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Laboratoire J.L. Lions, Université Pierre et Marie Curie, B.C. 187

4 Place Jussieu, 75252 Paris Cedex 05, France

E-mail addresses: ignat@ann.jussieu.fr, millot@ann.jussieu.fr

Abstract

We investigate a model corresponding to the experiments for a two dimensional rotating

Bose-Einstein condensate. It consists in minimizing a Gross-Pitaevskii functional defined in R2

under the unit mass constraint. We estimate the critical rotational speed Ω1 for vortex existence

in the bulk of the condensate and we give some fundamental energy estimates for velocities close

to Ω1.

1 Introduction

The phenomenon of Bose-Einstein condensation has given rise to an intense research, both ex-
perimentally and theoretically, since its first realization in alkali gases in 1995. One of the most
beautiful experiments was carried out by the ENS group and consisted in rotating the trap holding
the atoms [18, 19] (see also [1]). Since a Bose-Einstein condensate (BEC) is a quantum gas, it
can be described by a single complex-valued wave function (order parameter) and it rotates as a
superfluid: above a critical velocity, it rotates through the existence of vortices, i.e., zeroes of the
wave function around which there is a circulation of phase. In an experiment where a harmonic trap
strongly confines the atoms in the direction of the rotation axis, the mathematical analysis becomes
two-dimensional by the decoupling of the wave function (see [10, 11, 24]). We restrict our study to
this two-dimensional model used in [10, 11]. After the nondimensionalization of the energy (see [3]),
the wave function uε minimizes the Gross-Pitaevskii energy

∫

R2

{
1
2
|∇u|2 +

1
2ε2

V (x)|u|2 +
1

4ε2
|u|4 − Ω x⊥ ·(iu,∇u)

}
dx (1.1)

under the constraint ∫

R2
|u|2 = 1, (1.2)

where ε>0 is small and represents a ratio of two characteristic lengths and Ω = Ω(ε)≥0 denotes the
rotational velocity. We consider here the harmonic trapping case, that is V (x) = |x|2Λ := x2

1 + Λ2x2
2

for a fixed parameter 0 < Λ ≤ 1. In [11], the equilibrium configurations are studied by looking for
the minimizers in a reduced class of functions and some numerical simulations are presented.

Our aim is to estimate the critical velocity above which the wave function has vortices, and in
a future work [14] to analyze in more details the vortex patterns in the bulk of the condensate.
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According to numerical and theoretical predictions (see [3, 11]), we expect to find the critical speed
in the regime Ω = O(| ln ε|) so that we restrict our study to this situation.

Due to the constraint (1.2), we may rewrite the energy in the equivalent form

Fε(u) =
∫

R2

{
1
2
|∇u|2 +

1
4ε2

[
(|u|2 − a(x))2 − (a−(x))2

]− Ωx⊥ · (iu,∇u)
}

dx (1.3)

where a(x) = a0−|x|2Λ and a0 is determined by
∫
R2 a+(x) = 1 so that a0 =

√
2Λ/π . Here a+ and a−

represent respectively the positive and the negative part of a. Then we consider the wave function
uε as a solution of the variational problem

Min
{
Fε(u) : u ∈ H, ‖u‖L2(R2) = 1

}
where H =

{
u ∈ H1(R2,C) :

∫

R2
|x|2|u|2 < +∞}

.

In the limit ε → 0, the minimization of Fε strongly forces |uε|2 to be close to a+ which means that
the resulting density is asymptotically localized in the ellipsoidal region

D :=
{
x ∈ R2 : a(x) > 0

}
=

{
(x1, x2) ∈ R2 : x2

1 + Λ2x2
2 < a0

}
.

We will also see that |uε| decays exponentially fast outside D. Actually, the domain D represents
the region occupied by the condensate and consequently, vortices will be sought inside D.

The main tools for studying vortices were developed by Bethuel, Brezis and Hélein [7] for
“Ginzburg-Landau type” problems. We also refer to Sandier [20] and Sandier and Serfaty [21, 22, 23]
for complementary techniques. In the case a(x) ≡ 1 and for a disc in R2, Serfaty proved the exis-
tence of local minimizers having vortices for different ranges of rotational velocity (see [25]). In [3],
Aftalion and Du follow the strategy in [25] for the study of global minimizers of the Gross-Pitaevskii
energy (1.3) where R2 is replaced by D. In [2], Aftalion, Alama and Bronsard analyze the global
minimizers of (1.3) for potentials of different nature leading to an annular region of confinement.
We finally refer to [4, 5, 15] for mathematical studies on 3D models.

We emphasize that we tackle here the problem which corresponds exactly to the physical model.
In particular, we minimize Fε under the unit mass constraint and the admissible configurations are
defined in the whole space R2. Several difficulties arise, especially in the proof of the existence
results and the construction of test functions. We point out that we do not assume any implicit
bound on the number of vortices. The singular and degenerate behavior of

√
a+ near ∂D induces a

cost of order | ln ε| in the energy and requires specific tools to detect vortices in the boundary region.
Therefore we shall restrict our analysis to vortices lying down in the interior domain

Dε = {x ∈ D : a(x) > νε| ln ε|−3/2} (1.4)

where νε is a chosen parameter in the interval (1, 2) (see Proposition 4.1).
We now start to describe our main results. We prove that

Ω1 :=
Λ2 + 1

a0
| ln ε| =

√
π(Λ2 + 1)√

2Λ
| ln ε|

is the asymptotic estimate as ε → 0 of the critical angular speed for nucleation of vortices in D.
The critical angular velocity Ω1 coincides with the one found in [3, 11]. We observe that a very
stretched condensate, i.e., Λ ¿ 1, yields a very large value of Ω1 and that the smallest Ω1 is reached
for Λ = 1/

√
3 (and surprisingly not for the symmetric case, i.e., Λ = 1). For subcritical velocities,

we will see that uε behaves as the “vortex-free” profile η̃εe
iΩS where η̃ε is the positive minimizer of

Eε(u) =
∫

R2

{
1
2
|∇u|2 +

1
4ε2

[
(|u|2 − a(x))2 − (a−(x))2

]}
dx
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under the constraint (1.2) and the phase S is given by

S(x) =
Λ2 − 1
Λ2 + 1

x1x2 . (1.5)

For rotational speeds larger than Ω1, we show the existence of vortices close to the origin. We also
give some fundamental energy estimates in the regime Ω = Ω1 + O(ln | ln ε|) which will allow to
study the precise vortex structure of uε in [14].

Theorem 1.1. Let uε be any minimizer of Fε in H under the mass constraint (1.2).

(i) There exists a constant ω?
1 < 0 such that if Ω ≤ Ω1 +ω1 ln | ln ε| with ω1 < ω?

1 then |uε| →
√

a+

in L∞loc(R2 \ ∂D) as ε → 0. Moreover,

Fε(uε) = Fε

(
η̃εe

iΩS
)

+ o(1) (1.6)

and for any sequence εn → 0, there exists a subsequence (still denoted by εn) and α ∈ C with
|α| = 1 such that uεn

e−iΩS → α
√

a+ in H1
loc(D) as n → +∞.

(ii) If there exists some constant δ > 0 such that Ω1 + δ ln | ln ε| ≤ Ω ≤ O(| ln ε|), then uε has
at least one vortex xε ∈ D such that dist(xε, ∂D) ≥ C > 0 with C independent of ε. If in
addition, Ω ≤ Ω1 +O(ln | ln ε|), then xε remains close to the origin, i.e., |xε| ≤ O(| ln ε|−1/6).

(iii) Set vε = uε/(η̃εe
iΩS) and assume that Ω ≤ Ω1 + ω1 ln | ln ε| for some ω1 > 0. Then there exist

two positive constants M1 and M2 depending only on ω1 such that
∫

Dε

a(x)|∇vε|2 +
a2(x)

ε2
(|vε|2 − 1)2 ≤M1| ln ε|,

∫

Dε\{|x|Λ<2| ln ε|−1/6}
a(x)|∇vε|2 +

a2(x)
ε2

(|vε|2 − 1)2 ≤M2 ln | ln ε|.

From the estimates in (iii) in Theorem 1.1, we are going to determine in [14] the number and the
location of vortices in function of the angular speed Ω as ε → 0. More precisely, we will compute the
asymptotic expansion of the energy Fε(uε) in order to estimate the critical velocity Ωd for having
d vortices in the bulk and to exhibit the configuration of vortices by a certain renormalized energy.
We also mention that the techniques used in [14] will permit to prove that the best constant in (i)
in Theorem 1.1 is ω?

1 = 0. The proof will rely mostly on the study of “bad discs” in [7].

Sketch of the proof. We now describe briefly the content of this paper.
Section 2 is devoted to the study of the density profile η̃ε. We first introduce the real positive

minimizer ηε of Eε, i.e.,
Eε(ηε) = Min

{
Eε(η) : η ∈ H}

. (1.7)

We show the existence and uniqueness of ηε (see Theorem 2.1) and we have that Eε(ηε) ≤ C| ln ε|
and ηε →

√
a+ in L∞(R2) ∩ C1

loc(D) as ε → 0 (see Proposition 2.1). Then we prove that there is a
unique positive solution of the problem

Min
{
Eε(η) : η ∈ H , ‖η‖L2(R2) = 1

}
(1.8)

called η̃ε, which can be obtained from ηε by a change of scale (see Theorem 2.2). This relationship
yields an important estimate on the Lagrange multiplier kε associated to η̃ε : |kε| ≤ O(| ln ε|), as
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well as the asymptotic properties of η̃ε from those of ηε (see Proposition 2.2). In particular, we have
η̃ε →

√
a+ in L∞(R2) ∩ C1

loc(D) as ε → 0.
In Section 3, we prove the existence of minimizers uε under the mass constraint (1.2) (see

Proposition 3.1) and some general results about their behavior: Eε(uε) ≤ C| ln ε|2, uε decreases
exponentially quickly to 0 outside D, |∇uε| ≤ CKε−1 and |uε| .

√
a+ in any compact K ⊂ D

(see Proposition 3.2). Using a method introduced by Lassoued and Mironescu [16], we show that
Fε(uε) splits into two independent pieces (see Lemma 3.2): the energy of the “vortex-free” profile
Fε(η̃εe

iΩS) and the reduced energy of vε = uε/(η̃εe
iΩS):

Fε(uε) = Fε(η̃εe
iΩS) + F̃ε(vε) + T̃ε(vε) (1.9)

where
F̃ε(vε)= Ẽε(vε) + R̃ε(vε), (1.10)

Ẽε(vε)=
∫

R2

η̃2
ε

2
|∇vε|2 +

η̃4
ε

4ε2
(|vε|2 − 1)2 , R̃ε(vε)=

Ω
Λ2 + 1

∫

R2
η̃2

ε∇⊥a · (ivε,∇vε) , (1.11)

T̃ε(vε) =
1
2

∫

R2

(
Ω2|∇S|2 − 2Ω2x⊥ · ∇S + kε

)
η̃2

ε(|vε|2 − 1). (1.12)

The motivation of S is explained in [3]: S satisfies div
(
a+(∇S−x⊥)

)
= 0 in R2 and corresponds to

the limit as ε → 0 of the phase (globally defined in R2) divided by Ω, of any solution of Min
{
Fε(u) :

u = ηeiϕ ∈ H, η > 0
}
. The existence of the global limiting phase S is new in this type of variational

problems related to the “Ginzburg-Landau” energy. We point out that the anisotropy carried by
the phase S, leads to a negative term of order Ω2 for Λ ∈ (0, 1) in the energy (see Remark 3.2):

Fε

(
η̃εe

iΩS
)

= Eε(η̃ε)−
√

2(1− Λ2)2

12
√

π(1 + Λ2)Λ3/2
Ω2 + o(1).

We will prove that |T̃ε(vε)| = O(ε| ln ε|3). Thus, we may focus on the reduced energy F̃ε(vε).
We study the vortex structure of uε via the map vε applying the Ginzburg-Landau techniques to
the weighted energy Ẽε(vε); the difficulty will arise in the region where η̃ε is small. We notice
that vε inherits from uε and η̃ε, the following properties (see Proposition 3.3): Ẽε(vε) ≤ C| ln ε|2,
|∇vε| ≤ CKε−1 and |vε| . 1 in any compact K ⊂ D. Using η̃εe

iΩS as a test function and (1.9), we
obtain in Proposition 3.4, a crucial upper bound of the reduced energy inside Dε:

F̃ε(vε,Dε) ≤ o(1). (1.13)

Motivated by the behavior η̃2
ε ∼ a+ (see (3.32) and (3.33)), we will use in the sequel the energies

Fε, Eε and Rε in the interior of D (see Notations below).
In Section 4, we compute a first lower bound of Eε(vε) using a method due to Sandier and Serfaty

(see [21, 23]). We start with the construction of small disjoint balls {B(pi, ri)}i∈Iε
in the domain

Dε (given by (1.4)): outside these balls |vε| is close to 1, so that vε carries a degree di on ∂B(pi, ri)
(see Proposition 4.1) and

Eε(vε,Dε) ≥
∑

i∈Iε

Eε(vε, B(pi, ri)) & π
∑

i∈Iε

a(pi)|di| | ln ε|. (1.14)

Then we prove an asymptotic expansion of the rotational energy outside the balls {B(pi, ri)}i∈Iε

(see Proposition 4.2),

Rε

(
vε,Dε \ ∪i∈IεBi

) ≈ − πΩ
Λ2 + 1

∑

i∈Iε

a2(pi) di. (1.15)
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The presence of a2(pi) is due to the harmonic type of the potential. In fact, for slightly more general
potentials a(x), we compute the solution ξ of the problem (see [3])

div
(1
a
∇ξ

)
= −2 in D and ξ = 0 on ∂D (1.16)

and the rotational energy will exhibit the terms ξ(pi) in (1.15). For our harmonic potential a(x), an
easy computation leads to ξ = a2

2(Λ2+1) . By (1.14) and (1.15), the first term in the lower expansion
of the energy is

π
∑

i∈Iε

a(pi)
(
|di|| ln ε| − diΩ

2ξ(pi)
a(pi)

)
. (1.17)

For having a vortex ball Bi with nonzero degree, Ω has to be larger than Ω1 = 1+Λ2

a0
| ln ε|, pi

maximizes ξ/a and di is positive. Indeed, we obtain the subcritical case (i) in Theorem 1.1 matching
(1.13) with (1.17). For velocities larger than Ω1, we use an improvement of the upper estimate (1.13)
using a test function having a single vortex at the origin. From here, we deduce (ii) in Theorem 1.1.
We also prove that for Ω ≤ Ω1 + O(ln | ln ε|), the number of vortex balls with nonzero degree is
uniformly bounded in ε and they appear close to the origin (see Proposition 4.4). We conclude by
the two fundamental energy estimates stated in (iii) in Theorem 1.1.

