
ar
X

iv
:1

90
8.

00
03

3v
1 

 [
m

at
h.

A
P]

  3
1 

Ju
l 2

01
9

Symmetry and multiplicity of solutions in a two-dimensional

Landau-de Gennes model for liquid crystals

Radu Ignat∗, Luc Nguyen†, Valeriy Slastikov‡ and Arghir Zarnescu§ ¶‖

Abstract

We consider a variational two-dimensional Landau-de Gennes model in the theory of nematic
liquid crystals in a disk of radius R. We prove that under a symmetric boundary condition
carrying a topological defect of degree k

2
for some given even non-zero integer k, there are

exactly two minimizers for all large enough R. We show that the minimizers do not inherit the
full symmetry structure of the energy functional and the boundary data. We further show that
there are at least five symmetric critical points.
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1 Introduction

The questions of symmetry and stability of critical points for the Landau-de Gennes energy func-
tional on two dimensional domains have been recently raised in the mathematical liquid crystal
community [4, 15, 20, 23, 24, 27]. The particular focus of these works was on analyzing special
symmetric critical points and investigating their stability properties depending on multiple param-
eters of the problem.

In this paper we continue the study of the symmetry, stability and multiplicity of critical points
of the Landau-de Gennes energy using the same mathematical setting. The main result we establish
is the uniqueness (up to reflection) of the global minimizer in the most relevant physical regime
of small elastic constant under the strong anchoring boundary condition which has a topological
degree k

2 with even nonzero k (see (1.7)-(1.9) below). As a consequence of this uniqueness, the
minimizers satisfy a k-fold O(2)-symmetry (see Definition 1.1) which has not been identified earlier.
Additionally, we prove the existence of two other k-fold O(2)-symmetric critical points which are
not minimizing.

We recall the (non-dimensional) Landau-de Gennes energy functional in the disk BR ⊂ R
2 of

radius R ∈ (0,∞) centered at the origin:

F [Q;BR] =

∫

BR

[1
2
|∇Q|2 + fbulk(Q)

]
dx, Q ∈ H1(BR,S0), (1.1)

where S0 is the set of Q-tensors:

S0 := {Q ∈ R
3×3 : tr(Q) = 0, Q = Qt}. (1.2)

The nonlinear bulk potential is given by

fbulk(Q) = −a
2

2
tr(Q2)− b2

3
tr(Q3) +

c2

4
(tr(Q2))2 − f∗,

where a2 ≥ 0, b2, c2 > 0 are appropriately scaled parameters and the normalizing constant f∗ is
chosen such that the minimum value of fbulk over S0 is zero. A direct computation gives1

f∗ = −a
2

3
s2+ − 2b2

27
s3+ +

c2

9
s4+ (1.3)

1It is sometimes useful to note that the function s 7→ − a2

3
s2 − 2b2

27
s3 + c2

9
s4 is minimized at s = s+.
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with

s+ =
b2 +

√
b4 + 24a2c2

4c2
> 0. (1.4)

The set of minimizers of fbulk, which we call the limit manifold, is given by the following set of
uniaxial Q-tensors

S∗ := {Q ∈ S0 : fbulk(Q) = 0} =

{
Q = s+

(
v ⊗ v − 1

3
I3

)
, v ∈ S

2

}
, (1.5)

where I3 is the 3× 3 identity matrix.
The Euler-Lagrange equations satisfied by the critical points of F read

∆Q = −a2Q− b2
[
Q2 − 1

3
tr(Q2)I3] + c2 tr(Q2)Q in BR. (1.6)

The Landau-de Gennes energy describes the pattern formation in liquid crystal systems, in
particular, the so-called defect patterns. A well-studied limit, relating the defects in the Landau-de
Gennes framework with those in the Oseen-Frank framework, is that of small elastic constant (after
a suitable non-dimensionalisation – see [16]), considered, for instance, in [1, 4, 10, 18] in 2D and
[11, 29, 30] in 3D. Qualitative properties of defects and their stability are studied, for example, in
the case of one elastic constant in 2D domains in [15, 23, 24] and in 3D domains in [12, 22, 28].
Numerical explorations of the defects in 2D domains and several elastic constants are available in
[2, 17, 27].

We couple the system (1.6) with the following strong anchoring boundary condition:

Q(x) = Qb(x) on ∂BR (1.7)

where the map Qb : R
2 \ {0} → S0 is defined, for some fixed k ∈ Z \ {0}, by

Qb(x) := s+

(
n(x)⊗ n(x)− 1

3
I3

)
, x ∈ R

2 \ {0}, (1.8)

n(r cosϕ, r sinϕ) := (cos
kϕ

2
, sin

kϕ

2
, 0), r > 0, 0 ≤ ϕ < 2π. (1.9)

Note that Qb has image in {s+
(
v ⊗ v − 1

3I3
)
: v ∈ S

1} ∼= RP 1 and, as a map from ∂BR ∼= S
1 into

RP 1 (see for instance formula (8.16) in [8]), has 1
2Z-valued topological degree k

2 .
It is worth pointing out the difference between the cases when k is even and odd. If k is even, the

vector n defined in (1.9) is continuous at ϕ = 2π, however, if k is odd there is a jump discontinuity
at ϕ = 2π. Nevertheless the boundary data Qb defined in terms of n in (1.8) is continuous for any
k ∈ Z, but its topological features as a map from ∂BR ∼= S

1 into RP 1 will depend on the parity of
k, see Ball and Zarnescu [3], Bethuel and Chiron [7], Brezis, Coron and Lieb [8], Ignat and Lamy
[21]. In particular, this leads to major qualitative differences in the properties of the critical points;
see [3, 15, 23, 24] for analytical studies in 2D domains which involve only one elastic constant, and
[17, 27] for numerical studies for several elastic constants. Moreover, in the limit of small elastic
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constant the minimal Landau-de Gennes energy becomes infinite in the case of odd k (see [10, 18])
and is finite in the case of even k (see [14]). This phenomenon leads to significant differences in the
structure and distribution of defects depending on the parity of k (see Appendix A).

Two group actions on the space H1(BR,S0). In the following we consider two types of
symmetries induced by two group actions on the space H1(BR,S0) which keep invariant both the
energy functional F as well as the boundary condition (1.7)-(1.9).

• k-fold O(2)-symmetry. For k ∈ Z \ {0}, we introduce the following group action of O(2)
on H1(BR,S0). We identify O(2) ∼ {0, 1} × S

1 ∼ {0, 1} × [0, 2π) and define the action of O(2) on
H1(BR,S0) by

(α,ψ,Q) ∈ {0, 1} × [0, 2π) ×H1(BR,S0) 7→ Qα,ψ ∈ H1(BR,S0). (1.10)

Here Qα,ψ is defined as

Qα,ψ(x) := LαRt
k(ψ)Q

(
P2

(
LαR2(ψ)x̃

))
Rk(ψ)L

α for almost every x = (x1, x2) ∈ BR (1.11)

with x̃ = (x1, x2, 0), P2 : R
3 → R

2 given by projection P2(x1, x2, x3) = (x1, x2),

Rk(ψ) :=




cos(k2ψ) − sin(k2ψ) 0

sin(k2ψ) cos(k2ψ) 0
0 0 1


 (1.12)

representing an in-plane rotation about e3 = (0, 0, 1) by angle k
2ψ, and

L :=




1 0 0
0 −1 0
0 0 1


 (1.13)

defining the reflection with respect to the plane perpendicular to the (0, 1, 0)-direction.

Definition 1.1. Let k ∈ Z \ {0}. The subset of H1(BR,S0) that is invariant under the group
action (1.10) is called the set of k-fold O(2)-symmetric maps. Such a map Q ∈ H1(BR,S0) is
therefore characterized by

Q = Qα,ψ in BR for every (α,ψ) ∈ {0, 1} × [0, 2π). (1.14)

Sometimes when k is clear (uniquely determined) from the context, we will omit “k-fold” and
simply call the above property as O(2)-symmetry. The following proposition provides a characteri-
zation of k-fold O(2)-symmetric maps in the case of even k. Its proof is postponed until Section 2.

Proposition 1.2. Let k ∈ 2Z \ {0}. A map Q ∈ H1(BR,S0) is k-fold O(2)-symmetric if and only
if

Q(x) = w0(r)E0 + w1(r)E1 + w3(r)E3 for a.e. x = (r cosϕ, r sinϕ) ∈ BR, (1.15)
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where

E0 =

√
3

2
(e3 ⊗ e3 −

1

3
I3), E1 =

√
2(n⊗ n− 1

2
I2), E3 =

1√
2
(n⊗ e3 + e3 ⊗ n) (1.16)

with n given by (1.9), e3 = (0, 0, 1), I2 = I3 − e3 ⊗ e3, w0 ∈ H1((0, R); r dr) and w1, w3 ∈
H1((0, R); r dr) ∩ L2((0, R); 1r dr).

When k is odd, k-fold O(2)-symmetric maps are of the form Q(x) = w0(r)E0 + w1(r)E1, i.e.,
w3 = 0 in (1.15). See Remark 2.7.

• Z2-symmetry. We introduce the group action of Z2 on H1(BR,S0):

(α,Q) ∈ Z2 ×H1(BR,S0) 7→ JαQJα ∈ H1(BR,S0) (1.17)

where J stands for the reflection with respect to the plane perpendicular to the (0, 0, 1)-direction.

J :=




1 0 0
0 1 0
0 0 −1


 . (1.18)

Definition 1.3. The subset of H1(BR,S0) that is invariant under the group action (1.17) is called
the set of Z2-symmetric maps. Such a map Q ∈ H1(BR,S0) is therefore characterized by

Q = JQJ in BR.

We will see in Proposition 2.8 that a map Q ∈ H1(BR,S0) is Z2-symmetric if and only if
e3 = (0, 0, 1) is an eigenvector of Q(x) for almost all x ∈ BR. We note an important difference
between the definitions of k-fold O(2)-symmetry and Z2-symmetry: the O(2)-action on H1(BR,S0)
applies to both the domain and the target space while the Z2-action applies only to the target space.

It is clear that if Q is a minimizer (or a critical point) of F under the boundary condition (1.7)
then the elements of its orbit under the k-fold O(2)-action as well as the Z2-action are also mini-
mizers (or critical points, respectively). A natural question therefore arises: do minimizers/critical
points of F (under (1.7)) have k-fold O(2)-symmetry, or Z2-symmetry, or both, or maybe none?
Some partial answers are available in the literature. In a work of Bauman, Park and Phillips [4],
which is not directly related to symmetry issues, it was shown that, for |k| 6= 0, 1 and as R → ∞,
there exist none-O(2)-symmetric critical points. Their results might tempt one to extrapolate a
lack of symmetry in general. This intuition would be also apparently supported by the numerical
simulations in Hu, Qu and Zhang [20] which observed lack of symmetry for a certain radius. How-
ever, in [27] the k-fold O(2)-symmetry was numerically observed for a minimizer in the case of even
k and large enough radius R (probably larger than in the examples explored numerically in [20]).

Definition 1.4. For k ∈ Z\{0}, a map Q ∈ H1(BR,S0) is called (k-fold) Z2×O(2)-symmetric

if Q is both (k-fold) O(2)-symmetric and Z2-symmetric.
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We will see later (in Section 2) that all Z2 ×O(2)-symmetric maps are of the form 2

Q(x) = w0(|x|)E0 + w1(|x|)E1 for a.e. x ∈ BR. (1.19)

It is known from [23] that all Z2 ×O(2)-symmetric critical points of F coincide with the so-called
k-radially symmetric critical points. See Section 2 for more details. Note that the boundary data
Qb defined in (1.8) is Z2 × O(2)-symmetric on ∂BR. However, we will prove that the minimizers
of F [·;BR] under the boundary condition (1.8) do not satisfy this symmetry (namely they are not
Z2-symmetric).

The structure and stability properties of Z2 ×O(2)-symmetric critical points were investigated
in [15, 23, 24]. In particular, it was proved that

• when b = 0 and R <∞ they are minimizers of the Landau-de Gennes energy for all k ∈ Z\{0}
(see [15]);

• when b 6= 0, N ∋ |k| > 1 and R is large enough they are unstable (see [23]);

• when b 6= 0 and k = ±1 they are locally stable for all R ≤ ∞ under suitable condition on w0

and w1 in (1.19) (see [24]).3

In this paper we focus on the case
k ∈ 2Z \ {0},

where the k-fold O(2)-symmetry does not imply in general the Z2-symmetry (some remarks on the
case k odd are provided in Appendix A). Our main result states that for large enough radius R
the Landau-de Gennes energy (1.1) under the boundary condition (1.7) has exactly two minimizers
and these minimizers are k-fold O(2)-symmetric and Z2-conjugate to each other.

Theorem 1.5. Let a2 ≥ 0, b2, c2 > 0 be any fixed constants and k ∈ 2Z \ {0}. There exists some
R0 = R0(a

2, b2, c2, k) > 0 such that for all R > R0, there exist exactly two global minimizers Q±
R of

F [·;BR] subjected to the boundary condition (1.7) and these minimizers are k-fold O(2)-symmetric
(but not Z2 × O(2)-symmetric). The minimizers Q±

R are Z2-conjugate to one another, namely,
Q±
R = JQ∓

RJ 6= Q∓
R and have the form

Q±
R(x) = w0(|x|)E0 +w1(|x|)E1 ± w3(|x|)E3 for every x ∈ BR, (1.20)

where E0, E1 and E3 are given by (1.16) and w3 > 0 in (0, R).

It is clear that the Euler-Lagrange equation (1.6) for Q±
R then reduces to a system of ODEs for

(w0, w1, 0,±w3, 0) with the boundary condition w0(R) = − s+√
6
, w1(R) =

s+√
2
and w3(R) = 0. See

Remark 2.4.
The idea of the proof of Theorem 1.5 is presented in Section 3.1. An assumption in the above

theorem concerns the radius of the domain which is taken to be large enough. This is a physically

2In particular, in view of Remark 2.7, if k is odd, all k-fold O(2)-symmetric maps are Z2 ×O(2)-symmetric.
3For b4 ≤ 3a2c2, the condition reduces to w0 < 0 and w1 > 0.
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relevant assumption, capturing the most interesting physical regime of small elastic constant (as
explained in [16] and studied, for instance, in [1, 4, 10, 14, 18] in 2D and [11, 29, 30] in 3D).

We would like to draw the attention to our related uniqueness results in a Ginzburg-Landau
settings [25, 26] where the bulk potential satisfies a suitable global convexity assumption. In these
articles, we established a link between the so-called non-escaping phenomenon and uniqueness of
minimizers. In the context of Q-tensors, a non-escaping phenomenon would mean the existence of
O(2)-symmetric critical point Q such that Q ·E3 does not change sign. While it is not hard to prove
the existence of such critical points for large R (see the last paragraph in the proof of Theorem 3.1),
the method in [25, 26] does not apply to the present setting as our bulk potential fbulk does not
satisfy the relevant global convexity. In a sequel to the present article, we will apply the method
developed here to prove a similar uniqueness result for minimizers of a Ginzburg-Landau type
energy functional where the bulk potential satisfies only a local convexity property near the limit
manifold.

Our second result concerns the multiplicity of k-fold O(2)-symmetric critical points of F . This
is coherent with the numerical simulations in [27, Section 3.2] for k = 2 and [20, Section 2.2],
which observed, for large enough R, that there can be several distinct solutions, corresponding to
boundary conditions (1.7).

Theorem 1.6. Let a2 ≥ 0, b2, c2 > 0 be any fixed constants and k ∈ 2Z \ {0}. There exists some
R1 = R1(a

2, b2, c2, k) > 0 such that for all R > R1, there exist at least five k-fold O(2)-symmetric
critical points of F [·;BR] subjected to the boundary condition (1.7). At least four of these solutions
are not Z2 ×O(2)-symmetric.

