
Singularities in some variational

problems

Radu IGNAT



ii



To my parents

and my sister, Claudia.

iii



iv



Contents

Introduction 1

1 Lifting of functions with values into the unit circle S1 . . . . . . . . . . . . . 1

1.1 Lifting of BV functions with values into S1 (joint work with J. Dávila) 2

1.2 Optimal lifting for BV (S1, S1) . . . . . . . . . . . . . . . . . . . . . . 3

1.3 The space BV (S2, S1): minimal connection and optimal lifting . . . . 5

1.4 On the relation between minimizers of a Γ-limit energy and optimal

lifting in BV (joint work with A. Poliakovsky) . . . . . . . . . . . . . 8

1.5 On an open problem about how to recognize constant functions . . . 9

2 Vortices in a 2d rotating Bose-Einstein condensate . . . . . . . . . . . . . . . 10

2.1 The critical velocity for vortex existence in a two dimensional rotating

Bose-Einstein condensate (joint work with V. Millot) . . . . . . . . . 11

2.2 Energy expansion and vortex location for a two-dimensional rotating

Bose-Einstein condensate (joint work with V. Millot) . . . . . . . . . 12
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8 A compactness result in thin-film micromagnetics and the optimality of
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Introduction

This book represents the PhD thesis of the author that was carried out under the supervision

of Häım Brezis at the University Paris 6 between 2003-2006. This PhD thesis was refereed

by Francois Alouges and Peter Sternberg and was defended in December 11, 2006 in front of

the Jury composed by Amandine Aftalion, Francois Alouges, Fabrice Béthuel, Häım Brezis,

Mariano Giaquinta, Robert Jerrard and Felix Otto. For this PhD thesis, the author received the

Arconati-Visconti Prize in Sciences (Pure and Applied Mathematics) awarded by the Chancellery

of Universities of Paris in 2007.

The topic of this PhD thesis concerns the structure of singularities that appear in several

variational problems. These singularities play the role of vortex lines for superconductors, vor-

tices in Bose-Einstein condensates or domain walls in micromagnetics. Since these problems

are an interplay between analysis and geometry, the study of singularities lies on analytical and

geometrical tools based on variational methods, geometric measure theory as well as regularity

theory for partial differential equations.

The book is divided in three parts. A first one, formed by Chapters 1-5, deals with functions

with values into the unit circle S1, in particular, the study of the (optimal) lifting of functions

of bounded variation. A second part, including Chapters 6 and 7, is devoted to the asymptotic

behavior of vortices in a two-dimensional rotating Bose-Einstein condensate. The third part

(Chapter 8) concerns the optimality of Néel walls in thin-film micromagnetics.

In the following, we present the main features of each chapter.

1 Lifting of functions with values into the unit circle S1

The study of functions with values into S1 and having a certain regularity (for example, belonging

to some Sobolev space) is motivated by the theory of Ginzburg-Landau equation and the degree

theory. In this context, the main questions concern the regularity of the lifting of such functions

and the analysis of their topological singularities. The goal of this part is to answer to these

questions in the case of BV functions with values into S1.

This part is a collection of several works published by the author during his PhD thesis (cf.

[37, 51, 52, 53, 58]). Several changes and additional details have been introduced here with

respect to the published version, together with a work in progress (cf. [59]). Each chapter can

1



Introduction

be considered self-contained.

1.1 Lifting of BV functions with values into S1 (joint work with J. Dávila)

Let Ω ⊂ RN be an open set and u : Ω → S1 be a measurable function. We call lifting of u, every

measurable function ϕ : Ω → R satisfying

u(x) = eiϕ(x)

for almost every x ∈ Ω. A natural question concerns the existence of a lifting ϕ that preserves

the regularity of the function u. For example, if Ω is simply connected and u is continuous, then

there exists a continuous lifting ϕ of u that is unique up to an additional 2πZ constant.

The first existence result for the lifting in the case of Sobolev spaces has been proved by

Béthuel and Zheng [19]: if Ω is a bounded simply connected domain in RN and u ∈W 1,p(Ω, S1)

with p ≥ 2 then u has a lifting ϕ ∈ W 1,p(Ω,R) that is unique up to a constant. Otherwise, if

1 ≤ p < 2 and N ≥ 2, then there exist some functions u ∈ W 1,p(Ω, S1) that cannot be lifted in

W 1,p; the standard example (in the case of N = 2 and 0 ∈ Ω) is given by

u(x) =
x

|x| . (1)

Later, Bourgain, Brezis and Mironescu [20] studied the existence of lifting in the general case of

Sobolev spaces W s,p(Ω, S1), 0 < s < ∞ and 1 < p < ∞. A complete description depending on

N , s and p is given for the cases where a lifting with the same regularity exists and for the other

cases where one can construct functions u ∈W s,p(Ω, S1) with no lifting belonging to W s,p.

In the case of BMO functions, we recall the work of Coifman and Meyer [35]. For the one-

dimensional case, they have showed that if u : R → S1 belongs to BMO and |u|BMO < γ (where

γ > 0 is a specific constant) then u has a BMO lifting ϕ with a certain control on the BMO

seminorm of ϕ. Later, Brezis and Nirenberg [31] extended this result to the case of general

domains Ω ⊂ RN ; moreover, they also proved that every function u ∈ VMO(Ω, S1) has a VMO

lifting that is unique up an additional constant.

In this chapter, we study the case of functions of bounded variation with values into the

unit circle S1, i.e., u = (u1, u2) ∈ L1
loc(Ω,R

2), |u(x)| = 1 for almost every x ∈ Ω and the

BV−seminorm is finite:

|u|BV = sup

{
∫

Ω

2∑

k=1

uk div ζk dx : ζk ∈ C∞
0 (Ω,RN ),

2∑

k=1

|ζk|2 ≤ 1 in Ω

}

<∞,

where | · | denotes the euclidian norm over RN . Our main result shows that u always has a BV

lifting with an optimal control on the total variation:

Theorem 0.1 ([37]) Let Ω ⊂ RN be an open set and u ∈ BV (Ω, S1). Then there exists a lifting

ϕ ∈ BV ∩ L∞(Ω,R) of u such that

|ϕ|BV ≤ 2|u|BV . (2)

2



1. Lifting of functions with values into the unit circle S1

If N ≥ 2 and Ω is a bounded open set in RN , the constant 2 in inequality (2) is optimal; it

can be checked for the standard example (1). In dimension N = 1 (i.e., Ω is an interval), every

function u ∈ BV (Ω, S1) has a BV lifting ϕ such that |ϕ|BV ≤ π
2 |u|BV and the constant π

2 is

optimal.

The idea of the proof of Theorem 0.1 is to consider the argument function L : S1 → R,

L(eiθ) = θ, ∀ − π ≤ θ < π.

Then ϕ = L(u) is a (measurable) lifting of u, as well as every function L(eiαu) − α with α ∈ R.

Next we prove a co-area type inequality

∫ 2π

0
|L(eiαu)|BV dα ≤ 4π|u|BV (3)

which leads to our result. In particular, for almost every α ∈ R, the lifting L(eiαu) − α is of

bounded variation. The main tool to prove (3) resides in the chain rule for BV functions; a new

proof of (3) without using the chain rule was later found by Merlet [69].

Remark 0.1 (a) If u ∈ W 1,1(Ω, S1) and Ω ⊂ R2 is a bounded smooth simply connected open

set, Brezis and Mironescu showed that u has a lifting ϕ ∈ BV (Ω,R) satisfying (2). The idea

consists in applying the density result of Béthuel and Zheng [19] so that the proof reduces to

the case of functions that are smooth away from a finite set of singular points: for such a

function u, one can construct a BV−lifting that has the jump set concentrated on the minimal

connection between the point singularities of u (taking into account their topological degree)

and the boundary of Ω. This lifting satisfies condition (2).

(b) The existence of a BV lifting of u ∈ BV (Ω, S1) (when Ω is a bounded smooth simply

connected open set) was proved before by Giaquinta, Modica and Soucek [47], but without an

optimal control on the BV−seminorm of a lifting.

1.2 Optimal lifting for BV (S1, S1)

Let g ∈ BV (S1, S1), i.e. g ∈ BV (S1,R2) and |g(y)| = 1 for almost every y ∈ S1. The aim of

this chapter is to compute the total variation of an optimal BV lifting of g:

E(g) = inf
{∫

S1

|ϕ̇| : ϕ ∈ BV (S1,R), eiϕ = g a.e. in S1
}

(4)

where “ ˙ ” stands for the tangential derivative. The above infimum is achieved and equal to the

relaxed energy

Erel(g) = inf
{

lim inf
n→∞

∫

S1

|ġn|dH1 : gn ∈ C∞(S1, S1),deg gn = 0, gn → g a.e. in S1
}

.

In the sequel, we identify g to the precise representative, that is a Borel function defined as

g(y) =
g(y+) + g(y−)

2
, ∀y ∈ S1,

3



Introduction

where g(y±) are the left and right limits of g at y with respect to the counterclockwise orientation

of S1. The vector measure ġ is decomposed as

ġ = (ġ)a + (ġ)c + (ġ)j ,

where (ġ)j =
∑

y∈S(g)

(g(y+) − g(y−))δy .

Here, (ġ)a, (ġ)c and (ġ)j correspond to the absolutely continuous part, to the Cantor part and

to the jump part of the measure ġ, respectively. The (most) countable set

S(g) = {y ∈ S1 : ġ({y}) 6= 0}

corresponds to the jump set of g. For every jump point y ∈ S(g), we consider the signed jump

size dy(g) ∈ (−π, π] \ {0} defined as

ei dy(g) =
g(y+)

g(y−)
,

so that the modulus |dy(g)| = dS1(g(y+), g(y−)) coincides with the geodesic distance on S1.

We want to study the structure of an (optimal) lifting of g. So, let ϕ ∈ BV (S1,R) be a

lifting of g (such a function exists thanks to Theorem 0.1). As above, we decompose the finite

measure ϕ̇ into three terms:

ϕ̇ = (ϕ̇)a + (ϕ̇)c +
∑

z∈S(ϕ)

(ϕ(z+) − ϕ(z−))δz .

We deduce that the absolutely continuous part and the Cantor part of ϕ̇ are completely deter-

mined by the following equations:

(ϕ̇)a = g ∧ (ġ)a and (ϕ̇)c = g ∧ (ġ)c in S1.

For the jump part, we only know that

S(g) ⊂ S(ϕ) and







ϕ(y+) − ϕ(y−) ≡ dy(g) (mod 2π) if y ∈ S(g),

ϕ(y+) − ϕ(y−) ≡ 0 (mod 2π) if y ∈ S(ϕ) \ S(g).

In order to compute (4), it is sufficient to determine the minimal total variation of the jump

part of ϕ. If g was defined on an interval of R instead of S1, then the jump part of an optimal

lifting would have the total variation given by

∑

y∈S(g)

|dy(g)|. (5)

In our framework, since g is defined on S1, a new constraint needs to be added for a lifting ϕ:

∫

S1

ϕ̇ = 0. (6)
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1. Lifting of functions with values into the unit circle S1

Because of this (topological) constraint, the minimal total variation of a lifting is in general

larger than (5). For example, if g = Id : S1 → S1 is the indentity, i.e., g(z) = z for z ∈ S1, then

g has a topological degree equal to 1, so that any BV−lifting of g cannot be continuous and thus,

has a jump of size larger than 2π. In fact, in the case of continuous functions g ∈ BV (S1, S1),

Bourgain, Brezis and Mironescu [22] proved the following formula:

E(g) =

∫

S1

|ġ| + 2π deg g.

In the general case of an arbitrary function g ∈ BV (S1, S1), the presence of jump points

turns the analysis more delicate. A jump of g cannot be always lifted to have the size of the jump

equal to the geodesic distance on S1 (as in the case of an interval of R); therefore, we often have

|ϕ(y+)−ϕ(y−)| > |dy(g)|. The idea is to define a new quantity m(g) ∈ Z (a ”pseudo-degree” of

g) corresponding to the number of jumps where the above inequality holds. Our main result is

the following:

Theorem 0.2 ([52]) If S(g) 6= ∅, then

E(g) =

∫

S1

(

|(ġ)a| + |(ġ)c|
)

+ min
αy∈Z, y∈S(g)

#{y∈S(g):αy 6=0}<∞
P

y∈S(g) αy=m(g)

∑

y∈S(g)

|dy(g) − 2παy|.

Next we construct a minimal configuration {αy}y∈S(g) that allows us to define an optimal

lifting. From this formula, we can give a different proof of (2), i.e., E(g) ≤ 2

∫

S1

|ġ|.

1.3 The space BV (S2, S1): minimal connection and optimal lifting

The concept of minimal connection associated to a function defined in R3 with values into

the unit sphere S2 has been introduced by Brezis, Coron and Lieb [27]. That problem was

motivated by the theory of liquid crystals. Later, this notion has been used by Bourgain, Brezis

and Mironescu [22] in the case of a three-dimensional model for the Ginzburg-Landau equation:

the vortex lines correspond to minimal connection between the point singularities of a given

boundary data. Recently, Brezis, Mironescu and Ponce [30] studied the topological singularities

of functions g ∈ W 1,1(S2, S1). They show that the Jacobian of g (in the sense of distributions)

detects the position and the degree of the topological singularities of g. More precisely, let

T (g) ∈ D′(S2,R) be the distribution defined on S2 by

T (g) = 2det(∇g) = −(g ∧ gx)y + (g ∧ gy)x;

then there exist two sequences of points (pk), (nk) on S2 such that

∑

k

|pk − nk| <∞ and T (g) = 2π
∑

k

(δpk
− δnk

).

5
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The distribution T (g) in general is not a finite measure and it always has a infinite number of

representations as a sum of dipoles. The length of a minimal connection of T (g) is defined as:

‖T (g)‖ = sup
ζ∈C1(S2)

|∇ζ|≤1

〈T (g), ζ〉.

For example, if T (g) = 2π
m∑

k=1

(δpk
− δnk

) is a finite sum of dipoles, Brezis, Coron and Lieb [27]

have proved that

‖T (g)‖ = 2π min
σ∈Sm

m∑

k=1

dS2(pk, nσ(k)),

where Sm denotes the group of permutations of {1, 2, . . . ,m} and dS2 stands for the geodesic

distance on S2. For a countable sum of dipoles, Bourgain, Brezis and Mironescu [22] have

generalized the above result by showing that T (g) can be characterized as:

‖T (g)‖ = inf
(pk),(nk)

{

2π
∑

k

dS2(pk, nk) : T (g) = 2π
∑

k

(δpk
− δnk

) and
∑

k

|pk − nk| <∞
}

.

(7)

The aim of this chapter is to generalize these notions for functions u ∈ BV (S2, S1). In this

case, the difficulty of the analysis comes from the existence of two types of singularities: on one

hand, topological point singularities (carrying a degree), on the other hand, jump singularities

concentrated on curves. In the sequel, we will always identify u with the precise representative;

the 2 × 2 matrix measure Du is decomposed into three terms

Du = Dau+Dcu+ (u+ − u−) ⊗ νuH1xS(u),

where Dau,Dcu and Dju correspond to the absolutely continuous part, to the Cantor part and

to the jump part of Du. The jump set S(u) is an H1-rectifiable set on S2, oriented by the unit

normal vector νu : S(u) → S1. The Borel functions u+, u− : S(u) → S1 represent the traces of

u on the jump set S(u) with respect to the orientation νu.

We introduce the distribution T (u) ∈ D′(S2,R) as

〈T (u), ζ〉 =

∫

S2

∇⊥ζ · (u ∧ (Dau+Dcu)) +

∫

S(u)
ρ(u+, u−) νu · ∇⊥ζ dH1, ∀ζ ∈ C1(S2,R). (8)

Here, ∇⊥ζ = (ζy,−ζx) and the antisymmetric application ρ(·, ·) : S1×S1 → [−π, π] corresponds

to a signed geodesic distance on S1:

ρ(ω1, ω2) =







Arg
(
ω1
ω2

)

if ω1
ω2

6= −1

Arg (ω1) − Arg (ω2) if ω1
ω2

= −1
, ∀ω1, ω2 ∈ S1,

where Arg (ω) ∈ (−π, π] stands for the argument of a unit complex number ω ∈ S1.

Our first result shows that T (u) is a countable sum of dipoles. It is a generalization to the

case of BV functions of the result mentioned above for W 1,1 functions in [30].
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1. Lifting of functions with values into the unit circle S1

Theorem 0.3 ([53]) If u ∈ BV (S2, S1), then there exist two sequences of points (pk), (nk) in

S2 such that
∑

k

|pk − nk| <∞ and T (u) = 2π
∑

k

(δpk
− δnk

). (9)

The proof relies on the fact that the derivative (in the sense of distributions) of the characteristic

function of a bounded measurable set in R can be written as a sum of countable dipoles. This

property allows us to introduce the set of functions defined on curves of S2 and taking values

into 2πZ so that their tangential derivative is given by T (u):

J (T (u)) =







(f, S, ν) :

S is countably H1- rectifiable in S2, ν is an orientation on S,

f ∈ L1(S, 2πZ) so that

∫

S
f ν · ∇⊥ζ dH1 = 〈T (u), ζ〉, ∀ζ ∈ C1(S2)







.

Then we deduce the following version of (7):

‖T (u)‖ = min
(f,S,ν)∈J (T (u))

∫

S
|f |dH1.

While the infimum in (7) in general is not achieved, the advantage of the above formula consists

in having the minimum always attained. It means that ‖T (u)‖ corresponds to the minimal mass

that a function with values into the discrete set 2πZ could carry between the set of dipoles

prescribed by T (u).

In the sequel, we deal with the question of lifting of functions u ∈ BV (S2, S1). A BV lifting

of u can be characterized via the set J (T (u)); more precisely, any lifting ϕ ∈ BV (S2,R) of u

corresponds to a triplet (f, S, ν) ∈ J (T (u)) so that

Dϕ = u ∧ (Dau+Dcu) + ρ(u+, u−)νuH1xS(u) − fνH1xS.

As in the case of functions BV (S1, S1), we are interested in the minimal total variation of a

lifting of u ∈ BV (S2, S1), i.e.,

E(u) = inf

{∫

S2

|Dϕ| : ϕ ∈ BV (S2,R), eiϕ = u a.e. in S2

}

, (10)

as well as in constructing a minimizer of (10) called optimal lifting. The following result estab-

lishes the expression of E(u) via the distribution T (u).

Theorem 0.4 ([53]) If u ∈ BV (S2, S1), then

E(u) =

∫

S2

(|Dau| + |Dcu|) + min
(f,S,ν)∈J (T (u))

∫

S∪S(u)

∣
∣
∣fν χS − ρ(u+, u−)νu χS(u)

∣
∣
∣dH1.

In particular, we recover the result of Brezis, Mironescu and Ponce [30] for the total variation of

an optimal BV lifting of functions g ∈W 1,1(S2, S1): the gap between E(g) and the total varia-

tion of g corresponds to the length of a minimal connection between the topological singularities

of g, i.e.,

E(g) =

∫

S2

|∇g|dH2 + ‖T (g)‖.
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In the spirit of [30], the length ‖T (u)‖ has an interpretation as a distance:

‖T (u)‖ = min
ψ∈BV (S2,R)

∫

S2

∣
∣
∣u ∧ (Dau+Dcu) + ρ(u+, u−)νuH1xS(u) −Dψ

∣
∣
∣. (11)

Moreover, there exists at least one minimizer ψ ∈ BV (S2,R) of (11) that is a lifting of u.

1.4 On the relation between minimizers of a Γ-limit energy and optimal lifting

in BV (joint work with A. Poliakovsky)

A natural method to approximate liftings of a function u ∈ BV (Ω, S1) is to consider the following

family of functionals
{
F

(u,p)
ε

}

ε>0
depending on a parameter 0 < p < +∞:

F (u,p)
ε (ϕ) = ε

∫

Ω
|∇ϕ|2 +

1

ε

∫

Ω
|u− eiϕ|p, ∀ϕ ∈ H1(Ω,R). (12)

Due to the penalizing term in (12), sequences of minimizers ϕε of F
(u,p)
ε are expected to

converge to a lifting ϕ0 of u as ε → 0. Since we are interested in the asymptotic behavior

of minimizers, the concept of Γ−convergence appears to be adapted to our context. Indeed,

Poliakovsky [70] proved that for p > 1 and for bounded domains Ω ⊂ RN with Lipschitz

boundary, any sequence of minimizers ϕε ∈ H1(Ω,R) of F
(u,p)
ε , satisfying |

∫

Ω ϕε| ≤ C, converges

strongly in L1 (up to a subsequence) to a lifting ϕ0 ∈ BV (Ω,R) of u as ε → 0 and ϕ0 is a

minimizer of the Γ−limit energy F
(u,p)
0 : L1(Ω,R) → R given by

F
(u,p)
0 (ϕ) =







2

∫

S(ϕ)
f (p)(|ϕ+ − ϕ−|) dHN−1 if ϕ is a BV lifting of u,

+∞ otherwise.

Here, S(ϕ) is the jump set of ϕ ∈ BV (Ω,R) and ϕ−, ϕ+ are the traces of ϕ on each of the

sides of the jump set and f (p) : [0,+∞) → R is the function defined by

f (p)(θ) = inf
t∈R

∫ θ+t

t
|eis − 1|p/2 ds, ∀θ ≥ 0.

Notice that F
(u,p)
0 (ϕ) < +∞ for a BV lifting ϕ of u since f (p) is an increasing Lipschitz function.

Due to the fact that the energies
{
F

(u,p)
ε

}

ε>0
and F

(u,p)
0 are invariant with respect to translations

by 2πk, k ∈ Z, uniqueness of minimizers has a meaning up to additive constants in 2πZ.

Our goal is to study the question whether the minimizers of F
(u,p)
0 are necessarily optimal

liftings of u, for any p. Surprisingly, this turns out to be the case (in general) only in dimension

one, while in dimension N ≥ 2 this holds only for p = 4. Our main result is the following:

Theorem 0.5 ([58]) Let Ω be a bounded domain in RN .

(i) If N = 1 then for every u ∈ BV (Ω, S1) and p ∈ (0,+∞), ϕ is a minimizer of F
(u,p)
0 if and

only if ϕ is an optimal lifting of u;

(ii) If N ≥ 2, the minimizers of F
(u,p)
0 are optimal BV liftings of u, for every u ∈ BV (Ω, S1)

if and only if p = 4.

8



1. Lifting of functions with values into the unit circle S1

The key point of the proof relies on the construction of counter-examples for the case p 6= 4: If

p ∈ (0, 4), we construct a piecewise constant function u ∈ BV (Ω, S1) (depending on p) such that

F
(u,p)
0 has a unique minimizer ξ0, while u has a unique optimal BV lifting ζ0 and the difference

ξ0 − ζ0 is not a constant. In the general case p 6= 4, we construct a family of functions {Ut}
among which some elements have a unique optimal BV lifting whose energy F

(Ut,p)
0 is strictly

larger than the minimal value minF
(Ut,p)
0 . Moreover, for those elements Ut, we prove that F

(Ut,p)
0

has a unique minimizer.

Finally, we notice that if u belongs to the smaller class W 1,1(Ω, S1), then a lifting of u is

optimal if and only if it is a minimizer of F
(u,p)
0 , for every p ∈ (0,+∞).

1.5 On an open problem about how to recognize constant functions

In the theory of Ginzburg-Landau equation, an important issue resides in the problem of ex-

istence and uniqueness of lifting in Sobolev spaces. More precisely, if Ω ⊂ RN is an open set

and u ∈ W s,p(Ω, S1), is there a lifting ϕ ∈ W s,p(Ω,R) of u (i.e. u = eiϕ a.e. in Ω)? Is this

lifting unique in W s,p (up to 2πZ constants)? Here, 0 < s < ∞ et 1 < p < ∞. The answer

to the question of existence of lifting was given by Bourgain, Brezis and Mironescu (see [20]).

Moreover, if 0 < s < ∞, p ≥ 1 and sp ≥ 1, a W s,p lifting is always unique (modulo 2π),

i.e., if u ∈W s,p(Ω, S1) has two liftings ϕ1, ϕ2 ∈ W s,p(Ω,R) then there exists k ∈ Z such that

ϕ1 − ϕ2 ≡ 2πk a.e. in Ω. This is a consequence of the following result of Bourgain, Brezis and

Mironescu:

Let Ω be a domain in RN . If f : Ω → R is a measurable function that satisfies
∫

Ω

∫

Ω

|f(x) − f(y)|p
|x− y|p

dx dy

|x− y|N < +∞

for some fixed p ≥ 1, then f is a constant in Ω.

The aim of the chapter is to generalize the above result. For that, let us denote by

W = {ω ∈ C(R+,R+) |ω(0) = 0, ω(t) > 0, ∀t > 0} .

The following problem now arises:

Problem 1 Find a necessary and sufficient condition for ω ∈ W so that any measurable function

f : Ω → R satisfying
∫

Ω

∫

Ω
ω

( |f(x) − f(y)|
|x− y|

)
dx dy

|x− y|N < +∞, (13)

is necessarily constant (a.e. in Ω).