Our analysis deals with vortices inside D. However, we believe that for Ω small (Ω = O(1)), the
solution should not have any vortices in R2. For Ω larger (Ω ∼ Ω1), vortices may exist in the region
where uε is small. The study of the vortex structure in the region where |uε| is small requires the
development of other tools than energy estimates.

We recall that the choice of the harmonic potential is motivated by the physical experiments.
For some other potentials a such that ξ/a has a unique maximum point at the origin, our method
can be applied and the critical speed is given by

Ω1 =
a(0)
2ξ(0)

| ln ε|.

If the set of maximum points of ξ
a is not finite (it can be a curve, see Remark 4.1), the techniques

are different and it will be the topic of a future work.

Notations. Throughout the paper, we denote by C a positive constant independent of ε and we
use the subscript to point out a possible dependence on the argument. For x = (x1, x2) ∈ R2, we
write

x⊥ = (−x2, x1), |x|Λ =
√

x2
1 + Λ2x2

2 and BΛ
R =

{
x ∈ R2 : |x|Λ < R

}

and for A ⊂ R2,

Ẽε(v,A) =
∫

A

1
2

η̃2
ε |∇v|2 +

η̃4
ε

4ε2
(1− |v|2)2 , Eε(v,A) =

∫

A

1
2

a|∇v|2 +
a2

4ε2
(1− |v|2)2,

R̃ε(v,A) =
Ω

1 + Λ2

∫

A
η̃2

ε∇⊥a · (iv,∇v) , Rε(v,A) =
Ω

1 + Λ2

∫

A
a∇⊥a · (iv,∇v),

F̃ε(v,A) = Ẽε(v,A) + R̃ε(v,A) , Fε(v,A) = Eε(v,A) +Rε(v,A). (1.18)

We do not write the dependence on A when A = R2.
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2 Analysis of the density profiles

In this section, we establish some preliminary results on ηε and η̃ε defined respectively by (1.7)
and (1.8). We will show that the shapes of ηε and η̃ε are similar.

We notice that the space H in which we perform the minimization, is exactly the set of finiteness
for Eε. In the sequel, we endow H with the scalar product

〈u, v〉H =
∫

R2
∇u · ∇v + (1 + |x|2)(u · v) for u, v ∈ H;

obviously, (H, 〈·, ·〉H) is a Hilbert space.

2.1 The free profile

We start by proving the existence and uniqueness for small ε of ηε defined as the real positive
solution of (1.7). Hence ηε has to satisfy the associated Euler-Lagrange equation

{
ε2∆ηε + (a(x)− η2

ε)ηε = 0 in R2,

ηε > 0 in R2.
(2.1)

We denote by λ, the first eigenvalue of the elliptic operator −∆ + |x|2Λ in R2, i.e.,

λ = Inf
{∫

R2
|∇φ|2 + |x|2Λ|φ|2 : φ ∈ H , ‖φ‖L2(R2) = 1

}
.

We have the following result:

Theorem 2.1. If 0 < ε < a0
λ , there exists a unique classical solution ηε of (2.1). Moreover,

ηε ≤ √
a0 and ηε is the unique minimizer of Eε in H up to a complex multiplier of modulus one. If

ε ≥ a0
λ , then zero is the unique critical point of Eε in H.

The method that we use for solving (2.1) involves several classical arguments generally used for
a bounded domain. The main difficulty here is due to the fact that the equation is posed in the
entire space R2 without any condition at infinity. We start with the construction of the minimal
solution: we consider the solution ηR,ε of the same equation posed in a ball of large radius R with
homogeneous Dirichlet boundary condition and then we pass to the limit in R. We prove the
uniqueness by estimating the ratio between the constructed solution and any other solution. A
crucial point in the proof is an L∞-bound of any weak solution.

Before proving Theorem 2.1, we present the asymptotic properties of ηε as ε → 0. We show that
ηε decays exponentially fast outside D and that η2

ε tends uniformly to a+. The following estimates
will be essential at several steps of our analysis.

Proposition 2.1. For ε sufficiently small, we have

2.1.a) Eε(ηε) ≤ C| ln ε|,

2.1.b) 0 < ηε(x) ≤ Cε1/3 exp
(

a(x)
4ε2/3

)
in R2 \ D,

2.1.c) 0 ≤
√

a(x)− ηε(x) ≤ Cε1/3
√

a(x) for x ∈ D with |x|Λ <
√

a0 − ε1/3,

2.1.d) ‖∇ηε‖L∞(R2) ≤ Cε−1,

2.1.e) ‖ηε −
√

a ‖C1(K) ≤ CKε2 for any compact subset K ⊂ D.
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Remark 2.1. We observe that 2.1.a) in Proposition 2.1 implies
∫

R2\D
|ηε|4 + 2a−(x)|ηε|2 +

∫

D
(a(x)− |ηε|2)2 ≤ Cε2| ln ε|. (2.2)

Proof of Theorem 2.1. Step 1: Existence for 0 < ε < a0
λ . For R > 0, we consider the equation





ε2∆ηR + (a(x)− η2
R)ηR = 0 in BR,

ηR > 0 in BR,

ηR = 0 on ∂BR.

(2.3)

By a result of Brezis and Oswald (see [9]), we have the existence and uniqueness of weak solutions
of (2.3) if and only if the following first eigenvalue condition holds

Inf
{∫

BR

|∇φ|2 − a(x)|φ|2
ε2

: φ ∈ H1
0 (BR) , ‖φ‖L2(BR) = 1

}
< 0, i.e.,

λ1(Lε, BR) = Inf
{∫

BR

|∇φ|2 +
|x|2Λ|φ|2

ε2
: φ ∈ H1

0 (BR) , ‖φ‖L2(BR) = 1
}

<
a0

ε2
(2.4)

where we denoted the elliptic operator Lε = −∆ + |x|2Λ
ε2 . We claim that for R sufficiently large,

(2.4) is fulfilled. Indeed, let ψ be an eigenfunction of Lε in R2 associated to the first eigenvalue
λ1(Lε,R2) with ‖ψ‖L2(R2) = 1 (the existence of ψ is a direct consequence of the compact embedding

H ↪→ L2(R2) proved in Lemma 2.1). For any integer n ≥ 1, set ψn(x) = cn ζ
(
|x|
n

)
ψ(x), where

ζ : R→ R is the “cut-off” type function given by

ζ(t) =





1 if t ≤ 1,

2− t if t ∈ (1, 2),

0 if t ≥ 2

(2.5)

and the constant cn is chosen such that ‖ψn‖L2(R2) = 1. We easily check that

λ1(Lε, B2n) ≤
∫

B2n

(
|∇ψn|2 +

|x|2Λ
ε2

|ψn|2
)

−→
n→+∞

∫

R2

(
|∇ψ|2 +

|x|2Λ
ε2

|ψ|2
)

= λ1(Lε,R2)

and we deduce that the sequence
{
λ1(Lε, BR)

}
R>0

(which is decreasing in R) tends to λ1(Lε,R2)
as R →∞. Since

λ1(Lε,R2) =
λ

ε
,

we conclude that there exists Rε > 0 such that for every R > Rε, condition (2.4) is fulfilled and
equation (2.3) admits a unique weak solution ηR,ε.

By standard methods, it results that ηR,ε is a smooth classical solution of (2.3). We notice that,
for any Rε < R < R̃, ηR̃,ε is a supersolution of (2.3) in BR and thus ηR,ε ≤ ηR̃,ε in BR by the
uniqueness of ηR,ε. By the maximum principle, we infer that ηR,ε ≤ √

a0 in R2. For every R > Rε,
we extend ηR,ε by 0 in R2 \ BR. Since the function R → ηR,ε(x) is non-decreasing for any x ∈ R2,
we may define for x ∈ R2, ηε(x) = lim

R→+∞
ηR,ε(x). It results that ηε satisfies 0 < ηε ≤ √

a0 and

ε2∆ηε + (a(x)− η2
ε)ηε = 0 in D′(R2). (2.6)

Since ηε ∈ L∞(R2), we derive by standard methods that ηε is a smooth classical solution of (2.1).
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Step 2. L∞-bound for solutions of (2.1). The method we use in this step is due to Farina (see [12])
and relies on a result of Brezis (see [8]). We present the proof for convenience. Let η be any weak
solution of (2.1) in L3

loc(R2). We claim that

η ≤ √
a0 a.e. in R2.

Indeed, if we consider w = ε−1(η−√a0), then w ∈ L3
loc(R2) and since η satisfies (2.1), we infer that

∆w ∈ L1
loc(R2). By Kato’s inequality, we have

∆(w+) ≥ sgn+(w)∆w ≥ sgn+(w)
ε3

(η2 − a0)η =
1
ε2

w+(εw + 2
√

a0)(εw +
√

a0) ≥ (w+)3.

Therefore w+ ∈ L3
loc(R2) and w+ satisfies

−∆(w+) + (w+)3 ≤ 0 in D′(R2).

By Lemma 2 in [8], it leads to w+ ≤ 0 a.e. in R2 and thus w+ ≡ 0.

Step 3. Uniqueness for 0 < ε < a0
λ . Let ηε be the solution constructed at Step 1 and let η be

any weak solution of (2.1) in L3
loc(R2). By the previous step, η ∈ L∞(R2) and using standard

arguments, we derive that η is smooth and defines a classical solution of (2.1). We observe that η is
a supersolution of (2.3) for every R > Rε. Since ηR,ε is extended by 0 outside BR, ηR,ε ≤ η in R2.
Passing to the limit in R, we get that 0 < ηε ≤ η in R2. Hence the function ρ : R2 → R defined by
ρ = ηε/η is smooth and takes values in (0, 1]. We easily check that ρ satisfies

div(η2∇ρ) +
η4

ε2
(1− ρ2)ρ = 0 in R2. (2.7)

For every integer n ≥ 1, we set ζn(x) = ζ
(
n−1|x|), where ζ is given by (2.5). Multiplying (2.7) by

(1− ρ)ζ2
n and integrating by parts, we derive

∫

R2

(
η4

ε2
ρ(1− ρ)2(1 + ρ)ζ2

n + η2ζ2
n|∇ρ|2

)
= 2

∫

R2
η2(1− ρ)ζn(∇ρ · ∇ζn). (2.8)

Since ρ is bounded, the Cauchy-Schwarz inequality yields
∫

R2
η2(1− ρ)ζn(∇ρ · ∇ζn) =

∫

B2n\Bn

η2(1− ρ)ζn(∇ρ · ∇ζn)

≤
(∫

B2n

η2(1− ρ)2|∇ζn|2
)1/2

(∫

B2n\Bn

η2ζ2
n|∇ρ|2

)1/2

≤ 2
√

π ‖η‖L∞(R2)

(∫

R2\Bn

η2ζ2
n|∇ρ|2

)1/2

.

Using (2.8) and the L∞-bound on η obtained in Step 2, we infer that

∫

R2
η2ζ2

n|∇ρ|2 ≤ 4
√

πa0

(∫

R2\Bn

η2ζ2
n|∇ρ|2

)1/2

. (2.9)

It follows
16πa0 ≥

∫

R2
η2ζ2

n|∇ρ|2 −→
n→+∞

∫

R2
η2|∇ρ|2
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by monotone convergence. Since η2|∇ρ|2 ∈ L1(R2), the right hand side in (2.9) tends to 0 as
n → +∞ and we finally deduce that

∫
R2 η2|∇ρ|2 = 0. Hence ρ is constant in R2 and by (2.8), we

necessarily have ρ = 1, i.e., η = ηε.