The rough idea of proving Theorem 1.6 is the following: Theorem 1.5 gives us two global
minimizers Q±

R. By the mountain pass theorem, there is a mountain pass critical point, denoted
QmpR that connects these two (Z2-conjugate) minimizers Q±

R. The main point in the proof of
Theorem 1.6 is to show that the mountain pass solution QmpR does not coincide with the k-radially
symmetric critical point QstrR constructed in [23]. This is done by an energy estimate showing in
particular the existence of paths between Q±

R for which the energy is uniformly bounded with respect
to R, see (4.6). As the maps Q±

R, after suitably rescaled, converge to two S∗-valued minimizing
harmonic maps of different topological nature, this highlights the difficulty of constructing that
path; see Section 4 for a more detailed discussion. Moreover, we show that the mountain pass
critical point is not Z2-symmetric, thus its Z2-conjugate Q̃

mp
R is also a critical point, thus yielding

five different critical points.
In Table 1, we summarize the properties of the critical points from Theorem 1.6.4

The two global minimizers Q±
R as well as the two mountain pass critical points QmpR and Q̃mpR

are k-fold O(2)-symmetric but not Z2-symmetric. The map QstrR is a minimizer among Z2 ×O(2)-
symmetric maps.5 The subscript k in the little o-terms indicates that the rate of convergence may
depend on k. The subscript k in the big O-terms indicates that the implicit constant may depend
on k. The energy of Q±

R is bounded from above by and converges as R→ ∞ to the Dirichlet energy

4See Appendix A for related remarks regarding the case when k is odd.
5It is an open problem if the w0 and w1 components of Qstr

R satisfy w0 < 0 and w1 > 0. See [23, Open problem
3.2].
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Table 1: Properties of critical points for even k 6= 0 and large radius R

Critical Point Stability w3 in (1.15) Symmetry Energy as R→ ∞
Q±
R Yes w+

3 = −w−
3 > 0 O(2)-symmetry 4πs2+|k|+ ok(1)

QstrR No w3 ≡ 0 Z2 ×O(2)-symmetry
πk2s2+

2 lnR+ ok(lnR)

QmpR and Q̃mpR No w3 = −w̃3 6≡ 0 O(2)-symmetry Ok(1)

of the S∗-valued minimal harmonic map(s) on B1, which is 4πs2+|k|; see (4.7). The asymptotic
behavior of the energy of QstrR as R → ∞ is proved in Lemma 4.1. The estimate for the energy
of the mountain pass solutions is given in (4.5). In addition to these solutions, we also have the
non-O(2)-symmetric solutions constructed in [4], which have energy O(|k| lnR) for large R, see [4,
Theorem B].

To dispel confusion, we note that the Ginzburg-Landau counterpart for our model is the 2D −
3D Ginzburg-Landau model (see [26, Theorem 1.1]). In particular, the minimal energy remains
bounded as R → ∞, which is contrary to the 2D − 2D Ginzburg-Landau case where the minimal
energy grows like lnR as R → ∞ (see e.g. the seminal book of Béthuel, Brezis and Hélein [6] or
[31]). In the 2D−3D case, it was shown in [26] that, for every k ∈ 2Z\{0} and under the boundary
condition (1.9), there exists R∗ > 0 such that the Ginzburg-Landau energy functional has a unique
critical point for R ≤ R∗ and has exactly two minimizers which ‘escape in the third dimension’ for
R > R∗.

The paper is organized as follows: In Section 2 we present some basic facts about the two
types of symmetry induced by the O(2)- and Z2-group actions, and, in particular, about k-fold
SO(2)-symmetric minimizers of the Landau-de Gennes energy. Section 3 contains the main part of
the paper, namely, the proof of Theorem 1.5. The overall idea and main mathematical set-up of
the proof are described in the Sections 3.1 – 3.3. Sections 3.4 – 3.7 contain formulations and proofs
of the auxiliary results used in Sections 3.8 – 3.9 to prove Theorem 1.5. In Section 4 we prove the
existence of multiple critical points for large enough domains, namely Theorem 1.6. In Appendix A
we provide a couple of remarks on the minimal energy and the symmetry properties of minimizers
of F [·;BR] for odd k. Finally, in the Appendices B, C, D we put some technical details required
to prove our results.

2 Structure of symmetric maps. Proof of Proposition 1.2

We work with a moving (i.e., x-dependent) orthonormal basis of the space S0 (defined in (1.2)),
which is compatible with the boundary condition (1.7). We use polar coordinates in R

2, i.e.,
x = (r cosϕ, r sinϕ) with r > 0 and ϕ ∈ [0, 2π). Let {ei}3i=1 be the standard basis of R3, and let

n(x) = (cos
kϕ

2
, sin

kϕ

2
, 0), m(x) = (− sin

kϕ

2
, cos

kϕ

2
, 0), x ∈ R

2. (2.1)
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We endow S0 with the Frobenius scalar product of symmetric matrices Q · P = tr(QP ) and the
induced norm |Q| = (Q ·Q)1/2. We define, for x ∈ R

2, the following orthonormal basis of S0:

E0 =

√
3

2
(e3 ⊗ e3 −

1

3
I3), E1 =

√
2(n⊗ n− 1

2
I2), E2 =

1√
2
(n⊗m+m⊗ n), (2.2)

E3 =
1√
2
(n⊗ e3 + e3 ⊗ n), E4 =

1√
2
(m⊗ e3 + e3 ⊗m).

Recall that I3 is the 3 × 3 identity matrix and I2 = I3 − e3 ⊗ e3. It should be noted that this
choice of basis elements for S0 differs slightly from [23, 24] where both even and odd values of k
are considered. This is due to the fact that E3 and E4 are continuous when we identify ϕ = 0 with
ϕ = 2π if and only if k is even.

We identify a map Q : BR → S0 with a map w = (w0, . . . , w4) : BR → R
5 via Q =

∑4
i=0wiEi.

Then |Q|2 = |w|2,

tr(Q3) =

√
6

12

[
2w3

0 − 6w0(w
2
1 + w2

2) + 3w0(w
2
3 + w2

4)

+ 3
√
3w1(w

2
3 − w2

4) + 6
√
3w2w3w4

]
,

|∇Q|2 = |∂rw|2 + 1

r2

[
|∂ϕw0|2 + |∂ϕw1 − kw2|2 + |∂ϕw2 + kw1|2

+ |∂ϕw3 −
k

2
w4|2 + |∂ϕw4 +

k

2
w3|2

]
, (2.3)

where we have used the following identities for even k

∂ϕE1 = kE2, ∂ϕE2 = −kE1, ∂ϕE3 =
k

2
E4, ∂ϕE4 = −k

2
E3.

The Landau-de Gennes energy (1.1) becomes

F [Q;BR] = I[w] :=

∫

BR

{1
2
|∂rw|2 + 1

2r2

[
|∂ϕw0|2 + |∂ϕw1 − kw2|2 + |∂ϕw2 + kw1|2

+ |∂ϕw3 −
k

2
w4|2 + |∂ϕw4 +

k

2
w3|2

]

+
(
− a2

2
+
c2

4
|w|2

)
|w|2

− b2
√
6

36

[
2w3

0 − 6w0(w
2
1 + w2

2) + 3w0(w
2
3 + w2

4)

+ 3
√
3w1(w

2
3 − w2

4) + 6
√
3w2w3w4

]
− f∗

}
r dr dϕ. (2.4)

The boundary condition (1.7) becomes

w(x) = (− s+√
6
,
s+√
2
, 0, 0, 0) on ∂BR. (2.5)

In the introduction, we defined a group action of O(2) on H1(BR,S0). There we viewed O(2)
as a direct product of {0, 1} and SO(2). This naturally induces two group actions of {0, 1} ∼= Z2

and of SO(2), as subgroups of O(2), on H1(BR,S0).
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Definition 2.1. Let k ∈ Z \ {0}. A map Q ∈ H1(BR,S0) is said to be {0, 1}-symmetric if

Q = Q1,0 in BR. (2.6)

A map Q ∈ H1(BR,S0) is said to be k-fold SO(2)-symmetric if

Q = Q0,ψ in BR for every ψ ∈ [0, 2π). (2.7)

Here Qα,ψ is defined by (1.11).

Note that the groups Z2 and {0, 1} are isomorphic, but we have deliberately distinguished the
notations to avoid confusion with the Z2-action defined in the introduction. Moreover, the nature
of the two group actions are somewhat different. The Z2-action is related to the reflection along e3
direction of the target, while the {0, 1}-action is related to the reflection along the e2 direction in
both the domain and the target.

Definition 2.2 ([23, Definition 1.1]). Let k ∈ Z \ {0}. A map Q ∈ H1(BR,S0) is said to be
k-radially symmetric (or equivalently Z2 ×SO(2)-symmetric) if Q is Z2-symmetric and k-fold
SO(2)-symmetric.

The k-fold SO(2)-symmetry is exactly condition (H2) in [23, Definition 1.1]. We have the
following characterization.

Proposition 2.3. Let R ∈ (0,∞] and k ∈ 2Z \ {0}. A map Q ∈ H1(BR,S0) is k-fold SO(2)-
symmetric if and only if it can be represented for a.e. x = r(cosϕ, sinϕ) ∈ BR as

Q(x) =

4∑

i=0

wi(r)Ei for a.e. x = r(cosϕ, sinϕ) ∈ BR

where Ei’s are given by (2.2), wi = Q·Ei, w0 ∈ H1((0, R); r dr) and w1, w2, w3, w4 ∈ H1((0, R); r dr)∩
L2((0, R); 1r dr).

Proof. Suppose that Q ∈ H1(BR,S0) is k-fold SO(2)-symmetric . By [23, Proposition 2.1], there
exist w0 ∈ H1((0, R); r dr) and w1, w2, w̃, ŵ ∈ H1((0, R); r dr) ∩ L2((0, R); 1r dr) such that

Q(x) =

2∑

i=0

wi(r)Ei + (w̃(r) cos
k

2
ϕ+ ŵ(r) sin

k

2
ϕ)

1√
2
(e1 ⊗ e3 + e3 ⊗ e1)

+ (−ŵ(r) cos k
2
ϕ+ w̃(r) sin

k

2
ϕ)

1√
2
(e2 ⊗ e3 + e3 ⊗ e2)

=

2∑

i=0

wi(r)Ei + w̃(r)E3 − ŵ(r)E4 for a.e. x ∈ BR.

This gives the desired representation.
Consider the converse. Suppose that Q(x) =

∑4
i=0 wi(r)Ei. A direct check shows that the

basis elements E0, . . . , E4 are k-fold SO(2)-symmetric. Hence Q is k-fold SO(2)-symmetric. If we
have further that w0 ∈ H1((0, R); r dr) and w1, . . . , w4 ∈ H1((0, R); r dr) ∩ L2((0, R); 1r dr), then,
by (2.3), |∇Q| is square integrable over BR. It follows that Q ∈ H1(BR,S0).
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Remark 2.4. Let Q be a SO(2)-symmetric map. Q is a critical point of F if and only if its
components w0, . . . , w4 satisfy

w′′
0 +

1

r
w′
0 = w0

(
− a2 + c2|w|2 − b2√

6
w0

)
+

b2√
6
(w2

1 + w2
2)−

b2

2
√
6
(w2

3 + w2
4), (2.8)

w′′
1 +

1

r
w′
1 −

k2

r2
w1 = w1

(
− a2 + c2|w|2 + 2b2√

6
w0

)
− b2

2
√
2
(w2

3 − w2
4), (2.9)

w′′
2 +

1

r
w′
2 −

k2

r2
w2 = w2

(
− a2 + c2|w|2 + 2b2√

6
w0

)
− b2√

2
w3 w4, (2.10)

w′′
3 +

1

r
w′
3 −

k2

4r2
w3 = w3

(
− a2 + c2|w|2 − b2√

6
w0 −

b2√
2
w1

)
− b2√

2
w2w4, (2.11)

w′′
4 +

1

r
w′
4 −

k2

4r2
w4 = w4

(
− a2 + c2|w|2 − b2√

6
w0 +

b2√
2
w1

)
− b2√

2
w2w3. (2.12)

On the other hand, the {0, 1}-symmetry imposes that the w2 and w4 components are odd in
the x2 variable. More precisely we have the following:

Proposition 2.5. Let R ∈ (0,∞] and suppose that Q ∈ H1(BR,S0). Then Q is {0, 1}-symmetric
if and only if

wi(x1,−x2) = −wi(x1, x2), for a.e. (x1, x2) ∈ BR, i ∈ {2, 4} (2.13)

where wi = Q · Ei and the Ei’s are defined in (2.2).

Proof. The {0, 1}-symmetry is equivalent to Q(x) = LQ(P2(Lx̃))L for a.e. x ∈ BR, where P2, L
and x̃ are as in (1.11). This means

4∑

i=0

wi(x1, x2)Ei(x1, x2) =

4∑

i=0

wi(x1,−x2)LEi(x1,−x2)L.

Noting that Lm(x1,−x2) = −m(x1, x2), Ln(x1,−x2) = n(x1, x2),

LEi(x1,−x2)L = Ei(x1, x2) for i ∈ {0, 1, 3},
LEj(x1,−x2)L = −Ej(x1, x2) for j ∈ {2, 4},

we obtain the conclusion.

Proof of Proposition 1.2. The k-fold SO(2)-symmetry implies, by the Proposition 2.3, that the
components wi, i ∈ {0, . . . , 4} are radial, hence, in particular, we have w2(x1,−x2) = w2(x1, x2)
and w4(x1,−x2) = w4(x1, x2). Since we also have {0, 1}-symmetry, the relations (2.13) hold, which
lead to w2 = w4 ≡ 0, as claimed.

Remark 2.6. We recall [23, Corollary 2.2] that, for k ∈ Z \ {0}, k-radially symmetric maps (i.e.,
k-fold Z2 × SO(2)-symmetric maps) are of the form

Q(x) = w0(r)E0 + w1(r)E1 + w2(r)E2.

11



For k ∈ 2Z \ {0}, note the difference between the non-zero components of O(2)-symmetric maps
(i.e., {0, 1}×SO(2)-symmetric maps) and k-radially symmetric maps: O(2)-symmetric maps have
components w0, w1 and w3 while k-radially symmetric maps have components w0, w1 and w2.

Remark 2.7. Let R ∈ (0,∞], k be an odd integer and Q ∈ H1(BR,S0). Then Q is k-fold O(2)-
symmetric if and only if

Q(x) = w0(r)E0 +w1(r)E1

where w0 ∈ H1((0, R); r dr) and w1 ∈ H1((0, R); r dr)∩L2((0, R); 1r dr). Indeed, by [23, Proposition
2.1], the k-fold SO(2)-symmetry implies Q = w0(r)E0+w1(r)E1+w2(r)E2. Then {0, 1}-symmetry
implies by (2.13) that w2 ≡ 0. The converse is clear (cf. (2.3)).

We also have the following characterization of Z2-symmetry:

Proposition 2.8. Let R ∈ (0,∞] and suppose that Q ∈ H1(BR,S0). Then the following conditions
are equivalent.

1. Q is Z2-symmetric.

2. e3 = (0, 0, 1) is an eigenvector of Q(x) for almost all x ∈ BR.
6

3. Q(x) =
∑2

i=0wi(x)Ei for almost all x ∈ BR.

Proof. We know that any Q ∈ H1(BR,S0) can be represented as Q(x) =
∑4

i=0 wi(x)Ei.

Step 1. We prove (1 =⇒ 2). Suppose Q is Z2-symmetric. Then

Q(x) =

4∑

i=0

wi(x)Ei = JQ(x)J =

4∑

i=0

wi(x)JEiJ =

2∑

i=0

wi(x)Ei −w3(x)E3 − w4(x)E4.

Therefore we obtain w3 = w4 = 0, Q(x) =
∑2

i=0 wi(x)Ei and hence e3 is an eigenvector of Q(x) for
a.e. x ∈ BR.

Step 2. We prove (2 =⇒ 3). Assume now that e3 is an eigenvector of Q(x) for a.e. x ∈ BR.
Therefore there exists λ(x) such that

λ(x)e3 = Q(x)e3 =

4∑

i=0

wi(x)Eie3 =

√
2

3
w0(x)e3 +

1√
2
w3(x)n+

1√
2
w4(x)m.

Since e3, n and m form an orthonormal basis of R3, it is clear that w3(x) = w4(x) = 0 a.e. x ∈ BR.

Step 3. We prove (3 =⇒ 1). Assume that Q(x) =
∑2

i=0 wi(x)Ei then it is straightforward to
check that Q = JQJ , i.e. Q is Z2-symmetric.

We now give a characterization of Z2 ×O(2)-symmetric maps.

6This is the assumption (H1) in [23, Definition 1.1]
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Proposition 2.9. Let R ∈ (0,∞] and k ∈ 2Z\{0}. A map Q ∈ H1(BR,S0) is Z2×O(2)-symmetric
if and only if

Q(x) = w0(r)E0 + w1(r)E1 for a.e. x = r(cosϕ, sinϕ) ∈ BR

where w0 ∈ H1((0, R); r dr) and w1 ∈ H1((0, R); r dr) ∩ L2((0, R); 1r dr).

Proof. By Proposition 1.2, the O(2)-symmetry implies

Q(x) = w0(r)E0 + w1(r)E1 + w3(r)E3

where w0 ∈ H1((0, R); r dr) and w1, w3 ∈ H1((0, R); r dr)∩L2((0, R); 1r dr). By Proposition 2.8 the
Z2-symmetry implies that w3 ≡ 0. The converse is clear.