Observe that the restriction ω ∈ W is natural. Indeed, the continuity of ω is needed to make

the left hand side of (13) well-defined. Also, ω(0) = 0 (since for any constant function f , (13)

should hold) and ω(t) > 0,∀t > 0 (if ω(t) = 0 for some t > 0, take N = 1 and f(x) = tx).

Henceforth it is assumed that ω ∈ W.

A necessary condition for Problem 1 (in order to avoid jump functions) is the following:
∫ +∞

1

ω(t)

t2
dt = +∞. (14)

9
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Two sufficient conditions for ω ∈ W are also given: A first one consists in assuming lim inft→+∞
ω(t)
t > 0.

A second one concerns the opposite case lim inft→+∞
ω(t)
t = 0; then the answer to Problem 1 is

positive if (14) holds, ω is increasing and the function t 7→ ω(t)
t is decreasing at infinity. Observe

that the two sufficient conditions only concern the behavior of ω ∈ W at infinity without any

additional assumption on its behavior at 0. The question whether the necessary condition (14)

is also sufficient, remains open.

Next, we deal with the following problem:

Problem 2 What regularity on f should be assumed so that for any ω ∈ W, (13) imply f is a

constant?

The motivation is clear: if we don’t want any restriction on ω ∈ W, we need to impose an

additional condition on f in order that (13) yields f to be a constant. We will prove that the

condition f ∈W 1,1
loc (Ω) guarantees that Problem 2 has a positive answer. The other results deal

with the question raised by Brezis in [25]: Is the continuity (or even the C0,α
loc regularity) of f

sufficient for Problem 2? The answer is negative in general: if either ω ∈ W is bounded, or

ω(t) = tθ for some θ ∈ (0, 1), then we construct non-constants C0,α ∩ BV functions of Cantor

type (for an arbitrary chosen α ∈ (0, 1)) that satisfy (13).

We also prove in a joint work with A.-R. Todor that the necessary condition (14) for Prob-

lem 1 forbids nontrivial characteristic functions defined on Ω as well as special Cantor type

functions.

2 Vortices in a 2d rotating Bose-Einstein condensate

The phenomenon of Bose-Einstein condensation has given rise to an intense research since its

first realization in alkali gases in 1995. A Bose-Einstein condensate (BEC) is a quantum gas that

can be described by a single complex-valued wave function (order parameter). The existence

of vortices is a major feature of these systems and they appear as zeroes of the wave function

around which there is a circulation of phase. Experimentally, these vortices can be obtained by

rotating the harmonic trap that strongly confines the atoms in the direction of the rotation axis

(see [1, 65]). For such a model, the wave function decouples and the reduced model becomes

two-dimensional (see Castin et Dum [34]). In the case of an asymmetric trap potential, the wave

function minimizes the following Gross-Pitaevskii energy
∫

R2

{
1

2
|∇u|2 +

1

2ε2
V (x)|u|2 +

1

4ε2
|u|4 − Ωx⊥ ·(iu,∇u)

}

dx (15)

under the constraint ∫

R2

|u|2 = 1, (16)

where ε > 0 is a small parameter and Ω = Ω(ε) ≥ 0 denotes the rotational velocity. Here, the

trapping potential is harmonic and given by V (x) = |x|2Λ := x2
1 + Λ2x2

2 where Λ ∈ (0, 1] is a

fixed parameter. Our aim is to study the number and the location of vortices in function of the

angular velocity Ω(ε) as ε→ 0. The two chapters included in this part are joint works with V.

Millot and have been published in [56, 55, 54].
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2. Vortices in a 2d rotating Bose-Einstein condensate

2.1 The critical velocity for vortex existence in a two dimensional rotating

Bose-Einstein condensate (joint work with V. Millot)

We start our analysis by estimating the critical velocity above which the wave function has

vortices. According to numerical and theoretical predictions (see [4, 34]), we expect to find the

critical speed in the regime Ω = O(| ln ε|) so that we restrict our study to this situation.

Due to the constraint (16), we may rewrite the energy (15) in the equivalent form

Fε(u) =

∫

R2

{
1

2
|∇u|2 +

1

4ε2
[
(|u|2 − a(x))2 − (a−(x))2

]
− Ωx⊥ · (iu,∇u)

}

dx (17)

where a(x) = a0 − |x|2Λ and a0 is determined by
∫

R2 a
+(x) = 1 so that a0 =

√

2Λ/π . Here a+

and a− represent respectively the positive and the negative part of a. Then the wave function

uε is a solution of the variational problem

Min
{
Fε(u) : u ∈ H, ‖u‖L2(R2) = 1

}
where H =

{
u ∈ H1(R2,C) :

∫

R2

|x|2|u|2 < +∞
}
.

In the limit ε → 0, the minimization of Fε strongly forces |uε|2 to be close to a+ which means

that the resulting density is asymptotically localized in the ellipsoidal region

D :=
{
x ∈ R2 : a(x) > 0

}
=
{
(x1, x2) ∈ R2 : x2

1 + Λ2x2
2 < a0

}
.

We will also see that |uε| decays exponentially fast outside D. Actually, the domain D represents

the region occupied by the condensate and consequently, vortices will be sought inside D. Here,

a vortex corresponds to a small disc whose radius tends to vanish as ε → 0 and uε has a small

amplitude and a non-zero degree around the disc.

The main tools for studying vortices were developed by Béthuel, Brezis and Hélein [17]

for “Ginzburg-Landau type” problems. We also refer to Sandier [75] and Sandier and Serfaty

[76, 77, 78] for complementary techniques. In the case a(x) ≡ 1 and for a disc in R2, Serfaty

proved the existence of local minimizers having vortices for different ranges of rotational velocity

(see [83]). In [4], Aftalion and Du follow the strategy in [83] for the study of global minimizers

of the Gross-Pitaevskii energy (17) where R2 is replaced by D. In [3], Aftalion, Alama and

Bronsard analyze the global minimizers of (17) for potentials of different nature leading to an

annular region of confinement. We finally refer to [5, 6, 61] for mathematical studies on 3D

models.

We emphasize that we tackle here the problem which corresponds exactly to the physical

model. In particular, we minimize Fε under the unit mass constraint and the admissible config-

urations are defined in the whole space R2. Several difficulties arise, especially in the proof of

the existence results and the construction of test functions. We point out that we do not assume

any implicit bound on the number of vortices. The singular and degenerate behavior of
√
a+

near ∂D induces a cost of order | ln ε| in the energy and requires specific tools to detect vortices

in the boundary region.

We now start to describe our main results. We prove that the critical rotational velocity for

the nucleation of a first vortex in D is asymptotically given by

Ω1 :=
Λ2 + 1

a0
| ln ε| =

√
π(Λ2 + 1)√

2Λ
| ln ε|.

11
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The critical angular velocity Ω1 coincides with the one found in [4, 34]. We observe that a

very stretched condensate, i.e., Λ ≪ 1, yields a very large value of Ω1 and the smallest Ω1 is

reached for Λ = 1/
√

3 (and surprisingly not for the symmetric case, i.e., Λ = 1). For subcritical

velocities, we will see that uε behaves as the “vortex-free” profile η̃εe
iΩS where η̃ε is the positive

minimizer of

Eε(u) =

∫

R2

{
1

2
|∇u|2 +

1

4ε2
[
(|u|2 − a(x))2 − (a−(x))2

]
}

dx

under the constraint (16) and the phase S is given by

S(x) =
Λ2 − 1

Λ2 + 1
x1x2 . (18)

For rotational speeds larger than Ω1, we show the existence of vortices close to the origin. We

also give some fundamental energy estimates in the regime Ω = Ω1+O(ln | ln ε|) which will allow

to study the precise vortex structure of uε.

2.2 Energy expansion and vortex location for a two-dimensional rotating

Bose-Einstein condensate (joint work with V. Millot)

The goal of this chapter is to compute an asymptotic expansion of the energy Fε(uε) and to

determine the number and the location of vortices according to the value of the angular speed

Ω(ε) in the limit ε → 0. More precisely, we want to estimate the critical velocity Ωd for which

the d th vortex becomes energetically favorable and to derive a reduced energy governing the

location of the vortices (the so-called “renormalized energy” by analogy with [17, 80, 81]). We

prove the following estimate on the critical speed Ωd for any integer d ≥ 1 in the asymptotic

ε→ 0 ,

Ωd =
1 + Λ2

a0
(| ln ε| + (d− 1) ln | ln ε|) =

√
π(1 + Λ2)√

2Λ
(| ln ε| + (d− 1) ln | ln ε|) .

Then we show that for velocities ranged between Ωd and Ωd+1, any minimizer has exactly d

vortices of degree +1 inside D. Establishing an asymptotic expansion of Fε(uε) as ε → 0, we

derive the uniform distribution of vortices close to the origin: it is a minimizing configuration

of the reduced energy (19) below.

Our main theorem can be stated as follows:

Theorem 0.6 ([56]) Let uε be any minimizer of Fε in H under the constraint (16) and let

0 < δ ≪ 1 be any small constant.

(i) If Ω ≤ Ω1 − δ ln | ln ε|, then for any R0 <
√
a0 , there exists ε0 = ε0(R0, δ) > 0 such that

for any ε < ε0, uε is vortex-free in BΛ
R0

=
{
x ∈ R2 : |x|2Λ = x2

1 + Λ2x2
2 < R2

0

}
, i.e., uε

does not vanish in BΛ
R0

. In addition,

Fε(uε) = Fε(η̃εe
iΩS) + o(1).

12



3. Optimality of the Néel wall (joint work with F. Otto)

(ii) If Ωd + δ ln | ln ε| ≤ Ω ≤ Ωd+1 − δ ln | ln ε| for some integer d ≥ 1, then for any R0<
√
a0,

there exists ε1 = ε1(R0, d, δ) > 0 such that for any ε < ε1, uε has exactly d vortices

xε1, . . . , x
ε
d of degree one in BΛ

R0
. Moreover,

|xεj | ≤ C Ω−1/2 for any j = 1, . . . , d , and |xεi − xεj | ≥ C Ω−1/2 for any i 6= j

where C > 0 denotes a constant independent of ε. Setting x̃εj =
√

Ωxεj , the configuration

(x̃ε1, . . . , x̃
ε
d) tends to minimize (as ε→ 0) the renormalized energy

w(b1, . . . , bd) = −πa0

∑

i6=j
ln |bi − bj| +

πa0

1 + Λ2

d∑

j=1

|bj|2Λ. (19)

In addition,

Fε(uε) = Fε(η̃εe
iΩS)− πa2

0d

1 + Λ2
(Ω−Ω1)+

πa0

2
(d2−d) ln | ln ε|+ Min

b∈R2d
w(b)+Qd,Λ+o(1) (20)

where Qd,Λ is a constant depending only on d and Λ.

These results are in agreement with the study made by Castin and Dum [34] who have looked

for minimizers in a reduced class of functions. More precisely, we find the same critical angular

velocities Ωd as well as a uniform distribution of vortices around the origin at a scale Ω−1/2 .

The minimizing configurations for the renormalized energy w(·) have been studied in the radial

case Λ = 1 by Gueron and Shafrir in [49]. They prove that for d ≤ 6, regular polygons centered

at the origin and stars are local minimizers. For larger d, they numerically found minimizers

with a shape of concentric polygons and then triangular lattices as d increases. These figures

are exactly the ones observed in physical experiments (see [65, 66]).

3 Optimality of the Néel wall (joint work with F. Otto)

Micromagnetics is a nonconvex and nonlocal variational principle whose (local) minimizers cor-

respond to stable states of a ferromagnetic material. One of the most studied issues concerns the

analysis of global minimizers. It’s because the main features of the steady state are shared by all

physical observed local minima. The variational problem contains various asymptotic regimes

where singularities at the mesoscopic level of the magnetization represent domain walls (Néel

wall, Bloch wall etc.) or vortices (Bloch lines or boundary vortices). The aim of this chapter is

to prove compactness of the Néel wall in a 2d model of a thin film.

The nondimensionalized magnetization of a ferromagnetic body Ω ⊂ R3 can be described by a

unit vector fieldm : Ω → S2. The experimentally observed magnetizations are (local) minimizers

of the following energy functional (in the absence of crystalline anisotropy and external magnetic

field):

E3d(m) = d2

∫

Ω
|∇m|2 dx+

∫

R3

|∇u|2 dx.
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The first term is called exchange energy while the second one represents the stray field or

magnetostatic energy. The stray field potential u : R3 → R is determined by

∆u = ∇ ·
(

m1Ω

)

, (21)

i.e.,

∫

R3

∇u · ∇ζ dx =

∫

Ω
m · ∇ζ dx, ∀ζ ∈ C∞

c (R3).

It means that u is both generated by the divergence of m inside Ω (volume charges) and by the

normal component of m at the boundary of the magnetic body (surface charges). The exchange

length d is an intrinsic parameter of the material standing for the relative strength between

exchange and magnetostatic energy.

The setting of the following model is determined by our goal to prove the optimality of Néel

walls under 2−d variation. We consider the magnetic body as a thin infinitely extended cylinder:

Ω = Ω′ × (0, t)

Ω′ = (−1, 1) × R ⊂ R2.

Here, the thickness t is very small so that the magnetization can be considered invariant in

the out-of-plane variable x3, i.e., m(x) = m(x′) and the vertical component of m is strongly

penalized, i.e., m3(x
′) = 0. Therefore, the admissible magnetizations are smooth 2-d unit-length

vector fields

m′ = (m1,m2) : R2 → S1

that macroscopically act as an angle wall in Ω′, i.e.,

m′(x′) =

(

m1,∞
±
√

1 −m1,∞2

)

for ± x1 ≥ 1, x2 ∈ R, (22)

where m1,∞ ∈ [0, 1) is some fixed number and the prime always indicates an in-plane quantity,

for example, x′ = (x1, x2), x = (x′, x3) ∈ R3. With these assumptions, in order to write the

thin-film energy approximation E3d, we use the following ansatz (see [39, 41]): the equation (21)

is equivalent with

∆(
1

t
u) =

(
1

t
χ(0,t)(x3)

)

∇′·m′,

where ∇′·m′ corresponds to the 2d divergence of m′. As t → 0, the RHS converges to a

distribution concentrated on the horizontal plane {x3 = 0} and we expect that u/t converges to

the solution U of the equation

∆U = ∇′·m′H2x{x3 = 0}. (23)

It explains our choice of considering stray fields h = (h1, h2, h3) : R3 → R3 related to m′ by the

following variational formulation:

∫

R3

h · ∇ζ dx =

∫

R2

ζ∇′ ·m′ dx′, ∀ζ ∈ C∞
c (R3). (24)
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3. Optimality of the Néel wall (joint work with F. Otto)

To write the energy density of such a configuration, we suppose that

m′ and h are L−periodic in the infinite direction x2, (25)

where L is an arbitrary positive number. After a change of variable, the 2d energy functional

that we consider in the sequel is given by

Eε(m
′, h) = ε

∫

R×[0,L)
|∇′ ·m′|2 dx′ +

∫

R×[0,L)×R

|h|2 dx (26)

where

ε :=
d2

t

is a small parameter and we are interested in the asymptotic behavior as ε→ 0. Remark that we

replace the Dirichlet energy of m′ by a smaller quantity given by the L2 norm of the divergence

of m′. The equation (24) implies that the minimal stray field energy represents the homogeneous

H−1/2 norm of ∇′·m′ and the minimal value is achieved for ∇U (where U is the solution of

(23)):

min
hwith (24)

∫

R×[0,L)×R

|h|2 dx =
1

2

∫

R×[0,L)

∣
∣
∣ |∇′|−1/2∇′ ·m′

∣
∣
∣

2
dx′.

Now we shall informally explain how the principle of pole avoidance leads to the formation

of walls. For simplicity, we assume that the mesoscopic transition angle imposed by (22) on the

boundary ∂Ω′ is 180◦, i.e., m′ · ν ′ = 0 on ∂Ω′. The boundary effects in the tangential direction

are excluded by our choice of Ω′ which is infinite in x2−direction. The competition between the

exchange and magnetostatic energy will try to enforce the divergence-free condition for m′, i.e.,

∇′·m′ = 0 in Ω′. Therefore, we arrive at

|m′| = 1 and ∇′·m′ = 0 in Ω′, m′ · ν ′ = 0 on ∂Ω′. (27)

This mesoscopic thin-film description has been justified by DeSimone, Kohn, Müller and

Otto in [41] using the Γ−convergence method. We notice that the conditions in (27) are too

rigid for smooth magnetization m′. This can be seen by writing m′ = ∇′⊥ψ with the help of a

“stream function” ψ. Then (27) turns into a Dirichlet problem for the eikonal equation in ψ:

|∇′⊥ψ| = 1 in Ω′, ψ = 0 on ∂Ω′. (28)

Using the characteristics method, it follows that there is no smooth solution of the equation

(28). On the other hand, there are many continuous solutions that satisfy the first condition

of (28) away from a set of vanishing Lebesgue measure. One of them is the “viscosity solution”

given by the distance function

ψ(x′) = dist (x′, ∂Ω′)

that corresponds to the so-called Landau state for the magnetization m′ (see Figure 1). Hence,

the divergence-free equation in (27) has to be interpreted in the distribution sense and it is

expected to induce line-singularities for solutions m′. These ridges are an idealization of the

wall formation in thin-film elements at the mesoscopic level. At the microscopic level, they are
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’

Figure 1: Landau state in Ω′

replaced by smooth transition layers where the magnetization varies very quickly. A final remark

is that the normal component of m′ does not jump across these discontinuity lines (because of

(27)) and therefore, walls are determined by the angle between the mesoscopic levels in the

adjacent domains.

In the following we will concentrate on the Néel wall which is the favored wall type in very

thin films. It is characterized by a one-dimensional in-plane magnetization:

m′ = (m1(x1),m2(x1)), (29)

that avoids surface charges, but leads to volume charges (because of (22)), i.e.,

∇′ ·m′ =
dm1

dx1
6= 0.

The prototype is the 180◦ Néel wall which corresponds to the boundary condition (22) for

m1,∞ = 0, i.e.,

m′(x1) =

(

0

±1

)

for ± x1 ≥ 1. (30)

Let us now discuss the scaling of the energy of the prototypical Néel wall. For magnetizations

(29), the specific energy (26) reduces to

E1d
ε (m′) = ε

∫

R

∣
∣
dm1

dx1

∣
∣2 dx1 +

1

2

∫

R

∣
∣
∣
∣

∣
∣
d

dx1

∣
∣1/2m1

∣
∣
∣
∣

2

dx1. (31)

We define the Néel wall as the 1d minimizer of (31) under the boundary constraint (30). The

Néel wall is a two length scale object: a small core (|x1| . wcore) with fast varying rotation

and a logarithmically decaying tail (wcore . |x1| . 1). The finiteness of Ω′ in x1−direction in

our setting serves as the confining mechanism for the Néel wall tail. This two-scale structure

permits to the Néel wall to decrease the specific energy by a logarithmic factor.

min
(29),(30)

E1d
ε (m′) ≈ π

2| ln ε| if ε≪ 1;

the minimizer m1 with m1(0) = 1 is symmetric around 0 (wcore ∼ ε) and satisfies

m1(x1) ∼
ln 1

|x1|
| ln ε| for ε≪ |x1| ≪ 1.
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3. Optimality of the Néel wall (joint work with F. Otto)

The stability of 180◦ Néel walls under arbitrary 2 − d modulation was proved by DeSimone,

Knüpfer and Otto in [39]:

min
m′,h

m′ with (8.8)

Eε(m
′, h) ≈ min

m′,h
m′=m′(x1) with (8.8)

Eε(m
′, h) ≈ πL

2| ln ε| for ε≪ 1.

Our first result is a qualitative property of the optimal 1d transition layers: We prove that

asymptotically, the minimal energy can be assumed only by the straight walls. This property

holds for general boundary conditions (22). It is based on a compactness result for magnetiza-

tions {m′
ε} with energies Eε close to the minimal energy level: any accumulation limit m′ has

the singularities concentrated on a vertical line (see FIG. 2).

x2

x1

m
*

’
-1 x

*
1

Figure 2: Paroi limite

Theorem 0.7 ([57]) Let m1,∞ ∈ [0, 1) and L > 0 be given. For any δ > 0 there exists ε0 > 0

with the following property: given m′ : R2 → S1 and h : R3 → R3 with

m′ and h are L−periodic in x2, i.e., (25) holds,

m′ satisfies the boundary condition (22),

m′ and h′ are related by (24),

| ln ε|Eε(m′, h) ≤ L
π

2
(1 −m1,∞)2 + ε0, for some 0 < ε ≤ ε0, (32)

then we have ∫

R×[0,L)
|m′ −m∗| dx′ ≤ δ, (33)

where m∗ is a straight wall given by

m∗(x1, x2) =

(

m1,∞
±
√

1 −m1,∞2

)

for ± x1 > ±x∗1, (34)

for some x∗1 ∈ [−1, 1].

For that, we investigate the asymptotics as ε → 0 of families of 2d magnetizations when

the energy Eε(m
′
ε, hε) is placed in the regime O( 1

| ln ε|). One of the issues we discuss here is the

question of the L1
loc-compactness of the magnetizations {m′

ε}ε↓0 in the above energy regime, i.e.,

17
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whether the topological constraint |m′
ε| = 1 passes to the limit. The difficulty arises from the

fact that in general the sequence of divergences {∇′·m′
ε} is not uniformly bounded in L1

loc. This

was one of the particularities used in the entropy methods for proving compactness results for

the Modica-Mortola type problems; we refer to the studies of Jin and Kohn [62], Ambrosio, De

Lellis and Mantegazza [10], DeSimone, Kohn, Müller and Otto [40], Rivière and Serfaty [74],

Alouges, Rivière and Serfaty [8], Jabin, Otto and Perthame [60]. For our model, the entropy

method cannot be applied. Instead, the idea is to use a duality argument in the spirit of [39, 41]

based on an ε-perturbation of a logarithmically failing Gagliardo-Nirenberg inequality together

with a dynamical system argument. Since the compactness result is a local issue, we state it in

the context of the unit ball B1 ⊂ R3 with no imposed boundary conditions:

Theorem 0.8 ([57]) Consider a sequence {εk}k∈N ⊂ (0,∞) with εk ↓ 0. For k ∈ N, let

m′
k : B′

1 → S1 and hk : B1 → R3 be related by

∫

B1

hk · ∇ζ dx =

∫

B′
1

m′
k · ∇′ζ dx′, ∀ζ ∈ C∞

c (B1). (35)

Suppose that

lim sup
k→∞

| ln εk|
(

εk

∫

B′
1

|∇′ ·m′
k|2 dx′ +

∫

B1

|hk|2 dx
)

<∞. (36)

Then {m′
k}k↑∞ is relatively compact in L1(B′

1) and any accumulation point m′ : B′
1 → R2

satisfies

|m′| = 1 a.e. in B′
1 and ∇′ ·m′ = 0 distributionally in B′

1. (37)

In the case of 1d magnetizations, we are able to completely characterize the limit config-

urations: every accumulation point in L1
loc concentrates on a finite number of limiting walls.

However, a sequence of magnetizations is in general not relatively compact in BV .

We also discuss the case of zero-energy states, i.e., m′ is an accumulation point of sequences

{m′
ε}ε↓0 such that the limit in (36) vanishes for some stray potentials {hε} (in the absence of any

boundary condition). The main tool is the principle of characteristics for the eikonal equation.

We show that every zero-energy state m′ is locally Lipschitz continuous and satisfies the principle

of characteristics:

m′(x′0 + tm′(x′0)
⊥) = m′(x′0) for every t ∈ R where x′0 + tm′(x′0)

⊥ ∈ B′
1.
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Part I

Lifting of functions with values into

the unit circle S1
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Chapter 1

Lifting of BV functions with values

into S1

Abstract

We show that for every u ∈ BV (Ω, S1), there exists a function ϕ ∈ BV (Ω, R) such that

u = eiϕ a.e. in Ω and |ϕ|BV ≤ 2|u|BV . The constant 2 is optimal in dimension N > 1.

This chapter is written in collaboration with J. Dávila; the original text is published in

C. R. Acad. Sci. Paris, Ser. I 337 (2003), 159–164 (cf. [37]).

1.1 Introduction

Let Ω ⊂ RN be an open set and u : Ω → S1 a measurable function. A lifting of u is a measurable

function ϕ : Ω → R such that

u(x) = eiϕ(x)

for a.e. x ∈ Ω. If u has some regularity one may ask whether or not ϕ can be chosen with

some regularity as well. For example, if Ω is simply connected and u is continuous (respectively,

u ∈ Ck(Ω, S1)), then it is well known that ϕ can be chosen to be continuous (respectively,

ϕ ∈ Ck(Ω,R)).

Regarding other function spaces there has been recently much research, specially motivated

by the study of the Ginzburg-Landau equation. The first result of this type in Sobolev spaces

was given by Béthuel and Zheng [19], and it asserts that if Ω is a bounded simply connected

domain in RN and u ∈ W 1,p(Ω, S1) with p ≥ 2 then u = eiϕ for some ϕ ∈ W 1,p(Ω,R). On the

other hand, if N ≥ 2 and 1 ≤ p < 2 then there are functions u ∈ W 1,p(Ω, S1) which have no

lifting in W 1,p. One example when N = 2 and 0 ∈ Ω is

u(x) =
x

|x| .