Step 4. End of the proof. The existence of a minimizer η of Eε inH is standard. Since Eε(|η̂|) ≤ Eε(η̂)
for any η̂ ∈ H, we infer that η̂ := |η| is also a minimizer and therefore η̂ satisfies the equation

{
ε2∆η̂ + (a(x)− η̂2)η̂ = 0 in R2,

η̂ ≥ 0 in R2.
(2.10)

By the maximum principle, it follows that either η̂ > 0 in R2 or η̂ ≡ 0.
If 0 < ε < a0

λ , we claim that η̂ > 0. Indeed, for R > 0 sufficiently large, we consider the unique
solution ηR,ε of (2.3). By [9], ηR,ε is the unique non-negative minimizer of Eε(·, BR) in H1

0 (BR,R).
Since ηR,ε is extended by 0 outside BR, we have

Eε(η̂) ≤ Eε(ηR,ε) = Eε(ηR,ε , BR) < Eε(0, BR) = Eε(0)

which implies that η̂ is not identically equal to 0. Then η̂ solves (2.1) and by Step 3, we conclude
that |η| = η̂ = ηε. From the equality Eε(|η|) = Eε(η), we easily deduce that there exists a real
constant α such that η = |η|eiα = ηεe

iα.
If ε ≥ a0

λ , we prove that η̂ ≡ 0. Multiplying (2.10) by η̂, it results
∫

R2
|∇η̂|2 +

|x|2Λ
ε2

η̂2 +
1
ε2

η̂4 =
a0

ε2

∫

R2
η̂2 ≤ λ

ε

∫

R2
η̂2.

On the other hand, ∫

R2
|∇η̂|2 +

|x|2Λ
ε2

η̂2 ≥ λ1(Lε,R2)
∫

R2
η̂2 =

λ

ε

∫

R2
η̂2.

It follows that
∫
R2 η̂4 = 0, i.e., η̂ ≡ 0. Thus, in this range of ε, zero is the unique minimizer of Eε.

Now it remains to show that zero is the unique critical point of Eε when ε ≥ a0
λ . Indeed, let η̃

be any critical point of Eε in H, i.e., η̃ satisfies the equation (2.6). Then
∫

R2
|∇η̃|2 =

1
ε2

∫

R2
a(x)η̃2 − η̃4. (2.11)

Since zero is the global minimizer, we have that Eε(η̃) ≥ Eε(0), so that
∫

R2
|∇η̃|2 +

1
2ε2

∫

R2
η̃4 − 2a(x)η̃2 ≥ 0. (2.12)

Combining (2.11) and (2.12), we derive that
∫
R2 η̃4 = 0, i.e., η̃ ≡ 0. ¥

We recall the following classical result:

Lemma 2.1. The embedding H ↪→ L2(R2,C) is compact.

Proof. Let un ⇀ 0 weakly in H as n → ∞. Extracting a subsequence if necessary, by the Sobolev
embedding theorem, we may assume that un → 0 strongly in L2

loc(R2). Obviously,
∫
R2 |x|2|un|2 ≤ C.

For any R > 0, we have

R2 lim sup
n→∞

∫

R2\BR

|un|2 ≤ lim sup
n→∞

∫

R2
|x|2|un|2 ≤ C.

Letting R → +∞ in this inequality, we conclude that un → 0 strongly in L2(R2). ¥
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Remark 2.2. We emphasize that from the proof of Theorem 2.1, it follows that any smooth function
η satisfying {

−ε2∆η ≥ (a(x)− |η|2)η in R2,

η > 0 in R2,

verifies η ≥ ηε in R2.

Proof of Proposition 2.1. Proof of 2.1.a). We construct an explicit test function ϕ ∈ H1(R2) such
that Eε(ϕ) ≤ C| ln ε|. Since ηε minimizes Eε, we deduce Eε(ηε) ≤ Eε(ϕ) ≤ C| ln ε|. The function ϕ

is defined as in [15]: let

γ(s) =





√
s if s ≥ ε2/3,
s

ε1/3
otherwise

and set ϕ(x) = γ(a+(x)) for x ∈ R2. It results that
∫

R2
|∇ϕ|2 ≤ C| ln ε| and

∫

R2
(a+ − ϕ2)2 ≤ Cε2 (2.13)

for a positive constant C independent of ε.

Proof of 2.1.b). We construct a supersolution η of (2.1) of the form:

η(x) =





√
a(x) if |x|Λ ≤

√
a0 − δ ,

−|x|Λ
√

a0 − δ + a0√
δ

if
√

a0 − δ ≤ |x|Λ ≤ rδ,

β exp(−|x|2Λ/2σ) otherwise,

(2.14)

where δ > 0 will be determined later,

rδ =
a0

2
√

a0 − δ
+
√

a0

2

and β, σ are chosen such that η ∈ C1(R2), i.e.,

β =
a0 −

√
a0(a0 − δ)
2
√

δ
exp(r2

δ/2σ) and σ =
a0δ

4(a0 − δ)
.

A straightforward computation shows that for δ = 4a
1/3
0 ε2/3, η is a supersolution of (2.1) and we

also have
rδ −√a0 = O(ε2/3), σ = O(ε2/3) and β = O(ε1/3ea0/2σ).

By Remark 2.2, it results that ηε ≤ η in R2 which leads to 2.1.b). Notice that we also obtain




ηε(x) ≤
√

a(x) for |x|Λ ≤
√

a0 − δ ,

ηε(x) ≤ Cε1/3 for
√

a0 − δ ≤ |x|Λ ≤ √
a0 .

(2.15)

Proof of 2.1.c). The estimate 2.1.c) follows exactly as in Proposition 2.1 in [2] and we shall omit it.

Proof of 2.1.d). Taking x0 ∈ R2 arbitrarily, it suffices to show that |∇ηε| ≤ Cε−1 in B(x0, ε) with
a constant C independent of x0. We define the re-scaled function φε : B2(0) → R by φε(y) =
ηε(x0 + εy). From estimates 2.1.b) and 2.1.c), we derive that |∆φε| = | (a(x0 + εy)− φ2

ε

)
φε| ≤ C in
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B2(0) for a constant C independent of x0. By elliptic regularity, we deduce that for any 1 ≤ p < ∞,
‖φε‖W 2,p(B1(0)) ≤ Cp for a constant Cp independent of ε and x0. Taking some p > 2, it implies that
‖∇φε‖L∞(B1(0)) ≤ C for a constant C independent of ε and x0 which yields the result.

Proof of 2.1.e). The idea of the proof is due to Shafrir [26]. First we prove that |∇ηε| remains
bounded with respect to ε in any compact set K ⊂ D. We choose some radii 0 < r < R <

√
a0 such

that K ⊂ BΛ
r ⊂ BΛ

R ⊂ D. We claim that

|ηε −
√

a | ≤ CR ε2 in BΛ
r . (2.16)

Indeed, we infer from (2.1) that

−ε2∆(
√

a− ηε) + ηε(ηε +
√

a )(
√

a− ηε) = −ε2∆(
√

a ) = O(ε2) in BΛ
R.

By estimate 2.1.c), we have |√a− ηε| ≤
√

a
2 in BΛ

R for ε small. Thus ηε(ηε +
√

a) ≥ AR > 0 in BΛ
R

for some positive constant AR which only depends on R. Then (2.16) follows from Lemma 2.2 below
(which is a slight modification of Lemma 2 in [6]).

Lemma 2.2. Assume that A > 0 and 0 < r < R. Let wε be a smooth function satisfying
{
−ε2∆wε + Awε ≤ Bε2 in BΛ

R,

wε ≤ 1 on ∂BΛ
R,

for some constant B ∈ R. Then wε ≤ Cε2 in BΛ
r with C = C(R, r,A, B).

Proof of 2.1.e) completed. By (2.1) and (2.16), we deduce that ηε is uniformly bounded in W 2,p(BΛ
r )

for any 1 ≤ p < ∞. In particular, it implies

‖∇ηε‖L∞(K) ≤ CK . (2.17)

We repeat the above argument with the functions zε = ∂ηε

∂xj
and z0 = ∂

√
a

∂xj
, j = 1, 2. Obviously, we

can assume that (2.16) and (2.17) hold in BΛ
R. Using (2.16), we easily check that

−ε2∆(zε − z0) + (3η2
ε − a)(zε − z0) = O(ε2).

By (2.17), we can apply Lemma 2.2 which yields the announced result. ¥

We now state a result that we will require in Section 2.2. We follow here a technique introduced
by Struwe (see [27]).

Lemma 2.3. Let I : (0,∞) 7→ R+ defined by

I(ε) = Min
{
Eε(η) : η ∈ H}

. (2.18)

Then I(·) is locally Lipschitz continuous and non-increasing in (0,∞). Moreover,

|I ′(ε)| ≤ C

( | ln ε|
ε

+ 1
)

for almost every ε ∈ (0,∞). (2.19)

Proof. For every ε ≥ a0
λ , we know by Theorem 2.1 that I(ε) = Eε(0) = C

ε2 and |I ′(ε)| = C
ε3 . Hence

it remains to prove that the conclusion holds for 0 < ε < a0
λ + 1. By convention, we set ηε ≡ 0 if

ε ≥ a0
λ . Naturally, we have

I(ε) = Eε(ηε) ≤ Eε(0) =
C

ε2
for every ε > 0. (2.20)
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If ε is small, we infer from 2.1.b) in Proposition 2.1 that we can find some radius R >
√

a0

Λ such that
∫

R2\BR

|ηε|4 + 2a−(x)|ηε|2 ≤ Cε3. (2.21)

Using (2.20), we deduce that (2.21) holds for 0 < ε < a0
λ + 1. Let us now fix some ε0 ∈ (0, a0

λ + 1)
and 0 < h ¿ 1. We have

Eε0+h(ηε0+h) = I(ε0 + h) ≤ Eε0+h(ηε0−h) ≤ Eε0−h(ηε0−h) = I(ε0 − h) ≤ Eε0−h(ηε0+h).

Hence, I is a non-increasing function and

Eε0−h(ηε0−h)− Eε0+h(ηε0−h) ≤ I(ε0 − h)− I(ε0 + h) ≤ Eε0−h(ηε0+h)− Eε0+h(ηε0+h).

By (2.21), it leads to

I(ε0 + h)− I(ε0 − h)
2h

≥ −ε0

2(ε0 + h)2(ε0 − h)2

( ∫

BR

(a(x)− |ηε0+h|2)2 − (a−(x))2
)
− C (2.22)

and

I(ε0 + h)− I(ε0 − h)
2h

≤ −ε0

2(ε0 + h)2(ε0 − h)2

∫

BR

[
(a(x)− |ηε0−h|2)2 − (a−(x))2

]
(2.23)

which proves with (2.20) that I(·) is locally Lipschitz continuous in (0, a0
λ + 1). Therefore I(·) is

differentiable almost everywhere in (0, a0
λ + 1). We easily check using standard arguments that

ηε0−h → ηε0 and ηε0+h → ηε0 in L4(BR) as h → 0. Assuming that ε0 is a point of differentiability
of I(·), we obtain letting h → 0 in (2.22) and (2.23),

I ′(ε0) =
−1
2ε3

0

∫

BR

[
(a(x)− |ηε0 |2)2 − (a−(x))2

]
+O(1). (2.24)

Then we deduce (2.19) combining (2.2) and (2.24). ¥

2.2 The profile under the mass constraint

In this section, we study the minimization problem (1.8). The motivation is to define the “vortex-
free” profile

η̃εe
iΩS (2.25)

and to construct admissible test functions for the model. Existence and uniqueness results for
general potentials a are also presented in [17]. Our contribution consists in proving the identity
(2.27) between ηε and η̃ε. By this formula, we obtain a precise information about the asymptotic
behavior of the profile η̃ε.

Theorem 2.2. For every ε > 0, problem (1.8) admits a unique solution η̃ε up to a complex multiplier
of modulus one. Moreover, there exists kε ∈ R such that

−∆η̃ε =
1
ε2

(a(x)− |η̃ε|2)η̃ε + kεη̃ε in R2 (2.26)

and η̃ε is characterized by

η̃ε(x) =
√

a0 + kεε2

√
a0

ηε̃

( √
a0 x√

a0 + kεε2

)
with ε̃ =

a0ε

a0 + kεε2
∈ (0,

a0

λ
) . (2.27)
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In addition, for small ε > 0,
|kε| ≤ C| ln ε| (2.28)

and ∣∣Eε(η̃ε)− Eε(ηε)
∣∣ ≤ Cε2| ln ε|2. (2.29)

Identity (2.27) gives us automatically the asymptotic properties of η̃ε from those of ηε by a
change of scale and hence we obtain the analogue of Proposition 2.1 for η̃ε:

Proposition 2.2. For ε sufficiently small, we have

2.2.a) Eε(η̃ε) ≤ C| ln ε|,

2.2.b) 0 < η̃ε(x) ≤ Cε1/3 exp
(

a(x)
4ε2/3

)
for |x|Λ ≥ √

a0 + ε,

2.2.c)
∣∣√a(x)− η̃ε(x)

∣∣ ≤ Cε1/3
√

a(x) for x ∈ D with |x|Λ <
√

a0 − 2ε1/3,

2.2.d) ‖∇η̃ε‖L∞(R2) ≤ Cε−1,

2.2.e) ‖η̃ε −
√

a ‖C1(K) ≤ CKε2| ln ε| for any compact subset K ⊂ D.