For k ∈ 2Z\{0}, we next note a connection of SO(2)-symmetric andO(2)-symmetric minimizers:
Under an O(2)-symmetric boundary condition, in particular (1.7), SO(2)-symmetric minimizers of
F are in fact O(2)-symmetric. We do not know however if this remains true for all SO(2)-symmetric
critical points. See [23, Proposition 1.3 and Remark 1.4] for a related statement that Z2 × SO(2)
critical points are in fact Z2 ×O(2)-symmetric.

Proposition 2.10. Let R ∈ (0,∞) and k ∈ 2Z \ {0}. If Q ∈ H1(BR,S0) is a minimizer of
F [·;BR] in the set of all k-fold SO(2)-symmetric Q tensors satisfying an O(2)-symmetric boundary
condition, then Q satisfies (1.6) and

Q(x) = w0(|x|)E0 + w1(|x|)E1 + w3(|x|)E3 for all x ∈ BR.

In addition, if the boundary data is Z2×O(2)-symmetric 7, then Q̃ = JQJ = w0E0+w1E1−w3E3

is also a minimizer of F [·;BR] in the same set of competitors.

Proof. Write Q(x) =
∑4

i=0 wi(r)Ei as in Proposition 2.3 and let w = (w0, . . . , w4). We will only
consider the case where w1(R) ≥ 0 and w3(R) ≥ 0. (Note that the O(2)-symmetry of the boundary
data implies that w2(R) = w4(R) = 0.) The other cases are treated similarly.

Observe that

w1(w
2
3 − w2

4) + 2w2w3w4 ≤
√
w2
1 + w2

2

√
(w2

3 − w2
4)

2 + (2w3w4)2 =
√
w2
1 + w2

2(w
2
3 + w2

4).

Therefore, by (2.4),

I[w] ≥ I[w0,
√
w2
1 + w2

2, 0,
√
w2
3 +w2

4, 0].

As w is a minimizer for I, we have equality in the above inequalities, which leads to

|∂rwj |2 + |∂rwj+1|2 =
∣∣∣∂r
√
w2
j + w2

j+1

∣∣∣
2
for j ∈ {1, 3}, (2.14)

(w1, w2) and (w2
3 − w2

4, 2w3w4) are colinear with a non-negative colinear factor. (2.15)

7Note that, unlike in (1.7), we are not assuming that the boundary data be uniaxial in this statement.
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From (2.14), we deduce that there exist constant unit vectors (cosα, sinα) and (cos β, sin β),
α, β ∈ [0, 2π), and scalar functions λ and µ such that

(w1, w2) = λ(r)(cosα, sinα) and (w3, w4) = µ(r)(cos β, sin β).

We recall that boundary conditions are k-fold O(2)-symmetric and therefore we have w2(R) =
w4(R) = 0.

Case 1: w1(R) > 0 and w3(R) > 0. In this case, we have λ(R) 6= 0 and µ(R) 6= 0, which implies
that sinα = sin β = 0, and hence w2 ≡ w4 ≡ 0.

Case 2: w1(R) > 0 and w3(R) = 0.8 This implies that λ(R) 6= 0 which leads to sinα = 0, and
w2 ≡ 0. We need to show that w4 ≡ 0. Since w2 = 0, we have I[w] = I[w0, w1, 0, w3, |w4|] and so
(w0, w1, 0, w3, |w4|) is I-minimizing. Thus, we may assume without loss of generality that w4 ≥ 0.
As w2 ≡ 0, equation (2.12) reduces to

w′′
4 +

1

r
w′
4 −

k2

4r2
w4 = w4

(
− a2 + c2|w|2 − b2√

6
w0 +

b2√
2
w1

)
.

By the strong maximum principle we thus have either w4 ≡ 0 or w4 > 0 in (0, R). Assume by
contradiction that w4 > 0 in (0, R). As w1(R) > 0, there is some R′ < R such that w1 > 0 in
(R′, R). By (2.15), we have w1w3w4 ≡ 0, and so w3 ≡ 0 in (R′, R). But this implies that (w1, 0) is
not positively colinear to (−w2

4, 0) in (R′, R) which contradicts (2.15).

Case 3: w1(R) = 0 and w3(R) > 0. This implies that µ(R) 6= 0, sinβ = 0, and w4 ≡ 0. We need to
show that w2 ≡ 0. By (2.15), we have w2w3 ≡ 0. As w4 ≡ 0, we have I[w] = I[w0, w1, |w2|, w3, 0]
and so (w0, w1, |w2|, w3, 0) is I-minimizing. Thus, we may assume without loss of generality that
w2 ≥ 0. Also as w4 ≡ 0, equation (2.10) reduces to

w′′
2 +

1

r
w′
2 −

k2

r2
w2 = w2

(
− a2 + c2|w|2 + 2b2√

6
w0

)
,

which implies, in view of the strong maximum principle, that w2 ≡ 0 or w2 > 0 in (0, R). If
the latter holds, then as w2w3 ≡ 0, we would have w3 ≡ 0, which would contradict the fact that
w3(R) > 0. We thus have that w2 ≡ 0.

Case 4: w1(R) = 0 and w3(R) = 0. We have

2w3
0 − 6w0(w

2
1 + w2

2) + 3w0(w
2
3 + w2

4) + 3
√
3w1(w

2
3 − w2

4) + 6
√
3w2w3w4

= 2w3
0 − 6w0λ

2 + 3w0µ
2 + 3

√
3λµ2 cos(α − 2β) ≤ g(w0, |λ|, µ)

where
g(x, y, z) = 2x3 − 6xy2 + 3xz2 + 3

√
3yz2, (x, y, z) ∈ R

3.

By Lemma D.1 in Appendix D, we have g(x, y, z) ≤ 2(x2 + y2 + z2)3/2. It thus follows that

I[w] ≥ I[|w|, 0, 0, 0, 0].
Since w is I-minimizing, we hence have I[w] = I[|w|, 0, 0, 0, 0], which implies w1 ≡ w2 ≡ w3 ≡
w4 ≡ 0.

8For example, (1.7) falls into this case.
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In Table 2, we summarize the characterization of various symmetries that we introduced for
maps in H1(BR,S0) (in particular, critical points or minimizers of F ) in terms of components
w0, . . . , w4 and k 6= 0 even.

Table 2: Characterization of symmetries in the components w0, . . . , w4 and k ∈ 2Z \ {0}

Symmetries in H1(BR,S0) Radial components

SO(2)-symmetric map w0, . . . , w4

O(2)-symmetric map w0, w1, w3

Z2 × SO(2)-symmetric (i.e., k-radially symmetric) map w0, w1, w2

Z2 ×O(2)-symmetric map w0, w1

SO(2)-symmetric minimizer w0, w1, w3

Z2 × SO(2)-symmetric (k-radially symmetric) critical point w0, w1

3 Minimizers with k-fold O(2)-symmetry on large disks

In this section, we provide the proof of Theorem 1.5. Instead of working directly with the functional
F [·;BR] defined in (1.1) we rescale the domain BR to the unit disc D ≡ B1. We work with a new
parameter ε = 1

R and the following rescaled Landau-de Gennes energy functional

Fε[Q] :=

∫

D

[1
2
|∇Q|2 + 1

ε2
fbulk(Q)

]
dx, (3.1)

defined on the set
H1
Qb

(D,S0) =
{
Q ∈ H1(D,S0) : Q = Qb on ∂D

}

with Qb given by (1.8). Throughout the section k is an even non-zero integer.
The Euler-Lagrange equation for Fε reads

ε2∆Q = −a2Q− b2[Q2 − 1

3
tr(Q2)I3] + c2tr(Q2)Q in D. (3.2)

The statement on the uniqueness up to Z2-conjugation for minimizers of F [·;BR] in Theorem
1.5 is equivalent to the following.

Theorem 3.1. Let a2 ≥ 0, b2, c2 > 0 be any fixed constants and k ∈ 2Z \ {0}. There exists some
ε0 = ε0(a

2, b2, c2, k) > 0 such that for all ε ∈ (0, ε0), there exist exactly two minimizers Q±
ε of Fε

in H1
Qb

(D,S0) and these minimizers are k-fold O(2)-symmetric but not Z2-symmetric. Moreover,

they are Z2-conjugate, namely, Q±
ε = JQ∓

ε J 6= Q∓
ε with J as defined in (1.18).
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3.1 Towards the proof of Theorem 3.1

Using standard arguments it is straightforward to show that as ε→ 0 the minimizers of Fε converge,
along subsequences, in H1

Qb
(D,S0) to the minimizers of the harmonic map problem

F∗[Q] =

∫

D

1

2
|∇Q|2 dx, Q ∈ H1

Qb
(D,S∗), (3.3)

where

H1
Qb

(D,S∗) =
{
Q ∈ H1(D,S∗) : Q = s+(n⊗ n− 1

3
I3) on ∂D

}

and S∗ defined in (1.5) is the set of global minimizers of fbulk(Q), see e.g. [5, 29].
Due to the explicit form of Qb and the fact that k is even, the minimizers of F∗ in H1

Qb
(D,S∗)

can be written in the form s+(n∗ ⊗ n∗ − 1
3I3) (see [3]), where n∗ minimizes the problem

FOF [v] =

∫

D

1

2
|∇v|2 dx, v ∈ H1

n(D,S
2) = {v ∈ H1(D,S2) : v = n on ∂D}. (3.4)

It is well known, see e.g. [9, Lemma A.2], that minimizers of (3.4) are conformal and have images in
either the upper or lower hemisphere. The compositions of these minimizers with the stereographic
projections of the upper and lower hemispheres of S2 onto the unit disk are the complex maps
z 7→ zk/2 or z 7→ z̄k/2, respectively. Therefore FOF has exactly two minimizers in H1

n(D,S
2) which

are given by

n±∗ (r cosϕ, r sinϕ) =

(
2r

k
2 cos(k2ϕ)

1 + rk
,
2r

k
2 sin(k2ϕ)

1 + rk
,±1− rk

1 + rk

)
. (3.5)

The corresponding minimizers of F∗ are

Q±
∗ = s+(n

±
∗ ⊗ n±∗ − 1

3
I3). (3.6)

We note that Q±
∗ are smooth and O(2)-symmetric but not Z2-symmetric and we can explicitly

write Q±
∗ in terms of the basis tensors {Ei} (see (2.2)) as

Q±
∗ = w∗

0(r)E0 + w∗
1(r)E1 ±w∗

3(r)E3,

where

w∗
0(r) = s+

2(1− rk)2 − 4rk√
6(1 + rk)2

, w∗
1(r) =

4s+r
k

√
2(1 + rk)2

, w∗
3(r) =

4s+r
k
2 (1− rk)√

2(1 + rk)2
.

It is possible to show that from any sequence of minimizers Qεk of Fεk in H1
Qb
(D,S0) one can

extract a subsequence which converges in C1,α(D̄) and Cjloc(D) for any j ≥ 2 to either Q+
∗ or Q−

∗
(the reasoning requires straightforward modifications of the arguments in [5, 30]). Using the energy
representation (2.4) one can observe that if Qε =

∑4
i=0wi,εEi is a minimizer of Fε in H

1
Qb

(D,S0),

then the Z2-conjugate Q̃ε = JQεJ =
∑2

i=0wi,εEi −
∑4

i=3wi,εEi of Qε is also a minimizer of Fε in
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H1
Qb

(D,S0). Also, if Qε′k → Q+
∗ , then Q̃ε′k → Q−

∗ = JQ+
∗ J and vice versa. Thus both Q+

∗ and Q−
∗

can appear as limits of the sequences of minimizers of Fε.
Now, restrict Fε to the set of k-fold O(2)-symmetric tensors

A
rs =

{
Q ∈ H1

Qb
(D,S0) : Q is O(2)-symmetric

}
. (3.7)

Arguing as before but restricting Fε to A rs it is straightforward to show that any sequence of
minimizers Qrsεk of Fεk in A rs has a subsequence which converges in C1,α(D̄) and Cjloc(D) for any
j ≥ 2 to a minimizer of F∗ in the set of O(2)-symmetric tensors in H1

Qb
(D,S∗), which clearly must

be either Q+
∗ or Q−

∗ as these are O(2)-symmetric.
Based on the above we can construct two sequences of critical points of Fε converging to

Q+
∗ (or Q−

∗ ): one consisting of minimizers of Fε in H1
Qb

(D,S0), not as yet guaranteeing k-fold

O(2)-symmetry, and another consisting of minimizers of Fε

∣∣
A rs , which are k-fold O(2)-symmetric.

Therefore, to prove Theorem 3.1 we need to show that if ε is small enough these sequences coincide,
in particular, the minimizers of Fε are O(2)-symmetric. One possible approach is to employ the
contraction mapping theorem or the implicit function theorem to show that

there are “neighborhoods” N ± of Q±
∗ such that when ε is small enough Fε

admits at most one critical point in each of N ±.
(†)

In this approach typically the neighborhoods N ± are set up in relatively stronger norms than
the energy-associated norm. In addition, the norm and thus the neighborhood are dependent on
ε. A delicate point is the competition between the size of the neighborhood where one can prove
uniqueness and the rate of convergence of minimizing sequences to the limit Q±

∗ (so that one can
squeeze all minimizers into the designed neighborhood).

Below we present a roadmap to the proof of Theorem 3.1. Since Q±
∗ are equivalent up to a

Z2-conjugation, it suffices to construct one such neighborhood, say N + of Q+
∗ . For simplicity, we

will in the sequel drop the superindex +, so that Q∗ = Q+
∗ , n∗ = n+∗ , etc.

In Subsection 3.2, we will provide a parameterization of suitable neighbourhoods N ± where
we have a decomposition

Q = Q♯ + ε2P = s+

( n∗ + ψ

|n∗ + ψ| ⊗
n∗ + ψ

|n∗ + ψ| −
1

3
I3

)
+ ε2P

with ε2P being a “transversal component” of Q and Q♯ being a (non-orthogonal) “projection” onto
the limit manifold S∗.

In Subsection 3.3 we employ the above parameterization to obtain a new representation of the
Euler-Lagrange equations (3.2) in terms of the variables ψ and P . In particular, we will derive a
coupled system of equations for ψ and P with the following properties:

1. One equation is of the form

L‖ψ = Lagrange multiplier terms + F [ε, ψ, P ], (3.8)

where the operator L‖ = −∆ − |∇n∗|2 is the linearized harmonic map operator at the mini-
mizer n∗ of the problem (3.4). See (3.16) for the exact equation.
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2. The other equation is of the form

Lε,⊥P = Lagrange multiplier terms + s+∆(n∗ ⊗ n∗) +G[ε, ψ, P ], (3.9)

with the linear operator Lε,⊥P = −ε2∆P + b2 s+ P + 2(c2 s+ − b2) (Pn∗ · n∗)Q∗. See (3.17)
for the exact form.

We will see that, although the nonlinear operators F and G are second ordered in the fields ψ and
P , they are ‘super-linear’ and are ‘small’ when ψ and P are suitably ‘small’. Subsection 3.4 is
devoted to study the operator L‖ and in Subsection 3.5 we concentrate on the operator Lε,⊥.

In Subsection 3.6, using previously derived properties of L‖, we revisit (3.8) and study the
dependence of its solution ψε (with zero Dirichlet boundary condition) as a map of P . In order to
balance the rate of convergence of the sequences of minimizers and the size of the neighborhoods
N ± it will be convenient to measure the size of P with respect to an ε-dependent H2 norm,
specifically defined as:

‖P‖ε := ‖P‖L2(D) + ε‖∇P‖L2(D) + ε2‖∇2P‖L2(D). (3.10)

We first show that, for P ∈ H1
0 ∩H2(D,S0) with ‖P‖L2(D) = O(1) and ‖∇2P‖L2(D) = o(ε−2),

one can solve (3.8) for ψε = ψε(P ) ∈ H1
0 ∩ H2(D,R3). Furthermore, when P is measured

with respect to the norm ‖ · ‖ε above, ψε is Lipschitz with respect to P with Lipschitz con-
stant O(ε) (see Proposition 3.12). Using the Lipschitz estimate above, we show that the map
P 7→ L−1

ε,⊥G[ε, ψε(P ), P ] is contractive. This proves the uniqueness statement formulated infor-
mally above in relation (†). See Proposition 3.14 in Subsection 3.7. In Subsection 3.8, using
convergence results from [30] and the results presented above we prove Theorem 3.1. Finally, the
proof of Theorem 1.5 is done in Subsection 3.9.

3.2 A parametrization in small H2-neighborhoods of Q∗

In this section we show that every Q ∈ H1
Qb

(D,S0) ∩H2(D,S0) sufficiently close to a minimizer
Q∗ of F∗ can be decomposed in a special way (see (3.11)) that takes into account the geometry of
the limit manifold S∗ and the way it embeds into the space S0 of Q-tensors.