Later Bourgain, Brezis and Mironescu [20] addressed the same question for general Sobolev

spacesW s,p(Ω, S1), 0 < s <∞ and 1 < p <∞. They gave a complete description, characterizing

in terms of N , s and p all the cases where a lifting is always possible and the cases where there

is some u ∈W s,p(Ω, S1) without lifting in W s,p.
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Chapter 1. Lifting of BV functions with values into S1

Results concerning other spaces include for example the work of Coifman and Meyer [35],

who showed among other things that if u : R → S1 is BMO and |u|BMO < γ (where γ > 0

is a constant) then u has a lifting in BMO with a certain control of the BMO seminorm of

the lifting. Then Brezis and Nirenberg [31] extended this result for general domains Ω and also

showed that if u ∈ VMO then ϕ can be chosen also in VMO.

We are concerned here with the case when u has bounded variation, and by this we mean

that u = (u1, u2) ∈ L1
loc(Ω,R

2), |u(x)| = 1 for a.e. x ∈ Ω and its BV seminorm is finite, i.e.

|u|BV = sup

{
∫

Ω

2∑

k=1

uk div ζk dx : ζk ∈ C∞
0 (Ω,RN ),

2∑

k=1

|ζk|2 ≤ 1 in Ω

}

<∞,

where the norm in RN is the Euclidean norm.

Remark 1.1 Throughout this chapter we will say that v ∈ BV (Ω,Rm) if v ∈ L1
loc(Ω,R

m)

and its standard BV seminorm |v|BV is finite. We adopt this convention, because in the case

of an open set Ω of infinite Lebesgue measure, the standard definition of BV requires that

v ∈ L1(Ω,Rm) which would not be true for a S1-valued BV function.

Our main result states the existence of a BV lifting with an optimal control of the BV

seminorm:

Theorem 1.1 Let u ∈ BV (Ω, S1). Then there exists a lifting ϕ ∈ BV ∩ L∞(Ω,R) of u such

that

|ϕ|BV ≤ 2|u|BV . (1.1)

The idea for the proof of Theorem 1.1 is to consider the argument type function L : S1 → R

defined by

L(eiθ) = θ for every − π ≤ θ < π. (1.2)

Then ϕ = L(u) is a lifting of u, in the sense that eiϕ(x) = u(x) for all x ∈ Ω. We would like to

have |ϕ|BV ≤ 2|u|BV , but this is far from true. It may even happen that L(u) does not belong

to BV (classical results for composition of functions assert only that if f : S1 → R is Lipschitz

then f(u) is BV ). There is a way to remedy this situation. Indeed, observe that for fixed α ∈ R

the function L(eiαu) − α is also a lifting of u. We shall prove

Lemma 1.2 The function α 7→ |L(eiαu)|BV is measurable and

∫ 2π

0
|L(eiαu)|BV dα ≤ 4π|u|BV . (1.3)

Remark 1.2 Inequality (1.3) can be viewed as a sort of co-area inequality. In particular it

implies that for a.e. α ∈ R, L(eiαu) ∈ BV . The constant 4π in (1.3) is sharp; see the examples

in Section 1.5. The proof of (1.3) is based on the chain rule for BV functions. A new proof of

(1.3) without using the chain rule was given by Merlet [69].
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1.1. Introduction

Corollary 1.3 Let u ∈ BV (Ω, S1). Then there exists a sequence uk ∈ C∞(Ω, S1)∩BV (Ω) such

that uk → u a.e. and in L1
loc and

lim sup
k→∞

|uk|BV ≤ 2|u|BV .

Remark 1.3 (1) If u belongs to the Sobolev space W 1,1(Ω, S1) and Ω ⊂ R2 is smooth, bounded

and simply connected, it was already known that u has a lifting ϕ ∈ BV (Ω,R) which satisfies

(1.1) (private communication of H. Brezis and P. Mironescu [29]). The idea is to apply the

density result of Béthuel and Zheng [19] to reduce the proof to the case where u is smooth

except at finitely many points. For such a function u one can construct a lifting whose jump set

is precisely the minimal connection between the singularities of u (with respect to their degree)

and the boundary of Ω, a notion first introduced by Brezis, Coron and Lieb [27]. This lifting

satisfies condition (1.1). None of these tools are available for the case of a function of bounded

variation.

(2) The existence of a BV lifting for u ∈ BV (Ω, S1) (when Ω is a bounded simply connected

domain of RN ) was first proved by Giaquinta, Modica and Soucek in [47], but the authors did

not find the optimal control of the BV seminorm of the lifting.

The control in Theorem 1.1 is optimal for any domain in RN , N > 1. In one-dimensional

domains, the best constant is π/2. The result is stated as follows1:

Theorem 1.4 Let Ω ⊂ RN be an open set.

(i) If N = 1, the optimal constant is π
2 : if u ∈ BV (Ω, S1) then there exists a lifting ϕ ∈ BV (Ω,R)

of u such that

|ϕ|BV ≤ π

2
|u|BV ; (1.4)

moreover, if there is a constant C > 0 such that any function u ∈ BV (Ω, S1) has a lifting

ϕ ∈ BV (Ω,R) with the property

|ϕ|BV ≤ C|u|BV , (1.5)

then C ≥ π
2 ;

(ii) If N ≥ 2, the constant 2 in (1.1) is optimal, i.e., if there is a constant C > 0 such that any

function u ∈ BV (Ω, S1) has a lifting ϕ ∈ BV (Ω,R) with the property (1.5), then C ≥ 2.

The outline of the chapter is the following: we start by some preliminaries about functions

of bounded variation. In Section 1.3 we prove Theorem 1.1. In Section 1.4, we show that π
2 is

the optimal constant in (1.5) in one-dimensional case. Finally, in Sections 1.5 and 1.6 we prove

that 2 is the optimal constant for dimensions N > 1.

1I added Theorem 1.4 in order to prove the optimality of the constant 2 for liftings in any domain. This result

does not appear in the published version of the paper [37].
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Chapter 1. Lifting of BV functions with values into S1

1.2 Preliminaries about the space BV

The material that we present next is standard and can be found in the book [11] (see also

[23, 42]). Let v ∈ BV (Ω,Rm). Its jump set S(v) is defined by the requirement that x ∈ Ω \S(v)

if and only if there exists ṽ(x) ∈ Rm such that ṽ(x) = ap-lim
y→x

v(y), that is:

lim
r→0

LN
(
Br(x) ∩ {y ∈ Ω : |v(y) − ṽ(x)| > ε}

)

LN (Br(x))
= 0, ∀ε > 0.

It can be proved (see [11]) that the set S(v) is a countably HN−1-rectifiable Borel set, i.e.,

S(v) is σ-finite with respect to the Hausdorff measure HN−1 and there exist countably many

N − 1 dimensional C1-hypersurfaces {Sk}∞k=1 such that HN−1
(

S(v) \
∞⋃

k=1

Sk

)

= 0. Moreover,

for HN−1-a.e. x ∈ S(v) there exist v+(x), v−(x) ∈ Rm and a unit vector νv(x) such that

lim
r→0

∫

B+
r (x,νv(x))

− v(y) dy = v+(x), lim
r→0

∫

B−
r (x,νv(x))

− v(y) dy = v−(x), (1.6)

where

B+
r (x, νv(x)) = {y ∈ B(x, r) : 〈y − x, νv(x)〉 > 0}

B−
r (x, νv(x)) = {y ∈ B(x, r) : 〈y − x, νv(x)〉 < 0}.

The vector field νv : S(u) → SN−1 is called the orientation of the jump set S(u). For a locally

bounded function v, (1.6) is equivalent with

ap-lim
y→x, 〈y−x,νv(x)〉>0

v(y) = v+(x), ap-lim
y→x, 〈y−x,νv(x)〉<0

v(y) = v−(x).

The differential Dv is a matrix valued Radon measure which can be decomposed as

Dv = Dav +Djv +Dcv,

where Dav is defined as the absolutely continuous part of Dv with respect to the Lebesgue

measure, while Djv and Dcv are defined as

Djv = DvxS(v), Dcv = (Dv −Dav)x(Ω \ S(v)).

Djv is called the jump part and Dcv the Cantor part of Dv. It can be proved that

Djv = (v+ − v−) ⊗ νvHN−1xS(v).

Let us consider now the precise representative v∗ : Ω → Rm of v, i.e.

v∗(x) =







lim
r→0

∫

Br(x)
− v dy if this limit exists

0 otherwise

.
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1.2. Preliminaries about the space BV

Remark that if (1.6) holds for some x ∈ Ω then

v∗(x) =
v+(x) + v−(x)

2
.

More generally, lim
r→0

∫

Br(x)
− v dy exists for HN−1-a.e. x ∈ Ω; hence, v∗ specifies the values of

the BV function v except on a HN−1-negligible set and the mollified functions v ⋆ ρε pointwise

converge to v∗ in that domain. Since we only use the local behavior of BV functions and we

do not need the specific values in each point, henceforth we consider that v coincides with the

precise representative v∗ in the L1
loc-class.

It is well known that if v ∈ BV (Ω,Rm) and f : Rm → R is Lipschitz then f ◦ v belongs to

BV , and Ambrosio and Dal Maso [9] proved a chain rule in this context. The following lemma

is a slight modification of this chain rule for u in BV with values in S1 (see Theorem 3.99 in

[11] for the case of scalar BV functions):

Lemma 1.5 Let Ω ⊂ RN be an open set and u ∈ BV (Ω, S1). Let f : S1 → R be a Lipschitz

function. Then v = f ◦u belongs to BV (Ω,R), f is differentiable at u(x) for (|Dau|+ |Dcu|)-a.e.
x and

Dv = ~fτ (u)(D
au+Dcu) + (f(u+) − f(u−))νuHN−1xS(u), (1.7)

where ~fτ denotes the tangential derivative of f .

Proof. Let us consider a Lipschitz extension f̃ of the function f to R2 such that

f̃(x) =







0 if |x| ≤ 1
3 ,

f( x|x|) if 1
2 ≤ |x| ≤ 2,

0 if |x| ≥ 3.

Denote by F and G the set of Lebesgue points of ~fτ ∈
(
L∞(S1)

)2
and ∇f̃ ∈

(
L∞(R2)

)2
in

S1 respectively in R2. Remark that H1(S1 \ F ) = 0, G ∩ S1 = F and ~fτ = ∇f̃ on F . Let

(ρε) be the standard mollifiers in R2; for each ε > 0, consider the functions f̃ε = f̃ ⋆ ρε and

vε = f̃ε ◦ u. By the chain rule in BV (see Theorem 3.96, [11]), it results that vε ∈ BV (Ω,R),

|Dvε|(Ω) ≤ ||∇f̃ε||L∞ |Du|(Ω) and

Dvε = ∇f̃ε(u)(Dau+Dcu) + (f̃ε(u
+) − f̃ε(u

−))νuHN−1xS(u), ∀ε > 0. (1.8)

Since vε → v in L1
loc(Ω), it follows that v ∈ BV (Ω) and Dvε converge weakly∗ to Dv.

Remark that |Dau|(u−1(S1 \ F )) = |Dcu|(u−1(S1 \ F )) = 0 (see Proposition 3.92, [11]), so

that f is differentiable at u(x) for (|Dau|+ |Dcu|)-a.e. x. Therefore the right hand side of (1.7)

makes sense and since ∇f̃ε(x) → ∇f̃(x) for every x ∈ G as ε→ 0, we deduce that

∇f̃ε(u) → ∇f̃(u) |Dau| + |Dcu|-a.e. in Ω.

By the dominated convergence theorem, the conclusion follows passing to the limit as ε → 0 in

(1.8). �
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Chapter 1. Lifting of BV functions with values into S1

1.3 Control of a lifting in BV . Proof of Theorem 1.1

We start by proving Lemma 1.2 and as a consequence, we deduce the control of the BV seminorm

of a lifting of u.

Proof of Lemma 1.2. Let u ∈ BV (Ω, S1). For the proof of this theorem we consider a sequence

of Lipschitz functions that approximate L (defined in (1.2)), and carry out the computations

with this approximation. For small ε > 0, let Lε : S1 → R denote the following function

Lε(e
iθ) =







θ if 0 ≤ θ ≤ π − ε,

π−ε
ε (π − θ) if π − ε ≤ θ ≤ π + ε,

θ − 2π if π + ε ≤ θ ≤ 2π.

Let α ∈ R and define φα,ε : S1 → R by

φα,ε(e
iθ) = Lε(e

i(α+θ)).

Then φα,ε is Lipschitz and therefore φα,ε(u) ∈ BV . We use now the chain rule from Lemma 1.5

to compute the derivative of φα,ε(u):

Dφα,ε(u) = (~φα,ε)τ (u)(D
au+Dcu) + (φα,ε(u

+) − φα,ε(u
−))νuHN−1xS(u)

where (~φα,ε)τ denotes the tangential derivative of φα,ε and is given by

(~φα,ε)τ (e
iθ) = (~Lε)τ (e

i(α+θ)).

Hence,

Dφα,ε(u) = (~Lε)τ (e
iαu)(Dau+Dcu) + (φα,ε(u

+) − φα,ε(u
−))νuHN−1xS(u).

Since the measures in the expression above are mutually singular, for the total variation of the

corresponding measures we have

|Dφα,ε(u)| ≤ |(~Lε)τ (eiαu) |(|Dau| + |Dcu|) + |φα,ε(u+) − φα,ε(u
−)|HN−1xS(u).

Integrating this total variation over Ω we get

|φα,ε(u)|BV ≤
∫

Ω
|(~Lε)τ (eiαu)| d(|Dau| + |Dcu|) +

∫

S(u)
|φα,ε(u+) − φα,ε(u

−)| dHN−1. (1.9)

Observe that the map α → |φα,ε(u)|BV is lower semi-continuous because it is the supremum of

a family of continuous functions of α:

|φα,ε(u)|BV = sup
g∈C∞

0 , |g|≤1

∫

Ω
Lε(e

iαu) div g dx.

In particular α→ |φα,ε(u)|BV is measurable. Integrating (1.9) with respect to α over [0, 2π] we

get
∫ 2π

0
|φα,ε(u)|BV dα ≤

∫ 2π

0

∫

Ω
|(~Lε)τ (eiαu)| d(|Dau| + |Dcu|) dα

+

∫ 2π

0

∫

S(u)
|φα,ε(u+) − φα,ε(u

−)| dHN−1 dα.

26



1.3. Control of a lifting in BV . Proof of Theorem 1.1

Let us consider the first term on the right hand side above; by Fubini’s theorem

∫ 2π

0

∫

Ω
|(~Lε)τ (eiαu)| d(|Dau| + |Dcu|) dα =

∫

Ω

∫ 2π

0
|(~Lε)τ (eiαu)| dα d(|Dau| + |Dcu|).

But an easy computation shows that for any fixed x

∫ 2π

0
|(~Lε)τ (eiαu(x))| dα = 4(π − ε).

Therefore

∫ 2π

0

∫

Ω
|(~Lε)τ (eiαu)| d(|Dau| + |Dcu|) dα = 4(π − ε)(|Dau|(Ω) + |Dcu|(Ω)). (1.10)

Regarding the term

∫ 2π

0

∫

S(u)
|φα,ε(u+) − φα,ε(u

−)| dHN−1 dα =

∫

S(u)

∫ 2π

0
|φα,ε(u+) − φα,ε(u

−)| dα dHN−1

we see that we have to estimate

∫ 2π

0
|Lε(ei(α+θ1)) − Lε(e

i(α+θ2))| dα,

where θ1, θ2 ∈ [0, 2π] are fixed. Using the explicit formula for Lε it is not hard to verify that if

|θ1 − θ2| ≤ π then

∫ 2π

0
|Lε(ei(α+θ1)) − Lε(e

i(α+θ2))| dα = 2
π − ε

π
|θ1 − θ2|(2π − |θ1 − θ2|)

≤ 8(π − ε) sin(|θ1 − θ2|/2).

Observe that if eiθ1 = u+(x) and eiθ2 = u−(x) with |θ1 − θ2| ≤ π, then |u+(x) − u−(x)| =

2 sin(|θ1 − θ2|/2). Hence, for any fixed x ∈ S(u) we obtain

∫ 2π

0
|φα,ε(u+) − φα,ε(u

−)| dα ≤ 4(π − ε)|u+(x) − u−(x)|.

Therefore, integrating over S(u) we find

∫ 2π

0

∫

S(u)
|φα,ε(u+) − φα,ε(u

−)| dHN−1 dα ≤ 4(π − ε)

∫

S(u)
|u+(x) − u−(x)| dHN−1. (1.11)

Combining (1.10) and (1.11) we establish that

∫ 2π

0
|φα,ε(u)|BV dα ≤ 4(π − ε)|u|BV . (1.12)

To finish the proof note that α→ |L(eiαu)|BV is measurable with values in [0,∞], because

|L(eiαu)|BV = sup
g∈C∞

0 |g|≤1

∫

Ω
L(eiαu) div g dx
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and for fixed g the map α→
∫

Ω L(eiαu) div g dx is measurable.

Also observe that for all except a countable set of α ∈ R we have LN ({y ∈ Ω : u(y) =

−e−iα}) = 0, and for these values of α

Lε(e
iαu) → L(eiαu) a.e. in Ω as ε→ 0.

This implies that for a.e. α

|L(eiαu)|BV ≤ lim inf
ε→0

|Lε(eiαu)|BV .

Hence, by Fatou’s lemma

∫ 2π

0
|L(eiαu)|BV dα ≤ lim inf

ε→0

∫ 2π

0
|Lε(eiαu)|BV dα

≤ 4π|u|BV

by (1.12). �

Proof of Theorem 1.1. Using Lemma 1.2, the mean value theorem yields that there exists α0

such that

|L(eiα0u)|BV ≤ 1

2π

∫ 2π

0
|L(eiαu)|BV dα ≤ 2|u|BV .

Therefore, ϕ = L(eiα0u) − α0 is a lifting of u that satisfies (1.1). �

Remark 1.4 Recall the space of special functions with bounded variation

SBV (Ω,Rm) = {u ∈ BV (Ω,Rm) |Dcu ≡ 0 in Ω}.

We say that u ∈ SBV (Ω, S1) if u ∈ SBV (Ω,R2) and |u(x)| = 1 for a.e. x ∈ Ω. The previous

proof for this case says that for each u ∈ SBV (Ω, S1) there exists a lifting ϕ ∈ SBV (Ω,R) of u

such that (1.1) holds.

1.4 The constant π/2 is optimal in 1d

In this section we prove that the optimal control for the BV seminorm of a lifting is π/2 in

one-dimensional domains.

Proof of (i) in Theorem 1.4. Let Ω ⊂ R be an interval and u ∈ BV (Ω, S1). We will construct

a lifting ϕ of u such that (1.4) holds. The derivative u̇ decomposes as

u̇ = (u̇)a + (u̇)c +
∑

y∈S(u)

(u(y+) − u(y−))δy

where S(u) denotes the jump set of u which is at most countable. For any y ∈ S(u), we denote

dy(u) = Arg
u(y+)

u(y−)
where Arg ω ∈ (−π, π] is the argument of the unit complex number ω.

Obviously,

|dy(u)| ≤
π

2
|u(y+) − u(y−)|.
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Now consider ϕa, ϕc, ϕj the BV functions (unique up to constants) having as derivatives in Ω

the finite Radon measures u ∧ (u̇)a, u ∧ (u̇)c and
∑

y∈S(u)

dy(u)δy. Let

ϕ = ϕa + ϕc + ϕj ∈ BV (Ω,R).

By the chain rule, we have
˙(u e−iϕ) = 0 in Ω. (1.13)

Indeed,

˙(e−iϕ) = −ie−iϕ
(
ϕ̇a + ϕ̇c

)
+
∑

y∈S(u)

(e−iϕ(y+) − e−iϕ(y−))δy

= −e−iϕū ((u̇)a + (u̇)c) +
∑

y∈S(u)

(e−iϕ(y+) − e−iϕ(y−))δy.

Remark that the space BV (Ω,C) ∩ L∞ is an algebra. Differentiating the product u e−iϕ, we

obtain

˙(u e−iϕ) = e−iϕ ((u̇)a + (u̇)c) − u e−iϕū ((u̇)a + (u̇)c)

+
∑

y∈S(u)

(u(y+) e−iϕ(y+) − u(y−) e−iϕ(y−))δy

= 0.

Thus, up to a constant, ϕ is a lifting of u, i.e. u = eiϕ a.e. in Ω. If we compute the total

variation of ϕ, we conclude
∫

Ω
|ϕ̇| =

∫

Ω
(|(u̇)a| + |(u̇)c|) +

∑

y∈S(u)

|dy(u)|

≤
∫

Ω
(|(u̇)a| + |(u̇)c|) +

π

2

∑

y∈S(u)

|u(y+) − u(y−)|

≤ π

2

∫

Ω
|u̇|.

It remains to prove that π/2 is the best constant in (1.4). For simplicity of the writing, let

Ω = (−1, 1). Define u ∈ BV (Ω, S1) as

u(x) =







1 if x ∈ (−1, 0),

−1 if x ∈ (0, 1).

Then |u̇|(Ω) = 2. Let ϕ ∈ BV (Ω,R) be a lifting of u. We prove that
∫

Ω
|ϕ̇| ≥ π

2

∫

Ω
|u̇|.

By the chain rule, it follows that

(ϕ̇)a + (ϕ̇)c = u ∧ ((u̇)a + (u̇)c) = 0

(ϕ̇)j = (ϕ(0+) − ϕ(0−))δ0 +
∑

y∈B
(ϕ(y+) − ϕ(y−))δy

(1.14)
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where B ⊂ Ω is a finite set such that 0 /∈ B and ϕ(y+) − ϕ(y−) = −2παy, αy ∈ Z, for every

y ∈ B. Obviously, |ϕ(0+) − ϕ(0−)| ≥ |d0(u)| = π. According to (1.14), we have

∫

Ω
|ϕ̇| = |ϕ(0+) − ϕ(0−)| +

∑

y∈B
|ϕ(y+) − ϕ(y−)| ≥ π =

π

2

∫

Ω
|u̇|.

�

1.5 Two examples in the disc

We give two examples of BV functions u defined in the unit disc in R2 and taking values in S1

for which 2 is the minimal constant in (1.1) for every possible lifting ϕ in BV . The first example

is a W 1,1 function (and therefore, it belongs also in SBV ) and the second one is a purely Cantor

type function (by that, we mean that u ∈ BV and Dau ≡ Dju ≡ 0). Though, both functions

have the same topological defect at the origin that will generate a jump part of the lifting with

larger variation than the BV seminorm of u.

The following result was already suggested in [22]:

Lemma 1.6 Let Ω be the unit disc in R2. Define u : Ω \ {0} → S1,

u(x) =
x

|x| for every x ∈ Ω \ {0}.

Let ϕ ∈ BV (Ω,R) be a lifting of u. Then |Dϕ|(Ω) ≥ 4π = 2|u|BV .

First Proof: We have that u ∈ W1,p(Ω) for all p ∈ [1, 2) and
∫

Ω |∇u| = 2π. By the chain rule

for BV functions applied to u = eiϕ we obtain

Du = iu(Daϕ+Dcϕ) + (eiϕ
+ − eiϕ

−
)νϕH1xS(ϕ).

Since Dcu = 0, we get that Dcϕ = 0 and then, Daϕ = −iūDu which leads to |Daϕ|(Ω) = 2π.

Because u has no jump, we have eiϕ
+ − eiϕ

−
= 0 and the size of the jump of ϕ is at least 2π.

Now, it is sufficient to show that |Djϕ|(Ω) ≥ 2π. Let g ∈ C∞
0 (Ω,R). The radial derivative of g

is defined as

gτ (re
iθ) = lim

t→0

g(rei(θ+t)) − g(reiθ)

t
.

Also for BV functions (see [11]), there exists an unique measure called the radial derivative of

ϕ and denoted by Dτϕ such that
∫

Ω
ϕgτ dx = −

∫

Ω
g d
(
Dτϕ

)
, ∀g ∈ C∞

0 (Ω,R).

Since Dcϕ = 0, we write

Dτϕ = Da
τϕ+Dj

τϕ.

For every r ∈ (0, 1), if Sr = {x ∈ R2 : |x| = r} is the circle of radius r, then we denote by

ϕr : Sr → R the restriction of ϕ to Sr. Using the Characterization Theorem of BV functions

by sections and Theorem 3.108 in [11], it results that for a.e. r ∈ (0, 1), ϕr ∈ BV (Sr,R),
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Dj
τϕ =

(
L1x(0, 1)

)
⊗Djϕr (as product of measures) and the discontinuity set of ϕr is S(ϕ)∩Sr.

Remark that deg(u, Sr) = 1 for every r ∈ (0, 1). Hence, for a.e. r ∈ (0, 1), ϕr will have a jump

on Sr and the size of the jump is not less than 2π. Finally,

|Djϕ|(Ω) ≥ |Dj
τϕ|(Ω) =

∫ 1

0
|Djϕr|(Sr) dr ≥ 2π.