Remark 2.3. We observe that 2.2.a) in Proposition 2.2 implies for small ε > 0,
∫

R2\D
|η̃ε|4 + 2a−(x)|η̃ε|2 +

∫

D
(a(x)− |η̃ε|2)2 ≤ Cε2| ln ε| (2.30)

Proof of Theorem 2.2. Step 1: Existence. Let (ηn)n∈N be a minimizing sequence for (1.8). Extracting
a subsequence if necessary, by Lemma 2.1, we may assume that ηn ⇀ η̃ε weakly in H and strongly
in L2(R2) as n → ∞. Then we derive from (1.2) that ‖η̃ε‖L2(R2) = 1. We easily check that
Eε is lower semi-continuous on H with respect to the weak H-topology and therefore Eε(η̃ε) ≤
lim infn→∞Eε(ηn), i.e., η̃ε is a minimizer of (1.8). Since Eε(|η̃ε|) = Eε(η̃ε), we infer that η̃ε = |η̃ε|eiα

for some constant α. Hence we may assume that η̃ε ≥ 0 in R2.

Step 2: Proof of (2.27). Let η̃ε be a solution of (1.8). As in Step 1, we may assume that η̃ε ≥ 0.
Since η̃ε is a minimizer of Eε under the constraint ‖η̃ε‖L2(R2) = 1, there exists kε ∈ R such that η̃ε

satisfies (2.26) and we necessarily have η̃ε > 0 in R2 by the maximum principle. We rewrite equation
(2.26) as

−∆η̃ε =
1
ε2

(aε(x)− |η̃ε|2)η̃ε in R2, (2.31)

with
aε(x) = a0 + kεε

2 − |x|2Λ. (2.32)

Multiplying (2.31) by η̃ε, integrating by parts and using that
∫
R2 |η̃ε|2 = 1, we obtain that

a0 + kεε
2

ε2
=

∫

R2
|∇η̃ε|2 +

|x|2Λ
ε2

|η̃ε|2 +
1
ε2
|η̃ε|4 > λ1(Lε,R2) =

λ

ε

and therefore, ε̃ = a0ε
a0+kεε2 ∈

(
0, a0

λ

)
. Setting

ϑε(x) =
√

a0√
a0 + kεε2

η̃ε(
√

a0 + kεε2 x√
a0

), (2.33)
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a straightforward computation shows that
{
−ε̃2∆ϑε = (a(x)− |ϑε|2)ϑε in R2,

ϑε > 0 in R2.

By Theorem 2.1, it leads to
ϑε ≡ ηε̃. (2.34)

Combining this identity with (2.33) we obtain (2.27).

Step 3: Uniqueness. Let η̂ε be another solution of (1.8). As for η̃ε, we may assume that η̂ε is a real
positive function. Let k̂ε be the Lagrange multiplier associated to η̂ε, i.e., η̂ε satisfies

−∆η̂ε =
1
ε2

(a(x)− |η̂ε|2)η̂ε + k̂εη̂ε in R2.

By Step 2, the solution η̂ε is characterized by

η̂ε(x) =

√
a0 + k̂εε2

√
a0

ηε̂(
√

a0 x√
a0 + k̂εε2

) with ε̂ =
a0ε

a0 + k̂εε2
∈ (0,

a0

λ
) .

Hence it suffices to prove that k̂ε = kε. We proceed by contradiction. Assume for instance that
kε < k̂ε. Then η̂ε satisfies

−∆η̂ε ≥ 1
ε2

(a(x)− |η̂ε|2)η̂ε + kεη̂ε in R2. (2.35)

We consider the function

ϑ̂ε(x) =
√

a0√
a0 + kεε2

η̂ε(
√

a0 + kεε2 x√
a0

), (2.36)

which satisfies by (2.35), {
−ε̃2∆ϑ̂ε ≥ (a(x)− |ϑ̂ε|2)ϑ̂ε in R2,

ϑ̂ε > 0 in R2.

Therefore ϑ̂ε is a supersolution of (2.1) with ε̃ instead of ε. By Remark 2.2 we infer that ϑ̂ε ≥ ηε̃ in
R2. By (2.27) and (2.36), it leads to η̂ε ≥ η̃ε in R2. Since ‖η̂ε‖L2(R2) = ‖η̃ε‖L2(R2) = 1, we conclude
that η̂ε ≡ η̃ε and hence kε = k̂ε, contradiction.

Step 4: Energy bound for small ε > 0. We now prove that for small ε > 0,

Eε(η̃ε) ≤ C| ln ε|. (2.37)

Let ϕ be the test function constructed in the proof of 2.1.a) in Proposition 2.1. Setting ϕ̂ =
‖ϕ‖−1

L2(R2)ϕ, it suffices to check that Eε(ϕ̂) ≤ C| ln ε| by the minimizing property of η̃ε. First we show
that ‖ϕ‖L2(R2) remains close to 1 as ε → 0. Since

∫
R2 a+ = 1, we have

∫
R2 |ϕ|2 = 1+

∫
D(|ϕ|2−a+(x))

and by (2.13), ∫

D

∣∣|ϕ|2 − a+(x)
∣∣ ≤ C

(∫

D
(|ϕ|2 − a+(x))2

)1/2

≤ Cε.

Hence ‖ϕ‖2L2(R2) = 1 +O(ε). Then we derive from (2.13),

∫

R2
|∇ϕ̂|2 = ‖ϕ‖−2

L2(R2)

∫

R2
|∇ϕ|2 ≤

∫

R2
|∇ϕ|2 + Cε| ln ε| ≤ C| ln ε|
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and

1
ε2

∫

D
(a(x)− |ϕ̂|2)2 =

1
ε2

∫

D
(a(x)− |ϕ|2)2 +

2(1− ‖ϕ‖−2
L2(R2))

ε2

∫

D
(a(x)− |ϕ|2)|ϕ|2

+
(1− ‖ϕ‖−2

L2(R2))
2

ε2

∫

D
|ϕ|4

≤C + C

(
1
ε2

∫

D
(a− |ϕ|2)2

)1/2

≤ C.

Therefore Eε(ϕ̂) ≤ C| ln ε| and (2.37) holds.

Step 5: First bound on the Lagrange multiplier for small ε > 0. Let η̃ε be the positive solution of
(1.8) and let kε ∈ R be such that η̃ε satisfies (2.26). Multiplying (2.26) by η̃ε, integrating by parts
and using that

∫
R2 |η̃ε|2 = 1, we obtain that

kε =
∫

R2
|∇η̃ε|2 +

1
ε2

∫

R2

(|η̃ε|2 − a(x)
)|η̃ε|2. (2.38)

From (2.37) we derive
∣∣∣∣∣
∫

R2
|∇η̃ε|2 +

1
ε2

∫

R2\D

(|η̃ε|2 − a(x)
)|η̃ε|2

∣∣∣∣∣ ≤ C| ln ε|

and
∣∣∣∣
1
ε2

∫

D
(|η̃ε|2 − a(x))|η̃ε|2

∣∣∣∣ ≤
1
ε2

∫

D
(|η̃ε|2 − a(x))2 +

1
ε2

∫

D
a(x)

∣∣|η̃ε|2 − a(x)
∣∣

≤ C| ln ε|+ C

ε2

(∫

D
(|η̃ε|2 − a(x))2

)1/2

≤ Cε−1| ln ε|1/2.

Hence, by (2.38), we have
|kε| ≤ Cε−1| ln ε|1/2. (2.39)

Step 6: Proof of (2.28). We define the functional Ẽε : H → R by

Ẽε(u) =
1
2

∫

R2
|∇u|2 +

1
4ε2

∫

R2
(aε(x)− |u|2)2 − (a−ε (x))2 (2.40)

where aε(x) is given by (2.32). Then, by (2.27), we get

Ẽε(η̃ε) =
a0 + kεε

2

a0
Eε̃(ηε̃) =

a0 + kεε
2

a0
I(ε̃). (2.41)

Since ‖η̃ε‖L2(R2) = 1, we have

Ẽε(η̃ε) = Eε(η̃ε)− kε

2
+

1
4ε2

∫

R2
(a+

ε (x))2 − (a+(x))2 (2.42)

≥ I(ε)− kε

2
+

1
4ε2

∫

R2
(a+

ε (x))2 − (a+(x))2. (2.43)

Using the fact that
∫
R2 a+ = 1, a simple computation leads to

−kε

2
+

1
4ε2

∫

R2
(a+

ε (x))2 − (a+(x))2 =
πa0k

2
εε2

4Λ
+

πk3
εε4

12Λ
. (2.44)
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Combining (2.41), (2.43) and (2.44), we infer that

πa0k
2
εε2

4Λ
≤ |I(ε̃)− I(ε)|+ |kε|ε2

a0
I(ε̃) +

π|kε|3ε4

12Λ
. (2.45)

For small ε > 0, we obtain using (2.19), (2.39) and 2.1.a) in Proposition 2.1,
∣∣I(ε̃)− I(ε)

∣∣ ≤ Cε−1| ln ε||ε̃− ε| ≤ C|kε|ε2| ln ε| (2.46)

and
|kε|ε2

a0
I(ε̃) ≤ C|kε|ε2| ln ε|, π|kε|3ε4

12
≤ C|kε|ε2| ln ε|.

Inserting this estimates in (2.45), we deduce that |kε| ≤ C| ln ε|.
Step 7: Proof of (2.29). From (2.28), (2.41), (2.46) and 2.1.a) in Proposition 2.1, we derive that
Ẽε(η̃ε) = Eε(ηε)+O(ε2| ln ε|2). On the other hand, (2.28), (2.42) and (2.44) yield Ẽε(η̃ε) = Eε(η̃ε)+
O(ε2| ln ε|2) and (2.29) follows. ¥

3 Minimizing Fε under the mass constraint

Our aim in this section is to make a first description of minimizers uε of Fε under the mass
constraint. We prove the existence of uε and some asymptotic properties of uε (in particular, we
show that |uε| is concentrated in D). We also present some tools that we will require in the sequel,
in particular the splitting of energy (1.9).

3.1 Existence and first properties of minimizers

First, we seek minimizers uε of Fε under the constraint ‖uε‖L2(R2) = 1. We perform the mini-
mization in H and we shall see that Fε is well defined on H:

Lemma 3.1. For any u ∈ H, σ > 0 and R >
√

a0 , we have
∣∣∣∣Ω

∫

R2
x⊥ · (iu,∇u)

∣∣∣∣ ≤ σ

∫

R2
|∇u|2 +

Ω2R2

8Λ2σ(R2 − a0)

∫

R2

[
(a(x)− |u|2)2 − (a−(x))2

]
+ CR,σ Ω2.

In particular, the functional Fε is well defined on H.

Proposition 3.1. Assume that Ω < Λε−1. Then there exists at least one minimizer uε of Fε in{
u ∈ H : ‖u‖L2(R2) = 1

}
. Moreover, uε is smooth and there exists `ε ∈ R such that uε satisfies

−∆uε + 2iΩx⊥ · ∇uε =
1
ε2

(a(x)− |uε|2)uε + `εuε in R2. (3.1)

We emphasize that the result is stated for an angular velocity Ω strictly less than Λ/ε but we
only consider in this paper the case of an rotational speed Ω at most of order | ln ε|, i.e.,

Ω ≤ ω0| ln ε| (3.2)

for some positive constant ω0.
Before proving Lemma 3.1 and Proposition 3.1, we present some basic properties of any min-

imizer uε. We point out that the exponential decay of |uε| outside the domain D (see 3.2.c) in
Proposition 3.2) shows that almost all the mass of uε is concentrated in D.
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Proposition 3.2. Assume that (3.2) holds for some ω0 > 0. For ε sufficiently small, we have

3.2.a) Eε(uε) ≤ Cω0 | ln ε|2,

3.2.b) |`ε| ≤ Cω0 ε−1| ln ε|,

3.2.c) |uε(x)| ≤ Cω0 ε1/3| ln ε|1/2 exp
(

a(x)
4ε2/3

)
for x ∈ R2 \ D with |x|Λ ≥

√
a0 + 2ε1/3,

3.2.d) |uε(x)| ≤
√

a(x) + |`ε|ε2 + ε2Ω2|x|2 for x ∈ D with |x|Λ ≤ √
a0 − ε1/8,

3.2.e) |uε| ≤ √
a0 + Cω0 ε| ln ε| in R2,

3.2.f) ‖∇uε‖L∞(K) ≤ Cω0,K ε−1 for any compact set K ⊂ R2.

Remark 3.1. We observe that 3.2.a) in Proposition 3.2 implies
∫

R2\D

(|uε|4 + 2a−(x)|uε|2
)

+
∫

D
(|uε|2 − a(x))2 ≤ Cω0 ε2| ln ε|2. (3.3)

Proof of Lemma 3.1. Let u ∈ H and σ ∈ (0, 1). We have

4σ

∣∣∣∣Ω
∫

R2
x⊥ · (iu,∇u)

∣∣∣∣ ≤ 4σ2

∫

R2
|∇u|2 + Ω2

∫

R2
|x|2|u|2 ≤ 4σ2

∫

R2
|∇u|2 +

Ω2

Λ2

∫

R2
|x|2Λ|u|2.

For R >
√

a0 , we easily check that |x|2Λ ≤ − R2

R2−a0
a(x) whenever |x|Λ ≥ R. Then we derive

4σ

∣∣∣∣Ω
∫

R2
x⊥ · (iu,∇u)

∣∣∣∣ ≤ 4σ2

∫

R2
|∇u|2 − Ω2R2

2Λ2(R2 − a0)

∫

R2\BΛ
R

2a(x)|u|2 +
Ω2

Λ2

∫

BΛ
R

|x|2Λ|u|2. (3.4)

Now we notice that
∫

BΛ
R

|x|2Λ|u|2 =
R2

2(R2 − a0)

∫

BΛ
R

−2a(x)|u|2 − a0

R2 − a0

∫

BΛ
R

|x|2Λ|u|2 +
a0R

2

R2 − a0

∫

BΛ
R

|u|2

≤ R2

2(R2 − a0)

∫

BΛ
R

−2a(x)|u|2 +
R2

2(R2 − a0)

∫

BΛ
R

|u|4 +
πR4a2

0

2Λ(R2 − a0)
.