Since S∗ is a smooth compact submanifold of S0, we can find a neighborhood N(S∗) of S∗
in S0, such that for every B ∈ N(S∗), there exists a unique Bort ∈ S∗ such that |B − Bort| =
dist(B,S∗) where | · | stands for the norm associated to the Frobenius scalar product. Furthermore
the projection B 7→ Bort is a smooth map from N(S∗) onto S∗. See Figure 1.

Although the above orthogonal projection suffices for many purposes, it is somewhat more
convenient in our current setting to work with a different projection which is more adapted to Q∗.
Let n∗ = n+∗ be as in (3.5) and Q∗ = Q+

∗ = s+(n∗ ⊗ n∗ − 1
3I3). We denote by TQ∗S∗ = TQ∗(x)S∗

the tangent space to the limit manifold S∗ at Q∗(x) and by (TQ∗S∗)⊥ its orthogonal complement
in S0 ≈ R

5, which is normal to S∗ at Q∗(x). It is known that (TQ∗S∗)⊥ consists of all matrices
in S0 commuting with Q∗; see [30, Eq. (3.2)]. In particular, all matrices in (TQ∗S∗)⊥ admits n∗
as an eigenvector. 9

9Recall that the eigenspace of Q∗ corresponding to the eigenvalue λ∗ = 2
3
s+ is of dimension one and generated by

n∗; therefore, if AQ∗ = Q∗A, then An∗ belongs to this eigenspace, i.e., An∗ is parallel to n∗.
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We want to show that every Q in a “sufficiently small neighborhood” of Q∗ decomposes as

Q(x) := s+

(
v(x) ⊗ v(x)− 1

3
I3

)

︸ ︷︷ ︸
belongs to S∗

+ part transversal to S∗ (3.11)

so that Q(x) − s+
(
v(x) ⊗ v(x) − 1

3I3
)
∈ (TQ∗S∗)⊥, which will be useful later. See Figure 1. We

specify the result in the following lemma.

(TQ∗S∗)⊥

S∗

Q∗ε2P

Q♯

Q

Qort

Figure 1: The decomposition in Lemma 3.2 vs orthogonal projection.

Lemma 3.2. Let n∗ = n+∗ and Q∗ = Q+
∗ be as in (3.5) and (3.6). There exist γ > 0 and some large

C0 > 0 such that for every ε > 0 and every Q ∈ H1
Qb
(D,S0)∩H2(D,S0) with ‖Q−Q∗‖H2(D) ≤ 1

C0

we can uniquely write
Q = Q♯ + ε2P (3.12)

where Q♯ and P satisfy

• Q♯ ∈ H1
Qb

(D,S∗) ∩H2(D,S∗),

• P ∈ H1
0 (D,S0) ∩H2(D,S0) with P (x) ∈ (TQ∗S∗)⊥ for x ∈ D,

• ‖Q♯ −Q∗‖H2(D) ≤ γ‖Q−Q∗‖H2(D),

• and ε2‖P‖H2(D) ≤ γ ‖Q−Q∗‖H2(D).

Furthermore, there exists a unique ψ ∈ H1
0 (D,R

3)∩H2(D,R3) with ψ · n∗ = 0 a.e. in D such that
‖ψ‖H2(D) ≤ γ‖Q−Q∗‖H2(D) and

Q♯ = s+

( n∗ + ψ

|n∗ + ψ| ⊗
n∗ + ψ

|n∗ + ψ| −
1

3
I3

)
. (3.13)
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Remark 3.3. In the above lemma, we have deliberately written the “transversal” component of Q
as ε2P even though ε plays no role at the moment. In [30], it is shown that, in a similar setting,
if Qε is a minimizer for Fε, then its “transversal” contribution is of size ε2 in some appropriate
topology. In the setting of the present paper, we will show this holds in the L2(D,S0)-topology; see
(3.44) below. This rate of convergence however does not hold in the H2(D,S0)-topology.

10 This is
related to the comment we made earlier on the fact that the sets N ± in (†) are ε-dependent.

Remark 3.4. It should be noted that the map ψ appearing in the representation of Q♯ belongs to
a linear space (as ψ is orthogonal to n∗) as opposed to Q♯ that belongs to a nonlinear set (as its
values being constrained in S∗).

Proof. Since S∗ is a smooth submanifold of S0, there exists for every point B∗ ∈ S∗ a neigh-
borhood UB∗ of B∗ in S0 such that S∗ ∩ UB∗ is a graph over the tangent plane TB∗S∗. We
then select local Cartesian-type coordinates {x1, . . . , x5} of S0 ≈ R

5 such that B∗ corresponds
to the origin, TB∗S∗ coincides with {(x1, x2, 0, 0, 0) : x1, x2 ∈ R} and S∗ ∩ UB∗ is given by
{(x1, x2, u1(x1, x2), u2(x1, x2), u3(x1, x2)) : (x1, x2) ∈ Ũ} for some open set Ũ ⊂ R

2 and some
smooth function u = (u1, u2, u3) : Ũ → R

3 with u(0) = 0 and ∇u(0) = 0. Define a projection PB∗

from UB∗ to S∗ by
PB∗(x1, x2, x3, x4, x5) = (x1, x2, u(x1, x2)).

One can check that PB∗(B) is well-defined (i.e. independent of local charts) and smooth as a
function of two variables B ∈ S0 and B∗ ∈ S∗. Furthermore, PB∗ is the unique projection with
the property B − PB∗(B) ∈ (TB∗S∗)⊥.

As D is two dimensional, maps in H2(D,S0) are continuous. Thus, there exists some large
constant C0 > 0 such that whenever

‖Q−Q∗‖H2(D) ≤
1

C0
, (3.14)

there holds Q(x) ∈ UQ∗(x) for all x ∈ D. The decomposition (3.12) is achieved by

Q♯(x) = PQ∗(x)(Q(x)) and P (x) = ε−2(Q(x)−Q♯(x)) for x ∈ D.

We now proceed to check the desired properties of Q♯ and P . First, we have

Q♯(x)−Q∗(x) = PQ∗(x)(Q(x)) − PQ∗(x)(Q∗(x)).

Using the smoothness of P in both variables, we obtain the claimed control of ‖Q♯ −Q∗‖H2(D) in
terms of ‖Q −Q∗‖H2(D). Furthermore we have Q − Q♯ = Q − Q∗ + Q∗ − Q♯ which also provides
the control of the H2-norm of ε2P = Q−Q♯ in terms of the H2-norm of Q−Q∗, as claimed.

We turn to the second part of the lemma. Note that Q♯ ∈ H2(D,S∗) is continuous. As D is
simply connected and S∗ can be topologically identified with a projective plane, a standard result

10For such rate of convergence would imply in view of Proposition 3.12 below that ‖Qε − Q∗‖H2(D,S0)
= O(ε2),

which would further imply that the limit of ε−2(Qε−Q∗) has zero trace on ∂D, which would contradict [30, Theorem
2, Eq. (2.14)]. See also [5] for a similar statement in the Ginzburg-Landau setting.
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in topology about covering spaces implies that there is a unique continuous function v ∈ C0(D,S2)
such that

Q♯ = s+(v ⊗ v − 1

3
I3) in D and v = n on ∂D.

Furthermore, by [3, Theorem 2], we have v ∈W 1,p(D,S2) for any p ≥ 2.
Note that ∇k(Q♯)ij = s+(∇kvi vj +∇kvj vi), and so, as |v| = 1,

∇kvi =
1

s+
∇k(Q♯)ij vj ,

from which one can easily deduce that v ∈ H2(D,S2).
Next note that, as Q♯ −Q∗ = s+(v ⊗ v − n∗ ⊗ n∗), we have

|Q♯ −Q∗|2 = 2s2+(1− (v · n∗)2) and (Q♯ −Q∗)n∗ = s+[(v · n∗)v − n∗]. (3.15)

Taking C0 large enough in (3.14) and using equality (3.15), we obtain (v · n∗)2 ≥ 1
4 . Since both v

and n∗ are continuous and coincide at the boundary we deduce v ·n∗ ≥ 1
2 . Therefore we can define

ψ =
1

v · n∗
v − n∗.

Observe that the above is equivalent to
(
ψ · n∗ = 0 and v = n∗+ψ

|n∗+ψ|
)
, which gives the uniqueness

of ψ. On the other hand, one has

ψ =
(v · n∗)v − n∗

(v · n∗)2
+
n∗(1− (v · n∗)2)

(v · n∗)2
.

Recalling relations (3.15) we can represent ψ = G(n∗, Q♯−Q∗), where G is a smooth map provided
that |Q♯ −Q∗| is small. We hence obtain ‖ψ‖H2(D) ≤ C‖Q♯ −Q∗‖H2(D) ≤ γ‖Q −Q∗‖H2(D). This
concludes the proof.

3.3 The Euler-Lagrange equations

In this subsection we rewrite the Euler-Lagrange equations (3.2) for Fε in terms of the variables
ψ and P introduced in Lemma 3.2. This new form of the Euler-Lagrange equations will be used in
the subsequent analysis.

Lemma 3.5. Let Q ∈ H1
Qb
(D,S0) ∩ H2(D,S0) be a critical point of Fε for some ε > 0, and n∗

and Q∗ be given by (3.5) and (3.6). Suppose that ‖Q −Q∗‖H2(D) is sufficiently small and let Q♯,
P and ψ be as in Lemma 3.2. Then ψ and P satisfy the following equations

−∆ψ − |∇n∗|2 ψ = λε n∗ +A[ψ] + ε2Bε[ψ,P ], (3.16)

−ε2∆P + b2 s+ P + 2(c2 s+ − b2) (Pn∗ · n∗)Q∗ = Fε + s+∆(n∗ ⊗ n∗)

+Cε[ψ,P ]−
1

3
tr(Cε[ψ,P ])I3, (3.17)

ψ · n∗ = 0, P ∈ (TQ∗S∗)
⊥ in D, (3.18)
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where λε(x) is a Lagrange multiplier accounting for the constraint ψ · n∗ = 0, Fε(x) ∈ TQ∗S∗ is a
Lagrange multiplier accounting for the constraint P ∈ (TQ∗S∗)⊥, and maps A,Bε, Cε are defined
in equations (B.9), (B.10) and (B.11) in Appendix B.

In Lemma 3.5 above, we do not provide exact form of A,Bε, Cε nor indicate their explicit
dependence on x as we show later (see the proof of Lemma 3.5) that these are lower order terms
that do not play a role in our analysis. We will only use their properties summarized in the following
proposition.

Proposition 3.6. Let ε ∈ (0, 1), n∗ and Q∗ be given by (3.5) and (3.6), and let A,Bε and Cε be
the operators appearing in Lemma 3.5, defined in (B.9),(B.10),(B.11) in Appendix B. Then, for
ψ ∈ H1

0 (D,R
3)∩H2(D,R3), P ∈ H1

0 (D,S0)∩H2(D,S0) satisfying ψ · n∗ = 0 and P ∈ (TQ∗S∗)⊥

in D, we have the following:

A[0] = 0, (3.19)

‖A[ψ] −A[ψ̃]‖L2(D) ≤ C(‖ψ‖H2(D) + ‖ψ̃‖H2(D))

× (1 + ‖ψ‖H2(D) + ‖ψ̃‖H2(D))‖ψ − ψ̃‖H2(D), (3.20)

‖Bε[0, P ]‖L2(D) ≤ C‖P‖H1(D), (3.21)

‖Bε[ψ,P ] −Bε[ψ̃, P ]‖L2(D) ≤ C
[
‖∇2P‖L2(D) + (1 + ε2‖P‖H2(D))‖P‖2L4(D)

]
‖ψ − ψ̃‖H2(D), (3.22)

‖Bε[ψ,P ] −Bε[ψ, P̃ ]‖L2(D) ≤ C‖P − P̃‖H1(D) + C‖ψ‖H2(D)

(
‖P − P̃‖H2(D)

+ (‖P‖H2(D) + ‖P̃‖H2(D))(1 + ε2‖P‖H2(D) + ε2‖P̃‖H2(D))‖P − P̃‖L2(D)

)
, (3.23)

‖Cε(ψ,P ) − Cε(ψ̃, P̃ )‖L2(D) ≤ C(1 + ‖ψ‖H2(D) + ‖ψ̃‖H2(D))
2‖ψ − ψ̃‖H2(D)

+ C(‖P‖L2(D) + ‖P̃‖L2(D))(1 + ε2(‖P‖H2(D) + ‖P̃‖H2(D)))‖ψ − ψ̃‖H2(D)

+ C(‖ψ‖H2(D) + ‖ψ̃‖H2(D))‖P − P̃‖L2(D)

+ Cε2(‖P‖L4(D) + ‖P̃‖L4(D))(1 + ε2(‖P‖H2(D) + ‖P̃‖H2(D)))‖P − P̃‖H1(D), (3.24)

with C denoting various constants independent of ε and the functions appearing in the inequalities.

The proofs of Lemma 3.5 and Proposition 3.6 are lengthy though elementary. We postpone
them to Appendix B.

3.4 The linearized harmonic map problem

In this subsection we briefly study the properties of the operator L‖ = −∆− |∇n∗|2 appearing on
the left hand side of (3.16), i.e. the linearized harmonic map operator at n∗ given by (3.5), as well
as its inverse L−1

‖ .
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Proposition 3.7. For every f ∈ L2(D,R3), the minimization problem

min
{∫

D
[|∇ζ|2 − |∇n∗|2 ζ2 − f · ζ] dx : ζ ∈ H1

0 (D,R
3), ζ · n∗ = 0 a.e. in D

}

admits a minimizer which is the unique solution to the problem




L‖ζ ≡ −∆ζ − |∇n∗|2ζ = f + λ(x)n∗ in D,

ζ · n∗ = 0 in D,
ζ = 0 on ∂D,

(3.25)

where λ is a Lagrange multiplier.11

Using Proposition 3.7 we can define the inverse operator L−1
‖ .

Definition 3.8. For f ∈ L2(D,R3), we define L−1
‖ f ∈ H1

0 (D,R
3) to be the unique solution to

(3.25).

The proof of Proposition 3.7 is a standard argument using Lax-Milgram’s theorem and the strict
stability of n∗. For completeness, we give the proof in Appendix C.

In the following lemma we prove some useful properties of L−1
‖ required for our analysis.

Lemma 3.9. The range of the operator L−1
‖ over L2-data is

X := {ψ ∈ H1
0 (D,R

3) ∩H2(D,R3) : ψ · n∗ = 0 in D}. (3.26)

Furthermore, there exists some positive constant C such that, for f ∈ L2(D,R3),

‖L−1
‖ f‖H1(D) ≤ C‖f‖H−1(D) and ‖L−1

‖ f‖H2(D) ≤ C‖f‖L2(D).

Proof. Let f ∈ L2(D,R3) and ζ ∈ H1
0 (D,R

3) be the solution of (3.25). We first show that
ζ ∈ H2(D,R3). Let us fix some ξ ∈ C∞

c (D). Testing (3.25) against ξ n∗ and noting that n∗ · ζ =
0 = ∆n∗ · ζ, we obtain by integration by parts

∫

D
ξ(f · n∗ + λ) dx =

∫

D
∇ζ · ∇(ξn∗) dx = −

∫

D
ζ ·∆(ξn∗) dx

= −2

∫

D
ζ · (∇n∗(∇ξ)) dx = 2

∫

D
ξ∇ζ · ∇n∗ dx.

Since this is true for all ξ ∈ C∞
c (D), it follows that

λ = 2∇ζ · ∇n∗ − f · n∗ ∈ L2(D). (3.27)

By elliptic regularity for (3.25), we conclude that ζ ∈ H2(D,R3).
We next turn to estimating ζ. Testing (3.25) against ζ and using Lemma C.2, we obtain

c0‖ζ‖2H1(D) ≤
∫

D
[|∇ζ|2 − |∇n∗|2 |ζ|2] dx =

∫

D
f · ζ dx ≤ ‖f‖H−1(D) ‖ζ‖H1(D).

This implies ‖L−1
‖ f‖H1(D) = ‖ζ‖H1(D) ≤ C ‖f‖H−1(D). Using this estimate in (3.27) we have

‖λ‖H−1(D) ≤ C ‖f‖H−1(D) and ‖λ‖L2(D) ≤ C‖f‖L2(D). Employing elliptic estimates for (3.25) we
obtain ‖ζ‖H2(D) ≤ C‖f‖L2(D).