�

Second proof: Take ϕn ∈ W 1,1 ∩ C∞(Ω,R) such that ϕn → ϕ a.e. on Ω and
∫

Ω |∇ϕn| dx →
|Dϕ|(Ω) as n→ ∞. Set un = eiϕn ∈W 1,1∩C∞(Ω, S1). As above, for every r ∈ (0, 1) we denote

by Sr the circle of radius r. Up to a subsequence, for a.e. r ∈ (0, 1) we have un → u a.e. in Sr

and sup
n

|Dun|(Sr) <∞. For those r, since deg(u, Sr) = 1, it follows by Lemma 18 in [22],

lim inf
n→∞

∫

Sr

|∇un · τ | dH1 ≥
∫

Sr

|∇u · τ | dH1 + 2π =

∫

Sr

|∇u| dH1 + 2π

(here τ is the tangent vector in each point of Sr). Therefore, by Fatou’s lemma,

|Dϕ|(Ω) = lim inf
n→∞

∫

Ω
|∇un| ≥

∫ 1

0
lim inf
n→∞

∫

Sr

|∇un| dH1 dr ≥
∫

Ω
|∇u| + 2π.

�

The second example in the unit disc is the following:

Lemma 1.7 Let Ω be the unit disc in R2 and let f : [0, 1] → [0, 1] be the standard Cantor

function. Define in polar coordinates the function u : Ω \ {0} → S1,

u(r, θ) = e2πf( θ
2π

)i for every θ ∈ [0, 2π) and r ∈ (0, 1).

Let ϕ ∈ BV (Ω,R) be a lifting of u. Then |Dϕ|(Ω) ≥ 4π = 2|u|BV .

Proof. It’s easy to see that u ∈ BV (Ω, S1) and |u|BV = |Dcu|(Ω) = 2π. By the chain rule we

get that |Dcϕ|(Ω) = |Dcu|(Ω) and |Daϕ|(Ω) = |Dau|(Ω) = 0. Repeating the same argument as

before for the restrictions to the circles Sr, we deduce that |Djϕ|(Ω) ≥ 2π and the conclusion

follows. �

1.6 The constant 2 is optimal for N > 1

In this section we complete the proof of Theorem 1.4:

Proof of (ii) in Theorem 1.4. First, we make the construction of a dipole in the disc

R = B(1, 2) ⊂ R2 (see also [22]): it is a function uε ∈ W 1,1(R, S1), ε > 0 is small, uε has two

topological singularities (called poles) in P = (0, 0) ∈ R2 and N = (2, 0) ∈ R2, i.e., det∇uε =

π(δP − δN ). Moreover,
∫

R
|∇uε| dx ≤ 4π + 2ε (1.15)

and

∫

R
|∇ϕε| dx ≥ 8π, for every lifting ϕε ∈ BV (R,R). (1.16)
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Then we adapt this construction for every domain Ω ∈ RN , N > 1.

We distinguish two cases:

a) The case of the disc R = B(1, 2) ⊂ R2. Let ε > 0 be a small parameter. Set

Rε = {(x1, x2) ∈ R : 0 < x1 < 2, |x2| < εmin(x1, 2 − x2)}.

Then H2(Rε) = 2ε. We define the function ϕ0,ε : Rε → R by

ϕ0,ε(x1, x2) = π

(

1 +
x2

εmin(x1, 2 − x2)

)

.

Now consider the function uε : R → S1 given by

uε(x1, x2) =







eiϕ0,ε(x1,x2) in Rε,

1 in R \Rε.

We have that
∫

R
|∇uε| dx =

∫

Rε

|∇ϕ0,ε| dx

= 4π

∫ 1

0

√

1 + ε2t2 dt ∈ (4π, 4π + 2ε),

and hence, (1.15) holds. An easy computation shows that the jacobian of uε (in the sense of

distributions) is the dipole (P,N):

det(∇uε) :=
1

2
curl

(

uε ∧
∂uε
∂x1

, uε ∧
∂uε
∂x2

)

= π(δP − δN ).

Therefore, we expect that every lifting ϕε ∈ BV (R,R) of uε has a jump of size 2π along a

connection between the poles P and N . By the chain rule, the total variation of the absolutely

continuous part of Dϕε is ∫

R
|Daϕε| =

∫

R
|∇uε| dx ≥ 4π.

In order to have (1.16), it is sufficient to show that

∫

B(0,1)
|Djϕε| ≥ 2π and

∫

B(2,1)
|Djϕε| ≥ 2π.

By symmetry, we only prove the first inequality. As in the proofs of Lemma 1.6, the argument

is based on the restriction ϕr,ε of ϕε on the circle Sr, r ∈ (0, 1). We know that deg(uε, Sr) = 1

for every r ∈ (0, 1). Hence, for a.e. r ∈ (0, 1), ϕr,ε will have a jump on Sr and the size of the

jump is larger than 2π. Since the discontinuity set of ϕr,ε is S(ϕε) ∩ Sr, it follows that

|Djϕε|(B(0, 1)) ≥
∫ 1

0
|Djϕr,ε|(Sr) dr ≥ 2π.

Finally, (1.15) and (1.16) yield the conclusion by letting ε→ 0.
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b) The general case of a domain Ω ⊂ RN . Let ε > 0 and set D = R × (0, 1)N−2 ⊂ RN . By

translating and shrinking homotopically the cylinder D, we may suppose that D ⊂⊂ Ω. Let uε

be the function in R constructed above. We write x = (x1, x2, . . . , xN ) = (x1, x2, x
′) ∈ RN . We

consider the function wε ∈ BV (Ω, S1) given by

wε(x) =







uε(x1, x2) in D,
1 in Ω \ D.

We have that Dwε = Dawε +Djwε where S(wε) ⊂ Rε × ∂
(
[0, 1]N−2

)
. Moreover,

∫

Ω
|Dawε| =

∫

(0,1)N−2

dx′
∫

R×{x′}
|∇uε| dx1 dx2 ≤ 4π + 2ε,

|Djwε|(Ω) ≤ 2HN−1
(
Rε × ∂

(
[0, 1]N−2

))
≤ 8ε(N − 2).

Let ψε ∈ BV (Ω,R) be a lifting of wε. As above, the chain rule leads to the total variation of

the absolutely continuous part of the lifting:

∫

Ω
|Daψε| =

∫

Ω
|Dawε| ≤ 4π + 2ε.

We want to show that |Djψε|(Ω) ≥ 4π. For that, we notice that the restriction of ψε to R×{x′}
is a BV lifting of uε for almost every x′ ∈ (0, 1)N−2. Therefore, by (1.16), we deduce that

∫

Ω
|Djψε| ≥

∫

(0,1)N−2

dx′
∫

R×{x′}
|Djψε| ≥ 4π.

We conclude that ∫

Ω
|Dψε| ≥ 4π +

∫

Ω
|Dawε| ≥

(
2 + o(ε)

)
∫

Ω
|Dwε|,

where o(ε) → 0 as ε→ 0. �

Remark 1.5 It would be interesting to know if for every domain Ω ⊂ RN , N > 1, there exists

a non-constant function u ∈ BV (Ω, S1) such that

∫

Ω
|Dϕ| ≥ 2

∫

Ω
|Du|, for any lifting ϕ ∈ BV (Ω,R) of u.
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Chapter 2

Optimal lifting for BV (S1, S1)

Abstract

For each g ∈ BV (S1, S1), we solve the following variational problem

E(g) = inf
n

Z

S1

|ϕ̇| : ϕ ∈ BV (S1
, R), eiϕ = g a.e. on S

1
o

and we will deduce that E(g) ≤ 2|g|BV .

This chapter is published in Calc. Var. Partial Differential Equations 23 (2005), 83–96

(cf. [52]).

2.1 Introduction

Let g ∈ BV (S1, S1), i.e. g ∈ BV (S1,R2) and |g(y)| = 1 for a.e. y ∈ S1. The aim of this chapter

is to compute the total variation of an optimal lifting BV of g

E(g) = inf
{∫

S1

|ϕ̇| : ϕ ∈ BV (S1,R), eiϕ = g a.e. on S1
}

(2.1)

(here “ ˙ ” stands for the tangential derivative operator). It is easy to see that the above infimum

is achieved and it is equal to the relaxed energy

Erel(g) = inf
{

lim inf
n→∞

∫

S1

|ġn|dH1 : gn ∈ C∞(S1, S1),deg gn = 0, gn → g a.e. on S1
}

(see Remark 2.1).

In what follows, we will always identify g with its precise representative, which is a Borel

function such that

g(y) =
g(y+) + g(y−)

2
, ∀y ∈ S1.

In order to state the main results, we need to introduce some notations. We decompose the

finite Radon measure ġ as

ġ = (ġ)a + (ġ)c + (ġ)j,

with (ġ)j =
∑

y∈S(g)

(g(y+) − g(y−))δy .
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Here, (ġ)a, (ġ)c and (ġ)j are the absolutely continuous part, the Cantor part and the jump part

of ġ and the set (at most countable)

S(g) = {y ∈ S1 : ġ({y}) 6= 0}

is the set of jump points of g. For any y ∈ S(g), let dy(g) ∈ (−π, π] \ {0} be such that

ei dy(g) =
g(y+)

g(y−)
;

thus, |dy(g)| = dS1(g(y+), g(y−)), where dS1 is the geodesic distance on S1. We denote

P (g) =
∑

y∈S(g)

dy(g)

L(g) =

∫

S1

g ∧
(

(ġ)a + (ġ)c
)

m(g) =
P (g) + L(g)

2π
,

where

(

u1

u2

)

∧
(

µ1

µ2

)

= u1µ2−u2µ1. Remark that the measure g∧((ġ)a+(ġ)c) is well-defined

since the measure (ġ)a + (ġ)c vanishes on most countable sets.

A preliminary result is the following:

Lemma 2.1 m(g) ∈ Z, ∀g ∈ BV (S1, S1).

The reason to introduce m(g) is the following: if y ∈ S(g) and ϕ is a lifting BV of g, then

|ϕ(y+) − ϕ(y−)| ≥ |dy(g)|. It turns out that m(g) is related to the number of times where the

above inequality is strict.

Set

Ẽ(g) =

∫

S1

(

|(ġ)a| + |(ġ)c|
)

.

This quantity represents the total variation of the diffuse part of the derivative of g and plays

also the role of the total variation of the diffuse part of the derivative of a lifting of g.

If S(g) = ∅, set Ej(g) = |L(g)|; otherwise (i.e. S(g) 6= ∅), set

Ej(g) = min
αy∈Z, y∈S(g)

#{y∈S(g):αy 6=0}<∞
P

y∈S(g) αy=m(g)

∑

y∈S(g)

|dy(g) − 2παy|. (2.2)

As we will see, Ej(g) is the total variation of the jump part of an optimal lifting of g. The

analytic formula for Ej(g) (when g has jumps) is given by:

Lemma 2.2 If S(g) 6= ∅, then

Ej(g) =







sgn(m(g))L(g) + 2 min
B⊂S(g)

#B=min(|m(g)|,#S(g))

∑

y∈S(g)\B
sgn(dy(g))=sgn(m(g))

|dy(g)| if m(g) 6= 0

∑

y∈S(g)

|dy(g)| if m(g) = 0

.

36



2.2. Optimal lifting of g ∈ BV (S1, S1)

The above formula can be interpreted as follows: if sgn(m(g)) = 1, then the minimal value in

(2.2) is achieved by taking αy ≥ 1 for the y’s with the largest positive jump dy(g).

Our first main result is

Theorem 2.3 For every g ∈ BV (S1, S1), we have

E(g) = Ẽ(g) + Ej(g).

In the case where g is a continuous function of bounded variation, the expression of E(g) was

already proved by Bourgain-Brezis-Mironescu [22]. In the general case, our result can presumably

be proved using the theory of Cartesian Currents of Giaquinta-Modica-Soucek[47].

The next result yields an estimate of E(g) in terms of the BV -seminorm of g. It is a

straightforward variant of Theorem 1.1 for BV (Ω, S1) functions (where Ω ⊂ RN is a bounded

open set):

Theorem 2.4 For every g ∈ BV (S1, S1), we have

E(g) ≤ 2

∫

S1

|ġ|. (2.3)

The constant 2 in the above inequality is optimal (see the examples in Section 2.5). We present

two different proofs for Theorem 2.4. The first one relies on the explicit formula obtained in

Theorem 2.3, combined with the following trigonometrical inequality:

Lemma 2.5 Let γ be the unique solution on (0, π2 ) of the equation

3 sin
γ + π

3
= 2

γ + π

3
(γ = 1.345752051076...).

For p integer, let xk ∈ [0, π2 ], ∀k ≥ 1 such that
∑

k≥1

xk ≤ p π + γ. Then

∑

k≥1

sinxk ≥
∑

k≥1

xk − max
B⊂N

#B=p

∑

k∈B
xk.

The second proof of Theorem 2.4 is a straightforward adaptation of the proof given in Chap-

ter 1; the idea is to use a special class of liftings of g. We discuss in Section 2.4 some properties

of this class. The striking fact is that, although the lifting obtained using the technique in The-

orem 1.1 is not optimal in general (i.e. this lifting is not a minimizer in (2.1) ), inequality (2.3)

is easier to prove using this lifting rather than using an optimal one.

2.2 Optimal lifting of g ∈ BV (S1, S1)

In this section we prove Lemma 2.1, Lemma 2.2 and Theorem 2.3; we also construct an optimal

lifting of g. Finally, we present an estimate of E(g) in terms of a more natural BV -seminorm

|g|BV S1, defined below.

First, following [30], let us make some remarks about E(g) and Erel(g):
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Remark 2.1 i) E(g) <∞ and Erel(g) <∞ (the existence of a lifting BV for g is shown in the

proof of Lemma 2.1);

ii) The infimum (2.1) is achieved; indeed, let ϕn ∈ BV (S1,R), eiϕn = g a.e. on S1 be such

that

lim
n→∞

∫

S1

|ϕ̇n| = E(g) <∞.

By Poincaré’s inequality, there exists an universal constant C > 0 such that

∫

S1

|ϕn −
∫

S1

−ϕn|dH1 ≤ C

∫

S1

|ϕ̇n|, ∀n ∈ N

(where

∫

S1

− stands for the average). Therefore, by subtracting a suitable 2π integer multiple,

we may assume that (ϕn)n∈N is bounded in BV (S1,R). Up to a further subsequence, we may

assume that ϕn → ϕ a.e. and L1 for some ϕ ∈ BV (S1,R). It follows that ϕ is a lifting of g on

S1 and

E(g) = lim
n→∞

∫

S1

|ϕ̇n| ≥
∫

S1

|ϕ̇| ≥ E(g);

iii) E(g) = Erel(g). For ′′ ≤′′, take gn ∈ C∞(S1, S1),∀n ∈ N such that deg gn = 0, gn → g a.e.

on S1 and sup
n∈N

∫

S1

|ġn|dH1 < ∞. Then there exists ϕn ∈ C∞(S1,R) such that eiϕn = gn. Since
∫

S1

|ϕ̇n|dH1 =

∫

S1

|ġn|dH1, using the same argument as above, we may assume that ϕn → ϕ

a.e. and L1 for some ϕ ∈ BV (S1,R). Therefore, eiϕ = g a.e. on S1 and

E(g) ≤
∫

S1

|ϕ̇| ≤ lim inf
n→∞

∫

S1

|ϕ̇n|dH1 = lim inf
n→∞

∫

S1

|ġn|dH1.

For ′′ ≥′′, consider a BV lifting ϕ of g and take an approximating sequence ϕn ∈ C∞(S1,R)

such that ϕn → ϕ a.e. and |ϕ̇|(S1) = lim
n→∞

∫

S1

|ϕ̇n|dH1. With gn = eiϕn ∈ C∞(S1, S1), we have

deg gn = 0, gn → g a.e. on S1 and

Erel(g) ≤ lim
n→∞

∫

S1

|ġn|dH1 = lim
n→∞

∫

S1

|ϕ̇n|dH1 =

∫

S1

|ϕ̇|.

We next prove Lemmas 2.1 and 2.2:

Proof of Lemma 2.1. If (ġ)j = 0, i.e. S(g) = ∅, then g is continuous on S1. We claim

that m(g) = deg g ∈ Z. This is clear when g is smooth; the general case is obtained by

approximating g with a sequence (gn)n ⊂ C∞(S1, S1) such that gn → g uniformly and ġn ⇀ ġ

weakly∗ as n → ∞. Otherwise, let y1 be a jump point of g on S1. Consider S1 \ {y1} as an

interval and on that interval take ϕa, ϕc, ϕj the BV functions (unique up to constants) having

as derivatives in S1 \ {y1} the finite Radon measures g ∧ (ġ)a, g ∧ (ġ)c and
∑

y∈S(g)\{y1}
dy(g)δy .

Let ϕ = ϕa + ϕc + ϕj . As in (1.13), by the chain rule, we have

˙(ge−iϕ) = 0 on S1 \ {y1}
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so that, up to a constant, ϕ is a lifting of g, i.e. g = eiϕ a.e. on S1. Clearly, ϕ ∈ BV (S1,R),

ϕ(y1+) − ϕ(y1−) = dy1(g) + 2πα, α ∈ Z and

ϕ̇ = ϕ̇
∣
∣
∣
S1\{y1}

+ (ϕ(y1+) − ϕ(y1−))δy1 = g ∧ (ġ)a + g ∧ (ġ)c +
∑

y∈S(g)

dy(g)δy + 2παδy1 .

Since

∫

S1

ϕ̇ = 0 we conclude that P (g) + L(g) = −2πα ∈ 2πZ. �

Proof of Lemma 2.2. Suppose that m(g) ≥ 0 (the case m(g) < 0 is analogous). We start by

noting that

inf
αy∈Z, y∈S(g)

#{y∈S(g):αy 6=0}<∞
P

y∈S(g) αy=m(g)

∑

y∈S(g)

|dy(g) − 2παy| = inf
αy∈Z, y∈S(g)

#{y∈S(g):αy 6=0}<∞
P

y∈S(g) αy=m(g)

|αy−αz |≤1,∀y,z∈S(g)

∑

y∈S(g)

|dy(g) − 2παy|. (2.4)

Indeed, it suffices to observe that, if d1, d2 ∈ (−π, π], α1, α2 ∈ Z such that α1 − α2 ≥ 2, then

|d1 − 2πα1| + |d2 − 2πα2| ≥ |d1 − 2π(α1 − 1)| + |d2 − 2π(α2 + 1)|. (2.5)

We distinguish in our analysis the following cases:

Case 1: m(g) ≥ #S(g) > 0. Then, by (2.4), we have that αy ≥ 1, ∀y ∈ S(g). It follows that

|dy(g) − 2παy| = 2παy − dy(g), ∀y ∈ S(g). Therefore,

Ej(g) = 2πm(g) − P (g) = L(g) ≥ 0.

The minimum is achieved in (2.2); consider, for example, the choice

(αy)y∈S(g) =
(

1, ..., 1,m(g) − #S(g) + 1
)

.

Case 2: 0 < m(g) < #S(g). By (2.4), we must have αy ∈ {0, 1}, ∀y ∈ S(g). Therefore, the RHS

of (2.4) is equal to

inf
αy∈{0,1}

#{y∈S(g):αy 6=0}<∞
P

y∈S(g) αy=m(g)

∑

y∈S(g)

|dy(g) − 2παy| = L(g) + 2 inf
B⊂S(g)

#B=m(g)

∑

y∈S(g)\B
dy(g)>0

dy(g);

this follows by noting that the y’s for which αy = 1 have to be the ones with the largest positive

jump dy(g). The infimum is achieved in (2.4). Indeed, set

S̃(g) = {y ∈ S(g) : dy(g) > 0}.

If #S̃(g) ≥ m(g), then choose B = {y1, ..., ym(g)} ⊂ S̃(g) such that dy1(g), ..., dym(g)
(g) are the

biggest m(g) elements of the set {dy(g) : y ∈ S̃(g)}. If #S̃(g) < m(g), then choose B ⊂ S(g)

such that #B = m(g) and S̃(g) ⊂ B. Then an optimal choice is

αy =







1 if y ∈ B

0 if y ∈ S(g) \B
.
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Case 3: m(g) = 0. Here the RHS of (2.4) is equal to
∑

y∈S(g)

|dy(g)| and the infimum (2.4) is

achieved for αy = 0,∀y ∈ S(g). �

Proof of Theorem 2.3.

”≥”: Let ϕ ∈ BV (S1,R) be a lifting of g on S1, i.e. g = eiϕ a.e. on S1. Then, by the chain

rule,

(ϕ̇)a + (ϕ̇)c = g ∧ ((ġ)a + (ġ)c)

and (ϕ̇)j =
∑

y∈S(g)

(ϕ(y+) − ϕ(y−))δy +
∑

b∈B
(ϕ(b+) − ϕ(b−))δb.

Here,

(i) B ⊂ S1 is some finite set such that S(g) ∩B = ∅,

(ii) ϕ(y+) − ϕ(y−) = dy(g) − 2παy with αy ∈ Z,∀y ∈ S(g)

(iii) ϕ(b+) − ϕ(b−) = −2παb, αb ∈ Z,∀b ∈ B.

Clearly

#{y ∈ S(g) : αy 6= 0} <∞.

Since

∫

S1

ϕ̇ = 0, we get
∑

y∈S(g)∪B
αy =

L(g) + P (g)

2π
= m(g). We have

|ϕ̇|(S1) =

∫

S1

(

|(ϕ̇)a| + |(ϕ̇)c|
)

+
∑

y∈S(g)

|dy(g) − 2παy| + 2π
∑

b∈B
|αb|.

If S(g) = ∅, then

|ϕ̇|(S1) ≥ Ẽ(g) + 2π|
∑

b∈B
αb| = Ẽ(g) + |L(g)|,

which is the desired inequality. Otherwise, take y1 ∈ S(g) and observe that

|ϕ̇|(S1) ≥ Ẽ(g) +
∑

y∈S(g)\{y1}
|dy(g) − 2παy| + |dy1(g) − 2πα̃y1 |

where α̃y1 = αy1 +
∑

b∈B
αb. Therefore, we conclude that

E(g) ≥ Ẽ(g) + Ej(g).

”≤” (The construction of an optimal lifting): If S(g) = ∅, then g is continuous on

the simply connected set S1 \ {1} and so there is a unique (up to 2πZ constants) lifting ϕ ∈
BV (S1 \ {1},R) ∩C0 of g on S1 \ {1}. Moreover, ϕ(1−) − ϕ(1+) = L(g) and we conclude that

|ϕ̇|(S1) = Ẽ(g) + |L(g)|.
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Otherwise, take y1 ∈ S(g). By Lemma 2.2, we may take integers αy ∈ Z,∀y ∈ S(g) (all zero

except a finite number) such that
∑

y∈S(g)

αy = m(g) and (2.2) holds, i.e.

∑

y∈S(g)

|dy(g) − 2παy| = Ej(g).

As in the proof of Lemma 2.1, construct a lifting ϕ ∈ BV (S1,R) of g satisfying on S1 \ {y1}

(ϕ̇)a = g ∧ (ġ)a

(ϕ̇)c = g ∧ (ġ)c

and (ϕ̇)j
∣
∣
∣
S1\{y1}

=
∑

y∈S(g)\{y1}
(dy(g) − 2παy)δy on S1 \ {y1}.

Since

∫

S1

ϕ̇ = 0, we find that ϕ(y1+) − ϕ(y1−) = dy1(g) − 2παy1 which implies that |ϕ̇|(S1) =

Ẽ(g) +Ej(g). �

Note that the optimal lifting is not unique modulo 2π; indeed, if

g(eit) =







1 if t ∈ (0, π)

−1 if t ∈ (π, 2π)

then

ϕ1(e
it) =







0 if t ∈ (0, π)

−π if t ∈ (π, 2π)
and ϕ2(e

it) =







0 if t ∈ (0, π)

π if t ∈ (π, 2π)

are optimal liftings and ϕ1 − ϕ2 6= const on S1.

Remark 2.2 As we have proved, E(g) depends on (dy(g))y∈S(g) where dy(g) is the unique

argument of the complex number g(y+)
g(y−) in (−π, π]. Consider now, for each y ∈ S(g), an arbitrary

argument d′y(g) of g(y+)
g(y−) such that

∑

y∈S(g)

|d′y(g)| <∞. It is easy to see that

m′(g) =
L(g) +

∑

y∈S(g) d
′
y(g)

2π
∈ Z.

Observe that if S(g) 6= ∅, then

Ej(g) = min
αy∈Z, y∈S(g)

#{y∈S(g):αy 6=0}<∞
P

y∈S(g) αy=m′(g)

∑

y∈S(g)

|d′y(g) − 2παy|.