Inserting this estimate in (3.4), we obtain
∣∣∣∣Ω

∫

R2
x⊥ · (iu,∇u)

∣∣∣∣ ≤ σ

∫

R2
|∇u|2 +

Ω2R2

8Λ2σ(R2 − a0)

∫

R2

[
(a(x)− |u|2)2 − (a−(x))2

]

+
πΩ2R4a2

0

8Λ3σ(R2 − a0)

and the proof is complete. ¥

Proof of Proposition 3.1. Since Ω < Λε−1, we can find 0 < δ < 1 such that Ω ≤ δΛε−1. Taking in
Lemma 3.1,

σ =
δ2 + 1

4
and R =

√
2(1 + δ2)a0

1− δ2
,

we infer that for any u ∈ H,

1− δ2

4
Eε(u)− Cδ Ω2 ≤ Fε(u) ≤ 2 Eε(u) + Cδ Ω2. (3.5)
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We easily check that Eε is coercive in H (i.e., there exists a positive constant C such that Eε(u) ≥
C(‖u‖2H − 1) for any u ∈ H) and by (3.5), Fε is coercive, too. Let (un)n∈N ⊂ H be a minimizing
sequence of Fε in

{
u ∈ H : ‖u‖L2(R2) = 1

}
. From the coerciveness of Fε, we get that (un)n∈N is

bounded in H and therefore, there exists uε ∈ H such that up to a subsequence,

un ⇀ uε weakly in H and un → uε in L4
loc(R2). (3.6)

By Lemma 2.1, it results that un → uε in L2(R2) and consequently, ‖uε‖L2(R2) = 1. We write for
u ∈ H,

Fε(u) =
1
2

∫

R2

∣∣(∇− iΩx⊥)u
∣∣2 +

1
2ε2

∫

{a−(x)≥Ω2ε2|x|2}

[
1
2
|u|4 +

(
a−(x)− ε2Ω2|x|2) |u|2

]

+
1

4ε2

∫

{a−(x)≤Ω2ε2|x|2}

[
(a(x)− |u|2)2 − (a−(x))2 − 2Ω2ε2|x|2 |u|2] .

We observe that the functional

u ∈ H 7→ 1
2

∫

R2

∣∣(∇− iΩx⊥)u
∣∣2 +

1
2ε2

∫

{a−(x)≥Ω2ε2|x|2}

[
1
2
|u|4 + (a−(x)− ε2Ω2|x|2) |u|2

]

is convex continuous on H for the strong topology. Then from (3.6), it follows that Fε(uε) ≤
lim infn→∞ Fε(un). Hence uε minimizes Fε in

{
u ∈ H : ‖u‖L2(R2) = 1

}
and by the Lagrange

multiplier rule, there exists `ε ∈ R such that (3.1) holds. By standard elliptic regularity, we deduce
that uε is smooth in R2. ¥

Proof of Proposition 3.2. Proof of 3.2.a). Let η̃ε be the positive real minimizer of Eε under the
constraint ‖η̃ε‖L2(R2) = 1. Since η̃ε is real valued, we have (iη̃ε,∇η̃ε) ≡ 0 and we derive from (2.37),

Fε(uε) ≤ Fε(η̃ε) = Eε(η̃ε) ≤ C| ln ε|. (3.7)

By (3.5) (with δ = 1√
2
), we infer that for ε small enough,

1
8

Eε(uε)− CΩ2 ≤ Fε(uε). (3.8)

Combining (3.2), (3.7) and (3.8), we obtain 3.2.a).

Proof of 3.2.b). Multiplying equation (3.1) by uε and using
∫
R2 |uε|2 = 1, we infer that

`ε =
∫

R2
|∇uε|2 − 2Ω

∫

R2
x⊥ · (iuε,∇uε) +

1
ε2

∫

R2
(|uε|2 − a(x))|uε|2. (3.9)

From 3.2.a) and Lemma 3.1, we derive
∣∣∣∣∣
∫

R2
|∇uε|2 − 2Ω

∫

R2
x⊥ · (iuε,∇uε) +

1
ε2

∫

R2\D
(|uε|2 − a(x))|uε|2

∣∣∣∣∣ ≤ Cω0 | ln ε|2 (3.10)

and arguing as in the proof of (2.39), we obtain by (3.3),
∣∣∣∣
1
ε2

∫

D
(|uε|2 − a(x))|uε|2

∣∣∣∣ ≤ Cω0 ε−1| ln ε|. (3.11)

Using (3.9), (3.10) and (3.11), we conclude that |`ε| ≤ Cω0ε
−1| ln ε|.
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Proof of 3.2.c). We argue as in [2], Proposition 2.5. Setting Uε := |uε|2, we deduce from equa-
tion (3.1),

1
2

∆Uε = |∇uε|2 − 2Ωx⊥ · (iuε,∇uε)− 1
ε2

(a(x)− Uε)Uε − `εUε

and hence
∆Uε ≥ 2

ε2

(
Uε − (a(x) + ε2|`ε|+ ε2Ω2|x|2)) Uε in R2. (3.12)

Let Θε =
{
x ∈ R2 \ D : a−(x) > 2(ε2|`ε|+ ε2Ω2|x|2)}. From (3.12), we infer that

∆Uε ≥ 1
ε2

a−(x)Uε ≥ 0 in Θε (3.13)

and thus Uε is subharmonic in Θε ⊂ R2 \ D. Note that by (3.3),
∫

R2\D
U2

ε ≤ Cω0ε
2| ln ε|2. (3.14)

By 3.2.b), for ε small enough we have ∂Θε ⊂
{
x ∈ R2 : |x|2Λ ≤ a0 + ε1/3

2

}
. Consider now for

rε =
√

a0 + ε1/3, the set Ξε = R2 \BΛ
rε

=
{
x ∈ R2 : |x|2Λ > a0 + ε1/3

} ⊂ Θε. Then for ε small and
any x0 ∈ Ξε, we have B(x0,

ε1/3

2 ) ⊂ Θε. We infer from the subharmonicity of Uε in Θε and (3.14),

0 ≤ Uε(x0) ≤ 4
πε2/3

∫

B(x0, ε1/3
2 )

Uε ≤ C

ε1/3

(∫

B(x0, ε1/3
2 )

U2
ε

)1/2

≤ C?
ω0

ε2/3| ln ε| for x0 ∈ Ξε,

with a constant C?
ω0

independent of x0. Hence we conclude that Uε → 0 locally uniformly in R2 \D
as ε → 0. It also follows that uε ∈ L∞(R2) and then Uε ∈ H1(R2). By (3.13), Uε is a subsolution of

{
−ε2∆w + a−(x)w = 0 in Ξε,

w = C?
ω0

ε2/3| ln ε| on ∂Ξε.
(3.15)

We easily check that for ε small enough,

vout(x) = C?
ω0

ε2/3| ln ε| exp
(a0 + ε1/3 − |x|2Λ

ε2/3

)

is a supersolution of (3.15). Therefore

Uε(x) = |uε(x)|2 ≤ vout(x) ≤ C?
ω0

ε2/3| ln ε| exp
(

a0 − |x|2Λ
2ε2/3

)
for |x|2Λ ≥ a0 + 2ε1/3.

Proof of 3.2.d) and 3.2.e). We set r̃ε =
√

a0− ε1/8 (recall that rε =
√

a0 + ε1/3 ). We define in BΛ
rε

,
the function

vin(x) =





a(x) + |`ε|ε2 +
ε2Ω2

Λ2
|x|2Λ if |x|Λ ≤ r̃ε,

a0 − (1− ε2Ω2

Λ2
)r̃ε(2|x|Λ − r̃ε) + |`ε|ε2 if r̃ε ≤ |x|Λ ≤ rε.

We easily verify that for ε sufficiently small, vin satisfies



−ε2∆vin ≥ 2

(
a(x) + |`ε|ε2 + ε2Ω2|x|2 − vin

)
vin in BΛ

rε
,

vin(x) ≥ C?
ω0

ε2/3| ln ε| on ∂BΛ
rε

(3.16)



R. Ignat & V. Millot 20

and
vin(x) ≥ a(x) + |`ε|ε2 + ε2Ω2|x|2 > 0 in BΛ

rε
.

Setting Vε = Uε − vin, we deduce from (3.12) and (3.16),

{
−ε2∆Vε + b(x)Vε ≤ 0 in BΛ

rε
,

Vε ≤ 0 on ∂BΛ
rε

,

with
b(x) = 2

(
Uε + vin − (a(x) + |`ε|ε2 + ε2Ω2|x|2)) ≥ 0 in BΛ

rε
.

Hence Vε ≤ 0 which gives us 3.2.d). Then estimate 3.2.e) directly follows from the construction of
vin and vout and from 3.2.b).

Proof of 3.2.f). Without loss of generality, we may assume that K = BR with R > 0. Consider the
re-scaled function ũε(x) = uε(εx) defined for x ∈ B3+Rε−1 . From (3.1), we obtain

−∆ũε = (a(εx)− |ũε|2)ũε − 2iΩε2x⊥ · ∇ũε + `εε
2ũε in B3+Rε−1 .

Taking an arbitrary x0 ∈ BRε−1 , it suffices to prove that exists a constant CR > 0 independent of
x0 and ε such that

‖∇ũε‖L∞(B(x0,1)) ≤ Cω0,R. (3.17)

By 3.2.c), we know that a(x)uε is uniformly bounded in R2. Using 3.2.a), 3.2.b) and 3.2.e), we
derive that

‖∆ũε‖L2(B(x0,3)) ≤C
(‖(a(x) + `εε

2 − |uε|2)uε‖L∞(R2) + Ωε2‖x⊥ · ∇ũε‖L2(B(x0,3))

)

≤Cω0(1 + Ωε‖x⊥ · ∇uε‖L2(BR+1)) ≤ Cω0,R.

Since ‖ũε‖L∞(B(x0,3)) ≤ Cω0 by 3.2.e), it follows that ‖ũε‖H2(B(x0,2)) ≤ Cω0,R. From Sobolev imbed-
ding, we deduce that ‖∇ũε‖L4(B(x0,2)) ≤ Cω0,R. We now repeat the above argument and it follows
‖∆ũε‖L4(B(x0,2)) ≤ Cω0,R(1 + Ωε3/2‖∇ũε‖L4(B(x0,2))) ≤ Cω0,R. It finally yields ‖ũε‖W 2,4(B(x0,1)) ≤
Cω0,R which implies (3.17) by Sobolev imbedding. ¥

3.2 Splitting the energy

In this section, we prove the splitting of the energy (1.9). The splitting technique has been
introduced by Lassoued and Mironescu in [16]. The goal is to decouple the energy Fε(u) into
two independent parts: the energy of the “vortex-free” profile η̃εe

iΩS and the reduced energy of
u/(η̃εe

iΩS) where the function S is defined in (1.5). For ε > 0, we introduce the class

Gε =
{

v ∈ H1
loc(R2,C) :

∫

R2
η̃2

ε |∇v|2 + η̃4
ε(1− |v|2)2 < +∞

}
.

We have the following result (valid for any rotational speed Ω):

Lemma 3.2. Let u ∈ H and ε > 0. Then v = u/(η̃εe
iΩS) is well defined, belongs to Gε and

Fε(u) = Fε(η̃εe
iΩS) + F̃ε(v) + T̃ε(v) (3.18)

where the functionals F̃ε and T̃ε are defined in (1.10) and (1.12).
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Before proving Lemma 3.2, we are going to translate some of the properties of the map uε to
uε/(η̃εe

iΩS). To this aim, we define the subclass G̃ε ⊂ Gε by

G̃ε =
{
v ∈ Gε : η̃εv ∈ H and ‖η̃εv‖L2(R2) = 1

}
.

Proposition 3.3. Assume that (3.2) holds for some ω0 > 0. Let uε be a minimizer of Fε in{
u ∈ H : ‖u‖L2(R2) = 1

}
. Then vε = uε/(η̃εe

iΩS) minimizes the functional F̃ε+T̃ε in G̃ε. Moreover,
for ε > 0 sufficiently small, we have

3.3.a) Ẽε(vε) ≤ Cω0 | ln ε|2,

3.3.b)
∣∣T̃ε(vε)

∣∣ ≤ Cω0 ε| ln ε|3,

3.3.c) |vε(x)| ≤ 1 + Cω0 ε1/3 for x ∈ D with |x|Λ ≤ √
a0 − ε1/8,

3.3.d) ‖∇vε‖L∞(K) ≤ Cω0,K ε−1 for any compact subset K ⊂ D.