11The expression of the Lagrange multiplier λ is given in (3.27).
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3.5 The transversal linearized problem

In this section we study the linear operator appearing on the left hand side of (3.17)

Lε,⊥P = −ε2∆P + b2 s+ P + 2(c2 s+ − b2) (Pn∗ · n∗)Q∗. (3.28)

As in the previous subsection we would like to define the inverse operator L−1
ε,⊥ and prove some

properties required for our analysis.
We claim that P 7→ b2 s+ P + 2(c2 s+ − b2) (Pn∗ · n∗)Q∗ is a monotone linear operator, namely

b2 s+ |P |2 + 2s+(c
2 s+ − b2) (Pn∗ · n∗)2 ≥ min(2a2 +

b2

3
s+, b

2s+)|P |2,∀P (x) ∈ (TQ∗S∗)
⊥. (3.29)

Indeed, recall that n∗ is an eigenvector of P ∈ (TQ∗S∗)⊥. Thus, in some orthonormal basis of R3,
P takes the form diag(λ1, λ2,−λ1 − λ2) with Pn∗ = λ1n∗. It is not hard to see that this implies
(Pn∗ · n∗)2 = λ21 ≤ 4

3(λ
2
1 + λ22 + λ1λ2) =

2
3 |P |2. The inequality (3.29) follows in view of the identity

−a2 − b2

3 s+ + 2c2

3 s
2
+ = 0.12

Using (3.29) and Lax-Milgram’s theorem in the Hilbert space

{P ∈ H1
0 (D,S0) : P ∈ (TQ∗S∗)

⊥ a.e. in D},

one can easily show that, for every q ∈ L2(D,S0), there exists a unique solution P ∈ H1
0 (D,S0)

to the problem 



Lε,⊥P = q + F (x) in D,
P ∈ (TQ∗S∗)⊥ a.e. in D,
P = 0 on ∂D,

(3.30)

where F (x) ∈ TQ∗S∗ is a Lagrange multiplier accounting for the constraint P ∈ (TQ∗S∗)⊥ a.e. in
D. Therefore we have the following definition.

Definition 3.10. For q ∈ L2(D,S0), we define L−1
ε,⊥q ∈ H1

0 (D,S0) to be the unique solution to
(3.30).

We summarise properties of the operator L−1
ε,⊥ in the following lemma.

Lemma 3.11. For every ε > 0, the range of the operator L−1
ε,⊥ : L2(D,S0) → H1

0 (D,S0) is

Y := {P ∈ H1
0 (D,S0) ∩H2(D,S0) : P ∈ (TQ∗S∗)

⊥ in D}. (3.31)

Furthermore, there exists C > 0 such that, for every 0 < ε < 1,

‖L−1
ε,⊥q‖ε ≤ C‖q‖L2(D) for all q ∈ L2(D,S0),

where ‖ · ‖ε was defined in (3.10).
12Alternatively, one can argue that the operator P 7→ b2 s+ P + 2(c2 s+ − b2) (Pn∗ · n∗)Q∗ is an automorphism

of (TQ∗
S∗)

⊥ which has eigenvalues 2a2 + b2

3
s+ along the direction parallel to Q∗ and b2s+ along the directions

perpendicular to Q∗, which also gives (3.29).
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Proof. In the proof C will denote some generic constant which varies from line to line but is always
independent of ε.

Let us fix some q ∈ L2(D,S0) and let P be the solution of (3.30). Testing (3.30) against P and
using (3.29), we obtain

‖P‖L2(D) + ε‖∇P‖L2(D) ≤ C‖q‖L2(D). (3.32)

Next, we would like to show that P ∈ H2(D,S0). Let Π = Πx be the orthogonal projection of S0

onto TQ∗(x)S∗. Then, the first equation of (3.30) is equivalent to

F (x) = Πx(Lε,⊥P (x)− q(x)).

Here, we naturally extended Π to distributions, in particular to ∆P ∈ H−1, by defining 〈Π(∆P ), ζ〉 :=
〈∆P,Π(ζ)〉 for every test function ζ ∈ C∞

c (D,S0). Therefore, to show that F ∈ L2(D,S0), it is
enough to show that

Π(∆P ) ∈ L2(D,S0) for any P ∈ H1
0 (D,S0), P (x) ∈ (TQ∗S∗)

⊥ a.e. in D. (3.33)

In fact, we show
‖Π(∆P )‖L2(D) ≤ C‖P‖H1(D) (3.34)

for all P ∈ C∞
c (D,S0) satisfying P (x) ∈ (TQ∗S∗)⊥ in D. To this end we use the following formula

for Π which was computed in [30, Eq. (3.4)]:13

Π(A) = A+
2

s2+

(
1

3
s+A−AQ∗ −Q∗A

)(
Q∗ −

1

6
s+ I3

)

= A+
2

s2+

(
Q∗ −

1

6
s+ I3

)(
1

3
s+A−AQ∗ −Q∗A

)
, for all A ∈ S0.

Since P (x) ∈ (TQ∗S∗)⊥ in D, Π(P ) = 0 in D and so ∆Π(P ) = 0 in D. On the other hand, as Q∗
is smooth, it follows from the above formula for Π, applied to P and ∆P , that

|∆Π(P )−Π(∆P )| ≤ C(|∇P |+ |P |).

Combining the above two facts, we obtain (3.34) and hence (3.33).
It follows that F ∈ L2(D,S0) and P ∈ H2(D,S0). Moreover, for 0 < ε < 1,

‖F‖L2(D) ≤ C(ε2‖∇P‖L2(D) + ‖P‖L2(D) + ‖q‖L2(D)). (3.35)

Using previously established estimates (3.32) and (3.35) we obtain that ‖F‖L2(D) ≤ C‖q‖L2(D).
Returning to the first equation in (3.30), elliptic estimates yield ε2‖∇2P‖L2(D) ≤ C ‖q‖L2(D).

13The brackets below indeed commute thanks to Q2
∗ − 1

3
s+Q∗ − 2

9
s2+I3 = 0.
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3.6 Solution of (3.16) for given P

In this section we solve equation (3.16) for given P . The properties of the map P 7→ ψε(P )
obtained in this section will be used later in proving uniqueness of the critical point of Fε in a
small neighbourhood of Q∗ using fixed point arguments.

We define the following set

Uε,C1,C2 :=
{
P ∈ Y : ε2‖∇2P‖L2(D) ≤

1

C2
, ‖P‖L2(D) ≤ C1

}
, (3.36)

where Y is given in (3.31). Note that, by integration by parts,

ε‖∇P‖L2(D) ≤ C
1/2
1 C

− 1
2

2 for all P ∈ Uε,C1,C2 . (3.37)

Proposition 3.12. Let X be defined by (3.26). For every C1 > 0, there exist large C2 > 1 and
small ε0 > 0 such that, for every 0 < ε < ε0,

(i) For every P ∈ Uε,C1,C2 , there exists a unique ψε(P ) ∈ X satisfying simultaneously equation
(3.16) and ‖ψε(P )‖H2(D) ≤ 1

C2
.

Furthermore, there exists C > 0 (depending on C1, C2) such that:

(ii) For every P ∈ Uε,C1,C2, ‖ψε(P )‖H2(D) ≤ Cε2‖P‖H1(D). In particular, ψε(0) = 0.

(iii) For every P, P̃ ∈ Uε,C1,C2 ,

‖ψε(P )− ψε(P̃ )‖H2(D) ≤ Cε‖P − P̃‖ε,

where ‖ · ‖ε is defined in (3.10).

Proof. Let us fix some C1 > 0. In this proof C will denote some generic constant which may depend
on C1, a

2, b2, c2 but is independent of ε (and C2 and P which will appear below).
For P ∈ Y , define an operator Kε,P : X → X by

Kε,P (ψ) = L−1
‖ (A[ψ] + ε2Bε[ψ,P ]),

where L−1
‖ is given in Definition 3.8, and A and Bε are the operators appearing on the right hand

side of (3.16).

Proof of (i): It suffices to show that, for sufficiently large C2 and all P ∈ U := Uε,C1,C2 , Kε,P is a

contraction on the set O = OC2 := {ψ ∈ X : ‖ψ‖H2(D) ≤ 1
C2

}.
Observe that, in view of (3.37) and Poincaré’s inequality inH1

0 (D,S0), one has for all sufficiently
large C2 that

ε‖P‖L4(D) ≤ Cε‖P‖H1(D) ≤
C

C
1/2
2

< 1 for all P ∈ U .
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Estimates (3.20) and (3.22) imply, for ψ, ψ̃ ∈ O and P ∈ U ,

‖A[ψ] −A[ψ̃]‖L2(D) ≤
C

C2
‖ψ − ψ̃‖H2(D),

‖Bε[ψ,P ] −Bε[ψ̃, P ]‖L2(D) ≤
Cε−2

C2
‖ψ − ψ̃‖H2(D).

Therefore, by Lemma 3.9, we have for ψ, ψ̃ ∈ O and P ∈ U that

‖Kε,P (ψ) −Kε,P (ψ̃)‖H2(D) ≤
C

C2
‖ψ − ψ̃‖H2(D).

Also, by (3.19), (3.21) and Lemma 3.9,

‖Kε,P (0)‖H2(D) ≤ Cε2‖Bε[0, P ]‖L2(D) ≤ Cε2‖P‖H1(D) ≤
Cε

C
1/2
2

for all P ∈ U . (3.38)

From the above two estimates, we deduce that there exist a large constant C2 > 1 and a small
constant ε0 > 0 such that, for every ε ∈ (0, ε0) and for every P ∈ U , Kε,P is a contraction from O
into O and so has a unique fixed point ψε(P ) ∈ O.

Proof of (ii) and (iii): We now fix C2 so that ψε is defined on U as above and Kε,P is a contraction
from O into itself.

It follows from (3.38) and Lemma 3.13 (see below) that the unique fixed point ψε(P ) ∈ O of
Kε,P satisfies

‖ψε(P )‖H2(D) ≤ Cε2‖P‖H1(D),

which proves (ii).
Next, Lemma 3.9 and estimate (3.23) imply that

‖Kε,P (ψ) −Kε,P̃ (ψ)‖H2(D)

≤ Cε2‖ψ‖H2(D)

{
‖P − P̃‖H2(D) + (‖P‖H2(D) + ‖P̃‖H2(D))‖P − P̃‖L2(D)

}

+ Cε2‖P − P̃‖H1(D) for all ψ ∈ O and P, P̃ ∈ U .
Taking ψ = ψε(P ) and using (ii), we find that

‖ψε(P )−Kε,P̃ (ψε(P ))‖H2(D)

≤ Cε4‖P‖H1(D)

{
‖P − P̃‖H2(D) + (‖P‖H2(D) + ‖P̃‖H2(D))‖P − P̃‖L2(D)

}

+ Cε2‖P − P̃‖H1(D)

≤ Cε‖P − P̃‖ε for all P, P̃ ∈ U .
Applying Lemma 3.13 (see below) to Kε,P̃ and b = ψε(P ), we obtain

‖ψε(P )− ψε(P̃ )‖H2(D) ≤ Cε‖P − P̃‖ε for all P, P̃ ∈ U .
This proves (iii) and completes the proof.

We used the following simple lemma whose proof is omitted.

Lemma 3.13. If (M,d) is a complete metric space and K :M →M is a λ-contraction (0 ≤ λ < 1)
with a fixed point a ∈M , then d(a, b) ≤ 1

1−λd(K(b), b) for any b ∈M .
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3.7 Uniqueness of critical points in a neighborhood of Q∗

In this subsection we show the uniqueness of critical points of Fε in a small neighbourhood of
Q∗ ∈ {Q±

∗ } given in (3.6). In particular, we prove the following version of the informal statement
(†) formulated in Subsection 3.1:

Proposition 3.14. For every C1 > 0, there exist large C2 > 1 and small ε0 > 0 such that, for all
0 < ε ≤ ε0, Fε has at most one critical point Qε, represented by (ψε, Pε) as in Lemma 3.5, with
‖ψε‖H2(D) ≤ 1

C2
, ε2‖Pε‖H2(D) ≤ 1

C2
, and ‖Pε‖L2(D) ≤ C1.

Remark 3.15. In the proof of Proposition 3.14, the exact form of n∗ is used only to have the tubular
neighborhood representation (Lemma 3.2) and the stability inequality (Lemma C.2). Therefore,
provided these are true, the statement of Proposition 3.14 will hold for more general domains and
boundary conditions.

Proof. Let X and Y be defined by (3.26) and (3.31). Let L−1
ε,⊥ be as in Definition 3.10 and

θε := L−1
ε,⊥(s+∆(n∗ ⊗ n∗)) ∈ Y.

By Lemma 3.11, as n∗ is smooth, we have for every ε ∈ (0, 1):

‖θε‖ε ≤ C0

for some constant C0 independent of ε, and where ‖ · ‖ε is as defined in (3.10).
Fix some C1 > 0 and let ε0 ∈ (0, 1) and C2 be as in Proposition 3.12. By shrinking ε0 if necessary,

we have for 0 < ε ≤ ε0 that the solution ψε(P ) to (3.16) is defined for all given P ∈ U := Uε,C1,C2

(see (3.36)) and

‖ψε(P )‖H2(D) ≤ Cε2 ‖P‖H1(D) ≤ CεC
−1/2
2 < 1, (3.39)

where we have used (3.37). Here and below, C denotes some constant which may depend on C1,
C2, a

2, b2, c2 but is always independent of ε. For P ∈ U we define

Kε,⊥(P ) := L−1
ε,⊥

(
s+∆(n∗ ⊗ n∗) + C̊ε[ψε(P ), P ]

)
= θε + L−1

ε,⊥(C̊ε[ψε(P ), P ]),

where C̊ε[ψ,P ] = Cε[ψ,P ]− 1
3tr(Cε[ψ,P ])I3 and Cε is the operator appearing on the right hand side

of (3.17). It should be clear that if P is a fixed point of Kε,⊥, then (ψε(P ), P ) solves (3.16)-(3.18),
and so the map Qε corresponding to (ψε(P ), P ) in the representation Lemma 3.2 is a critical point
of Fε. Therefore, to reach the conclusion, it suffices to show that for all sufficiently small ε, the
map Kε,⊥ has at most one fixed point in U . In fact, we show that, for all small ε, Kε,⊥ is contractive
on U with respect to the norm ‖ · ‖ε.

In the following, we will use Ladyzhenskaya’s inequality in two dimensions:

‖ϕ‖L4(D) ≤ C‖ϕ‖1/2
L2(D)

‖∇ϕ‖1/2
L2(D)

for all ϕ ∈ H1
0 (D).

In particular, it holds that

‖P‖L4(D) ≤ C‖∇P‖1/2
L2(D)

≤ C

ε1/2
for all P ∈ U . (3.40)
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Using the estimate (3.24) and inequality (3.40), we have

‖Cε[ψ,P ]− Cε[ψ̃, P̃ ]‖L2(D) ≤ C ‖ψ − ψ̃‖H2(D) + C(‖ψ‖H2(D) + ‖ψ̃‖H2(D))‖P − P̃‖L2(D)

+ Cε2(‖∇P‖L2(D) + ‖∇P̃‖L2(D))
1/2‖P − P̃‖H1(D)

≤ C(‖ψ‖H2(D) + ‖ψ̃‖H2(D))‖P − P̃‖L2(D) + C ‖ψ − ψ̃‖H2(D)

+ Cε
3
2‖P − P̃‖H1(D)

for all P, P̃ ∈ U and ψ, ψ̃ ∈ X with ‖ψ‖H2(D), ‖ψ̃‖H2(D) ≤ 1. Thus, by Proposition 3.12(ii) and
(iii), we get

‖Cε[ψε(P ), P ] − Cε[ψε(P̃ ), P̃ ]‖L2(D) ≤ Cε1/2‖P − P̃‖ε for all P, P̃ ∈ U . (3.41)

In view of Lemma 3.11, it follows that

‖Kε,⊥(P )−Kε,⊥(P̃ )‖ε ≤ Cε
1
2 ‖P − P̃‖ε for all P, P̃ ∈ U .

This implies that, for all sufficiently small ε, Kε,⊥ has at most one fixed point in U , which concludes
the proof.

3.8 Proof of Theorem 3.1

Proof. For ε > 0, let Cε ⊂ H1
Qb
(D,S0) denote the set of minimizers of Fε in H1

Qb
(D,S0). Note

that if Qε ∈ Cε, then JQεJ ∈ Cε (where J is given in (1.18)).
Let n±∗ be given by (3.5) and Q±

∗ = s+(n
±
∗ ⊗n±∗ − 1

3I3). It is well known that (see e.g. [5, 13]), if
εm → 0 and Qεm ∈ Cεm , then Qεm converges along a subsequence in H1(D,S0) to either Q∗ := Q+

∗
or Q−

∗ = JQ+
∗ J . Thus, with d = 1

3‖Q+
∗ −Q−

∗ ‖H1(D,S0), it holds for all small ε > 0 that

Cε = C
+
ε ∪ C

−
ε where C

±
ε := Cε ∩

{
Q ∈ H1

Qb
(D,S0) : ‖Q±

∗ −Q‖H1(D,S0) < d
}
.

It should be clear that C±
ε = JC∓

ε J . To conclude, it is enough to show that, for all sufficiently
small ε, C+

ε consists of a single map which is O(2)-symmetric.