The analytic formula for Ej(g) in Lemma 2.2 still holds for the (d′y(g))y∈S(g) and m′(g) provided

d′y ∈ [−2π, 2π],∀y ∈ S(g) and |d′y(g) − d′z(g)| ≤ 2π, ∀y, z ∈ S(g). This is a consequence of the

fact that (2.5) holds if d1, d2 ∈ [−2π, 2π] and |d1 − d2| ≤ 2π.
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As an immediate consequence of Lemma 2.2 and Theorem 2.3, we have:

Corollary 2.6 For every g ∈ BV (S1, S1),

E(g) ≤ 2|g|BV S1

where |g|BV S1 =

∫

S1

(

|(ġ)a| + |(ġ)c|
)

+
∑

y∈S(g)

dS1(g(y+), g(y−)).

Remark that | · |BV S1 is a seminorm equivalent to the standard BV -seminorm | · |BV ; in fact,

we have

|g|BV ≤ |g|BV S1 ≤ π

2
|g|BV ,∀g ∈ BV (S1, S1).

Therefore, Theorem 2.4 is an improvement of the above corollary.

2.3 First proof of Theorem 2.4

We start by stating some trigonometrical inequalities:

Lemma 2.7 Let n ≥ p ≥ 1 be two integers and let xk ∈ [0, π2 ], k = 1, ..., n, be such that
n∑

k=1

xk ≤ pπ + γ. Then

n∑

k=1

sinxk ≥
n∑

k=1

xk − max
B⊂{1,...,n}

#B=p

∑

k∈B
xk.

Proof. If n = p then the conclusion is straightforward. Suppose now that n > p. By symmetry,

we can assume that B = {xn−p+1, ..., xn} contains the biggest p terms among {x1, ..., xn}. Set

z = min
n−p+1≤k≤n

xk. It is sufficient to prove that

n−p
∑

k=1

(sin xk − xk) + p sin z ≥ 0.

Define the smooth symmetric function

f : [0,
π

2
]n−p → R, f(x1, ..., xn−p) =

n−p
∑

k=1

(sinxk − xk) + p sin z.

Then f is a concave function. We want to find the minimum of f over the convex compact

polyhedron

D = {(x1, ..., xn−p) ∈ [0, z]n−p :

n−p
∑

k=1

xk ≤ p(π − z) + γ}.

Since f is concave, its minimum on D is achieved in one of the extremal points (i.e. corners)

of D. By a permutation of the coordinates, a corner (x1, ..., xn−p) of D has the following form:

either

xi ∈ {0, z},∀k = 1, ..., n − p
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2.3. First proof of Theorem 2.4

or

xk ∈ {0, z},∀k = 1, ..., n − p− 1 and xn−p = γ + p(π − z) −
n−p−1
∑

k=1

xk.

In order to prove that f ≥ 0 on these points of D, we have to check that: if k, p ≥ 1 are two

integer numbers, I1 = [0, pπ+γ
k+p ] ∩ [0, π2 ] and I2 = [ pπ+γ

k+p+1 ,
pπ+γ
k+p ] ∩ [0, π2 ], then

(k + p) sin z − kz ≥ 0, ∀z ∈ I1 (2.6)

and

(k + p) sin z − kz + sin
(
γ + pπ − (k + p)z

)
− pπ − γ + (k + p)z ≥ 0, ∀z ∈ I2. (2.7)

Indeed, remark that the two LHS of each inequality from above represent concave functions in

z and therefore, it is sufficient to show that they are positive on the extremities of the given

intervals I1 and I2.

For (2.6), let us denote

h(z) = (k + p) sin z − kz, ∀z ∈ I1.

Case 1: I1 = [0, pπ+γ
k+p ], i.e. pπ+γ

k+p ≤ π
2 . Then k ≥ p+ 1. We have that h(0) = 0 and it remains to

check that

h(
pπ + γ

k + p
) ≥ 0.

If p = 1 and k = 2 then h(π+γ
3 ) = 0. If p = 1 and k ≥ 3, then the inequality

sin z ≥ z − z3

6
(2.8)

yields, for z = π+γ
k+1 ,

h(
π + γ

k + 1
) ≥ π + γ

k + 1

(

1 − (π + γ)2

6(k + 1)

)

≥ 0.

Otherwise, p ≥ 2 and applying (2.8) for z = pπ+γ
k+p , we obtain

h(
pπ + γ

k + p
) ≥ pπ + γ

k + p

(

p− (pπ + γ)2

6(k + p)

)

≥ pπ + γ

k + p

(

p− (pπ + γ)2

6(2p + 1)

)

≥ 0.

Case 2: I1 = [0, π2 ], i.e. k ≤ p. Then h(π2 ) = k + p− k π2 ≥ (2 − π
2 )k ≥ 0.

The proof of (2.7) follows the same lines. �

Remark 2.3 γ is optimal for the above inequality (consider n = 3, p = 1, x1 = x2 = x3 = π+γ
3 ).

Proof of Lemma 2.5. We can assume that B = {x1, ..., xp} contains the biggest p terms

among {xk : k ≥ 1}. Let ε > 0. There exists n > p such that
∑

k>n

xk < ε. By Lemma 2.7, we

know that
n∑

k=1

sinxk ≥
n∑

k=p+1

xk.
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Chapter 2. Optimal lifting for BV (S1, S1)

Therefore,
∑

k≥1

sinxk ≥
n∑

k=1

sinxk ≥
∑

k>p

xk − ε.

Letting now ε→ 0, the conclusion follows. �

We now present:

Proof of Theorem 2.4. It suffices to prove that

Ej(g) ≤
∫

S1

(

|(ġ)a| + |(ġ)c|
)

+ 2
∑

y∈S(g)

|g(y+) − g(y−)|. (2.9)

If S(g) = ∅, the conclusion follows using the inequality |L(g)| ≤
∫

S1

(

|(ġ)a|+|(ġ)c|
)

. Ifm(g) = 0,

(2.9) is a consequence of the fact that |dy(g)| ≤
π

2
|g(y+)− g(y−)|,∀y ∈ S(g). Suppose now that

S(g) 6= ∅ and m(g) 6= 0; assume that m(g) > 0 (the case m(g) < 0 is similar). As in the proof

of Lemma 2.2, consider

S̃(g) = {y ∈ S(g) : dy(g) > 0}.

If #S̃(g) ≤ m(g) then, by Lemma 2.2, Ej(g) = |L(g)| and so (2.9) holds.

Otherwise, we have #S̃(g) > m(g) ≥ 1. Rewrite P (g) + L(g) = 2πm(g) as

∑

y∈S̃(g)

dy(g) −
∑

y∈S(g)\S̃(g)

|dy(g)| + L(g) = 2πm(g). (2.10)

Let B ⊂ S̃(g) consist of the largest m(g) elements of the set {dy(g) : y ∈ S̃(g)}. For each

y ∈ S̃(g), set xy =
dy(g)

2 ∈ [0, π2 ]. Then |g(y+) − g(y−)| = 2 sinxy. We distinguish two cases:

Case 1:
∑

y∈S(g)\S̃(g)

|dy(g)| − L(g) ≤ 2γ.

By (2.10),
∑

y∈S̃(g)

dy(g) ≤ 2πm(g) + 2γ. By Lemma 2.5, we have

∑

y∈S̃(g)\B
dy(g) ≤

∑

y∈S̃(g)

|g(y+) − g(y−)|.

Using Lemma 2.2, we find that

Ej(g) = L(g) + 2
∑

y∈S̃(g)\B
dy(g) ≤ |L(g)| + 2

∑

y∈S(g)

|g(y+) − g(y−)|.

Case 2:
∑

y∈S(g)\S̃(g)

|dy(g)| − L(g) > 2γ, i.e.
∑

y∈S̃(g)

dy(g) > 2πm(g) + 2γ. (2.11)

The following two situations can occur:
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i) There exists S1 ⊂ S̃(g) such that B ⊂ S1 and

2πm(g) ≤
∑

y∈S1

dy(g) ≤ 2πm(g) + 2γ. (2.12)

By (2.12), using Lemma 2.5, we infer that

∑

y∈S1\B
dy(g) ≤

∑

y∈S1

|g(y+) − g(y−)|. (2.13)

With S2 = S̃(g) \ S1, it follows from (2.10) and (2.12) that

∑

y∈S2

dy(g) −
∑

y∈S(g)\S̃(g)

|dy(g)| + L(g) ≤ 0.

By adding
∑

y∈S2

dy(g), we obtain

2
∑

y∈S2

dy(g) + L(g) ≤
∑

y∈S2∪(S(g)\S̃(g))

|dy(g)| ≤
π

2

∑

y∈S2∪(S(g)\S̃(g))

|g(y+) − g(y−)|. (2.14)

Combining (2.13) and (2.14), we deduce

Ej(g) = L(g) + 2
∑

y∈S̃(g)\B
dy(g) ≤ 2

∑

y∈S(g)

|g(y+) − g(y−)|.

ii) There exist S1 ⊂ S̃(g) and ỹ ∈ S̃(g) \ S1 such that B ⊂ S1 and

2πm(g) + 2γ − dỹ(g) <
∑

y∈S1

dy(g) < 2πm(g).

Set S2 = S̃(g) \ (S1 ∪ {ỹ}). By (2.10), we have

∑

y∈S2

dy(g) −
∑

y∈S(g)\S̃(g)

|dy(g)| + L(g) ≤ −2γ. (2.15)

By adding
∑

y∈S2

dy(g) to (2.15), we find that

2
∑

y∈S2

|dy(g)| + L(g) ≤ −2γ +
∑

y∈S2∪(S(g)\S̃(g))

|dy(g)|

= −2γ +
4

π

∑

y∈S2∪(S(g)\S̃(g))

|dy(g)| − (
4

π
− 1)

∑

y∈S2∪(S(g)\S̃(g))

|dy(g)|.

From (2.11), we get that

2γ + L(g) ≤
∑

y∈S(g)\S̃(g)

|dy(g)| ≤
∑

y∈S2∪(S(g)\S̃(g))

|dy(g)|.
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Therefore,

2
∑

y∈S2

dy(g) + L(g) ≤ −2γ +
4

π

∑

y∈S2∪(S(g)\S̃(g))

|dy(g)| − (
4

π
− 1)

(

2γ + L(g)
)

≤ 4

π

∑

y∈S2∪(S(g)\S̃(g))

|dy(g)| + |L(g)| − 8γ

π

≤ 2
∑

y∈S2∪(S(g)\S̃(g))

|g(y+) − g(y−)| + |L(g)| − 8γ

π
;

(2.16)

here, we have used the fact that |dy(g)| ≤
π

2
|g(y+) − g(y−)|, ∀y ∈ S(g). On the other side,

Lemma 2.5 yields
∑

y∈S1\B
dy(g) ≤

∑

y∈S1

|g(y+) − g(y−)|. (2.17)

Remark also that

dỹ(g) ≤ |g(ỹ+) − g(ỹ−)| + (π − 2); (2.18)

this amounts to the inequality x ≤ 2 sin x
2 + π − 2, ∀x ∈ [0, π]. By combining (2.16), (2.17) and

(2.18), we obtain

Ej(g) = L(g) + 2
∑

y∈S2

dy(g) + 2
∑

y∈S1\B
dy(g) + 2dỹ(g)

≤ |L(g)| + 2
∑

y∈S(g)

|g(y+) − g(y−)| + 2(π − 2) − 8γ

π
.

Since 2(π − 2) − 8γ
π < 0, the conclusion follows. �

2.4 Another proof of Theorem 2.4

In Chapter 1, we proved the estimate (2.3) for BV (Ω, S1) functions, where Ω ⊂ RN is a bounded

open set. The idea was to consider the function f : S1 → R defined by

f(eiθ) = θ for ∀ − π ≤ θ < π,

and to show that for an appropriate α ∈ R, the lifting

ϕ = f(eiαg) − α

satisfies |ϕ|BV ≤ 2|g|BV . For that, one can repeat the same arguments and prove that

∫ 2π

0
|f(eiαg) − α|BV dα ≤ 4π|g|BV ; (2.19)

the conclusion is now straightforward.
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Remark 2.4 i) Set C (g) = {f(eiαg) − α : α ∈ R}. Then C (g) need not be contained in BV .

Here is an example. Consider the step function g ∈ BV (S1, S1) defined by

g(e2πit) = eixk , t ∈ (
1

2k
,

1

2k−1
), k = 1, 2, ...

where xk = (−1)k2−[ k+1
2

]π. It is easy to see that

|f(eiπg) − π|BV = |x1 + 2π| +
∑

k≥1

|xk+1 − xk + (−1)k2π| = ∞.

ii) It follows from (2.19) that, for a.e. α ∈ [0, 2π], f(eiαg)−α ∈ BV (S1,R); clearly, the same

holds for a.e. α ∈ R.

iii) There exist some functions g ∈ BV (S1, S1) such that no lifting in C (g) is optimal. For

example, consider the step function g : S1 → S1 be defined as:

g(eπit) =







1 if t ∈ (0, 1
7)

ei
π
2 if t ∈ (1

7 ,
2
7 )

ei
3π
4 if t ∈ (2

7 ,
3
7 )

ei
(k+2)π

4 if t ∈ (k7 ,
k+1
7 ), k = 3, ..., 13

.

So g has 2 jumps of length π
2 (with respect to dS1) and 12 jumps of length π

4 . Then m(g) = 2

and

E(g) = Ej(g) = 12 · π
4

+ 2 · (2π − π

2
).

Remark now that for every α ∈ R, the cut {z ∈ C : arg(z) = π − α (mod 2π)} of the function

z → f(eiαz)−α will affect two jumps of g and at least one of them has the size π
4 (with respect

to the geodesic distance dS1 on S1). Therefore,

|f(eiαg) − α|BV ≥ π

2
+ 11 · π

4
+ (2π − π

4
) + (2π − π

2
) > E(g).

2.5 Some examples

We present some examples showing that the constant 2 in (2.3) is optimal (see also Brezis-

Mironescu-Ponce[30]).

1. Let g = Id : S1 → S1. Then g ∈ BV (S1, S1) ∩ C0. Remark that (ġ)c = (ġ)j = 0. Thus,

deg g = 1, Ẽ(g) = Ej(g) = |g|BV = 2π and so E(g) = 2|g|BV .

2. Let f : [0, 1] → [0, 1] be the standard Cantor function. Define g : S1 → S1 as

g(e2πi t) = e2πi f(t),∀t ∈ [0, 1].

Clearly, g ∈ BV (S1, S1) ∩ C0, (ġ)a = (ġ)j = 0 and deg g = 1. As above, Ẽ(g) = Ej(g) =

|g|BV = 2π and E(g) = 2|g|BV .

3. For each n ≥ 2, take gn(e
2πi t) = e2πi k/n for k

n ≤ t < k+1
n , k = 0, 1, ..., n − 1. Then

gn ∈ BV (S1, S1) and (ġn)
a = (ġn)

c = 0. We have that Ẽ(gn) = 0, m(gn) = 1, Ej(gn) = 4π(1− 1
n)

and |gn|BV = 2n sin π
n . We deduce that

lim
n→∞

E(gn)

|gn|BV
= 2.
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Chapter 3

The space BV (S2, S1): minimal

connection and optimal lifting

Abstract

We show that topological singularities of maps in BV (S2, S1) can be detected by a special

distribution. As an application, we construct an optimal lifting and we compute its total

variation.

This chapter is published in Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), 283–302

(cf. [53]).

3.1 Introduction

Let u ∈ BV (S2, S1), i.e. u = (u1, u2) ∈ L1(S2,R2), |u(x)| = 1 for a.e. x ∈ S2 and the derivative

of u (in the sense of the distributions) is a finite 2 × 2−matrix Radon measure

∫

S2

|Du| = sup

{
∫

S2

2∑

k=1

uk div ζk dH2 : ζk ∈ C1(S2,R2),

2∑

k=1

|ζk(x)|2 ≤ 1,∀x ∈ S2

}

<∞ ,

where the norm in R2 is the Euclidean norm. Observe that the total variation of Du is inde-

pendent of the choice of the orthonormal frame (x, y) on S2; a frame (x, y) is always taken such

that (x, y, e) is direct, where e is the outward normal to the sphere S2.

We begin with the notion of minimal connection between point singularities of u. The concept

of a minimal connection associated to a function from R3 into S2 was originally introduced by

Brezis, Coron and Lieb [27]. Following the ideas in [27] and [38], Brezis, Mironescu and Ponce

[30] studied the topological singularities of functions g ∈ W 1,1(S2, S1). They show that the

distributional Jacobian of g describes the location and the topological charge of the singular set

of g. More precisely, let T (g) ∈ D′(S2,R) be the distribution on S2 defined as

T (g) = 2det(∇g) = −(g ∧ gx)y + (g ∧ gy)x;

then there exist two sequences of points (pk), (nk) in S2 such that
∑

k

|pk − nk| <∞ and T (g) = 2π
∑

k

(δpk
− δnk

).
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Our aim is to extend these notions for functions u ∈ BV (S2, S1). In this case, the difficulty of

the analysis of the singular set arises from the existence of more than one type of singularity:

besides the point singularities carrying a degree, the jump singularities of u should be taken into

account.

We start by introducing some notation. Write the finite Radon 2× 2-matrix measure Du as

Du = Dau+Dcu+Dju,

where Dau,Dcu and Dju are the absolutely continuous part, the Cantor part and the jump part

of Du (see e.g. [11]). We recall that Dju can be written as

Dju = (u+ − u−) ⊗ νuH1xS(u),

where S(u) denotes the set of jump points of u; S(u) is a countably H1-rectifiable set on S2

oriented by the Borel map νu : S(u) → S1. The Borel functions u+, u− : S(u) → S1 are the

traces of u on the jump set S(u) with respect to the orientation νu. Throughout the chapter we

identify u by its precise representative that is defined H1-a.e. on S2.

We now introduce the distribution T (u) ∈ D′(S2,R) as

〈T (u), ζ〉 =

∫

S2

∇⊥ζ · (u∧ (Dau+Dcu)) +

∫

S(u)
ρ(u+, u−) νu · ∇⊥ζ dH1, ∀ζ ∈ C1(S2,R). (3.1)

Here, ∇⊥ζ = (ζy,−ζx),
(

u1

u2

)

∧
(

a1 b1

a2 b2

)

= (u ∧ a, u ∧ b) = (u1a2 − u2a1, u1b2 − u2b1)

where a =

(

a1

a2

)

and b =

(

b1

b2

)

. The function ρ(·, ·) : S1 × S1 → [−π, π] is the signed

geodesic distance on S1 defined as

ρ(ω1, ω2) =







Arg
(
ω1
ω2

)

if ω1
ω2

6= −1

Arg (ω1) − Arg (ω2) if ω1
ω2

= −1
, ∀ω1, ω2 ∈ S1

where Arg (ω) ∈ (−π, π] stands for the argument of the unit complex number ω ∈ S1. T (u)

represents the distributional determinant of the absolutely continuous part and the Cantor part

of Du which is adjusted on S(u) by the tangential derivative of ρ(u+, u−). The second term in

the RHS of (3.1) is motivated by the study of BV (S1, S1) functions (see Chapter 2): we defined

there a similar quantity that represents a pseudo-degree for BV (S1, S1) functions.

Remark 3.1 i) The integrand in (3.1) is computed pointwise in any orthonormal frame (x, y)

and the corresponding quantity is frame-invariant.

ii) The 2-vector measure

µ = (µ1, µ2) = u ∧ (Dau+Dcu) = (u ∧ (Daux +Dcux), u ∧ (Dauy +Dcuy))
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3.1. Introduction

is well-defined since Dau+Dcu vanishes on sets which are σ-finite with respect to H1.

iii) Notice that the function ρ is antisymmetric, i.e.

ρ(ω1, ω2) = −ρ(ω2, ω1), ∀ω1, ω2 ∈ S1

and therefore, T (u) does not depend of the choice of the orientation νu on the jump set S(u).

By Lemma 3.10 (see below), we obtain

|〈T (u), ζ〉| ≤ |u|BV S1, ∀ζ ∈ C1(S2,R) with |∇ζ| ≤ 1

where |u|BV S1 =

∫

S2

(

|Dau| + |Dcu|
)

+

∫

S(u)
dS1(u+, u−) dH1 and dS1 stands for the geodesic

distance on S1. Therefore, T (u) is indeed a distribution (of order 1) on S2.

For a compact Riemannian manifold X with the induced distance d, let Z(X) be the set of

distributions that can be written as a countable sum of dipoles:

Z(X) =

{

Λ ∈
[
C1(X)

]∗
: ∃(pk), (nk) ⊂ X,

∑

k

d(pk, nk) <∞ and Λ = 2π
∑

k

(δpk
− δnk

)

}

.

Remark 3.2 i) In general, Λ ∈ Z(X) is not a measure. In fact, it can be shown that Λ is a

measure if and only if Λ is a finite sum of dipoles (see Smets [85] and also Ponce [72]).

ii) Λ ∈ Z(X) has always infinitely many representations as a sum of dipoles and these

representations need not be equivalent modulo a permutation of points. For example, a dipole

δp−δn may be represented as δp−δn1 +
∑

k≥1

(δnk
−δnk+1

) for any sequence (nk)k rapidly converging

to n.

For each Λ ∈ Z(X), the length of a minimal connection between the singularities is defined

as

‖Λ‖ = sup
ζ∈C1(X)

|∇ζ|≤1

〈Λ, ζ〉.

For example, when Λ = 2π
m∑

k=1

(δpk
− δnk

) is a finite sum of dipoles, Brezis, Coron and Lieb [27]

showed that

‖Λ‖ = 2π min
σ∈Sm

m∑

k=1

d(pk, nσ(k))

where Sm denotes the group of permutation of {1, 2, . . . ,m}. In general, for an arbitrary Λ ∈
Z(X), Bourgain, Brezis and Mironescu [22] proved the following characterization of the length

of a minimal connection:

‖Λ‖ = inf
(pk),(nk)

{

2π
∑

k

d(pk, nk) : Λ = 2π
∑

k

(δpk
− δnk

) and
∑

k

d(pk, nk) <∞
}

. (3.2)

From (3.2), one can deduce that Z(X) is a complete metric space with respect to the distance

induced by ‖ · ‖ (see e.g. [72]).

Our first theorem states that T (u) is a countable sum of dipoles. It is the extension to the

BV case of the result in [30] mentioned in the beginning.
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Theorem 3.1 For every u ∈ BV (S2, S1), we have T (u) ∈ Z(S2), i.e. there exist (pk), (nk) in

S2 such that
∑

k

|pk − nk| <∞ and T (u) = 2π
∑

k

(δpk
− δnk

).

The proof relies on the fact that the derivative (in the sense of distributions) of the characteristic

function of a bounded measurable set in R can be written as a sum of differences between Dirac

masses:

Lemma 3.2 Let I ⊂ R be a compact interval and f : I → 2πZ be an integrable function. Define

〈df
dt
, ζ〉 := −

∫

I
f(t) ζ ′(t) dt , ∀ζ ∈ C1(I).

Then
df

dt
∈ Z(I) and ‖df

dt
‖ =

∫

I
|f |dt.

The same property is valid for the distributional tangential derivative of an integrable function

taking values in 2πZ and defined on a C1 1-graph (see Remark 3.3). Since every countably

H1-rectifiable set S ⊂ S2 can be covered H1-a.e. by a sequence of C1 1-graphs, it makes sense

to define for every Λ ∈ Z(S2) the set

J (Λ) =







(f, S, ν) :

S is a countably H1- rectifiable set in S2, ν is an orientation on S,

f ∈ L1(S, 2πZ) is such that

∫

S
f ν · ∇⊥ζ dH1 = 〈Λ, ζ〉, ∀ζ ∈ C1(S2)







.

We have the following reformulation of (3.2):

Lemma 3.3 For every Λ ∈ Z(S2), we have

‖Λ‖ = min
(f,S,ν)∈J (Λ)

∫

S
|f |dH1.

It is known that the infimum in (3.2) is not achieved in general (see [72]); the advantage of the

above formula is that the minimum is always attained. It means that the length of Λ represents

the minimal mass that an H1-integrable function with values into 2πZ could carry between the

dipoles of Λ.

In the sequel we are concerned with the lifting of u ∈ BV (S2, S1). We call BV lifting of u

every function ϕ ∈ BV (S2,R) such that

u = eiϕ a.e. on S2.

The existence of a BV lifting for functions u ∈ BV (S2, S1) was initially shown by Giaquinta,

Modica and Souček [47]. Adapting the argument in Chapter 1, one can prove the existence of a

lifting ϕ ∈ BV ∩ L∞(S2,R) such that
∫

S2

|Dϕ| ≤ 2

∫

S2

|Du|; (3.3)

moreover, the constant 2 in (3.3) is the best constant (see Example 3.1 and Proposition 3.13

below).

We give the following characterization for a lifting of u:
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Lemma 3.4 Let u ∈ BV (S2, S1). For every lifting ϕ ∈ BV (S2,R) of u, there exists (f, S, ν) ∈
J (T (u)) such that

Dϕ = u ∧ (Dau+Dcu) + ρ(u+, u−)νuH1xS(u) − fνH1xS. (3.4)

Conversely, for every triple (f, S, ν) ∈ J (T (u)) there exists a lifting ϕ ∈ BV (S2,R) of u such

that (3.4) holds.