Proof of Lemma 3.2: Step 1. For u ∈ H, we set ṽ = u/η̃ε ∈ H1
loc(R2). We want to prove that ṽ ∈ Gε

and
Eε(u) = Eε(η̃ε) + Ẽε(ṽ) +

kε

2

∫

R2
η̃2

ε(|ṽ|2 − 1). (3.19)

We consider the sequence (un)n∈N ⊂ H defined by un(x) = ζ
(
n−1|x|) u(x) where ζ is the “cut-off”

type function defined in (2.5). We easily check that un → u a.e. and ∇un → ∇u a.e. in R2. Setting
ṽn = un/η̃ε, then we have ṽn → ṽ a.e. and ∇ṽn → ∇ṽ a.e. in R2. Since un has a compact support,
we get that ṽn ∈ Gε for any n ∈ N. We have

|∇un|2 = |∇η̃ε|2 + η̃2
ε |∇ṽn|2 + (|ṽn|2 − 1)|∇η̃ε|2 + η̃ε∇η̃ε · ∇(|ṽn|2 − 1),

and therefore,

Eε(un) = Eε(η̃ε) +
1
2

∫

R2

(
η̃2

ε |∇ṽn|2 +
η̃4

ε

2ε2
(|ṽn|2 − 1)2

)

+
1
2

∫

R2

(
(|ṽn|2 − 1)|∇η̃ε|2 + η̃ε∇η̃ε · ∇(|ṽn|2 − 1) +

1
ε2

η̃2
ε(|ṽn|2 − 1)(η̃2

ε − a(x))
)
.

As in [16], the main idea is to multiply the equation (2.26) by η̃ε(|ṽn|2− 1) and then to integrate by
parts. It leads to

∫

R2

{
(|ṽn|2 − 1)|∇η̃ε|2 + η̃ε∇η̃ε∇(|ṽn|2 − 1) +

η̃2
ε

ε2
(|ṽn|2 − 1)(η̃2

ε − a(x))
}

= kε

∫

R2
η̃2

ε(|ṽn|2 − 1)

and we conclude that for every n ∈ N,

Eε(un) = Eε(η̃ε) + Ẽε(ṽn) +
kε

2

∫

R2
η̃2

ε(|ṽn|2 − 1).

Now we observe that

|un| ≤ |u| and |∇un| ≤ |∇u|+ |u| a.e. in R2, (3.20)

and by the dominated convergence theorem, it results that Eε(un) → Eε(u) and

kε

2

∫

R2
η̃2

ε(|ṽn|2 − 1) =
kε

2

∫

R2
(|un|2 − η̃2

ε) −→ kε

2

∫

R2
(|u|2 − η̃2

ε) =
kε

2

∫

R2
η̃2

ε(|ṽ|2 − 1).
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Applying Fatou’s lemma, we obtain

Ẽε(ṽ) ≤ lim
n→+∞

Ẽε(ṽn) = lim
n→+∞

{
Eε(un)− Eε(η̃ε)− kε

2

∫

R2
(|un|2 − η̃2

ε)
}

= Eε(u)− Eε(η̃ε)− kε

2

∫

R2
η̃2

ε(|ṽ|2 − 1) < +∞,

and we conclude that ṽ ∈ Gε. Since |ṽn||∇η̃ε| ≤ |∇u|+ η̃ε|∇ṽ| , we infer from (3.20) that η̃2
ε |∇ṽn|2 ≤

C(|∇u|2 + |u|2 + η̃2
ε |∇ṽ|2) and η̃4

ε(|ṽn|2−1)2 ≤ 2(|u|4 + η̃4
ε). By the dominated convergence theorem,

we finally get that

Ẽε(ṽ) = lim
n→+∞

Ẽε(ṽn) = Eε(u)− Eε(η̃ε)− kε

2

∫

R2
η̃2

ε(|ṽ|2 − 1).

Step 2. Consider now ũ = u/eiΩS . Then ũ ∈ H and we have the decomposition

Fε(u) = Eε(ũ) +
Ω

1 + Λ2

∫

R2
∇⊥a · (iũ,∇ũ) +

Ω2

2

∫

R2

(|∇S|2 − 2x⊥ · ∇S
)|ũ|2. (3.21)

Indeed, we use that

|∇u|2 − 2Ωx⊥ · (iu,∇u) = |∇ũ|2 +
2Ω

1 + Λ2
∇⊥a · (iũ,∇ũ) + Ω2

(|∇S|2 − 2x⊥ · ∇S
)|ũ|2 a.e. in R2.

Since |∇S| ≤ C|x|, |∇a| ≤ C|x|, we infer that (3.21) holds.
Step 3. We show that (3.18) takes place. Let u ∈ H. Set ũ = u/eiΩS and v = ũ/η̃ε. By Step 1 and
Step 2, it results that ũ ∈ H and v ∈ Gε. By (3.19), we have

Eε(ũ) = Eε(η̃ε) + Ẽε(v) +
kε

2

∫

R2
η̃2

ε(|v|2 − 1). (3.22)

Since ∇⊥a · (iũ,∇ũ) = η̃2
ε∇⊥a · (iv,∇v) and |ũ|2 = η̃2

ε |v|2 a.e. in R2, we infer from (3.21) and (3.22)
that

Fε(u) = Eε(η̃ε) + Ẽε(v) + R̃ε(v) +
Ω2

2

∫

R2

(|∇S|2 − 2x⊥ · ∇S
)
η̃2

ε |v|2 +
kε

2

∫

R2
η̃2

ε(|v|2 − 1). (3.23)

On the other hand, (3.21) yields

Fε(η̃εe
iΩS) = Eε(η̃ε) +

Ω2

2

∫

R2

(|∇S|2 − 2x⊥ · ∇S
)
η̃2

ε (3.24)

and the conclusion follows combining (3.23) and (3.24). ¥

Remark 3.2. The energy of the “vortex-free” profile is given by

Fε(η̃εe
iΩS) = Eε(η̃ε)− πa3

0(1− Λ2)2

24(1 + Λ2)Λ3
Ω2 + o(1). (3.25)

It directly follows from (3.24) and Proposition 2.2.

Proof of Proposition 3.3. The minimizing property of vε follows directly from Proposition 3.1 and
Lemma 3.2.

Proof of 3.3.a) and 3.3.b). Since uε minimizes Fε in
{
u ∈ H : ‖u‖L2(R2) = 1

}
, we have using

Lemma 3.2,
Fε(uε) = Fε(η̃εe

iΩS) + Ẽε(vε) + R̃ε(vε) + T̃ε(vε) ≤ Fε(η̃εe
iΩS),
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and it yields
Ẽε(vε) ≤ |R̃ε(vε)|+ |T̃ε(vε)|. (3.26)

Arguing as in the proof of Lemma 3.1 with σ = 1/4 and R =
√

2a0 , we infer from 3.2.e) in
Proposition 3.2 and (3.3),

∣∣∣R̃ε(vε)
∣∣∣ ≤ 1

4

∫

R2
η̃2

ε |∇vε|2 +
4Ω2

(Λ2 + 1)2

∫

R2
|x|2Λ|uε|2

≤ 1
4

∫

R2
η̃2

ε |∇vε|2 +
4Ω2

(Λ2 + 1)2

∫

R2\BΛ√
2a0

2a−(x)|uε|2 +
8a0Ω2

(Λ2 + 1)2

∫

BΛ√
2a0

|uε|2

≤ 1
2
Ẽε(vε) + Cω0 | ln ε|2. (3.27)

We obtain from (2.28), (2.30) and (3.3) that

|T̃ε(vε)| =
∣∣1
2

∫

R2

(
Ω2|∇S|2 − 2Ω2x⊥ · ∇S + kε

)
(|uε|2 − η̃2

ε)
∣∣

≤Cω0 | ln ε|2
[ ∫

R2\BΛ√
2a0

2a−(x)(|uε|2 + η̃2
ε) +

( ∫

BΛ√
2a0

(|uε|2 − a+)2 + (η̃2
ε − a+)2

)1/2]

≤Cω0 ε| ln ε|3. (3.28)

According to (3.26), (3.27) and (3.28), we conclude that Ẽε(vε) ≤ Cω0 | ln ε|2.
Proof of 3.3.c). From 2.2.c) in Proposition 2.2, 3.2.b) and 3.2.d), we infer that

|vε(x)| = |uε(x)|
η̃ε(x)

≤
√

a(x) + |`ε|ε2 + ε2Ω2|x|2
(1− Cε1/3)

√
a(x)

≤ 1 + Cω0ε
1/3 for x ∈ BΛ√

a0−ε1/8 .

Proof of 3.3.d). Let K ⊂ BΛ√
a0

be any compact set. We denote ṽε = eiΩSvε = uε

η̃ε
. By 2.2.c) in

Proposition 2.2, we know that there exists CK > 0 independent of ε such that η̃ε ≥ (1−Cε1/3)
√

a ≥
CK in K. Since ∇ṽε = η̃−1

ε ∇uε − (η̃−2
ε ∇η̃ε)uε, using Proposition 2.2 and Proposition 3.2, it follows

‖∇ṽε‖L∞(K) ≤ Cω0,Kε−1. Hence we deduce (using 3.3.c)) that

‖∇vε‖L∞(K) ≤ ‖∇ṽε‖L∞(K) + Ω‖ṽε∇S‖L∞(K) ≤ Cω0,K ε−1

and the proof is complete. ¥

3.3 Splitting the domain

The main goal in this section is to show that we can excise the region of R2 where the density
|uε| is very small (which corresponds to the exterior of D) without modifying the relevant part in
the energy.

Proposition 3.4. Assume that (3.2) holds. For small ε > 0 and ν ∈ [1, 2], we set Dν
ε =

{
x ∈ R2 :

a(x) > ν| ln ε|−3/2
}
. We have

F̃ε(vε,Dν
ε ) ≤ Cω0 | ln ε|−1.

Proof. Since uε minimizes Fε on
{
u ∈ H : ‖u‖L2(R2) = 1

}
, we have for ε sufficiently small that

Fε(uε) ≤ Fε

(
η̃εe

iΩS
)
. Then Lemma 3.2 yields F̃ε(vε) + T̃ε(vε) ≤ 0 and we derive from 3.3.b) in

Proposition 3.3,
F̃ε(vε) ≤ Cω0ε| ln ε|3. (3.29)
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We now set N ν
ε = R2 \ Dν

ε . From the previous inequality, it suffices to prove that

F̃ε(vε,N ν
ε ) ≥ −Cω0 | ln ε|−1 (3.30)

for a constant Cω0 > 0 independent of ε and ν. Arguing as in the proof of Lemma 3.1 with σ = 1/4
and R =

√
2a0 , we infer from (3.3),

∣∣∣R̃ε(vε,N ν
ε )

∣∣∣ ≤1
4

∫

Nν
ε

η̃2
ε |∇vε|2 +

4Ω2

(1 + Λ2)2

∫

Nν
ε

|x|2Λ|uε|2

≤1
4

∫

Nν
ε

η̃2
ε |∇vε|2 +

4Ω2

(1 + Λ2)2

∫

R2\BΛ√
2a0

2a−(x)|uε|2 +
8a0Ω2

(1 + Λ2)2

∫

BΛ√
2a0

\Dν
ε

|uε|2

≤1
4

∫

Nν
ε

η̃2
ε |∇vε|2 +

8a0Ω2

(1 + Λ2)2

∫

BΛ√
2a0

\Dν
ε

|uε|2 + Cω0ε
2| ln ε|4.

By (3.3), we may also estimate
∫

BΛ√
2a0

\Dν
ε

|uε|2 =
∫

BΛ√
2a0

\BΛ√
a0

|uε|2 +
∫

BΛ√
a0
\Dν

ε

(|uε|2 − a(x)) +
∫

BΛ√
a0
\Dν

ε

a(x)

≤C
(∫

BΛ√
2a0

\BΛ√
a0

|uε|4
)1/2

+ C
( ∫

BΛ√
a0
\Dν

ε

(|uε|2 − a(x))2
)1/2

+ C| ln ε|−3

≤Cω0(| ln ε|−3 + ε| ln ε|).
Then it follows that

|R̃ε(vε,N ν
ε )| ≤ 1

2
Ẽε(vε,N ν

ε ) + Cω0 | ln ε|−1 (3.31)

which leads to (3.30). ¥

For some technical reasons, it will be easier to deal with a+ instead of η̃2
ε in the energies. To

replace η̃2
ε by a+, we shall prove that the energy estimates inside Dν

ε remain unchanged.

Proposition 3.5. Assume that (3.2) holds for some ω0 > 0. We have

Eε(vε,Dν
ε ) ≤ Cω0 | ln ε|2 and Fε(vε,Dν

ε ) ≤ Cω0 | ln ε|−1

where Eε and Fε are defined in (1.18).

Proof. From 2.2.c) in Proposition 2.2, we infer that
∥∥∥∥

a− η̃2
ε

η̃2
ε

∥∥∥∥
L∞(Dν

ε )

≤ Cε1/3 and
∥∥∥∥

a2 − η̃4
ε

η̃4
ε

∥∥∥∥
L∞(Dν

ε )

≤ Cε1/3

and then 3.3.a) in Proposition 3.3 yields
∣∣∣Eε(vε,Dν

ε )− Ẽε(vε,Dν
ε )

∣∣∣ ≤ Cε1/3 Ẽε(vε,Dν
ε ) ≤ Cω0ε

1/3| ln ε|2. (3.32)

Using 3.2.a) and 3.2.e) in Proposition 3.2, we derive
∣∣∣Rε(vε,Dν

ε )− R̃ε(vε,Dν
ε )

∣∣∣ ≤ Ω
∫

Dν
ε

a− η̃2
ε

η̃2
ε

|uε| |∇uε| ≤ Cε1/3Ω(Eε(uε,Dν
ε ))1/2 ≤ Cω0ε

1/3| ln ε|2.