Step 1. We prove that
sup
Q∈C

±
ε

‖Q−Q±
∗ ‖H2(D,S0) → 0 as ε→ 0. (3.42)

In fact, it suffices to show that supQ∈C
+
ε
‖Q−Q+

∗ ‖H2(D,S0) → 0 when ε→ 0. SetQ∗ := Q+
∗ . Arguing

indirectly, suppose that there exist εm → 0 and Qεm ∈ C+
εm such that ‖Qεm−Q∗‖H2(D,S0) ≥ 1

C > 0.
By [30, Theorem 1], Qεm converges strongly to Q∗ in C1,σ(D̄) for any σ ∈ (0, 1) and in C2

loc(D)
(note that in the cited paper the results are in 3D domains but one can easily check that those
convergences also hold in 2D domains). Furthermore, by [30, Corollary 2], ∆Qεm is bounded in
L∞(D). By Lebesgue’s dominated convergence theorem

lim
ε→0

∫

D
|∆Qεm|2 dx =

∫

D
|∆Q∗|2 dx,
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and so ∆Qεm converges to ∆Q∗ in L2(D,S0). By elliptic estimates, we conclude that Qεm converges
to Q∗ in H2(D,S0), which gives a contradiction. We have thus established (3.42).

In view of (3.42) and Lemma 3.2, for all sufficiently small ε and Qε ∈ C+
ε , we can represent

Qε = s+

( n∗ + ψε
|n∗ + ψε|

⊗ n∗ + ψε
|n∗ + ψε|

− 1

3
I3

)

︸ ︷︷ ︸
=Qε,♯

+ε2Pε,

where ψε ·n∗ = 0 and Pε ∈ (TQ∗S∗)⊥. We let C̃+
ε denote the set of (ψ,P ) representing elements of

C+
ε as above:

C̃
+
ε =

{
(ψ,P ) : s+

( n∗ + ψ

|n∗ + ψ| ⊗
n∗ + ψ

|n∗ + ψ| −
1

3
I3

)
+ ε2P ∈ C

+
ε

}
.

By (3.42) and Lemma 3.2,

sup
(ψ,P )∈C̃

+
ε

[
‖ψ‖H2(D,R3) + ε2‖P‖H2(D,S0)

]
→ 0 as ε→ 0. (3.43)

Step 2. In view of (3.43) and Proposition 3.14, in order to prove that C+
ε consists of a single point

for all sufficiently small ε, it suffices to show that there exist ε1 > 0 and C1 > 0 such that, for all
ε ∈ (0, ε1),

sup
(ψ,P )∈C̃

+
ε

‖P‖L2(D,S0) ≤ C1. (3.44)

We recall some results from [30]. Let Qε ∈ C+
ε and (ψε, Pε) ∈ C̃+

ε be its corresponding
representation as above. We consider the tensor:

Xε :=
1

ε2
[Q2

ε −
1

3
s+Qε −

2

9
s2+I3].

(The polynomial on the right hand side is a multiple of the minimal polynomial of matrices belonging
to the limit manifold S∗.) By [30, Proposition 4],

Xε is bounded in C0(D̄).

As Qε,♯ ∈ S∗, we have Q2
ε,♯ − 1

3s+Qε,♯ − 2
9s

2
+I3 = 0 and thus

Xε = Qε,♯Pε + PεQε,♯ −
1

3
s+ Pε + ε2P 2

ε . (3.45)

Let End(S0) be the set of linear endomorphisms of S0 and define µε : D → End(S0) by

µε(x)(M) = (Qε,♯(x)−Q∗(x))M +M (Qε,♯(x)−Q∗(x)) + ε2Pε(x)M

for all x ∈ D̄ and M ∈ S0. Then (3.45) is equivalent to

Xε = Q∗ Pε + PεQ∗ −
1

3
s+ Pε + µεPε
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where µεPε stands for the map x 7→ µε(x)(Pε(x)). By definition, Pε ∈ (TQ∗S∗)⊥ and so by [30,
Lemma 2], Pε commutes with Q∗. It follows that

Xε = 2s+(n∗ ⊗ n∗ −
1

2
I3)Pε + µεPε.

Note that (n∗ ⊗ n∗ − 1
2I3) is invertible when considered as an endomorphism of S0 and that

limε→0 ‖µε‖C0(D̄) = 0 (in view of (3.43)). Thus, as Xε is bounded in C0(D̄), we have that Pε is

also bounded in C0(D̄), and in particular in L2(D). The assertion in (3.44) is established. By
Proposition 3.14, we hence have for all sufficiently small ε that C+

ε consists of a single element and
Cε consists of exactly two distinct Z2-conjugate elements.

Step 3: Let Qε denote the unique element of C+
ε . We show that Qε is O(2)-symmetric. Recall

that we denoted in (3.7) by A rs the set of O(2)-symmetric maps in H1(D,S0). Let C rs
ε denote

the set of minimizers of Fε|A rs. The same argument as above shows that, for all small ε, C rs
ε =

{Qrs,+ε , Qrs,−ε = JQrs,+ε J}, and in the representation Qrs,+ε ≈ (ψrsε , P
rs
ε ), it holds that

lim
ε→0

[
‖ψrsε ‖H2(D,R3) + ε2‖P rsε ‖H2(D,S0)

]
= 0 and ‖P rsε ‖L2(D,S0) ≤ C ′

1

for some constant C ′
1 independent of ε. Another application of Proposition 3.14 thus yields Qε ≡

Qrs,+ε for all small ε and so Qε is O(2)-symmetric.
Finally, note that Qε and JQεJ are distinct as C+

ε ∩ C−
ε = ∅, so they are not Z2-symmetric.

This completes the proof.

3.9 Proof of Theorem 1.5

Proof. Using Theorem 3.1 and a simple scaling argument, we find R0 = R0(a
2, b2, c2, k) > 0 such

that for all R > R0, there exist exactly two global minimizers Q± of F [·;BR] subjected to the
boundary condition (1.7) and these minimizers are k-fold O(2)-symmetric and are Z2-conjugate to
each other. By Proposition 1.2, we can express Q± in the form

Q±(x) = w0(|x|)E0 + w1(|x|)E1 ± w3(|x|)E3 for every x ∈ BR.

It is clear that (w0, w1, 0,±w3, 0) satisfies (2.8)-(2.12).
Now, note that in view of formula (2.4), F [Q±;BR] = F [w0E0 + w1E1 ± |w3|E3;BR]. Hence,

w0E0 + w1E1 ± |w3|E3 are also minimizers of F [·;BR] satisfying (1.7). By the above uniqueness
up to Z2-conjugation, we may assume that w3 ≥ 0 in BR. Also, as Q+ 6= Q−, w3 6≡ 0. Recalling
equation (2.11) and noting that w2 = w4 = 0, we can apply the strong maximum principle to
conclude that w3 > 0. The proof is complete.

4 Mountain pass critical points

In this section, we give the proof of Theorem 1.6, which asserts the existence of at least five O(2)-
symmetric critical points satisfying the boundary condition (1.7) for FR := F [·;BR] for all large
enough R.
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We denote by A rs
R and A str

R the sets of k-fold O(2)-symmetric and Z2×O(2)-symmetric maps,
respectively, satisfying the boundary conditions (1.7):

A
rs
R =

{
Q ∈ H1

Qb
(BR,S0) : Q is O(2)-symmetric

}
,

A
str
R =

{
Q ∈ H1

Qb
(BR,S0) : Q is Z2 ×O(2)-symmetric

}
.

By the characterization of symmetric maps (see Propositions 1.2 and 2.9), we can express the
sets A rs

R and A str
R in terms of the basis components defined in Section 2 as follows:

A
rs
R =

{
Q(x) = w0(|x|)E0 + w1(|x|)E1 +w3(|x|)E3 :

w0 ∈ H1((0, R); r dr), w1, w3 ∈ H1((0, R); r dr) ∩ L2((0, R);
1

r
dr),

w0(R) = − s+√
6
, w1(R) =

s+√
2
, w3(R) = 0

}
,

A
str
R =

{
Q(x) = w0(|x|)E0 + w1(|x|)E1 :

w0 ∈ H1((0, R); r dr), w1 ∈ H1((0, R); r dr) ∩ L2((0, R);
1

r
dr),

w0(R) = − s+√
6
, w1(R) =

s+√
2

}
.

A direct computation shows that critical points of FR in A rs
R or A str

R are in fact critical points
of FR in H1

Qb
(BR,S0) (cf. Remark 2.4). To prove Theorem 1.6, we use the fact that FR has

two global minimizers in A rs
R (due to Theorem 1.5) and the mountain pass theorem. An energetic

consideration is needed to show that the obtained mountain pass critical point does not coincide
with critical points of FR in A str

R .
We start with an estimate for the minimal energy of FR in A str

R .

Lemma 4.1. There exists some C > 0 depending only on a2, b2 and c2 such that, for all δ ∈ (0, 1),

k ∈ Z \ {0} and R > max(1, Cek
2

δ2 ), there holds

πs2+k
2

2
lnR+ Ck2 ≥ αR := min

A str
R

F
R ≥ πs2+k

2

2(1 + 2δ)2

(
ln
δ2R

Ck2
− ln ln

δ2R

Ck2

)
. (4.1)

As a consequence,

lim
R→∞

αR
lnR

=
1

2
πs2+k

2. (4.2)

Remark 4.2. In [4], it was shown that FR has critical points whose energies are of order k lnR;
and these are not SO(2)-symmetric for k 6= ±1.

Proof. By (2.4), we have

αR = 2πmin
{

ER[w0, w1] : w0 ∈ H1((0, R); r dr), w1 ∈ H1((0, R); r dr) ∩ L2((0, R);
1

r
dr),

w0(R) = − s+√
6
, w1(R) =

s+√
2

}
,
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where

ER[w0, w1] =

∫ R

0

{1
2
[|w′

0|2 + |w′
1|2] +

k2

2r2
|w1|2 + h(w1, w0)

}
rdr,

h(x, y) =
(
− a2

2
+
c2

4
[|x|2 + |y|2]

)
[|x|2 + |y|2]− b2

√
6

18
y(y2 − 3x2)− f∗,

and f∗ is given by (1.3).
We note (see e.g. [24, Lemma 5.1]) that h(x, y) ≥ 0 and equality holds if and only if (x, y)

belongs to the set {(± s+√
2
,− s+√

6
), (0, 2s+√

6
)}. Furthermore, the Hessian of h is positive definite at

these critical points. In particular, one has

h(x, y) ≥ 1

C
(x− s+√

2
)2 for all (x, y) satisfying x2 + y2 ≤ 2

3
s2+,

s+

3
√
2
≤ x ≤ s+√

2
, (4.3)

where, here and below, C denotes some positive constant (that may change from line to line) which
depends only on a2, b2 and c2, and in particular is always independent of R, k and δ.

Step 1: Proof of the upper bound for αR in (4.1).
Consider the test function (w̄0, w̄1) defined by w̄0(r) ≡ − s+√

6
and w̄1(r) =

s+√
2
min(r, 1). Then

αR ≤ 2πER[w̄0, w̄1] = 2πE1[w̄0, w̄1] + 2π

∫ R

1

s2+k
2

4r
dr ≤ Ck2 +

1

2
πs2+k

2 lnR,

which provides the upper bound on αR, given in the left hand side of (4.1).

Step 2: Proof of the lower bound for αR in (4.1).

Let (w0, w1) be a minimizer of ER the existence of which is guaranteed by the direct method of
the calculus of variations. We fix some δ ∈ (0, 1). Due to the fact that w1 is continuous, w1(0) = 0
and w1(R) =

s+√
2
, there exists the largest number R1 ∈ (0, R) such that w1(R1) =

s+
(1+2δ)

√
2
. By the

same arguments, there exists the smallest number R2 ∈ (R1, R) such that w1(R2) =
s+

(1+δ)
√
2
.

As w1(r) ≥ s+
(1+2δ)

√
2
in [R1, R], we have

1

2π
αR = ER(w0, w1) ≥

∫ R

R1

k2

2r
|w1|2 dr ≥

s2+k
2

4(1 + 2δ)2
ln

R

R1
.

It follows that

R1 ≥ R exp
(
− 2(1 + 2δ)2αR

πs2+k
2

)
. (4.4)

On the other hand, by the definition of R1 and R2, we have
s+

(1+2δ)
√
2
≤ w1 ≤ s+

(1+δ)
√
2
in [R1, R2].

Also, by [23, Eq. (3.12)], w2
0 + w2

1 ≤ 2
3s

2
+. Thus, using (4.3), we have

h(w1, w0) ≥
1

C
(w1 −

s+√
2
)2 >

δ2

C
in [R1, R2].
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Therefore, it follows that

1

2π
αR = ER(w0, w1) ≥

∫ R2

R1

h(w0, w1) r dr ≥
δ2

C
(R2

2 −R2
1) ≥

δ2

C
R1(R2 −R1),

and hence, in view of (4.4),

R2 −R1

R1
≤ CαR
δ2R2

exp
(4(1 + 2δ)2αR

πs2+k
2

)
.

This leads to, by Cauchy-Schwarz’ inequality,

1

π
αR = 2ER(w0, w1) ≥ R1

∫ R2

R1

|w′
1|2 dr ≥

R1

R2 −R1

(∫ R2

R1

w′
1 dr

)2

=
δ2s2+

2(1 + δ)2(1 + 2δ)2
R1

R2 −R1
≥ δ4R2

CαR
exp

(
− 4(1 + 2δ)2αR

πs2+k
2

)
.

Rearranging, we obtain ΛeΛ ≥ δ2R
Ck2

for Λ := 2(1+2δ)2αR

πs2+k
2 , which implies

2(1 + 2δ)2αR
πs2+k

2
= Λ ≥ ln

δ2R

Ck2
− ln ln

δ2R

Ck2
provided ln

δ2R

Ck2
≥ 1.

The conclusion of the result is immediate.

In order to use the mountain pass theorem to show that FR has more than two critical points,
we need to exhibit a path γ connecting the two minimizers Q±

R of FR such that

sup
t

F
R[γ(t)] < αR

where αR is the minimal energy of FR|A str
R

.
The existence of such a path is a priori not clear. Indeed, note that, as R → ∞ and after a

suitable rescaling, Q±
R tend to Q±

∗ (see equation (3.6) in the previous section). As maps from D into
S∗, Q+

∗ and Q−
∗ belong to different homotopy classes and so cannot be connected by a continuous

path in H1(D,S∗). The desired path γ must therefore necessarily leave the limit manifold S∗. In
particular, the contribution of the bulk energy potential fbulk to FR[γ(t)] cannot be neglected.

Our construction of the path γ is of a completely different flavor. We exploit the conformal
invariance of the Dirichlet energy in 2D to connect Q±

R to Q±
R0

for some fixed R0 by using Q±
r (with

variable r) and their inverted copies, and then finally connect Q+
R0

and Q−
R0

. As a result we obtain
a mountain path with energy Ok(1) (see (4.5)), which is clearly less than αR for large R.

Proof of Theorem 1.6. In the proof, C denotes some positive constant which is always independent
of R. As denoted earlier, critical points of FR in A rs

R or A str
R are critical points of FR in

H1
Qb

(BR,S0). Therefore it suffices to work with FR
∣∣
A rs

R

. To simplify the notation in what follows

we still use FR instead of FR
∣∣
A rs

R

.
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By Theorem 1.5, there exists R0 > 0 such that, for R ≥ R0, FR has two distinct minimizers in
A rs
R which are O(2)-symmetric but not Z2 ×O(2)-symmetric (in fact, they are Z2-conjugate). We

label these minimizers as Q±
R and claim that, for any 0 < d < ‖Q+

R −Q−
R‖H1(BR), we have

inf
{

F
R[Q] : Q ∈ A

rs
R , ‖Q−Q+

R‖H1(BR) = d
}
> F

R[Q±
R].

Assume by contradiction that there exists a sequence {Qm}m∈N ⊂ A rs
R satisfying ‖Qm−Q+

R‖H1(BR) =

d such that FR[Qm] → FR[Q±
R] as m → ∞. Without loss of generality, we can also assume that

Qm is weakly convergent in H1(BR,S0) and strongly convergent in Lp(BR,S0) for any p ∈ [1,∞).
The limit of Qm is then a minimizer of FR, and thus, by Theorem 1.5 and our assumption on d,
must coincide with Q+

R. Now, as Qm → Q+
R in L4(BR,S0) and FR[Qm] → FR[Q+

R], we have that
‖∇Qm‖L2(BR) → ‖∇Q+

R‖L2(BR), which further implies that Qm → Q+
R in H1(BR,S0) as m → ∞.

This contradicts the fact that ‖Qm −Q+
R‖H1(BR) = d > 0 for every m. The claim is proved.