In this framework, it is natural to investigate the quantity

E(u) = inf

{∫

S2

|Dϕ| : ϕ ∈ BV (S2,R), eiϕ = u a.e. on S2

}

. (3.5)

The infimum from above is achieved and it is equal to the relaxed energy

Erel(u) = inf

{

lim inf
k→∞

∫

S2

|∇uk|dH2 : uk ∈ C∞(S2, S1), uk → u a.e. on S2

}

(3.6)

(see Remark 3.4). A lifting ϕ ∈ BV (S2,R) of u is called optimal if

E(u) =

∫

S2

|Dϕ|.

An optimal lifting need not be unique (see Proposition 3.13). Remark also that for u ∈
BV (S2, S1), there could be no optimal BV lifting of u that belongs to L∞ (see Example 3.3).

Our aim is to compute the total variation E(u) of an optimal lifting and to construct an

optimal lifting. Theorem 3.5 establishes the formula for E(u) using the distribution T (u).

Theorem 3.5 For every u ∈ BV (S2, S1), we have

E(u) =

∫

S2

(|Dau| + |Dcu|) + min
(f,S,ν)∈J (T (u))

∫

S∪S(u)

∣
∣
∣fν χS − ρ(u+, u−)νu χS(u)

∣
∣
∣ dH1. (3.7)

We refer the reader to [47] for related results in terms of cartesian currents.

As a consequence of Theorem 3.5, we recover the result of Brezis, Mironescu and Ponce [30]

about the total variation of an optimal BV lifting for functions g ∈W 1,1(S2, S1): the gap

E(g) −
∫

S2

|∇g|dH2

is equal to the length of a minimal connection connecting the topological singularities of g.

Corollary 3.6 For every g ∈W 1,1(S2, S1), we have

E(g) =

∫

S2

|∇g|dH2 + ‖T (g)‖.

From (3.7), we deduce an estimate for E(u) (which is a weaker form of inequality (3.3)):

Corollary 3.7 For every u ∈ BV (S2, S1), we have

E(u) ≤ 2|u|BV S1.
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In the spirit of [30], we have the following interpretation of ‖T (u)‖ as a distance:

Theorem 3.8 For every u ∈ BV (S2, S1), we have

‖T (u)‖ = min
ψ∈BV (S2,R)

∫

S2

∣
∣
∣u ∧ (Dau+Dcu) + ρ(u+, u−)νuH1xS(u) −Dψ

∣
∣
∣. (3.8)

Moreover, there is at least one minimizer ψ ∈ BV (S2,R) of (3.8) that is a lifting of u.

Remark that in general, ‖T (u)‖ is not the distance of the measure

u ∧ (Dau+Dcu) + ρ(u+, u−)νuH1xS(u)

to the class of gradient maps. In Example 3.4, we construct a function u ∈ BV (S2, S1) such

that

‖T (u)‖ < inf
ψ∈C∞(S2,R)

∫

S2

∣
∣
∣u ∧ (Dau+Dcu) + ρ(u+, u−)νuH1xS(u) −Dψ

∣
∣
∣.

In Section 3.2, we present the proofs of Lemmas 3.2, 3.3 and 3.4, Theorems 3.1, 3.5 and

3.8 and Corollaries 3.6 and 3.7. Some examples and interesting properties of T (u) are given

in Section 3.3. Among other things, we show that T : BV (S2, S1) → Z(S2) is discontinuous

and we analyze some algebraic properties of T (u). We also discuss the meaning of the point

singularities of T (u) and about their location on S2.

All the results included here can be easily adapted for functions in BV (Ω, S1) where Ω is a

more general simply connected Riemannian manifold of dimension 2.

3.2 Remarks and proofs of the main results

We start by proving Lemma 3.2:

Proof of Lemma 3.2. Firstly, let us suppose that f = 2πχA where A ⊂ I is an open set.

Write A =
⋃

j∈N

(aj , bj) as a countable reunion of disjoint intervals. It is clear that

〈dχA
dt

, ζ〉 =
∑

j∈N

(ζ(aj) − ζ(bj)), ∀ζ ∈ C1(I)

and
∑

j∈N

(bj − aj) = H1(A). Thus 2π
dχA
dt

∈ Z(I) and

‖df

dt
‖ = 2π sup

ζ∈C1(I)

|ζ′|≤1

∫

I
χA ζ

′ dt = 2π sup
ψ∈C(I)

|ψ|≤1

∫

I
χA ψ dt = 2πH1(A).

Moreover, let A ⊂ I be a Lebesgue measurable set and f = 2πχA. Using the regularity of the

Lebesgue measure, there exists a decreasing sequence of open sets A ⊂ Ak+1 ⊂ Ak ⊂ I, k ∈ N

such that lim
k→∞

H1(Ak) = H1(A). Observe that
dχAk

dt
→ dχA

dt
in
[
C1(I)

]∗
. Since Z(I) is a
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complete metric space, we conclude that 2π
dχA
dt

∈ Z(I) and ‖2πdχA
dt

‖ = 2πH1(A). In the

general case of an integrable function f : I → 2πZ, write

f = 2π
∑

k∈Z

k χEk
in L1, (3.9)

whereEk = {x ∈ I : f(x) = 2πk}. Notice that 2π
d (k χEk

)

dt
∈ Z(I) and the series

∑

k∈Z

2π
d (k χEk

)

dt

converges absolutely; indeed, we have

∑

k∈Z

‖2πd (k χEk
)

dt
‖ = 2π

∑

k∈Z

|k|H1(Ek) =

∫

I
|f |dt <∞.

By (3.9), we conclude that
df

dt
∈ Z(I) and

‖df

dt
‖ = sup

ζ∈C1(I)

|ζ′|≤1

∫

I
f ζ ′ dt = sup

ψ∈C(I)

|ψ|≤1

∫

I
f ψ dt =

∫

I
|f |dt.

�

Remark 3.3 The conclusion of Lemma 3.2 is also true for H1-integrable functions with values

in 2πZ that are defined on C1 1-graphs. For simplicity, we restrict to C1 1-graphs in S2, i.e. for

an orthonormal frame (x, y) on S2, we consider the set

Γ = {(x, y) : φ(x) = y}

where φ is a C1 function. Suppose c : [0, 1] → Γ is a parameterization of Γ and set τ(c(t)) =
c′(t)
|c′(t)| the tangent unit vector to the curve Γ at c(t), ∀t ∈ (0, 1). Let f : Γ → 2πZ be an

H1-integrable function on Γ. Define

〈∂f
∂τ
, ζ〉 := −

∫ 1

0
f ◦ c(t) (ζ ◦ c)′(t) dt , ∀ζ ∈ C1(Γ).

By Lemma 3.2, we have

∂f

∂τ
∈ Z(Γ) and ‖∂f

∂τ
‖ =

∫ 1

0
|f |(c(t)) |c′(t)|dt.

Before proving Lemma 3.4, we give the following result:

Lemma 3.9 For every u ∈ BV (S2, S1), we have

u ∧ (Dau+Dcu) =
1

i
ū(Dau+Dcu)

and |u ∧ (Dau+Dcu)| = |Dau| + |Dcu|.
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Proof. Write u = (u1, u2) = u1 + i u2. We can consider the 2 × 2 matrix of real measures

Du as a 2-vector of complex measures, i.e. Du = Du1 + iDu2. Since u2
1 + u2

2 = 1, it results

D(u2
1 + u2

2) = 0. By the chain rule (see e.g. [11]), we obtain

u1(D
au1 +Dcu1) + u2(D

au2 +Dcu2) = 0,

i.e. the real part of the C2-measure ū(Dau+Dcu) vanishes. Therefore,

u ∧ (Dau+Dcu) =
1

i
ū(Dau+Dcu).

Hence, using the fact that the absolutely continuous part and the Cantor part ofDu are mutually

singular, we conclude that

|u ∧ (Dau+Dcu)| = |u|(|Dau| + |Dcu|) = |Dau| + |Dcu|.

�

Proof of Lemma 3.4. Let ϕ ∈ BV (S2,R) be a lifting of u. Write

Dϕ = Daϕ+Dcϕ+ (ϕ+ − ϕ−)νϕH1xS(ϕ).

By the chain rule and Lemma 3.9, we obtain

Daϕ+Dcϕ =
1

i
ū(Dau+Dcu) = u ∧ (Dau+Dcu).

Since u = eiϕ a.e. on S2, we have that S(u) ⊂ S(ϕ) and by changing the orientation νϕ, we may

assume 





νϕ = νu

eiϕ+ = u+

eiϕ− = u−

H1-a.e. on S(u).

Therefore,

ϕ+ − ϕ− ≡ ρ(u+, u−) (mod 2π) H1-a.e. on S(u)

and ϕ+ − ϕ− ≡ 0 (mod 2π) H1-a.e. on S(ϕ) \ S(u).

Hence, there exists fϕ : S(ϕ) → 2πZ a measurable function such that

Dϕ = u ∧ (Dau+Dcu) + ρ(u+, u−)νuH1xS(u) − fϕνϕH1xS(ϕ). (3.10)

Observe that fϕ is an H1-integrable function since

|ρ(u+, u−)| = dS1(u+, u−) ≤ π

2
|u+ − u−|.

Since Dϕ is a measure, we have

curlDϕ = 0 in D′,

i.e. for every ζ ∈ C1(S2,R),
∫

S2

∇⊥ζ Dϕ = 0.
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By (3.10), it yields

〈T (u), ζ〉 =

∫

S(ϕ)
fϕ∇⊥ζ · νϕ dH1, ∀ζ ∈ C1(S2)

and therefore, (fϕ, S(ϕ), νϕ) ∈ J (T (u)).

Conversely, take (f, S, ν) ∈ J (T (u)). Without loss of generality, we may consider S = {f 6=
0}. Consider the finite Radon R2-valued measure

µ = u ∧ (Dau+Dcu) + ρ(u+, u−)νuH1xS(u) − f νH1xS.

We check that curlµ = 0 in D′(S2). Indeed, for every ζ ∈ C1(S2,R),

−〈curlµ, ζ〉 =

∫

S2

∇⊥ζ dµ = 〈T (u), ζ〉 −
∫

S
f ∇⊥ζ · ν dH1 = 0.

By the BV version of Poincare’s lemma, there exists ϕ ∈ BV (S2,R) such that Dϕ = µ in

D′(S2,R2). Here, S ∪ S(u) is the jump set of ϕ. On the set S ∪ S(u), we choose an orientation

νϕ such that νϕ = νu on S(u). We have







Daϕ+Dcϕ = u ∧ (Dau+Dcu) = 1
i ū(D

au+Dcu)

ϕ+ − ϕ− ≡ ρ(u+, u−) (mod 2π) H1- a.e. on S(u)

ϕ+ − ϕ− ≡ 0 (mod 2π) H1- a.e. on S \ S(u)

.

We now show that

D(u e−iϕ) = 0.

By the chain rule, we get

D(e−iϕ) = −ie−iϕ(Daϕ+Dcϕ) + (e−iϕ
+ − e−iϕ

−
) ⊗ νuH1xS(u)

= −e−iϕū(Dau+Dcu) + (e−iϕ
+ − e−iϕ

−
) ⊗ νuH1xS(u).

Remark that the space BV (S2,C) ∩ L∞ is an algebra. Differentiating the product u e−iϕ, we

obtain

D(u e−iϕ) = e−iϕ(Dau+Dcu)−u e−iϕū(Dau+Dcu)+ (u+ e−iϕ
+ −u− e−iϕ−

)⊗νuH1xS(u) = 0.

Thus, up to an additive constant, ϕ is a BV lifting of u and (3.4) is fulfilled. �

Proof of Theorem 3.1. Let ϕ ∈ BV (S2,R) be a lifting of u. By Lemma 3.4, there exists

(f, S, ν) ∈ J (T (u)) such that (3.4) holds. Denote by τ : S → S1 the tangent vector in H1-a.e.

point of S such that (ν, τ, e) is direct. By (3.4),

〈T (u), ζ〉 =

∫

S
f ∇⊥ζ · ν dH1

=

∫

S
f
∂ζ

∂τ
dH1

=
∑

k∈N

∫

Ik

χSf
∂ζ

∂τ
dH1, ∀ζ ∈ C1(S2)

57



Chapter 3. The space BV (S2, S1): minimal connection and optimal lifting

where {Ik}k∈N is a family of disjoint compact C1 1-graphs that covers H1-almost all of the

countably rectifiable set S, i.e.

H1

(

S \
⋃

k∈N

Ik

)

= 0.

According to Lemma 3.2 and Remark 3.3, we conclude T (u) ∈ Z(S2) and ‖T (u)‖ ≤
∫

S
|f | dH1.

�

Before proving Theorem 3.5, let us make some remarks about E(u) and Erel(u) for u ∈
BV (S2, S1) (see also [30]):

Remark 3.4 i) E(u) < ∞ and Erel(u) < ∞ (the existence of a BV lifting of u was shown in

Chapter 1 and [47]);

ii) The infimum in (3.5) is achieved; indeed, let ϕk ∈ BV (S2,R), eiϕk = u a.e. on S2, be

such that

lim
k→∞

∫

S2

|Dϕk| = E(u) <∞.

By Poincaré’s inequality, there exists a universal constant C > 0 such that

∫

S2

∣
∣
∣ϕk −

∫

S2

− ϕk

∣
∣
∣ dH2 ≤ C

∫

S2

|Dϕk|, ∀k ∈ N

(where

∫

S2

− stands for the average). Therefore, by subtracting a suitable integer multiple of

2π, we may assume that (ϕk)k∈N is bounded in BV (S2,R). After passing to a subsequence if

necessary, we may assume that ϕk → ϕ a.e. and L1 for some ϕ ∈ BV (S2,R). It follows that ϕ

is a lifting of u on S2 and

E(u) = lim
k→∞

∫

S2

|Dϕk| ≥
∫

S2

|Dϕ| ≥ E(u);

iii) The infimum in (3.6) is also achieved; take umk ∈ C∞(S2, S1) such that for each k ∈ N,

umk → u a.e. on S2 and

∫

S2

|∇umk |dH2 ց ak ∈ R as m→ ∞

and lim
k→∞

ak = Erel(u). Subtracting a subsequence, we may assume that for each k ∈ N,

∫

S2

|umk − u|dH2 <
1

k
and

∫

S2

|∇umk |dH2 − ak <
1

k
, ∀m ≥ 1.

Therefore, ukk → u in L1 and

lim
k→∞

∫

S2

|∇ukk|dH2 = Erel(u).

iv) E(u) = Erel(u). For “≤”, take uk ∈ C∞(S2, S1),∀k ∈ N such that uk → u a.e. on S2 and

sup
k∈N

∫

S2

|∇uk|dH2 < ∞. Since S2 is simply connected, there exists ϕk ∈ C∞(S2,R) such that
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eiϕk = uk. Moreover,

∫

S2

|∇ϕk|dH2 =

∫

S2

|∇uk|dH2. Using the same argument as in ii), we

may assume that ϕk → ϕ a.e. and L1 for some ϕ ∈ BV (S2,R). Therefore, eiϕ = u a.e. on S2

and

E(u) ≤
∫

S2

|Dϕ| ≤ lim inf
k→∞

∫

S2

|∇ϕk|dH2 = lim inf
k→∞

∫

S2

|∇uk|dH2.

For “≥”, consider a BV lifting ϕ of u and take an approximating sequence ϕk ∈ C∞(S2,R) such

that ϕk → ϕ a.e. and |Dϕ|(S2) = lim
k→∞

∫

S2

|∇ϕk|dH2. With uk = eiϕk ∈ C∞(S2, S1), we have

uk → u a.e. on S2 and

Erel(u) ≤ lim
k→∞

∫

S2

|∇uk|dH2 = lim
k→∞

∫

S2

|∇ϕk|dH2 =

∫

S2

|Dϕ|.

�

Proof of Theorem 3.5. For “≤”, take (f, S, ν) ∈ J (T (u)). By Lemma 3.4, there exists a lifting

ϕ ∈ BV (S2,R) of u such that (3.4) holds. It follows that

E(u) ≤
∫

S2

|Dϕ| =

∫

S2

(|Dau| + |Dcu|) +

∫

S∪S(u)

∣
∣
∣fνχS − ρ(u+, u−)νuχS(u)

∣
∣
∣ dH1.

Let us prove now“≥”. By Remark 3.4, there is an optimal BV lifting ϕ of u, i.e. E(u) =

∫

S2

|Dϕ|.
By Lemma 3.4, there exists (f, S, ν) ∈ J (T (u)) such that (3.4) holds. It results that

E(u) =

∫

S2

|Dϕ| =

∫

S2

(|Dau| + |Dcu|) +

∫

S∪S(u)

∣
∣
∣fνχS − ρ(u+, u−)νuχS(u)

∣
∣
∣ dH1.

From here, we also deduce that the minimum inside the RHS of (3.7) is achieved. �

Remark 3.5 (Construction of an optimal lifting) Take (f, S, ν) ∈ J (T (u)) that achieves

the minimum

min
(f,S,ν)∈J (T (u))

∫

S∪S(u)

∣
∣
∣fν χS − ρ(u+, u−)νu χS(u)

∣
∣
∣dH1. (3.11)

By Lemma 3.4, there exists a lifting ϕ ∈ BV (S2,R) of u such that (3.4) holds. Then

∫

S2

|Dϕ| =

∫

S2

(|Dau| + |Dcu|) +

∫

S∪S(u)

∣
∣
∣fνχS − ρ(u+, u−)νuχS(u)

∣
∣
∣ dH1 = E(u)

and therefore, ϕ is an optimal lifting of u. �

Proof of Lemma 3.3. For “≤”, it is easy to see that if (f, S, ν) ∈ J (Λ) then for every

ζ ∈ C1(S2) with |∇ζ| ≤ 1,

〈Λ, ζ〉 =

∫

S
f ν · ∇⊥ζ dH1 ≤

∫

S
|f |dH1.

For “≥”, we use characterization (3.2) of the distribution Λ ∈ Z(S2). We denote by dS2 the

geodesic distance on S2. Let Λ = 2π
∑

k

(δpk
− δnk

) where (pk)k∈N, (nk)k∈N belong to S2 such
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that
∑

k

dS2(pk, nk) < ∞. For every k ∈ N, consider
⌢
nkpk a geodesic arc on S2 oriented from

nk to pk. Take νk the normal vector to
⌢
nkpk in the frame (x, y). Set S =

⋃

k

⌢
nkpk. Since

∑

k

dS2(pk, nk) < ∞, there exist an orientation ν : S → S1 on S and an H1-integrable function

f : S → 2πZ such that

fνχS =
∑

k

2πνkχ ⌢
nkpk

in L1(S,R2). (3.12)

Then

∫

S
fν · ∇⊥ζ dH1 = 2π

∑

k

∫

⌢
nkpk

νk · ∇⊥ζ dH1 = 2π
∑

k

(ζ(pk) − ζ(nk)) = 〈Λ, ζ〉, ∀ζ ∈ C1(S2).

It follows that (f, S, ν) ∈ J (Λ) and by (3.12),

∫

S
|f |dH1 ≤

∑

k

2πdS2(nk, pk).

Minimizing after all suitable pairs (pk, nk)k∈N, it follows

‖Λ‖ = inf
(f,S,ν)∈J (Λ)

∫

S
|f |dH1. (3.13)

We now show that the infimum in (3.13) is indeed achieved. By a dipole construction (see [22],

Lemma 16), there exists u ∈W 1,1(S2, S1) such that Λ = T (u). We choose (fk, Sk, νk) ∈ J (T (u))

such that

‖T (u)‖ = lim
k

∫

Sk

|fk|dH1.

By Lemma 3.4, we construct a lifting ϕk ∈ BV (S2,R) of u such that

Dϕk = u ∧ (Dau+Dcu) + ρ(u+, u−)νuH1xS(u) − fk νkH1xSk.

Remark that

∫

S2

|Dϕk| ≤
∫

S2

(|Dau| + |Dcu|) +

∫

S(u)
|ρ(u+, u−)|dH1 +

∫

Sk

|fk|dH1.

Subtracting a suitable number in 2πZ, we may assume that (ϕk)k is a bounded sequence in

BV (S2,R). Up to a subsequence, we find ϕ ∈ BV (S2,R) such that

ϕk → ϕ a.e. in S2 and Dϕk
∗
⇀ Dϕ in the measure sense.

Therefore, ϕ is a BV lifting of u and by Lemma 3.4, there exists (f, S, ν) ∈ J (T (u)) such that

Dϕ = u ∧ (Dau+Dcu) + ρ(u+, u−)νuH1xS(u) − f νH1xS.
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We conclude
∫

S
|f |dH1 =

∫

S2

∣
∣
∣u ∧ (Dau+Dcu) + ρ(u+, u−)νuH1xS(u) −Dϕ

∣
∣
∣

≤ lim inf
k

∫

S2

∣
∣
∣u ∧ (Dau+Dcu) + ρ(u+, u−)νuH1xS(u) −Dϕk

∣
∣
∣

= lim
k

∫

Sk

|fk|dH1

= ‖T (u)‖. �

Proof of Theorem 3.8. Let ψ ∈ BV (S2,R) and ζ ∈ C1(S2) be such that |∇ζ| ≤ 1. Then

∫

S2

∣
∣
∣u ∧ (Dau+Dcu) + ρ(u+, u−)νuH1xS(u) −Dψ

∣
∣
∣ ≥ 〈T (u), ζ〉 −

∫

S2

Dψ · ∇⊥ζ = 〈T (u), ζ〉.

By taking the supremum over ζ, we obtain
∫

S2

∣
∣
∣u ∧ (Dau+Dcu) + ρ(u+, u−)νuH1xS(u) −Dψ

∣
∣
∣ ≥ ‖T (u)‖.

We now show that there is a lifting ϕ ∈ BV (S2,R) of u such that the minimum in (3.8) is

achieved. By Lemma 3.3, choose (f, S, ν) ∈ J (T (u)) such that

‖T (u)‖ =

∫

S
|f |dH1.

Using Lemma 3.4, we construct a lifting ϕ ∈ BV (S2,R) such that (3.4) holds. Thus,

‖T (u)‖ =

∫

S
|f |dH1 =

∫

S2

∣
∣
∣u ∧ (Dau+Dcu) + ρ(u+, u−)νuH1xS(u) −Dϕ

∣
∣
∣.

�

Proof of Corollary 3.6. The result is a straightforward consequence of Theorem 3.5 and

Lemma 3.3. �

In order to prove Corollary 3.7, we need the following estimation of ‖T (u)‖ in terms of the

seminorm |u|BV S1:

Lemma 3.10 We have ‖T (u)‖ ≤ |u|BV S1 , ∀u ∈ BV (S2, S1).

Proof. By Lemma 3.9, it results that for every ζ ∈ C1(S2) with |∇ζ| ≤ 1,

|〈T (u), ζ〉| ≤
∫

S2

|u ∧ (Dau+Dcu)| +
∫

S(u)
|ρ(u+, u−)|dH1

=

∫

S2

(|Dau| + |Dcu|) +

∫

S(u)
dS1(u+, u−) dH1;

therefore

‖T (u)‖ ≤ |u|BV S1 .

�
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Proof of Corollary 3.7. By Theorem 3.5, Lemmas 3.3 and 3.10, we conclude that

E(u) ≤
∫

S2

(|Dau| + |Dcu|) +

∫

S(u)
|ρ(u+, u−)|dH1 + min

(f,S,ν)∈J (T (u))

∫

S
|f |dH1

= |u|BV S1 + ‖T (u)‖
≤ 2|u|BV S1.

�

Let |u|BV =

∫

S2

|Du| =

∫

S2

(|Dau| + |Dcu|) +

∫

S(u)
|u+ − u−|dH1; we deduce that

|u|BV ≤ |u|BV S1 ≤ π

2
|u|BV ,∀u ∈ BV (S2, S1).

Therefore, Corollary 3.7 is a weaker estimate of E(u) than inequality (3.3) obtained in Chapter 1.

3.3 Some other properties of the distribution T

We start by observing that T : BV (S2, S1) → D′(S2,R) is not continuous, i.e. there exists a

sequence of functions uk ∈ BV (S2, S1) such that uk → u strongly in BV (S2, S1) and T (uk) 9

T (u) in D′(S2,R). The reason for that is the discontinuity of the function ρ that enters in the

definition of T .

Proposition 3.11 The map T : BV (S2, S1) → D′(S2,R) is discontinuous.

Proof. Write

S2 = {(cos θ sinα, sin θ sinα, cosα) : α ∈ [0, π], θ ∈ (0, 2π]} .

In the spherical coordinates (α, θ) ∈ [0, π] × [0, 2π], consider the BV functions ϕ and u defined

as

ϕ(α, θ) =







−2θ if θ ∈ (0, π2 ), α ∈ (0, π2 )

−π if θ ∈ (π2 ,
3π
2 ), α ∈ (0, π2 )

2(θ − 2π) if θ ∈ (3π
2 , 2π), α ∈ (0, π2 )

0 if θ ∈ (0, 2π), α ∈ (π2 , π)

and u = ei ϕ. (3.14)

We have that the jump set of u and ϕ is concentrated on the equator {α = π
2 } of the sphere S2,

i.e.