Therefore, it follows that ∣∣∣Fε(vε,Dν
ε )− F̃ε(vε,Dν

ε )
∣∣∣ ≤ Cω0ε

1/3| ln ε|2. (3.33)

Then the conclusion comes immediately from 3.3.a) in Proposition 3.3 and Proposition 3.4. ¥
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4 Energy and degree estimates

This section is devoted to the proof of Theorem 1.1. The method we use is inspired from [21, 23]
and provides some information about the location and the number of vortices inside D.

4.1 Construction of vortex balls and expansion of the rotation energy

We start with the construction of vortex balls by a method due to Sandier [20] and Sandier and
Serfaty [22]; it permits to localize the vorticity set of vε.

Proposition 4.1. Assume that (3.2) holds for some ω0 > 0. Then there exists a positive constant
Kω0 such that for ε sufficiently small, there exist νε ∈ (1, 2) and a finite collection of disjoint balls{
Bi

}
i∈Iε

:=
{
B(pi, ri)

}
i∈Iε

satisfying the conditions:

(i) for every i ∈ Iε,Bi ⊂⊂ Dε =
{
x ∈ R2 : a(x) > νε| ln ε|−3/2

}
,

(ii)
{
x ∈ Dε : |vε(x)| < 1− | ln ε|−5

} ⊂ ∪i∈IεBi,

(iii)
∑

i∈Iε

ri ≤ | ln ε|−10,

(iv)
1
2

∫

Bi

a(x)|∇vε|2 ≥ πa(pi)|di|
(| ln ε| − Kω0 ln | ln ε|),

where di = deg
(

vε

|vε| , ∂Bi

)
for every i ∈ Iε.

Proof. According to the technique presented in [20] and [22], we construct as in [2] (using Proposi-
tion 3.5 with ν = 1) a finite collection of disjoint balls

{
Bi

}
i∈Ĩε

=
{
B(pi, ri)

}
i∈Ĩε

such that

{
x ∈ D : a(x) > | ln ε|−3/2 and |vε(x)| < 1− | ln ε|−5

} ⊂ ∪i∈Ĩε
Bi ,

(iii) is fulfilled and
∫

Bi

a(x)
2
|(∇− iΩx⊥)vε|2 ≥ πa(pi)|di|

(| ln ε| − Kω0 ln | ln ε|) for each i ∈ Ĩε.

By (iii), we can find νε ∈ (1, 2) such that ∂
{
x ∈ D : a(x) > νε| ln ε|−3/2

} ∩ ∪i∈Ĩε
Bi = ∅. By

cancelling the balls Bi that are not included in
{
x ∈ D : a(x) > νε| ln ε|−3/2

}
, it remains a finite

collection
{
Bi

}
i∈Iε

that satisfies (i), (ii) and (iii). Notice now that (iv) takes place since we have

Ω2

∫

Bi

a(x)
2
|x|2|vε|2 ≤ Ω2

∫

Bi

|x|2|uε|2 ≤ Cω0 | ln ε|2r2
i ,

∣∣Ω
∫

Bi

a(x)x⊥ · (ivε,∇vε)
∣∣ ≤ CΩ

∫

Bi

a(x)
η̃ε

|uε| |∇vε| ≤ CΩ‖√a∇vε‖L2(Bi)ri ≤ Cω0 | ln ε|2ri (4.1)

(here we used Proposition 3.5). Hence these terms can be absorbed by Kω0 ln | ln ε| (up to a different
constant Kω0 + 1). ¥

We are now in a position to compute an asymptotic expansion of the rotation energy according
to the center of each vortex ball Bi and the associated degree di:
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Proposition 4.2. Assume that (3.2) holds for some ω0 > 0. For ε sufficiently small, we have

Rε

(
vε,Dε

)
=

−πΩ
1 + Λ2

∑

i∈Iε

(a2(pi)− ν2
ε | ln ε|−3) di + o(| ln ε|−5).

Proof. By Proposition 4.1, Dε \∪i∈Iε
Bi ⊂ Dε \ {|vε| < 1/2} whenever ε is small enough. For x ∈ Dε

such that |vε(x)| ≥ 1/2, we set

wε(x) =
vε(x)
|vε(x)| .

Since (ivε,∇vε) = |vε|2(iwε,∇wε) in Dε \ {|vε| < 1/2}, we have

Rε (vε,Dε \ ∪i∈IεBi) =
Ω

1 + Λ2

∫

Dε\∪i∈Iε Bi

a(x)∇⊥a · (iwε,∇wε)

+
Ω

1 + Λ2

∫

Dε\∪i∈Iε Bi

a(x)(|vε|2 − 1)∇⊥a · (iwε,∇wε). (4.2)

Then we estimate using Proposition 3.5,
∣∣∣∣∣
∫

Dε\∪i∈Iε Bi

a(x)(|vε|2 − 1)∇⊥a · (iwε,∇wε)

∣∣∣∣∣ ≤Cε (Eε(vε,Dε))
1/2 ‖∇wε‖L2(Dε\{|vε|<1/2})

≤Cε| ln ε|‖∇wε‖L2(Dε\{|vε|<1/2}) . (4.3)

In Dε \ {|vε| < 1/2}, we have |∇wε| ≤ 2(|∇vε|+ |∇|vε||) ≤ 4|∇vε|. We deduce that
∫

Dε\{|vε|<1/2}
|∇wε|2 ≤ 16

∫

Dε

|∇vε|2 ≤ 16| ln ε|3/2

∫

Dε

a(x)|∇vε|2 ≤ C| ln ε|7/2 (4.4)

and hence we obtain combining (4.2), (4.3) and (4.4),

Rε (vε,Dε \ ∪i∈IεBi) =
Ω

1 + Λ2

∫

Dε\∪i∈IεBi

a(x)∇⊥a · (iwε,∇wε) +O(ε| ln ε|4). (4.5)

Since (iwε,∇wε) = wε ∧∇wε and a(x)∇⊥a = ∇⊥Pε(x) with

Pε(x) =
a2(x)− ν2

ε | ln ε|−3

2
, (4.6)

we derive that
∫

Dε\∪i∈IεBi

a(x)∇⊥a · (iwε,∇wε) =
∫

Dε\∪i∈Iε Bi

∇⊥Pε(x) · (wε ∧∇wε)

= −
∑

i∈Iε

∫

∂Bi

Pε(x)
(

wε ∧ ∂wε

∂τ

)

where τ denotes the counterclockwise oriented unit tangent vector to ∂Bi. The smoothness of vε

implies the existence of αε ∈ ( 1
2 , 2

3 ) such that U =
{
x ∈ R2 : |vε| < αε

}
is a smooth open set. Then

we set for i ∈ Iε, Ui = Bi ∩ U (notice that by Proposition 4.1, Ui ⊂⊂ Bi for small ε). Using (4.4),
we derive

∣∣∣∣
∫

∂Bi

Pε(x)
(

wε ∧ ∂wε

∂τ

)
−

∫

∂Ui

Pε(x)
(

wε ∧ ∂wε

∂τ

)∣∣∣∣ =

∣∣∣∣∣
∫

Bi\Ui

∇⊥Pε(x) · (wε ∧∇wε)

∣∣∣∣∣
≤C ri ‖∇wε‖L2(Dε\{|vε|<1/2})

≤C ri | ln ε|7/4
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and since |vε| ≤ αε in Ui and |Pε(x) − Pε(pi)| ≤ ri‖∇Pε‖L∞(D), ∀x ∈ B(pi, ri), it results from
Proposition 3.5,

∣∣∣∣
∫

∂Ui

(Pε(x)− Pε(pi))
(

wε ∧ ∂wε

∂τ

)∣∣∣∣ = α−2
ε

∣∣∣∣
∫

∂Ui

(Pε(x)− Pε(pi))
(

vε ∧ ∂vε

∂τ

)∣∣∣∣

≤α−2
ε

∣∣∣∣
∫

Ui

a(x)∇⊥a · (ivε,∇vε)
∣∣∣∣

+ 2α−2
ε

∣∣∣∣
∫

Ui

(Pε(x)−Pε(pi)) det(∇vε)
∣∣∣∣

≤C (ri ‖
√

a∇vε‖L2(Dε) + ri | ln ε|3/2 ‖√a∇vε‖2L2(Ui)
)

≤C ri | ln ε|7/2 .

Therefore we conclude by (iii) in Proposition 4.1 that

Rε (vε,Dε \ ∪i∈Iε
Bi) =

−Ω
1 + Λ2

∑

i∈Iε

Pε(pi)
∫

∂Ui

wε ∧ ∂wε

∂τ
+ o(| ln ε|−5)

=
−2πΩ
1 + Λ2

∑

i∈Iε

Pε(pi) di + o(| ln ε|−5).

On the other hand, we infer from (4.1) and (iii) in Proposition 4.1 that
∣∣Rε(vε,∪i∈IεBi)

∣∣ ≤ C| ln ε|2
∑

i∈Iε

ri ≤ C| ln ε|−8.

According to (4.6), the proof is completed. ¥

4.2 Asymptotic behavior for subcritical velocities. Proof of (i) in Theo-

rem 1.1.

In this section, we prove (i) in Theorem 1.1. We will distinguish different types of vortex balls
through the partition Iε = I0 ∪ I∗ ∪ I− where

I0 =
{
i ∈ Iε : di ≥ 0 and |pi|Λ < | ln ε|−1/6

}
,

I∗ =
{
i ∈ Iε : di ≥ 0 and |pi|Λ ≥ | ln ε|−1/6

}
,

I− =
{
i ∈ Iε : di < 0

}

in order to improve the lower bound for Fε(vε,Dε) (see (4.12)). In the sequel, we assume that

Ω ≤ Ω1 + ω1 ln | ln ε| (4.7)

for some constant ω1 ∈ R. Therefore, if ε is small, we have Ω ≤ 3
a0
| ln ε| and we will use the constant

K 3
a0

given by Proposition 4.1. In fact, one can choose instead of 3
a0

any other constant ω0 such that

ω0 > 1+Λ2

a0
. First, we show the following:

Proposition 4.3. Assume that (4.7) holds with ω1 < ω?
1 :=

−(1+Λ2)K 3
a0

a0
. Then for ε sufficiently

small, we have
∑

i∈Iε
|di| = 0 and

|vε| → 1 in L∞loc(D) as ε → 0. (4.8)

Moreover,
F̃ε(vε) = o(1) and Ẽε(vε) = o(1). (4.9)
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Proof. From Proposition 3.5 and Proposition 4.1, we get that

O(| ln ε|−1) ≥ Fε(vε,Dε) ≥ 1
2

∫

Dε\∪i∈IεBi

a(x)|∇vε|2 +
1

4ε2

∫

Dε

a2(x)(1− |vε|2)2 (4.10)

+ π
∑

i∈Iε

a(pi)|di|
(
| ln ε| − K 3

a0
ln | ln ε|

)
+Rε(vε,Dε).

Combining Proposition 4.2 and (4.7), it results that

Rε (vε,Dε) ≥ −πa0Ω
1 + Λ2

∑

i∈I0

a(pi)|di| − π(a0 − | ln ε|−1/3)Ω
1 + Λ2

∑

i∈I∗

a(pi)|di|+ o(| ln ε|−5)

≥ − π
∑

i∈I0∪I∗

a(pi)|di|| ln ε| − πa0ω1

1 + Λ2

∑

i∈I0

a(pi)|di| ln | ln ε| (4.11)

+
π

2a0

∑

i∈I∗

a(pi)|di|| ln ε|2/3 + o(| ln ε|−5)

(here we used that

(a0 − | ln ε|−1/3)Ω
1 + Λ2

≤ | ln ε| − 1
a0
| ln ε|2/3 +

a0ω1

1 + Λ2
ln | ln ε| ≤ | ln ε| − 1

2a0
| ln ε|2/3

for ε small). Then we deduce from (4.10) and (4.11) that for ε small enough,

1
2

∫

Dε\∪i∈Iε Bi

a(x)|∇vε|2 +
∫

Dε

a2(x)
4ε2

(1− |vε|2)2 − π
( a0ω1

1 + Λ2
+K 3

a0
)
∑

i∈I0

a(pi)|di| ln | ln ε| (4.12)

+
π

4a0

∑

i∈I∗

a(pi)|di|| ln ε|2/3 +
π

2

∑

i∈I−

a(pi)|di|| ln ε|+ o(| ln ε|−5) ≤ Fε(vε,Dε) ≤ O(| ln ε|−1).

Since a0ω1
1+Λ2 <−K 3

a0
and a(pi) ≥ a0/2 for i ∈ I0, we derive from (4.12) that

∑
i∈I0

|di| = o(| ln ε|−1).