It is standard to check that FR satisfies the Palais-Smale condition. Indeed, if Qm is a
Palais-Smale sequence for FR, then as fbulk ≥ 0, Qm is bounded in H1(BR,S0). Now note that
DFR(Qm) = −∆Qm+V (Qm) for some nonlinear operator V : H1(BR,S0) → H−1(BR,S0) which,
by the compact embedding theorem, maps bounded sets of H1(BR,S0) into relatively compact sets
of H−1(BR,S0). Thus, up to extracting a subsequence, we may assume that Qm ⇀ Q weakly in
H1 and V (Qm) → V (Q) in H−1. As DFR(Qm) → 0 in H−1 it follows that −∆Qm → −∆Q in
H−1 and so Qm → Q in H1 as wanted.

Applying the mountain pass theorem (see e.g. [32, Theorem 6.1]), we conclude for R ≥ R0 that
FR has a mountain pass critical point in A rs

R connecting Q±
R, which will be denoted by QmpR .

Claim: There exists some C > 0 independent of k such that

F
R[QmpR ] ≤ C(R2

0 + |k|) for all R > R0. (4.5)

To this end, it suffices to construct a continuous path γ : [−2, 2] → A rs
R such that γ(±2) = Q±

R and

F
R[γ(t)] ≤ C(R2

0 + |k|) for all t ∈ [−2, 2], (4.6)

where C is independent of R, k and t.

Proof of Claim. Let n±∗ be defined by (3.5). Its rescaled version to BR is given by

n±R,∗(r cosϕ, r sinϕ) =
(2R k

2 r
k
2 cos(k2ϕ)

Rk + rk
,
2R

k
2 r

k
2 sin(k2ϕ)

Rk + rk
,±R

k − rk

Rk + rk

)
.

We define Q±
R,∗ = s+(n

±
R,∗ ⊗ n±R,∗ − 1

3I3) and note that fbulk(Q
±
R,∗) ≡ 0. It follows that

F
R[Q±

R] ≤ F
R[Q±

R,∗] =
1

2

∫

BR

|∇Q±
R,∗|2 dx = s2+

∫

D
|∇n±∗ |2 = 4π|k| s2+. (4.7)
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Step 1. We first construct γ
∣∣
[−2,−1]∪[1,2]. For that, let r1, r2 : [−2, 2] → [R0, R] be given by

r1(t) =

{
R0, t ∈ [−1, 1],
(R−R0)|t|+ 2R0 −R, t ∈ [−2, 2] \ [−1, 1],

r2(t) = (r1(t)R)
1/2.

For 1 ≤ t ≤ 2 we define γ(±t) : BR → S0 by

γ(±t)(x) =





Q±
r1(t)

(x) if |x| ≤ r1(t),

Q+
R(

r2(t)2

|x|2 x) if r1(t) < |x| < r2(t),

Q+
R(x) if r2(t) ≤ |x| ≤ R.

To dispel confusion, we note that on the lower two cases (i.e., r1(t) < |x| < R), we are using the
“plus” minimizing branch Q+

R. Since for any r > 0 we have Q±
r (r

x
|x|) = s+(n ⊗ n − 1

3I3), the

inner and outer traces of γ(t) at ∂Br1(t) coincide and so γ(t) belongs to A rs
R . See Figure 2. The

continuity of γ with respect to t is a consequence of the uniqueness part of Theorem 1.5.

xRr2(t)r1(t)

Qb(x)

γ(t)(x)

Q+
r1(t)

Q+
R

inverted copy of Q+
R

Figure 2: A schematic ‘graph’ of γ(t) for t ∈ [1, 2].

By construction, it is clear that γ(±2) = Q±
R and γ(±1)

∣∣
BR0

= Q±
R0

.

Let us check that (4.6) holds for 1 ≤ |t| ≤ 2. In view of (4.7) and the fact that the integrand of
F is non-negative, we have

F
r1(t)[Q±

r1(t)
] ≤ C|k|, F [Q+

R, BR \Br2(t)] ≤ F
R[Q+

R] ≤ C|k|.

Therefore, we only need to show that

∫

Br2(t)
\Br1(t)

[1
2
|∇γ(t)|2 + fbulk(γ(t))

]
dx ≤ 4π|k|s2+. (4.8)
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Indeed, by a change of variable y = r2(t)2

|x|2 x , we have in view of (4.7):

∫

Br2(t)
\Br1(t)

[1
2
|∇γ(t)|2 + fbulk(γ(t))

]
dx =

∫

BR\Br2(t)

[1
2
|∇Q+

R|2 +
r2(t)

4

|y|4︸ ︷︷ ︸
≤1

fbulk(Q
+
R)
]
dy

≤ F
R[Q+

R] ≤ 4π|k|s2+,
which proves (4.8).

Step 2. We continue the argument by letting γ
∣∣
(−1,1)

be the linear interpolation between γ(±1),

i.e. γ(t) = 1
2 [(t+ 1)γ(1) − (t− 1)γ(−1)].

We now check (4.6) for |t| ≤ 1. Note that γ(t) = 1
2 [(t + 1)Q+

R0
− (t − 1)Q+

R0
] in BR0 . A

standard argument using the maximum principle (see the proof of [29, Proposition 3]) shows that

|Q±
R0

| ≤
√

2
3s+. Hence

F
R0 [γ(t)] ≤ CR2

0 +
1

2

∫

BR0

|∇γ(t)|2 dx.

This together with the convexity of the Dirichlet energy, the non-negativity of the integrand of F ,
and (4.7) gives

F
R0 [γ(t)] ≤ C(R2

0 + |k|).
On the other hand, as γ(t)(x) = γ(1)(x) in BR \ BR0 , we have, in view of non-negativity of the
integrand of F ,

F
R[γ(t)] = F

R0 [γ(t)] + F [γ(1), BR \BR0 ] ≤ F
R0 [γ0(t)] + F

R[γ(1)].

Recalling (4.6) for t = 1, we conclude the proof of the claim.
Let us prove now thatQmpR /∈ A rs

R for sufficiently large R. Indeed, we take R1 > max(R0, 4C1ek
2)

such that for all R > R1 and k ∈ 2Z \ {0}, we have

πs2+k
2

8
(ln

R

4C1k2
− ln ln

R

4C1k2
) > C2(R

2
0 + |k|),

where C1 is the constant from (4.1) corresponding to δ = 1/2, and the constants C2 and R0 are the
ones from (4.5). Then the mountain pass critical point QmpR (which belongs to A rs

R ) has the energy
FR(QmpR ) bounded from above by C2|k| and thus does not belong to A str

R thanks to Lemma 4.1.
In other words, QmpR is O(2)-symmetric and is not Z2 ×O(2)-symmetric.

Let us now construct a second mountain pass critical point Q̃mpR . Indeed, the lack of Z2×O(2)-
symmetry implies that in the decomposition QmpR (x) = w0(|x|)E0 +w1(|x|)E1 +w3(|x|)E3 we have
that w3 6≡ 0. It follows that Q̃mpR (x) = w0(|x|)E0 + w1(|x|)E1 − w3(|x|)E3 is an additional critical
point of FR with the same energy as QmpR (it is necessarily of mountain pass type).

Let us now construct a fifth critical point QstrR that will be k-radially symmetric. Indeed,
minimizing the energy FR

∣∣
A str

R

one can show that FR has a critical point in A str
R , called QstrR . By

the above energy estimates and Lemma 4.1, it is clear that QstrR differs from Q±
R, Q

mp
R and Q̃mpR .

We have thus shown that FR has at least five k-fold O(2)-symmetric critical points in AR, at least
four of which are not k-fold Z2 ×O(2)-symmetric.
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A Remarks on minimizers for odd k

In this appendix we would like to make some remarks on the energy bounds and the symmetry
properties of minimizers of the energy

Fε[Q; Ω] :=

∫

Ω

[1
2
|∇Q|2 + 1

ε2
fbulk(Q)

]
dx

defined on a fixed finitely-connected, bounded C1 domain Ω and subject to a given C1 planar
S∗-valued boundary condition Qb, i.e. Qb takes values in the set

S
planar
∗ =

{
s+

(
v ⊗ v − 1

3
I3

)
: v ∈ S

1
}

with S
1 = {(v1, v2, 0) ∈ R

3 : |v| = 1} ⊂ R
3. (A.1)

Note that S
planar
∗ is homeomorphic to RP 1 and continuous maps from ∂Ω into S

planar
∗ have

well-defined 1
2Z-valued degrees; see for instance Brezis, Coron and Lieb [8, Section VIII, part B]. The

relation between S
planar
∗ and S

1 in (A.1) is manifested in the fact that a map Q ∈ C(∂Ω,S planar
∗ )

can be written in the form Q = s+
(
v⊗ v− 1

3I3
)
for some v ∈ C(∂Ω,S1) if and only if the degree k

2
of Q is an integer (i.e., k ∈ Z is even), and, in which case, is equal to that of v.

In the discussion to follow, we assume that Qb has degree
k
2 with k ∈ Z \ {0} (which does not

necessarily have the form (1.8)-(1.9)). We consider both cases of even and odd k and note that
they are fundamentally different in the limit ε→ 0: for odd k the limiting energy is infinite, while
for even k the limit has finite energy.

As usual, let H1
Qb

(Ω,S0) denote the set of H1 maps from Ω into S0 equal to Qb on ∂Ω.

Remark A.1. Let Ω ⊂ R
2 be a fixed finitely-connected, bounded C1 domain and Qb : ∂Ω → S

planar
∗

be an arbitrary C1 map of degree k
2 for some k ∈ Z.

For even k 6= 0, there exist ε0 > 0 and C1, C2 > 0 such that for all ε < ε0

C1 ≤ min
H1

Qb
(Ω,S0)

Fε[·; Ω] ≤ C2. (A.2)

For odd k, there exist ε1 > 0 and C > 0 such that for all ε < ε1

π

2
s2+| ln ε| −C ≤ min

H1
Qb

(Ω,S0)
Fε[·; Ω] ≤

π

2
s2+| ln ε|+ C. (A.3)
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Remark A.2. For the unit disk Ω = D, the following can be stated in the case the boundary data
Qb is given by (1.8)-(1.9). We have seen that when k is even the minimizers of Fε in H

1
Qb

(D,S0)
are k-fold O(2)-symmetric.

When k is odd the symmetry of minimizers is more delicate and so far is unknown. For
k = ±1, we conjecture that there exists a unique minimizer and this minimizer is Z2 × O(2)-
symmetric – see [24, 25] for some supporting evidence. In the case of odd |k| > 1 the above energy
bounds forbid minimizers to have Z2 × SO(2)-symmetry (in view of Lemma 4.1) as well as the
configuration of k-vortices of degree ±1

2 constructed in [4].

We would like now to briefly outline how one can obtain energy bounds (A.2) and (A.3). When
D is a disk and k is odd, these bounds were established by Canevari [10, 11]. We will see below
that (A.2) and the upper bound in (A.3) can be established by elementary arguments using some

extension property for S
planar
∗ -valued maps of degree zero. The proof of the lower bound in (A.3)

is more substantial and draws on the corresponding aforementioned estimate for disks [11].
Let us start with (A.2) when k is even. The lower bound C1 > 0 can be taken to be the

minimal Dirichlet energy under the given (non-constant) boundary data Qb (since fbulk ≥ 0). For
the upper bound, we construct a test function by splitting the domain Ω into a disk BR ⊂ Ω,
which without loss of generality is assumed to be centered at the origin, of some small radius R,
and the complement Ω \ BR. On the boundary of the disk, we impose the test function to have
boundary data of the form (1.8)-(1.9). We define Qtest by joining together minimizers of Fε[·;BR]
and Fε[·; Ω \BR] with respect to the indicated boundary data on each subdomain. It is clear that
the minimal energy satisfies the following bound

min
H1

Qb
(Ω,S0)

Fε[·; Ω] ≤ Fε[Qtest; Ω] = minFε[Q;BR] + minFε[Q; Ω \BR], (A.4)

where the two minimizations on the right hand side are under the constraint that Q = Qtest on the
respected boundary. We know (see Table 1) that the first term on the right hand side of (A.4) is

bounded uniformly in ε. Since the degree of the map Qtest : ∂(Ω \ BR) → S
planar
∗ is zero we can

use an H1 extension – see Lemma A.3 below – to show that the second term on the right hand side
of (A.4) is bounded uniformly in ε. Estimate (A.2) follows.

Lemma A.3. Let G ⊂ R
2 be a bounded finitely-connected C1 domain. Then every map Q ∈

C1(∂G,S planar
∗ ) of degree zero extends to a map Q ∈ H1(G,S planar

∗ ).

Proof. As S
planar
∗ is diffeomorphic to a circle, this result is well known (see [6, Section I.2]). See

also [19, p.126] for results on continuous extensions in any dimension.

We now consider the upper bound in (A.3) when k is odd. We select two disjoint disks BR(x1)
and BR(x2) inside Ω. On the boundary of these disks, we consider the test function Qtest:

Qtest(x) = s+

(
n(x)⊗ n(x)− 1

3
I3

)
, x ∈ ∂BR(x1) ∪ ∂BR(x2), (A.5)

where we set for Reiϕ = (R cosϕ,R sinϕ) ∈ ∂BR(0), 0 ≤ ϕ < 2π:

n(x1 +Reiϕ) := (cos
ϕ

2
, sin

ϕ

2
, 0), n(x2 +Reiϕ) := (cos

(k − 1)ϕ

2
, sin

(k − 1)ϕ

2
, 0).
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In Ω\(BR(x1)∪BR(x2)) and BR(x2), the test function Qtest is constructed by minimizing Fε under
the indicated boundary conditions. In BR(x1), Qtest is a minimizer of Fε in Z2 ×O(2)-symmetry.
Using Lemma 4.1 (namely the upper bound in (4.1)) and arguing as in the previous case, we arrive
at the upper bound in (A.3).

We turn to the lower bound in (A.3) when k is odd. Take some large disk BR′(0) ⊃ Ω. We
impose on ∂BR′(0) a boundary condition of the form (A.5) where

n(R′ cosϕ,R′ sinϕ) = (cos
ϕ

2
, sin

ϕ

2
, 0), 0 ≤ ϕ < 2π.

By [11, Proposition 15], we have within the above boundary condition (B.C.) on ∂BR′(0):

min
B.C.

Fε[·;BR′(0)] ≥ π

2
s2+| ln ε| − C,

and by (A.2), within the above boundary condition (B.C.) on ∂(BR′(0) \Ω):

min
B.C.

Fε[·;BR′(0) \Ω] ≤ C.

The lower bound in (A.3) follows from the above two estimates and the inequality

min
B.C.

Fε[·;BR′(0)] ≤ min
H1

Qb
(Ω,S0)

Fε[·; Ω] + min
B.C.

Fε[·;BR′(0) \Ω].

B The Euler-Lagrange equations near Q∗

In this appendix, we give the proof of Lemma 3.5 and Proposition 3.6 which concern the Euler-
Lagrange equations for critical points of F relative to the representation in Lemma 3.2.

Proof of Lemma 3.5. We set v = n∗+ψ
|n∗+ψ| , v̂ = n∗ + ψ. Recall that n∗ · ψ = 0, Q♯ = s+(v ⊗ v − 1

3I3)

and Q = Q♯ + ε2P . We calculate separately the elastic part in Fε and then the bulk term.
1. The elastic part:

∫

Ω
|∇Q|2 dx =

∫

Ω

[
2s2+ |∇v|2 + 2ε2s+∇(v ⊗ v) : ∇P + ε4|∇P |2

]
dx. (B.1)

(Here ∇X : ∇Y =
∑

i(∇iX · ∇iY ) for two matrix-valued maps X and Y .)
We calculate individually the first two terms.

a. The |∇v|2 term. Using the identities

∇v =
1

|v̂|∇v̂ −
1

2|v̂|3 v̂ ⊗∇|v̂|2,

and n∗ · ψ = 0 (in particular |v̂|2 = 1 + |ψ|2), we see that

|∇v|2 = 1

|v̂|2 (|∇v̂|
2 − 1

4|v̂|2 |∇|v̂|2|2)

=
1

1 + |ψ|2
(
|∇ψ|2 + |∇n∗|2 + 2∇n∗ · ∇ψ − 1

4(1 + |ψ|2) |∇|ψ|2|2
)
.
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Noting that
∫

D

1

1 + |ψ|2∇n∗ · ∇ψ dx = −
∫

D

1

1 + |ψ|2
[
∆n∗ −

1

1 + |ψ|2∇n∗ · ∇|ψ|2
]
· ψ dx

=

∫

D

1

(1 + |ψ|2)2 (∇n∗ · ∇|ψ|2) · ψ dx,

we obtain
∫

D
|∇v|2 dx =

∫

D
|∇n∗|2 dx+

∫

D

[
|∇ψ|2 − |∇n∗|2 |ψ|2

]
dx+

∫

D
g(x, ψ,∇ψ) dx, (B.2)

where g is super-cubic in (ψ,∇ψ) at zero:

g(x, ψ,∇ψ) = 1

1 + |ψ|2
[
− |ψ|2(|∇ψ|2 − |∇n∗|2 |ψ|2)

+
2

1 + |ψ|2 (∇n∗ · ∇|ψ|2) · ψ − 1

4(1 + |ψ|2) |∇|ψ|2|2
]
.

b. The gradient coupling term ∇(v ⊗ v) : ∇P . We write
∫

Ω
∇(v ⊗ v) : ∇P =

∫

Ω
∇
( 1

1 + |ψ|2 (n∗ + ψ)⊗ (n∗ + ψ)
)
: ∇P

=

∫

Ω
∇(n∗ ⊗ n∗) : ∇P +∇(n∗ ⊗ ψ + ψ ⊗ n∗) : ∇P +∇ĝ(x, ψ) : ∇P (B.3)

where ĝ is super-quadratic in ψ at ψ = 0:

ĝ(x, ψ) = − |ψ|2
1 + |ψ|2 (n∗ + ψ)⊗ (n∗ + ψ) + ψ ⊗ ψ.