S(ϕ) = S(u) = {α =
π

2
}.

On the equator we choose the orientation given by the normal vector ~α oriented from the north

to the south; so (~α, ~θ,~e) is direct. We show that

T (u) = 2π(δp − δn) (3.15)

where n = (π2 ,
3π
2 ) and p = (π2 ,

π
2 ) in the frame (α, θ). Indeed, we remark that

ϕ+ − ϕ− = ρ(u+, u−) + 2πχ⌢
np

on S(u);
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by Lemma 3.4, we obtain

Dϕ = u ∧∇uH2 + ρ(u+, u−)~αH1xS(u) + 2π~αH1x
⌢
np

and it yields

〈T (u), ζ〉 = −2π

∫

⌢
np
~α · ∇⊥ζ dH1 = −2π

∫ n

p

∂ζ

∂θ
dH1 = 2π(ζ(p) − ζ(n)), ∀ζ ∈ C1(S2,R).

Construct the approximation sequence ϕε ∈ BV (S2,R), ε ∈ (0, 1) defined (in the spherical

coordinates) as

ϕε(α, θ) =







−2θ if θ ∈ (0, π−ε2 ), α ∈ (0, π2 )

−π + ε if θ ∈ (π−ε2 , 3π+ε
2 ), α ∈ (0, π2 )

2(θ − 2π) if θ ∈ (3π+ε
2 , 2π), α ∈ (0, π2 )

0 if θ ∈ (0, 2π), α ∈ (π2 , π)

.

and set uε = ei ϕε . An easy computation shows that ϕε → ϕ strongly in BV ; therefore, uε → u

strongly in BV as ε→ 0. As before, we have

S(ϕε) = S(uε) = {α =
π

2
} and ϕ+

ε − ϕ−
ε = ρ(u+

ε , u
−
ε ) on {α =

π

2
}.

It follows that T (uε) = 0 and we conclude

T (uε) 9 T (u) in D′(S2,R).

�

As Brezis, Mironescu and Ponce proved in [30], if we restrict ourselves to W 1,1(S2, S1), then

the map T
∣
∣
W 1,1(S2,S1)

: W 1,1(S2, S1) → Z(S2) is continuous, i.e. if g, gk ∈ W 1,1(S2, S1) such

that gk → g in W 1,1 then ‖T (gk)−T (g)‖ → 0 as k → ∞. It is natural to ask if one could change

the antisymmetric function ρ in order that the corresponding map T become continuous. The

answer is negative:

Proposition 3.12 There is no antisymmetric function γ : S1 × S1 → R such that the map

Tγ : BV (S2, S1) → Z(S2) given for every u ∈ BV (S2, S1) as

〈Tγ(u), ζ〉 =

∫

S2

∇⊥ζ · (u ∧ (Dau+Dcu)) +

∫

S(u)
γ(u+, u−) νu · ∇⊥ζ dH1, ∀ζ ∈ C1(S2,R)

is well-defined and continuous.

Proof. By contradiction, suppose that there exists such a function γ. First we show that

γ(ω1, ω2) ≡ Arg (ω1) − Arg (ω2) (mod 2π), ∀ω1, ω2 ∈ S1. (3.16)

Indeed, fix ω1, ω2 ∈ S1. Take f : [0, 2π] → R the linear function satisfying f(0) = Arg (ω1) and

f(2π) = Arg (ω2); define u ∈ BV (S2, S1) as

u(α, θ) = eif(θ), ∀α ∈ (0, π), θ ∈ (0, 2π).
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Consider the lifting ϕ ∈ BV (S2,R) of u given by

ϕ(α, θ) = f(θ), ∀α ∈ (0, π), θ ∈ (0, 2π).

If ω1 6= ω2, the jump set of u and ϕ is concentrated on the meridian {θ = 0} orientated

counterclockwise by the unit vector ~θ. We have that

Dϕ = u ∧∇uH2 + (Arg (ω1) − Arg (ω2))~θH1x{θ = 0}.

Since curlDϕ = 0 in D′, it yields
∫

S2

u ∧∇u · ∇⊥ζ dH2 = −
∫

{θ=0}
(Arg (ω1) − Arg (ω2))~θ · ∇⊥ζ dH1

= (Arg (ω1) − Arg (ω2))

∫ n

p

∂ζ

∂α
dH1

= (Arg (ω2) − Arg (ω1))(ζ(p) − ζ(n)), ∀ζ ∈ C1(S2)

where p = (0, 0) and n = (π, 0) (in the spherical coordinates) are the north and the south pole

of S2. We obtain that

〈Tγ(u), ζ〉 =

∫

S2

∇⊥ζ · (u ∧∇u) dH2 + γ(ω1, ω2)

∫

{θ=0}
~θ · ∇⊥ζ dH1

= (Arg (ω2) − Arg (ω1) + γ(ω1, ω2))(ζ(p) − ζ(n)), ∀ζ ∈ C1(S2,R).

From the definition we know that Tγ(u) ∈ Z(S2) and therefore, (3.16) holds. If ω1 = ω2, by the

antisymmetry of γ, we have γ(ω1, ω2) = 0 and so, (3.16) is obvious.

Second we prove that the continuity of Tγ implies that γ is continuous on S1 × S1. Indeed,

let (ωε1)ε and (ωε2)ε be two sequences in S1 such that ωε1 → ω1 and ωε2 → ω2. We want that

γ(ωε1, ω
ε
2) → γ(ω1, ω2). (3.17)

Take β ∈ [0, 2π) such that eiβ is different from ω1 and ω2. For each ω ∈ S1 denote by argβ(ω) ∈
(β − 2π, β] the argument of ω, i.e.

ei argβ(ω) = ω. (3.18)

As above, define fε : [0, 2π] → R as the linear function satisfying fε(0) = argβ(ω
ε
1) and fε(2π) =

argβ(ω
ε
2) and consider uε ∈ BV (S2, S1) such that

uε(α, θ) = eifε(θ), ∀α ∈ (0, π), θ ∈ (0, 2π).

It’s easy to check that uε → u strongly in BV , where u(α, θ) = eif(θ) and f is the linear function

satisfying f(0) = argβ(ω1) and f(2π) = argβ(ω2). As before, we obtain

Tγ(uε) = (argβ(ω
ε
2) − argβ(ω

ε
1) + γ(ωε1, ω

ε
2))(δp − δn)

and Tγ(u) = (argβ(ω2) − argβ(ω1) + γ(ω1, ω2))(δp − δn).

Since Tγ and argβ are continuous on BV (S2, S1), respectively on S1 \ {eiβ}, we deduce that

(3.17) holds.
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Observe now that the function

(ω1, ω2) 7→ γ(ω1, ω2) − Arg (ω1) + Arg (ω2)

is continuous on the connected set S1 \ {−1} × S1 \ {−1} and takes values in 2πZ. Therefore,

there exists k ∈ Z such that

γ(ω1, ω2) = Arg (ω1) − Arg (ω2) − 2πk in S1 \ {−1} × S1 \ {−1}.

In fact, k = 0 if one takes ω1 = ω2. But Arg (·) is not a continuous map on S1 which is a

contradiction with the continuity of γ on S1 × S1. �

The algebraic properties of T restricted to W 1,1(S2, S1) (see [30], Lemma 1) do not hold in

general for BV (S2, S1) functions.

Remark 3.6 a) There exists u ∈ BV (S2, S1) such that T (ū) 6= −T (u). Indeed, take the

function u defined in (3.14). A similar computation gives us that T (ū) = 0 6= −T (u).

b) The relation T (gh) = T (g) + T (h), ∀g, h ∈ W 1,1(S2, S1) need not hold for BV (S2, S1)

functions. As before, consider the function u in (3.14). Then T (−u) = 0. Since T (−1) = 0, we

conclude T (−u) 6= T (u) + T (−1). �

In the following we discuss the nature of the singularities of the distribution T (u). As it was

mentioned in the beginning, we deal with two types of singularity:

i) topological singularities carrying a degree which are created by the absolutely continuous part

and the Cantor part of the distributional determinant of u;

ii) point singularities coming from the jump part of the derivative Du.

We give some examples in order to point out these two different kind of singularity. In

Example 3.1, T (u) is a dipole made up by two vortices of degree 1 and −1; these two vortices

are generated by the absolutely continuous part of det(∇u) in a), respectively by the Cantor

part of the distributional Jacobian of u in b).

Example 3.1 a) Let us analyze the function g ∈W 1,1(S2, S1),

g(α, θ) = eiθ, ∀α ∈ (0, π), θ ∈ [0, 2π).

Denote p and n the north and respectively the south pole of the unit sphere. We consider the

lifting ϕ ∈ BV (S2,R) of u given by ϕ(α, θ) = θ for every α ∈ (0, π), θ ∈ (0, 2π). Then the jump

set of ϕ is concentrated on the meridian {θ = 0} oriented counterclockwise by the unit vector
~θ. We have

Dϕ = g ∧∇gH2 − 2π~θH1x
⌢
np.

Therefore, T (g) = 2π(δp − δn). The two poles are the vortices of the function g.

b) The same situation may occur for some purely Cantor functions. Let us consider the

standard Cantor function f : [0, 1] → [0, 1]; f is a continuous, nondecreasing function with

f(0) = 0, f(1) = 1 and f ′(x) = 0 a.e. x ∈ (0, 1). Take v ∈ BV (S2, S1) defined as

v(α, θ) = e2πif(θ/2π), ∀α ∈ (0, π), θ ∈ [0, 2π).
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The lifting ϕ ∈ BV (S2,R) given by ϕ(α, θ) = 2πf(θ/2π) for every α ∈ (0, π), θ ∈ (0, 2π) has the

jump set concentrated on the meridian {θ = 0} and

Dϕ = v ∧Dcv − 2π~θH1x
⌢
np.

As before, we obtain that T (v) = 2π(δp − δn) where p and n are the poles of S2.

Remark also that for the two functions constructed in Example 3.1, the constant 2 in in-

equality (3.3) is optimal and we have a specific structure for an optimal lifting:

Proposition 3.13 Let u ∈ BV (S2, S1) be one of the two functions defined in Example 3.1.

Then for every lifting ϕ ∈ BV (S2,R) of u we have

∫

S2

|Dϕ| ≥ 2

∫

S2

|Du|.

Moreover, the set of all optimal liftings of u is given by

{argβ(u) + 2πk : β ∈ [0, 2π), k ∈ Z}

where argβ(ω) ∈ (β − 2π, β] stands for the argument of ω ∈ S1 (as in (3.18)).

Proof. First remark that
∫

S2

|Du| = 2π2 and ‖T (u)‖ = 2πdS2(n, p) = 2π2

where n and p are the two poles of S2.

Let ϕ ∈ BV (S2,R) be a lifting of u. By Theorem 3.5 and Lemma 3.3, we obtain

∫

S2

|Dϕ| ≥ E(u) =

∫

S2

|Du| + ‖T (u)‖ = 4π2 = 2

∫

S2

|Du|.

Take now ϕ ∈ BV (S2,R) an optimal lifting of u. By Lemma 3.4, there exists (f, S, ν) ∈
J (T (u)) that achieves the minimum in (3.11) and satisfies

Dϕ = u ∧Du− fνH1xS.

That means

Djϕ = −fνH1xS and

∫

S
|f | = 2πdS2(n, p). (3.19)

We may assume here that S = {f 6= 0}. For every α ∈ (0, π) we denote Lα the latitude on S2

corresponding to α and ϕα : Lα → R the restriction of ϕ to Lα. Using the Characterization

Theorem of BV functions by sections and Theorem 3.108 in [11], it results that for a.e. α ∈ (0, π),

ϕα ∈ BV (Lα; R) and the discontinuity set of ϕα is S ∩ Lα. Remark that deg(u;Lα) = 1 for

every α ∈ (0, π). Thus, for a.e. α ∈ (0, π), ϕα will have at least one jump on Lα and the length

of a jump is not less than 2π. It yields H1(S) ≥ π and |f | ≥ 2π H1 − a.e. on S. By (3.19), we

deduce that

|f | = 2π H1 − a.e. on S and H1(S) = π.
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We know that ∫

S

f

2π
ν · ∇⊥ζ dH1 = ζ(p) − ζ(n), ∀ζ ∈ C1(S2).

By [44](Section 4.2.25), it results that S covers H1-almost all of a Lipschitz univalent path c

between the two poles. Since H1(S) = dS2(n, p) we deduce that S is a geodesic arc on S2

between n and p and f
2π ν is the normal unit vector to the curve c. Take β ∈ [0, 2π) such that

S = {θ = β} in the spherical coordinates. We have that ϕ−argβ(u) : S2\S → 2πZ is continuous

on the connected set S2 \ S. Therefore, there exists k ∈ Z such that

ϕ = argβ(u) + 2πk

and the conclusion follows. �

The appearance of non-topological singularities in the writing of T (u) for u ∈ BV (S2, S1)

was already seen in the example (3.14); there the distribution T (u) is a dipole even if the function

u does not have any vortex. One should notice that the dipole (3.15) is created on the jump set

of u by the discontinuity of the chosen argument Arg . In Remark 3.7, we will see that a dipole

could disappear if we change the choice of the argument.

Remark 3.7 Let β ∈ [0, 2π). Define the antisymmetric function γβ(·, ·) : S1 × S1 → [−π, π] as

γβ(ω1, ω2) =







Arg
(
ω1
ω2

)

if ω1
ω2

6= −1

argβ(ω1) − argβ(ω2) if ω1
ω2

= −1
, ∀ω1, ω2 ∈ S1.

Consider now the distribution Tγβ
(u) ∈ D′(S2,R) given as in Proposition 3.12:

〈Tγβ
(u), ζ〉 =

∫

S2

∇⊥ζ · (u ∧ (Dau+Dcu)) +

∫

S(u)
γβ(u

+, u−)νu · ∇⊥ζ dH1, ∀ζ ∈ C1(S2,R).

Observe that Tγβ
inherits the properties of T given in Theorems 3.1, 3.5 and 3.8. However,

the structure of the singularities of Tγβ
(u) may be different from T (u). Indeed, consider u ∈

BV (S2, S1) the function constructed in (3.14). We saw that T (u) = 2π(δp−δn) where n = (π2 ,
3π
2 )

and p = (π2 ,
π
2 ) (in the spherical coordinates). The same computation gives us Tγπ/2

(u) = 0.

The difference between T (u) and Tγπ/2
(u) arises from the choice of the argument.

An interesting phenomenon is observed in Example 3.2 where the two types of singularity

are mixed: some topological vortices may be located on the jump set of u.

Example 3.2 a) An example that points out the mixture of the two type of singularity is given

by functions with pseudo-vortices: define u ∈ BV (S2, S1) as

u(α, θ) = e3iθ/2, ∀α ∈ (0, π), θ ∈ (0, 2π).

The jump set of u is the meridian {θ = 0}. We have

T (u) = 2π(δp − δn) and Tγπ/2
(u) = 4π(δp − δn).
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The two poles p and n arise on the jump set of u and behave like some pseudo-vortices, i.e. after

a complete turn, the function u rotates 3/2 times around the poles (with different signs: ‘+’

around p and ‘−’ around n). According to the choice of the argument in the definition of γβ,

the distribution Tγβ
(u) will count once or twice the dipole.

b) A piecewise constant function u ∈ BV (S2, S1) may create a dipole for T (u). Indeed, let

us define ϕ ∈ BV (S2,R) as

ϕ(α, θ) =







0 if θ ∈ (0, 2π/3), α ∈ (0, π)

2π/3 if θ ∈ (2π/3, 4π/3), α ∈ (0, π)

4π/3 if θ ∈ (4π/3, 2π), α ∈ (0, π)

and set u = eiϕ. The jump set of u and ϕ is the union of three meridians

S(u) = S(ϕ) = {θ = 0} ∪ {θ = 2π/3} ∪ {θ = 4π/3}.

We have

ϕ+ − ϕ− = ρ(u+, u−) − 2πχ{θ=0}.

We obtain T (u) = 2π(δp − δn) where p and n are the two poles of the unit sphere. For every

β ∈ [0, 2π), Tγβ
has the same behavior, i.e. Tγβ

(u) = 2π(δp − δn).

c) Let u ∈ BV (S2, S1) be the function defined above in b) and take g the function constructed

in Example 3.1 a). Set w = gu ∈ BV (S2, S1). We have S(w) = {θ = 0} ∪ {θ = 2π/3} ∪ {θ =

4π/3}. We show that T (w) = 4π(δp − δn). Indeed, construct the lifting ψ ∈ BV (S2,R) of w as

ψ(α, θ) =







θ if θ ∈ (0, 2π/3), α ∈ (0, π)

θ + 2π/3 if θ ∈ (2π/3, 4π/3), α ∈ (0, π)

θ − 2π/3 if θ ∈ (4π/3, 2π), α ∈ (0, π)

.

Observe that

ψ+ − ψ− = ρ(w+, w−) − 2πχ{θ=0} − 2πχ{θ=4π/3} on S(w)

and conclude that T (w) = 4π(δp − δn). So, the north pole p and the south pole n which are the

vortices of g remain singularities for the function w; they appear now on the jump part of w.

The same behavior happens to Tγβ
for every β ∈ [0, 2π), i.e. Tγβ

(w) = 4π(δp − δn).

As we mentioned before, for every u ∈ BV (S2, S1) there exists a bounded lifting ϕ ∈ BV ∩
L∞(S2,R) (see Chapter 1). The striking fact is that we can construct functions u ∈ BV (S2, S1)

such that no optimal lifting belongs to L∞. We give such an example in the following:

Example 3.3 On the interval (0, 2π) we consider

p1 = 1, nk = pk +
1

4k
and pk+1 = nk +

1

2k
, ∀k ≥ 1.

Suppose that this configuration of points lies on the equator {π2 }×[0, 2π] (in the spherical coordi-

nates) of S2 and we consider that each dipole (pk, nk) appears k times. Since
∑

k≥1

kdS2(pk, nk) <
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∞, set

Λ = 2π
∑

k≥1

k(δpk
− δnk

) ∈ Z(S2).

By [22] (Lemma 16),

T
(
W 1,1(S2, S1)

)
= Z(S2).

Thus, take g ∈W 1,1(S2, S1) such that T (g) = Λ. Using (3.2), it follows that

‖T (g)‖ = 2π
∑

k≥1

kdS2(pk, nk).

Let ϕ ∈ BV (S2,R) be an optimal lifting of g. Then there is a triple (f, S, ν) ∈ J (T (g)) such

that

Dϕ = g ∧∇gH2 − f νH1xS and

∫

S
|f |dH1 = ‖T (g)‖. (3.20)

We may assume that S = {f 6= 0}.
We know that

∫

S
fν · ∇⊥ζ dH1 = 2π

∑

k≥1

k(ζ(pk) − ζ(nk)), ∀ζ ∈ C1(S2). For each k ≥ 1, we

denote Vk = (0, π) × (pk −
1

8k
, nk +

1

8k
). Then

∫

S
fν · ∇⊥ζ dH1 = 2πk(ζ(pk) − ζ(nk)), ∀ζ ∈ C1(S2) with supp ζ ⊂ Vk.

By (3.20), it follows that
∫

S∩Vk

|f |dH1 = 2πk dS2(pk, nk).

Using the same argument as in the proof of Proposition 3.13, we deduce that for each k ∈ N,

S(ϕ) ∩ Vk = S ∩ Vk =
⌢
nkpk and |ϕ+ − ϕ−| = |f | = 2kπ H1-a.e. on

⌢
nkpk

where
⌢
nkpk is the geodesic arc connecting nk and pk. It yields that ϕ /∈ L∞. So, every optimal

BV lifting of g does not belong to L∞.

In the next example, we show that Theorem 3.8 fails if we minimize the energy in (3.8) just

over the class of gradient maps:

Example 3.4 Let u ∈ BV (S2, S1) be defined as

u(α, θ) = eiθ/3, ∀α ∈ (0, π), θ ∈ (0, 2π).

The jump set of u is the meridian {θ = 0} orientated counterclockwise and ρ(u+, u−) = −2π/3

on S(u). We have that T (u) = 0. On the other hand, for every ψ ∈ C∞(S2,R), we have
∫

S2

|u ∧∇uH2 + ρ(u+, u−)νuH1xS(u) −∇ψH2|

=

∫

S2

|u ∧∇u−∇ψ|dH2 +

∫

S(u)
|ρ(u+, u−)|dH1

≥
∫

S(u)
2π/3 dH1 = 2π2/3 > ‖T (u)‖.
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Chapter 4

On the relation between minimizers

of a Γ-limit energy and optimal

lifting in BV

Abstract

We study the minimizers of an energy functional which is obtained as the Γ-limit of a

family of functionals depending on a small parameter ε > 0, associated with a function

u ∈ BV (Ω, S1) and a positive parameter p. We find necessary and sufficient conditions on

p and the dimension under which these minimizers coincide with the optimal liftings of u,

for every u ∈ BV (Ω, S1).

This chapter is written in collaboration with A. Poliakovsky and it is published in Commun.

Contemp. Math. 9 (2007), pp. 447–472 (cf. [58]).

4.1 Introduction

Let Ω ⊂ RN be a bounded domain and u ∈ BV (Ω, S1), i.e., u = (u1, u2) ∈ L1(Ω,R2), |u(x)| = 1

for almost every x ∈ Ω and the derivative of u (in the distributional sense) is a finite 2×N−matrix

Radon measure. The BV -seminorm of u is given by

∫

Ω
|Du| = sup

{
∫

Ω

2∑

k=1

uk div ζk dx : ζk ∈ C1
c (Ω,R

2),

2∑

k=1

|ζk(x)|2 ≤ 1,∀x ∈ Ω

}

<∞ ,

where | · | is the Euclidean norm in R2. A BV lifting of u is a function ϕ ∈ BV (Ω,R) such that

u = eiϕ a.e. in Ω.

The existence of a BV lifting for any u ∈ BV (Ω, S1) was first proved by Giaquinta, Modica and

Soucek [47]. In general, we may have that

min

{∫

Ω
|Dϕ| : ϕ ∈ BV (Ω,R), eiϕ = u a.e. in Ω

}

>

∫

Ω
|Du|.
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The optimal control of a BV lifting was given in Chapter 1: there exists a lifting ϕ ∈ BV ∩
L∞(Ω,R) such that

∫

Ω
|Dϕ| ≤ 2

∫

Ω
|Du|. (4.1)

The constant 2 in the inequality (4.1) is optimal for N ≥ 2 (for example, consider

u(x) =
x

|x| (4.2)

in the unit disc in R2).

It is natural to investigate the quantity

E(u) = min

{∫

Ω
|Dϕ| : ϕ ∈ BV (Ω,R), eiϕ = u a.e. in Ω

}

. (4.3)

The case u ∈W 1,1 was previously studied in [30] while the more general case u ∈ BV was studied

in [47, 52, 53]. We shall say that a lifting ϕ ∈ BV (Ω,R) of u is optimal if E(u) =

∫

Ω
|Dϕ|, i.e.,

if ϕ is a minimizer in (4.3). An optimal lifting of u always exists but in general it is not unique

(i.e., there might exist two optimal BV liftings ϕ1 and ϕ2 such that ϕ1 − ϕ2 is not identically

constant). For example, for the function u given in (4.2), every optimal lifting is an argument

function whose jump set is a radius of the unit disc, see [53]. The structure of an optimal lifting

of u is described in [47, 52, 53] using the notion of minimal connection between singularity sets

of dimension N − 2 of u.

A natural way to approximate liftings of u is to consider, for a fixed parameter 0 < p < +∞,

the family of energy functionals
{
F

(u,p)
ε

}

ε>0
defined by

F (u,p)
ε (ϕ) = ε

∫

Ω
|∇ϕ|2 +

1

ε

∫

Ω
|u− eiϕ|p, ∀ϕ ∈ H1(Ω,R). (4.4)

Due to the penalizing term in (4.4), sequences of minimizers ϕε of F
(u,p)
ε are expected to converge

to a lifting ϕ0 of u as ε → 0. More precisely, Poliakovsky [70] proved that for p > 1 and for

bounded domains Ω with Lipschitz boundary, any sequence of minimizers ϕε ∈ H1(Ω,R) of

F
(u,p)
ε , satisfying |

∫

Ω ϕε| ≤ C, converges strongly in L1 (up to a subsequence) to a lifting

ϕ0 ∈ BV (Ω,R) of u as ε→ 0 and ϕ0 is a minimizer of the Γ−limit energy F
(u,p)
0 : L1(Ω,R) → R

given by

F
(u,p)
0 (ϕ) =







2

∫

S(ϕ)
f (p)(|ϕ+ − ϕ−|) dHN−1 if ϕ is a BV lifting of u,

+∞ otherwise.

(4.5)

Here, S(ϕ) is the jump set of ϕ ∈ BV (Ω,R) and ϕ−, ϕ+ are the traces of ϕ on each of the sides

of the jump set and f (p) : [0,+∞) → R is the function defined by

f (p)(θ) = inf
t∈R

∫ θ+t

t
|eis − 1|p/2 ds, ∀θ ≥ 0.