Now since a(pi) ≥ | ln ε|−3/2 in Dε, we also obtain from (4.12) that
∑

i∈I∗ |di| = O(| ln ε|−1/6) and∑
i∈I− |di| = O(| ln ε|−1/2). Hence

∑
i∈Iε

|di| ≡ 0 for ε sufficiently small. Coming back to (4.12), we
infer that for any 0 < R <

√
a0 ,

1
ε2

∫

BΛ
R

(1− |vε|2)2 ≤ CR

ε2

∫

Dε

a2(x)(1− |vε|2)2 ≤ o(1). (4.13)

Then the proof of (4.8) follows as in [6] using the estimate 3.3.d) in Proposition 3.3 on |∇vε|.
Since

∑
i∈Iε

|di| = 0, we derive from Proposition 4.2 that Rε(vε,Dε) = o(1). Using that
Fε(vε,Dε) ≤ o(1), we deduce that Eε(vε,Dε) = o(1) and hence we have Fε(vε,Dε) = o(1). By
(3.32) and (3.33), it leads to

Ẽε(vε,Dε) = o(1) (4.14)

and F̃ε(vε,Dε) = o(1). Using (3.29) and (3.30), we get that

o(1) ≤ F̃ε(vε,N νε
ε ) ≤ −F̃ε(vε,Dε) + o(1) ≤ o(1) (4.15)

and therefore F̃ε(vε) = o(1). By (3.31), we have

F̃ε(vε,N νε
ε ) = Ẽε(vε,N νε

ε ) + R̃ε(vε,N νε
ε ) ≥ 1

2
Ẽε(vε,N νε

ε ) + o(1)
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and it results from (4.15) that Ẽε(vε,N νε
ε ) = o(1). By (4.14), we conclude that Ẽε(vε) = o(1). ¥

Proof of (i) in Theorem 1.1. By 2.2.c) in Proposition 2.2 and (4.8), it follows that |uε| →
√

a+ in
L∞loc(D). According to 3.2.c) in Proposition 3.2, it turns out that |uε| →

√
a+ in L∞loc(R2 \ ∂D).

Moreover, by (4.9), for any sequence εn → 0 we can extract a subsequence (still denoted (εn)) such
that vεn

→ α in H1
loc(D) for some constant α ∈ S1. We obtain that uεn

e−iΩS → α
√

a+ in H1
loc(D)

by 2.2.e) in Proposition 2.2. By Lemma 3.2, 3.3.b) in Proposition 3.3 and (4.9), we conclude that
(1.6) holds. ¥

4.3 Vortex existence near the critical velocity. Proof of (ii) in Theo-

rem 1.1.

We now prove (ii) in Theorem 1.1. We will use an appropriate test function in order to improve
the upper bound of the energy Fε(uε).

Proof of (ii) in Theorem 1.1. Step1: Construction of a test function. Assume that Ω1 + δ ln | ln ε| ≤
Ω ≤ ω0| ln ε| for some positive constants δ and ω0 (thus, ω0 > Λ2+1

a0
). We consider the map ṽε

defined by

ṽε(x) =





x

|x| if |x| ≥ ε,

x

ε
otherwise

and we set ûε = η̃εe
iΩS ṽε. We easily check that ûε ∈ H. Lemma 3.2 yields

Fε(ûε) = Fε(η̃εe
iΩS) + F̃ε(ṽε) + T̃ε(ṽε).

Then we estimate

∣∣T̃ε(ṽε)
∣∣ ≤ 1

2

∫

Bε

∣∣∣∣Ω2|∇S|2 − 2Ω2x⊥ · ∇S + kε

∣∣∣∣η̃2
ε(1− |ṽε|2) = o(1).

A straightforward computation (using Proposition 2.2) leads to

F̃ε(ṽε) ≤ − πa2
0δ

1 + Λ2
ln | ln ε|+O(1)

and consequently

Fε(ûε) ≤ Fε(η̃εe
iΩS)− πa2

0δ

1 + Λ2
ln | ln ε|+O(1). (4.16)

We now set ũε = m−1
ε ûε with mε = ‖ûε‖L2(R2) (so that ‖ũε‖L2(R2) = 1). Since ‖η̃ε‖L2(R2) = 1, we

have
m2

ε =
∫

R2
η̃2

ε |ṽε|2 = 1 +
∫

Bε

η̃2
ε(|ṽε|2 − 1) = 1 +O(ε2).

From this estimate, we easily check that

Fε(ũε) = Fε(ûε) + o(1). (4.17)

Step 2. By the minimizing property of uε, we know that Fε(uε) ≤ Fε(ũε). In view of 3.3.b) in
Proposition 3.3, (4.16) and (4.17), it yields

F̃ε(vε) ≤ − πa2
0δ

1 + Λ2
ln | ln ε|+O(1).
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Using (3.30) and then (3.33), we derive that

Fε(vε,Dε) ≤ − πa2
0δ

1 + Λ2
ln | ln ε|+O(1). (4.18)

On the other hand, by Proposition 4.2, we have

Rε(vε,Dε) ≥ − πω0

1 + Λ2

∑

i∈Iε, di>0

a2(pi) di| ln ε| + o(1)

≥ −πω0 a0

1 + Λ2

∑

i∈Îε, di>0

a(pi) di| ln ε| − π

2

∑

i∈Iε\Îε, di>0

a(pi) di| ln ε| + o(1)

where we denoted

Îε =
{
i ∈ Iε : a(pi) ≥ Λ2 + 1

2ω0

}
.

Then, by Proposition 4.1, we deduce that

Fε(vε,Dε) ≥ Eε(vε,∪i∈Iε
Bi) +Rε(vε,Dε) ≥ −Cω0

∑

i∈Îε, di>0

a(pi) di| ln ε| + o(1)

for some constant Cω0 > 0. Therefore, by (4.18), it results that for small ε > 0,
∑

i∈Îε, di>0

di > 0.

We conclude that there exists i0 ∈ Îε such that di0 > 0, so that there exists at least one vortex inside
the bulk D which remains at a positive distance (independent of ε) from ∂D. If in addition, (4.7)
holds, we claim that uε has at least one vortex close to the origin. Indeed, by (4.12) and (4.18), we
obtain

−π
( a0ω1

1 + Λ2
+K 3

a0
)
∑

i∈I0

a(pi)|di| ln | ln ε| ≤ − πa2
0δ

1 + Λ2
ln | ln ε|+O(1)

which implies for ε small enough that
∑

i∈I0
|di| ≥ C > 0 for a constant C independent of ε. Hence,

for ε small, there exists a ball Bj0 (j0 ∈ I0) that carries a vortex xε with |xε| ≤ O(| ln ε|−1/6). ¥

4.4 Energy estimates near the critical velocity. Proof of (iii) in Theo-

rem 1.1.

In this section, we prove the energy estimates stated in (iii) in Theorem 1.1 in the regime (4.7).
First, we shall prove that the number of vortex balls with nonzero degree lying in a slightly smaller
domain than Dε, is bounded.

Proposition 4.4. Assume that (4.7) holds. Then

N0 :=
∑

i∈I0

|di| ≤ Cω1 (4.19)

and setting Bε =
{
x ∈ R2 : a(x) ≥ | ln ε|−1/2

}
, we have for ε sufficiently small,

∑

i∈I∗∪I−, pi∈Bε

|di| = 0. (4.20)
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Proof. Arguing as for (4.12), we derive that for ε small enough,
∫

Dε\∪i∈IεBi

a(x)|∇vε|2 +
∑

i∈I∗

a(pi)|di|| ln ε|2/3 +
∑

i∈I−

a(pi)|di|| ln ε| ≤

≤ C
∣∣ a0ω1

1 + Λ2
+K 3

a0

∣∣ ∑

i∈I0

a(pi)|di| ln | ln ε|+O(| ln ε|−1)

≤ C0N0 ln | ln ε|+O(| ln ε|−1) (4.21)

for some positive constant C0 independent of ε. We set

Ĩ∗ = {i ∈ I∗ : pi ∈ Bε} , N∗ =
∑

i∈Ĩ∗

|di|,

and
Ĩ− = {i ∈ I− : pi ∈ Bε} , N− =

∑

i∈Ĩ−

|di|.

Since a(pi) ≥ | ln ε|−1/2 for any i ∈ Ĩ∗ ∪ Ĩ− , we obtain from (4.21),
∫

Dε\∪i∈Iε Bi

a(x)|∇vε|2 + N∗| ln ε|1/6 + N−| ln ε|1/2 ≤ C0N0 ln | ln ε|+O(| ln ε|−1) (4.22)

which implies in particular that

max{N∗, N−} ≤ N0

2
(4.23)

for ε sufficiently small. We now show that N0 is uniformly bounded in ε. Consider the sets

Iε =
[ | ln ε|−1/6,

√
a0

2
]

and Jε =
{
r ∈ Iε : ∂BΛ

r ∩ (∪i∈Iε
Bi) = ∅} .

Notice that Jε is a finite union of intervals verifying |Iε \ Jε| ≤ | ln ε|−10. For r ∈ Jε and ε small,
we have |vε| ≥ 1

2 on ∂BΛ
r and therefore, we can define

D(r) = deg
(

vε

|vε| , ∂BΛ
r

)
.

By (4.23), we obtain that for small ε,

|D(r)| =
∣∣ ∑

|pi|Λ<r

di

∣∣ ≥ N0 −N− ≥ N0

2
for any r ∈ Jε.

We have (using elliptic coordinates x1 = r cos θ, x2 = Λ−1r sin θ)
∫

BΛ√
a0
2

\∪i∈Iε Bi

a(x)|∇vε|2 ≥ 3a0

4Λ

∫

Jε

( ∫ 2π

0

|∇vε|2r dθ

)
dr ≥ C

∫

Jε

1
r

( ∫ 2π

0

∣∣vε ∧ ∂vε

∂τ

∣∣2r2 dθ

)
dr.

We set wε = vε

|vε| in BΛ√
a0
2

\ ∪i∈IεBi. Since |vε ∧ ∂vε

∂τ
| = |vε|2|wε ∧ ∂wε

∂τ
| ≥ 1

4
|wε ∧ ∂wε

∂τ
| in BΛ√

a0
2

\
∪i∈IεBi, we infer that

∫

BΛ√
a0
2

\∪i∈IεBi

a(x)|∇vε|2 ≥ C

∫

Jε

1
r

( ∫ 2π

0

∣∣wε ∧ ∂wε

∂τ

∣∣2r2 dθ

)
dr

≥ C

∫

Jε

1
r

( ∫ 2π

0

wε ∧ ∂wε

∂τ
r dθ

)2

dr ≥ C

∫

Jε

D(r)2

r
dr ≥ CN2

0

∫

Jε

dr

r
.
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Notice now that ∣∣∣∣
∫

Iε

dr

r
−

∫

Jε

dr

r

∣∣∣∣ ≤ | ln ε|1/6|Iε \ Jε| = o(1)

and since
∫

Iε

dr

r
= C ln | ln ε|+O(1), we finally get that

∫

BΛ√
a0
2

\∪i∈Iε Bi

a(x)|∇vε|2 ≥ C1 ln | ln ε|N2
0

for some positive constant C1 independent of ε. From (4.22), we derive

(
C1N

2
0 − C0N0

)
ln | ln ε| ≤ O(| ln ε|−1)

which implies that N0 is uniformly bounded in ε. Then it follows by (4.22) that

N∗ ≤ O(
ln | ln ε|
| ln ε|1/6

) and N− ≤ O(
ln | ln ε|
| ln ε|1/2

).

Therefore, N− = N∗ = 0 for ε sufficiently small. ¥

Proof of (iii) in Theorem 1.1. From Proposition 4.2, (4.7) and (4.20), we infer that for ε small,

Rε

(
vε,Dε

) ≥ −πa0Ω
1 + Λ2

∑

i∈I0

a(pi)|di| − πΩ
1 + Λ2

| ln ε|−1/2
∑

i∈I∗\Ĩ∗
a(pi)|di|+ o(| ln ε|−5)

≥ −π
∑

i∈I0

a(pi)|di|
(| ln ε|+ a0ω1

1 + Λ2
ln | ln ε|)− 2π

a0

∑

i∈I∗

a(pi)|di|| ln ε|1/2 + o(| ln ε|−5).

We now inject this estimate in (4.10) to derive that
∑

i∈I∗ a(pi)|di|| ln ε| ≤ CN0 ln | ln ε|+ o(1) and
hence, by (4.19),

∑
i∈I∗ a(pi)|di|| ln ε|1/2 = o(1). It yields

Rε(vε,Dε) = Rε (vε,Dε \ ∪i∈IεBi) + o(1) ≥ −π
∑

i∈I0

a(pi)|di|
(| ln ε|+ a0ω1

1 + Λ2
ln | ln ε|) + o(1).

Since Fε(vε,Dε) = Eε(vε,Dε) +Rε(vε,Dε) ≤ O(| ln ε|−1), it follows

Eε(vε,Dε) ≤ π
∑

i∈I0

a(pi)|di|
(| ln ε|+ a0ω1

1 + Λ2
ln | ln ε|) + o(1) (4.24)

≤ Cω1N0| ln ε|+ o(1) ≤ Cω1 | ln ε|.

Set Aε = Dε \BΛ
2| ln ε|−1/6 . Matching (iv) in Proposition 4.1 with (4.24), we finally obtain

Eε(vε,Aε) ≤ Eε(vε,Dε \ ∪i∈I0Bi) ≤ π(
a0ω1

1 + Λ2
+K 3

a0
)
∑

i∈I0

a(pi)|di| ln | ln ε|+ o(1)

≤ Cω1N0 ln | ln ε| ≤ Cω1 ln | ln ε|

and the proof is complete. ¥

Remark 4.1. For general potentials a(x), the analysis becomes rather delicate when the set of
maximum points of the quotient ξ

a in D = {x ∈ R2 : a(x) > 0} is not finite. Recall that ξ is the
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solution of the problem (1.16). An example is given by the following perturbation at the origin of
the harmonic potential 1− |x|2:

a(x) =





1
1+|x|2 if |x| < 1,
2−|x|

2 if |x| ≥ 1.

Here, the set of maximum points of the quotient ξ
a is a circle centered in the origin.
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