The expression ∇(n∗ ⊗ ψ + ψ ⊗ n∗) : ∇P on the right hand side of (B.3) contains some terms
which are quadratic in the derivatives of P and ψ. However, we can eliminate this quadratic
character by using some specific geometric information as follows: we note that P ∈ (TQ∗S∗)⊥

and n∗ ⊗ ψ + ψ ⊗ n∗ ∈ TQ∗S∗. Indeed, by [30, Lemma 2], Pn∗ is parallel to n∗ and so Pn∗ =
(P · (n∗ ⊗ n∗))n∗. Also, as ψ · n∗ = 0 and ∆n∗ ‖ n∗, we have ∆ψ · n∗ = −2∇ψ · ∇n∗. Thus,
integrating by parts using again ∆n∗ ‖ n∗ gives

∫

D
∇(n∗ ⊗ ψ) : ∇P dx =

∫

D

∑

k

∇kP · (∇kn∗ ⊗ ψ + n∗ ⊗∇kψ) dx

=

∫

D

[∑

k

∇kP · (∇kn∗ ⊗ ψ)− (Pn∗) ·∆ψ − ((∇n∗)t P ) · ∇ψ
]
dx

=

∫

D

[∑

k

∇kP · (∇kn∗ ⊗ ψ)

+ 2(P · (n∗ ⊗ n∗))(∇n∗ · ∇ψ)− ((∇n∗)t P ) · ∇ψ
]
dx.
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As P is symmetric, we hence get

∫

D
∇(n∗ ⊗ ψ + ψ ⊗ n∗) : ∇P dx = 2

∫

D

[∑

k

∇kP · (∇kn∗ ⊗ ψ)

+ 2(P · (n∗ ⊗ n∗))(∇n∗ · ∇ψ)− ((∇n∗)t P ) · ∇ψ
]
dx. (B.4)

It is readily seen that the integral on the right hand side is linear in the derivatives of P and ψ. This
cancellation will play a role on our later analysis: its contribution to the Euler-Lagrange equations
of Fε is of first order rather than second order.

2. The bulk part: We expand fbulk(Q) = fbulk(Q♯ + ε2P ) in terms of powers of ε. As S∗ is the
set of minimum points of fbulk, we have fbulk(Q♯) = 0 and ∇fbulk(Q♯) = 0. We have:

fbulk(Q) = fbulk(Q)− fbulk(Q♯)− ε2 ∇fbulk(Q♯) · P

= ε4
[
− a2

2
|P |2 − b2P 2 ·Q♯ +

c2

2
|Q♯|2|P |2 + c2|P ·Q♯|2

]

+ ε6
[
− b2

3
tr(P 3) + c2P ·Q♯ |P |2

]
+ ε8

c2

4
|P |4

= ε4 h(x, P ) + ε4ĥ(x, ψ, P ) + ε6 h̊ε(x, ψ, P ), (B.5)

where:

h(x, P ) =
b2 s+
2

|P |2 − b2 s+P
2 · (n∗ ⊗ n∗) + c2 s2+|P · (n∗ ⊗ n∗)|2

ĥ(x, ψ, P ) = −b2 s+P 2 · (v ⊗ v − n∗ ⊗ n∗) + c2 s2+[|P · (v ⊗ v)|2 − |P · (n∗ ⊗ n∗)|2],

h̊ε(x, ψ, P ) = −b
2

3
tr(P 3) + c2s+P · (v ⊗ v) |P |2 + ε2

c2

4
|P |4.

(Here we have used the identity −a2 − b2

3 s+ + 2c2

3 s
2
+ = 0.) Note also that, as n∗ · ψ = 0 and

Pn∗ ‖ n∗, ĥ(x, ψ, P ) and h̊ε(x, ψ, P ) − h̊ε(x, 0, P ) are super-quadratic in ψ at ψ = 0.
We now put together all the previous expressions, to get a new form of the full energy. Using

the expression of |∇v|2 from (B.2) in (B.1) and putting (B.4) in (B.3) and then in (B.1) provide the
elastic part. Putting this together with the expansion of the bulk part (B.5) into (3.1) we obtain

Fǫ[Q] = s2+

∫

D
|∇n∗|2 dx+ s2+

∫

D

[
|∇ψ|2 − |∇n∗|2 |ψ|2

]
dx+ ε2

∫

D

[ε2
2
|∇P |2 + h(x, P )

]
dx

+ ε2 s+

∫

D

[
∇(n∗ ⊗ n∗) : ∇P + 2

∑

k

∇kP : (∇kn∗ ⊗ ψ)

+ 4(P · (n∗ ⊗ n∗))(∇n∗ · ∇ψ)− 2((∇n∗)t P ) · ∇ψ
]
dx

+

∫

D
[s2+g(x, ψ,∇ψ) + ε2 ĥ(x, ψ, P )] dx + ε2

∫

D

[
s+∇ĝ(x, ψ) : ∇P + ε2h̊ε(x, ψ, P ))

]
dx.
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The Euler-Lagrange equations for Fǫ in terms of ψ and P are then readily found to be of the form

−∆ψ − |∇n∗|2 ψ = A[ψ] + ε2Bε[ψ,P ] + λε(x)n∗, (B.6)

−ε2∆P + ∇̊Ph(x, P ) = s+∆(n∗ ⊗ n∗) +Cε[ψ,P ] −
1

3
tr(Cε[ψ,P ])I3 + Fε(x), (B.7)

where

∇̊Ph(x, P ) := ∇Ph(x, P ) −
1

3
tr(∇Ph(x, P ))I3

= b2 s+ P +
2

s2+
(−b2 s+ + c2 s2+) (P ·Q∗)Q∗ (B.8)

is the gradient of h with respect to P ∈ S0,
14 λε is a Lagrange multiplier accounting for the

constraint ψ · n∗ = 0, Fε(x) ∈ TQ∗S∗ is a Lagrange multiplier accounting for the constraint
P (x) ∈ (TQ∗S∗)⊥, and

A[ψ]j =
1

2
∇i

[ ∂g

∂(∇iψj)
(x, ψ,∇ψ)

]
− 1

2

∂g

∂ψj
(x, ψ,∇ψ), (B.9)

Bε[ψ,P ]j = − 1

2s2+

∂ĥ

∂ψj
(x, ψ, P ) − 1

2s2+
ε2
∂h̊ε
∂ψj

(x, ψ, P ) +
1

2s+

∂ĝ

∂ψj
(x, ψ) ·∆P

+
1

s+
∇i

[
2(P · (n∗ ⊗ n∗))∇i(n∗)j −∇i(n∗)k Pkj]−

1

s+
∇iPjk∇i(n∗)k (B.10)

Cε[ψ,P ]ij = − ∂ĥ

∂Pij
(x, ψ, P ) − ε2

∂h̊ε
∂Pij

(x, ψ, P ) + s+∆ĝij(x, ψ)

+ 2s+∇k(∇k(n∗)iψj)− 4s+(n∗)i(n∗)j(∇n∗ · ∇ψ) + 2s+∇k(n∗)i∇kψj . (B.11)

This finishes the proof of Lemma 3.5.

We continue with the proof of the Lipschitz-type estimates for A,Bε and Cε:

Proof of Proposition 3.6. Using the definitions of A[ψ], Bε[ψ,P ] given in (B.9), (B.10), (B.11)
together with the fact that ∂

∂ψj
ĥ(x, 0, P ) = ∂

∂ψj
h̊ε(x, 0, P ) = 0,15 we obtain A[0] = 0,

|A[ψ] −A[ψ̃]| ≤ C(|ψ|+ |ψ̃|)
[
(1 + |∆ψ|+ |∆ψ̃|)|ψ − ψ̃|+ |∇2(ψ − ψ̃)|

+ (1 + |∇ψ|+ |∇ψ̃|)|∇(ψ − ψ̃)|
]

+ C(|∇ψ|+ |∇ψ̃|)(1 + |∇ψ|+ |∇ψ̃|)|ψ − ψ̃|,
|Bε(0, P )| ≤ C(|∇P |+ |P |),

|Bε[ψ,P ] −Bε[ψ̃, P ]| ≤ C (|∆P |+ |P |2 + ε2|P |3)|ψ − ψ̃|,
|Bε[ψ,P ] −Bε[ψ, P̃ ]| ≤ C|ψ|[|∆(P − P̃ )|+ (|P |+ |P̃ |)(1 + ε2(|P |+ |P̃ |))|P − P̃ |]

+ C[|∇(P − P̃ )|+ |P − P̃ |].
14In deriving (B.8), it is useful to keep in mind the relation that Pn∗ ‖ n∗.
15Recall that this is a consequence of the relations n∗ · ψ = 0 and Pn∗ ‖ n∗.
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which imply the claimed estimates (3.19), (3.20), (3.21), (3.22) and (3.23) in view of the embedding
H2(D) →֒W 1,4(D) →֒ L∞(D).

We split Cε[ψ,P ] = C
(1)
ε [ψ,P ] + C(2)[ψ] where

C(1)
ε [ψ,P ]ij = − ∂ĥ

∂Pij
(x, ψ, P ) − ε2

∂h̊ε
∂Pij

(x, ψ, P ),

C(2)[ψ]ij = 2s+∇k(∇k(n∗)iψj)− 4s+(n∗)i(n∗)j(∇n∗ · ∇ψ) + 2s+∇k(n∗)i∇kψj

+ s+∆ĝij(x, ψ).

We have

|C(2)[ψ]− C(2)[ψ̃]| ≤ C(1 + |∆ψ|+ |∆ψ̃|+ |∇ψ|2 + |∇ψ̃|2)|ψ − ψ̃|
+ C(1 + |ψ|+ |ψ̃|+ |∇ψ|+ |∇ψ̃|)|∇ψ −∇ψ̃|
+ C(|ψ|+ |ψ̃|)|∆ψ −∆ψ̃|,

which implies

‖C(2)[ψ]− C(2)[ψ̃]‖L2(D) ≤ C(1 + ‖ψ‖H2(D) + ‖ψ̃‖H2(D) + ‖∇ψ‖2L4(D) + ‖∇ψ̃‖2L4(D))‖ψ − ψ̃‖H2(D).

As for C
(1)
ε , we have

|C(1)
ε [ψ,P ] − C(1)

ε [ψ̃, P̃ ]| ≤ C
[
|ψ|+ |ψ̃|+ ε2(|P |+ |P̃ |)

(
1 + ε2(|P |+ |P̃ |)

)]
|P − P̃ |

+ C(|P |+ |P̃ |)
(
1 + ε2(|P |+ |P̃ |)

)
|ψ − ψ̃|.

Hence

‖C(1)
ε [ψ,P ]− C(1)

ε [ψ̃, P̃ ]‖L2(D)

≤ C(‖ψ‖H2(D) + ‖ψ̃‖H2(D))‖P − P̃‖L2(D)

+ C(‖P‖L2(D) + ‖P̃‖L2(D))
(
1 + ε2(‖P‖H2(D) + ‖P̃‖H2(D))

)
‖ψ − ψ̃‖H2(D)

+ Cε2(‖P‖L4(D) + ‖P̃‖L4(D))
(
1 + ε2(‖P‖H2(D) + ‖P̃‖H2(D))

)
‖P − P̃‖H1(D),

and thus we obtain the claimed estimate (3.24).

C Proof of Proposition 3.7

Proposition 3.7 easily follows from Lax-Milgram’s theorem and Lemma C.2 below.

Lemma C.1. Let n∗ be given by (3.5). For any ζ ∈ H1
0 (D,R), there holds

I[ζ] :=

∫

D
[|∇ζ|2 − |∇n∗|2 ζ2] dx ≥ 0.

In particular, n∗ is a stable harmonic map. Equality holds if and only if ζ = t(1−rk)
1+rk

for some t ∈ R.
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Proof. Let L‖ = −∆− |∇n∗|2. W.l.o.g., we assume n∗ := n+∗ . Then n3 = n∗ · e3 = 1−rk
1+rk

> 0 in D
and note that L‖n3 = 0. Decomposing ζ = n3ξ, a direct computation yields (cf. [22, Lemma A.1])

I[ζ] :=

∫

D
[|∇ζ|2 − |∇n∗|2 ζ2] dx =

∫

D
n23|∇ξ|2 dx ≥ 0.

The assertion follows.

Lemma C.2. Let n∗ be given by (3.5). Then n∗ is strictly stable, i.e. there exists some number
c0 > 0 such that for any ζ ∈ H1

0 (D,R
3) with ζ · n∗ = 0 a.e. in D, there holds

I[ζ] =

∫

D
[|∇ζ|2 − |∇n∗|2 |ζ|2] dx ≥ c0

∫

D
[|∇ζ|2 + |ζ|2] dx.

Proof. By Lemma C.1, I is non-negative on H1
0 (D,R

3). Let

λ1 = inf
{
I[ζ] : ζ ∈ H1

0 (D,R
3), ‖ζ‖L2(D) = 1, ζ · n∗ = 0 a.e. in D

}
≥ 0.

Using the smoothness of n∗, we can apply the direct method of the calculus of variations to show
that λ1 is achieved by some ζ̄ ∈ H1

0 (D,R
3) satisfying ‖ζ̄‖L2(D) = 1 and ζ̄ · n∗ = 0 a.e. in D.

If λ1 = 0, Lemma C.1 implies that each component of ζ̄ is proportional to 1−rk
1+rk

. However, as

ζ̄ · n∗ = 0, this is possible only if ζ̄ ≡ 0, which contradicts ‖ζ̄‖L2(D) = 1.
We thus have that λ1 > 0. Consequently, as |∇n∗| is bounded, there exists some η > 0 such

that, for any ζ ∈ H1
0 (D,R

3) with ζ · n∗ = 0 a.e. in D,

∫

D
[|∇ζ|2 − |∇n∗|2 |ζ|2] dx ≥ λ1

∫

D
|ζ|2 dx ≥ η

∫

D
|∇n∗|2 |ζ|2 dx,

which implies ∫

D
[|∇ζ|2 − |∇n∗|2 |ζ|2] dx ≥ η

1 + η

∫

D
|∇ζ|2 dx.

The conclusion is readily seen.

D A calculus lemma

Lemma D.1. Let g(x, y, z) = 2x3 − 6xy2 + 3xz2 + 3
√
3yz2 for every x, y, z ∈ R. Then

−2(x2 + y2 + z2)3/2 ≤ g(x, y, z) ≤ 2(x2 + y2 + z2)3/2.

Equality in the first inequality holds if and only if (x, y, z) = s(12 ,
√
3
2 , 0) for some s ≥ 0 or x+

√
3y =

−
√
x2 + y2 + z2. Equality in the second inequality holds if and only if (x, y, z) = s(12 ,

√
3
2 , 0) for

some s ≤ 0 or x+
√
3y =

√
x2 + y2 + z2.
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Proof. Since g is three-homogeneous, it suffices consider the extremization problem

max{g : x2 + y2 + z2 = 1} and min{g : x2 + y2 + z2 = 1}.

We rewrite g = (x+
√
3y)(2x2 + 3z2 − 2

√
3xy), and so when x2 + y2 + z2 = 1,

g = (x+
√
3y)(3 − (x+

√
3y)2) = g̃(x+

√
3y),

where g̃(t) = 3t − t3. As |x+
√
3y| ≤ 2 when x2 + y2 + z2 = 1, max[−2,2] g̃ = 2, which is achieved

for t ∈ {−2, 1}, min[−2,2] g̃ = −2, which is achieved for t ∈ {−1, 2}, the conclusion follows.
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