_{1}\right|}
$$

By Case 1 , the conclusion follows.
Theorem 1.6 is a consequence of the previous two "counter-examples"; indeed, for some $0<\theta<1$ a bounded function ω satisfies $\omega(t) \leq\|\omega\|_{L^{\infty}} \cdot\left(\frac{1}{t}+t^{\theta}\right)$ for every $t>0$.

References

[1] R.A. Adams, Sobolev spaces, Academic Press, New York, 1975 (Pure and Applied Mathematics, 65)
[2] H. Brezis, How to recognize constant functions. A connection with Sobolev spaces (Russian), Uspekhi Mat. Nauk 57(2002), 59-74. English version to appear in Russian Math. Surveys, volume in honor of M. Vishik
[3] R.B. Darst, Some Cantor sets and Cantor functions, Math. Mag. 45 (1972), 2-7
[4] M. Giaquinta, G. Modica and J. Soucek, Cartesian Currents in the Calculus of Variations, vol. I, Springer, 1998
[5] J.H. Halton, Random sequences in generalized Cantor sets, J. Sci. Comput. 6 (1991), no.4, 415-423
[6] A. Ponce, A new approach to Sobolev spaces and connections to Γ-convergence, Calc. Var. Partial Differential Equations, to appear

Ecole Normale Supérieure, 45, Rue d’Ulm, 75005 Paris, France
E-mail address: Radu.Ignat@ens.fr