Notice that F
(u,p)
0 (ϕ) < +∞ for a BV lifting ϕ of u since f (p) is an increasing Lipschitz function

(see Lemma 4.3). Due to the fact that the energies
{
F

(u,p)
ε

}

ε>0
and F

(u,p)
0 are invariant with
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respect to translations by 2πk, k ∈ Z, uniqueness of minimizers has a meaning up to additive

constants in 2πZ.

The goal of this chapter is to study the question whether the minimizers of F
(u,p)
0 are nec-

essarily optimal liftings of u, for any p. Surprisingly, this turns out to be the case (in general)

only in dimension one, while in dimension N ≥ 2 this holds only for p = 4. Our main result is

the following:

Theorem 4.1 Let Ω be a bounded domain in RN .

(i) If N = 1 then for every u ∈ BV (Ω, S1) and p ∈ (0,+∞), ϕ is a minimizer of F
(u,p)
0 if and

only if ϕ is an optimal lifting of u ;

(ii) If N ≥ 2 then only for p = 4 it is true that for every u ∈ BV (Ω, S1), any minimizer of

F
(u,p)
0 is an optimal lifting of u.

We recall that for a function u in the smaller class W 1,1(Ω, S1), a lifting of u is optimal if and

only if it is a minimizer of F
(u,p)
0 , for every p ∈ (0,+∞) (see Proposition 4.10).

The chapter is organized as follows. In Section 4.2 we recall some basic notions of BV spaces

that will be needed throughout this chapter. Section 4.3 is devoted to the one dimensional

case. In Section 4.4 we treat the case p = 4, which was already studied in [70]. In Section 4.5

we construct counterexamples needed for the proof of assertion (ii) of Theorem 4.1 in the case

0 < p < 4. For any domain Ω we construct a piecewise constant function u ∈ BV (Ω, S1)

depending on p such that F
(u,p)
0 has a unique minimizer ξ0 (up to 2πZ constants), u has a

unique optimal lifting ζ0 (up to 2πZ constants) and ξ0−ζ0 is not a constant function. In Section

4.6, we deal with the general case p 6= 4. For any bounded domain G, we construct a family of

functions {Ut}t∈(−1/4,1/4) that contains elements Ut with a unique optimal lifting whose energy

F
(Ut,p)
0 is strictly larger than the minimal energy minF

(Ut,p)
0 . (In addition, for those functions

Ut, we will prove that F
(Ut,p)
0 has a unique minimizer up to a 2πZ translation.)

For the sake of simplicity of notations we shall often suppress the dependence on u and p

when referring to the energies
{
F

(u,p)
ε

}

ε>0
, F

(u,p)
0 and f (p).

4.2 Preliminaries about the space BV

In this section we present some known results on BV functions that can be found in the book

[11] by Ambrosio, Fusco and Pallara (see also Giusti [48] and Evans and Gariepy [42]). Let

v ∈ BV (Ω,Rm). A point x ∈ Ω is a point of approximate continuity of v if there exists ṽ(x) ∈ Rm

such that ṽ(x) = ap-lim
y→x

v(y), that is:

lim
r→0

HN
(
Br(x) ∩ {y ∈ Ω : |v(y) − ṽ(x)| > ε}

)

HN (Br(x))
= 0, ∀ε > 0.

The complement of the set of points of approximate continuity is denoted by S(v). It is known

(see [11]) that the set S(v) is a countably HN−1-rectifiable Borel set, i.e., S(v) is σ-finite with
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respect to the Hausdorff measure HN−1 and there exist countably many N − 1 dimensional C1-

hypersurfaces {Sk}∞k=1 such that HN−1
(

S(v) \
∞⋃

k=1

Sk

)

= 0. Moreover, for HN−1-a.e. x ∈ S(v)

there exist v+(x), v−(x) ∈ Rm and a unit vector νv(x) such that

ap-lim
y→x, 〈y−x,νv(x)〉>0

v(y) = v+(x) and ap-lim
y→x, 〈y−x,νv(x)〉<0

v(y) = v−(x). (4.6)

In the sequel we shall refer to S(v) as the jump set of v, although (4.6) is valid only for HN−1-a.e.

x ∈ S(v). The vector field νv is called the orientation of the jump set S(v). Dv is a m × N

matrix valued Radon measure which can be decomposed as Dv = Dav+Djv+Dcv, where Dav

is the absolutely continuous part of Dv with respect to the Lebesgue measure, while Djv and

Dcv are defined by

Djv = DvxS(v) and Dcv = (Dv −Dav)x(Ω \ S(v)).

We shall call Djv and Dcv the jump part and the Cantor part, respectively, of Dv. We have:

1. Dav = ∇vHN where ∇v ∈ L1(Ω,Rm×N ) is the approximate differential of v;

2. (Dcv)(B) = 0 for any Borel set B ⊂ Ω which is σ-finite with respect to HN−1;

3. Djv = (v+ − v−) ⊗ νvHN−1xS(v).

Throughout this chapter we identify the function v with its precise representative v∗ : Ω 7→ Rm

given by

v∗(x) = lim
r→0

∫

Br(x)
− v(y) dy ,

if this limit exists, and v∗(x) = 0 otherwise. Note that v∗ specifies the values of v except on a

HN−1-negligible set.

We also recall Vol’pert’s chain rule. Let Ω be a bounded domain and assume that v ∈
BV (Ω,Rm) and g ∈ [C1(Rm)]q is a Lipschitz function. Then w = g ◦ v belongs to BV (Ω,Rq)

and

Daw = ∇g(v)∇vHN , Dcw = ∇g(v)Dcv, Djw =
[
g(v+) − g(v−)

]
⊗ νvHN−1xS(v) . (4.7)

4.3 The one-dimensional case

In this section we shall show that the optimal liftings of u coincide with the minimizers of F
(u,p)
0

in the one-dimensional case, for every parameter p > 0 and any function u ∈ BV (Ω, S1). The

proof uses the same method as in [52].

Proof of (i) in Theorem 4.1. Let Ω be an interval in R and let ϕ ∈ BV (Ω,R) be a lifting of

u. By the chain rule (4.7), it follows that

(ϕ̇)a+(ϕ̇)c = u∧((u̇)a+(u̇)c) and (ϕ̇)j =
∑

a∈S(u)

(ϕ(a+)−ϕ(a−))δa+
∑

b∈B
(ϕ(b+)−ϕ(b−))δb (4.8)
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where B ⊂ Ω is a finite set such that S(u) ∩ B = ∅ and ϕ(b+) − ϕ(b−) = −2παb, αb ∈ Z, for

every b ∈ B. For any a ∈ S(u), we denote da(u) = Arg
u(a+)

u(a−)
where Arg ω ∈ (−π, π] is the

argument of the unit complex number ω. Since f (p) is increasing and |ϕ(a+)−ϕ(a−)| ≥ |da(u)|
in S(u), it follows that

f (p)(|ϕ(a+)−ϕ(a−)|) ≥ f (p)(|da(u)|) if a ∈ S(u) and f (p)(|ϕ(b+)−ϕ(b−)|) ≥ 0 if b ∈ B (4.9)

with equality if and only if

|ϕ(a+) − ϕ(a−)| = |da(u)| for a ∈ S(u) and αb = 0 for b ∈ B. (4.10)

According to (4.8), we have

∫

Ω

(

|(ϕ̇)a| + |(ϕ̇)c|
)

=

∫

Ω

(

|(u̇)a| + |(u̇)c|
)

.

By [52], it follows that

E(u) =

∫

Ω

(

|(u̇)a| + |(u̇)c|
)

+
∑

a∈S(u)

|da(u)|,

i.e., ϕ is an optimal lifting if

∫

Ω
|(ϕ̇)j| =

∑

a∈S(u)

|da(u)|. Therefore, by (4.9) and (4.10), we obtain

that

minF
(u,p)
0 = 2

∑

a∈S(u)

f (p)(|da(u)|).

Finally, we conclude that ϕ is a minimizer of F
(u,p)
0 if and only if ϕ is an optimal lifting of u. �

4.4 The case p = 4

In this section we shall recall the proof from [70] of the result that states that for p = 4

minimizers of the Γ-limit energy F
(u,p)
0 coincide with those of the energy E(u) in (4.3) for every

u ∈ BV (Ω, S1). We also derive an asymptotic upper bound for the minimal energy of F
(u,4)
ε in

terms of the mass of the measure |Du|.

Proof of (ii) of Theorem 4.1 for p = 4. Let ϕ ∈ BV (Ω,R) be a lifting of u. Then

|u+ − u−| = 2
∣
∣ sin

ϕ+ − ϕ−

2

∣
∣ HN−1-a.e. in S(u). A simple computation yields

f (4)(θ) = 2θ − 4
∣
∣ sin

θ

2

∣
∣, ∀θ ≥ 0.

This implies that

F
(u,4)
0 (ϕ) = 4

∫

S(ϕ)
|ϕ+ − ϕ−| dHN−1 − 4

∫

S(u)
|u+ − u−| dHN−1.
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On the other hand, the chain rule (4.7) yields that

Daϕ = u ∧Dau and Dcϕ = u ∧Dcu (4.11)

and therefore, the total variation of the diffuse part of Dϕ is completely determined by Du, i.e.,
∫

Ω
(|Daϕ| + |Dcϕ|) =

∫

Ω
(|Dau| + |Dcu|). (4.12)

Hence, ϕ is a minimizer of F
(u,4)
0 if and only if ϕ is an optimal lifting of u. �

As a consequence, we deduce an estimate for the energy F
(u,4)
ε which relies on some results

from [37] and [70].

Corollary 4.2 Let Ω be a bounded domain in RN with Lipschitz boundary and u ∈ BV (Ω, S1).

Then

minF (u,4)
ε ≤ 4

∫

Ω
|Du| + o(1)

where o(1) is a quantity that tends to 0 as ε→ 0.

Proof. By contradiction, assume that there exist a constant δ > 0 and a sequence {εk}k≥1

tending to 0 as k → ∞, such that

F (u,4)
εk

(ϕεk
) ≥ 4

∫

Ω
|Du| + δ , (4.13)

where ϕεk
∈ H1(Ω,R) is a minimizer of F

(u,4)
εk . Since the value of F

(u,4)
εk (ϕεk

) does not change

by adding a constant multiple of 2π to ϕεk
, we may assume that 0 ≤

∫

Ω ϕεk
dx ≤ 2πHN (Ω).

According to [70] it follows that, up to a subsequence,

ϕεk
→ ϕ0 in L1 and lim

k→∞
F (u,4)
εk

(ϕεk
) = F

(u,4)
0 (ϕ0) ,

where ϕ0 is a BV lifting of u that minimizes the Γ−limit energy F
(u,4)
0 . Using (4.13), it follows

that

F
(u,4)
0 (ϕ0) ≥ 4

∫

Ω
|Du| + δ. (4.14)

On the other hand, by assertion (ii) of Theorem 4.1 in the case p = 4, we know that ϕ0 is

an optimal lifting and

F
(u,4)
0 (ϕ0) = 4

∫

S(ϕ0)
|ϕ+

0 − ϕ−
0 | dHN−1 − 4

∫

S(u)
|u+ − u−| dHN−1.

By (4.1) we deduce that
∫

Ω |Dϕ0| ≤ 2
∫

Ω |Du| and therefore, it implies by (4.12),

F
(u,4)
0 (ϕ0) ≤ 4

∫

Ω
|Du|

which contradicts (4.14). �

It would be interesting to have a direct proof of Corollary 4.2 which does not use the results

in [37] and [70]. That will lead to a new proof of the inequality (4.1).
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4.5 The case p ∈ (0, 4)

In this section we prove the case p < 4 of assertion (ii) of Theorem 4.1. We shall first construct,

for each 0 < p < 4, a piecewise constant function u ∈ BV (R, S1) in a rectangle R ⊂ R2 such

that no minimizer of F
(u,p)
0 is an optimal lifting of u. Then, we shall adapt this example to the

case of an arbitrary bounded domain Ω.

We start by two preliminary results about the function f (p):

Lemma 4.3 Let 0 < p < ∞. The function f (p) is an increasing Lipschitz continuous function.

Moreover,

f (p)(θ) =







∫ θ/2

−θ/2
|eis − 1|p/2 ds if θ ∈ [2πk, 2π(k + 1)], k even,

∫ θ/2+π

−θ/2+π
|eis − 1|p/2 ds if θ ∈ [2πk, 2π(k + 1)], k odd.

(4.15)

Proof. In the sequel we shall write for short f instead of f (p). The function

s ∈ R 7→ |eis − 1|p/2 = 2p/2
∣
∣ sin

s

2

∣
∣p/2

is 2π-periodic, increasing on (0, π) and symmetric with respect to π. Hence, if θ ∈ [0, 2π], then

f(θ) =

∫ θ/2

−θ/2
|eis − 1|p/2 ds. In general, if θ = 2πk + θ̃ with θ̃ ∈ [0, 2π] and k ∈ N, we have

f(θ) = f(2πk) + f(θ̃) and (4.15) is now straightforward. In particular, we deduce that

f(2πk) = kf(2π) , ∀k ∈ N. (4.16)

From here, we conclude that almost everywhere in (0,+∞), f is differentiable and 0 < f ′ ≤ 2p/2.

�

Lemma 4.4 Let 0 < p < 4. Then the function θ ∈ (0, π) 7→ f (p)(2π − θ) − f (p)(θ)

π − θ
is increasing.

Proof. It is sufficient to prove that the function g : (0, π) → R defined by

g(θ) = f(2π − θ)− f(θ) − (π − θ)

(

f ′(2π − θ) + f ′(θ)
)

is positive, where we denoted f = f (p) as above. Indeed, by Lemma 4.3 we have for every

θ ∈ (0, π),

g′(θ) = (π − θ)
(
f ′′(2π − θ)− f ′′(θ)

)
= p 2p/2−4 (π − θ) sin

θ

2

(

cosp/2−2 θ

4
− sinp/2−2 θ

4

)

.

Since p < 4 it follows that g′(θ) < 0, ∀θ ∈ (0, π); hence g is decreasing. Since lim
θ→π

g(θ) = 0, we

deduce that g must be positive on (0, π). �
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Construction of a counter-example u when Ω is a rectangle. Let p ∈ (0, 4). We first

construct our function u in a certain rectangle R. Let θ1 =
4π

5
and θ2 =

3π

4
. Thanks to

Lemma 4.4 we can choose L3 > L1 > 0 such that

5

4
=
π − θ2
π − θ1

>
L3

L1
>
f (p)(2π − θ2) − f (p)(θ2)

f (p)(2π − θ1) − f (p)(θ1)
> 1. (4.17)

Set also L2 = L3 and L4 = L3. We consider the rectangle

R =

{

(x, y) ∈ R2 : −L2 < x < L4, −L3 < y < L1

}

.

.

.

..

. ..

. .

O

A1(−L2, L1) A4(L4, L1)

A2(−L2,−L3) A3(L4,−L3)

. .
At

1

At
3At

2

At
4

Rt

Γ1

Γ2 Γ3

Γ4

U2

U1

U3

U4

. .

. .

.
. .

.

at1

at4

at3

at2

Figure 4.1: The rectangle construction for p ∈ (0, 4)

Notice that the rectangle R depends on p by the choice of the edges; moreover, the choice

(4.17) is no longer possible for p ≥ 4. In the rectangle R, we denote the vertices A1 = (−L2, L1),

A2 = (−L2,−L3), A3 = (L4,−L3) and A4 = (L4, L1) and also the interior full triangles Uk =

△AkOAk−1 and the segments Γk = (OAk) for 1 ≤ k ≤ 4 where O = (0, 0) is the origin and we

use the convention that A0 = A4, see Figure 1.

Let ϕ0 ∈ BV (R,R) be the piecewise constant function defined by

ϕ0(x, y) =







π
2 if 0 < x < L4, 0 < y < L1,

5π
4 if −L2 < x < 0, 0 < y < L1,
3π
2 if −L2 < x < 0, −L3 < y < 0,
3π
10 if 0 < x < L4, −L3 < y < 0

and set u = eiϕ0 ∈ BV (R, S1).

In Lemmas 4.5 and 4.6 below we shall prove that ϕ0 is the unique optimal lifting of u (up

to a 2πZ constant) and ϕ0 is not a minimizer of F
(u,p)
0 . Actually, we prove that the lifting
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ψ0 ∈ BV (R,R) of u defined as

ψ0(x, y) =







π
2 if 0 < x < L4, 0 < y < L1,

−3π
4 if −L2 < x < 0, 0 < y < L1,

−π
2 if −L2 < x < 0, −L3 < y < 0,

3π
10 if 0 < x < L4, −L3 < y < 0

is the unique minimizer of F
(u,p)
0 (up to 2πZ constants).

Lemma 4.5 The function ϕ0 is the unique optimal lifting of u (up to a 2πZ constant).

Proof. Let ϕ ∈ BV (R,R) be a lifting of u. Then

∫

R
|Dϕ| =

4∑

k=1

(∫

Uk

|Dϕ| +
∫

Γk

|ϕ+
Γk

− ϕ−
Γk
| dH1

)

where ϕ+
Γk

and ϕ−
Γk

are the traces of ϕ on Γk. Let us consider the one-dimensional sections

Rt =

{

(tx, ty) : (x, y) ∈ ∂R
}

, ∀t ∈ (0, 1)

where we denote the vertices of the rectangle Rt by
{
Atk
}

1≤k≤4
. By the characterization of BV

functions by sections (see Theorem 3.103 in [11]), the restriction ϕt = ϕ
∣
∣
Rt

belongs to BV (Rt,R)

for almost any t ∈ (0, 1). We define the following rescaled variation of ϕt on Rt as

V (ϕt,Rt) =

4∑

k=1

(

Lk

∫

Rt∩Uk

∣
∣
∂ϕt
∂τ

∣
∣+
√

L2
k + L2

k+1

∣
∣ϕ+

Γk
(Atk) − ϕ−

Γk
(Atk)

∣
∣

)

for a.e. t ∈ (0, 1)

so that ∫ 1

0
V (ϕt,Rt) dt ≤

∫

R
|Dϕ|

(here τ is the tangent vector of straight lines). An easy computation yields

∫

R
|Dϕ0| = L1

3π

4
+ L2

π

4
+ L3

6π

5
+ L4

π

5
.

In order to prove that ϕ0 is an optimal lifting, it is sufficient to prove that

V (ϕt,Rt) ≥ L1
3π

4
+ L2

π

4
+ L3

6π

5
+ L4

π

5
for a.e. t ∈ (0, 1). (4.18)

We shall use a method from [52]. Denoting the restriction of u to Rt by ut = u
∣
∣
Rt

, we have

for almost every t ∈ (0, 1): ut = eiϕt H1 − a.e. in Rt and S(ut) = {atk : 1 ≤ k ≤ 4} where

atk = Rt ∩Uk ∩ {x = 0} for k ∈ {1, 3} and atk = Rt ∩Uk ∩ {y = 0} for k ∈ {2, 4}. The chain rule

(4.7) leads to

(
∂ϕt
∂τ

)a

= ut ∧
(
∂ut
∂τ

)a

= 0 and

(
∂ϕt
∂τ

)c

= ut ∧
(
∂ut
∂τ

)c

= 0;
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hence,

∂ϕt
∂τ

=

(
∂ϕt
∂τ

)j

=
∑

a∈S(ut)

(ϕt(a+) − ϕt(a−))δa +
∑

b∈B
(ϕt(b+) − ϕt(b−))δb.

Here, the Lipschitz curve Rt is considered oriented counterclockwise and the traces of ϕt are

taken with respect to this orientation. We have that

1. B ⊂ Rt is a finite set such that S(ut) ∩ B = ∅ and ϕt(b+) − ϕt(b−) = −2παb where αb ∈
Z,∀b ∈ B;

2. ϕt(a+) − ϕt(a−) = Arg ut(a+)
ut(a−) − 2παa with αa ∈ Z,∀a ∈ S(ut).

Therefore, setting L5 = L1, it follows that

V (ϕt,Rt) =

4∑

k=1

(
∑

a∈(S(ut)∪B)∩Uk

Lk
∣
∣ϕt(a+) − ϕt(a−)

∣
∣+
√

L2
k + L2

k+1

∣
∣ϕ+

Γk
(Atk) − ϕ−

Γk
(Atk)

∣
∣

)

.

(4.19)

Since

∫

Rt

∂ϕt
∂τ

= 0, we get

∑

a∈S(ut)∪B
αa =

1

2π

∑

a∈S(ut)

Arg
ut(a+)

ut(a−)
= 1. (4.20)

Obviously,

|ϕt(atk+) − ϕt(a
t
k−)| ≥

∣
∣Arg

ut(a
t
k+)

ut(atk−)

∣
∣, ∀1 ≤ k ≤ 4.

By (4.19), the inequality (4.18) will follow from the surplus of the variation induced by the

condition (4.20), i.e.,

V (ϕt,Rt) ≥ L3
2π

5
+

4∑

k=1

Lk
∣
∣Arg

ut(a
t
k+)

ut(a
t
k−)

∣
∣. (4.21)

Indeed, suppose that there is b ∈ B such that αb 6= 0. If b ∈ Uk for some 1 ≤ k ≤ 4 then by

(4.17),

Lk|ϕt(b+) − ϕt(b−)| ≥ 2πLk > L3
2π

5
.

If b = Atk for some 1 ≤ k ≤ 4, then

√

L2
k + L2

k+1 |ϕ+
Γk

(Atk) − ϕ−
Γk

(Atk)| ≥ 2π
√

L2
k + L2

k+1 > L3
2π

5

(here we used the fact that the traces of ϕt on Γk coincide with ϕ±
Γk

(Atk) for a.e. t ∈ (0, 1)).

Otherwise, according to (4.20), there exists αa 6= 0 for some a = atk and by (4.17), we easily

check that

Lk|ϕt(atk+) − ϕt(a
t
k−)| ≥ L3

2π

5
+ Lk

∣
∣Arg

ut(a
t
k+)

ut(atk−)

∣
∣

with equality if and only if k = 3. Therefore, (4.21) holds, i.e., ϕ0 is an optimal lifting of u.
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It remains to prove the uniqueness of the optimal lifting ϕ0 (up to a 2πZ constant). Let ϕ

be an optimal lifting. From above, we deduce that the restriction ϕt on Rt satisfies for almost

t ∈ (0, 1) that

S(ϕt) = S(ut) and αat
k

=







0 if k ∈ {1, 2, 4},
1 if k = 3.

(4.22)

It follows that
∫

R
|Dϕ| ≥

∫

S(ϕ)
|ϕ+ − ϕ−| dH1 ≥

∫

S(u)
|ϕ+ − ϕ−| dH1

≥
∫ 1

0

4∑

k=1

Lk|ϕt(atk+) − ϕt(a
t
k−)| dt =

∫

R
|Dϕ0|.

Since ϕ is an optimal lifting, we deduce that S(ϕ) = S(u). By (4.11), we have Daϕ = Dcϕ = 0.

It follows that ϕ is constant on each connected component of R \ S(u). By (4.22), we conclude

that ϕ− ϕ0 is a constant function, for some constant in 2πZ. �

Lemma 4.6 The function ψ0 is the unique minimizer of F
(u,p)
0 (up to 2πZ constants).

Proof. We use the same argument and notations as in the proof of Lemma 4.5. Let ϕ ∈
BV (R,R) be a lifting of u. By (4.11), we have Daϕ = Dcϕ = 0 and Dϕ = Djϕ = (ϕ+ −
ϕ−)νϕH1xS(ϕ). We define for almost every t ∈ (0, 1) the following variation of ϕt on Rt:

G(ϕt,Rt) =

4∑

k=1

(
∑

a∈(S(ut)∪B)∩Uk

Lkf
(p)
(
|ϕt(a+) − ϕt(a−)|

)

+
√

L2
k + L2

k+1 f
(p)
(
|ϕ+

Γk
(Atk) − ϕ−

Γk
(Atk)|

)
)

so that

2

∫ 1

0
G(ϕt,Rt) dt ≤ F

(u,p)
0 (ϕ).

In order to prove that ψ0 is a minimizer of F
(u,p)
0 , it is sufficient to verify that

G(ϕt,Rt) ≥ L1f
(p)(

5π

4
)+L2f

(p)(
π

4
)+L3f

(p)(
4π

5
)+L4f

(p)(
π

5
) =

F
(u,p)
0 (ψ0)

2
for a.e. t ∈ (0, 1).

(4.23)

Indeed, suppose that there is b ∈ B such that αb 6= 0. If b ∈ Uk for some 1 ≤ k ≤ 4 then by

(4.17) and Lemma 4.3,

Lkf
(p)(|ϕt(b+) − ϕt(b−)|) + L1f

(p)(|ϕt(at1+) − ϕt(a
t
1−)|) > L1f

(p)(
5π

4
)

and then, we use that

f (p)(|ϕt(atk+) − ϕt(a
t
k−)|) ≥ f (p)

(
∣
∣Arg

ut(a
t
k+)

ut(atk−)

∣
∣

)

, 2 ≤ k ≤ 4.
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If b = Atk for some 1 ≤ k ≤ 4, then

√

L2
k + L2

k+1 f
(p)(|ϕ+

Γk
(Atk) − ϕ−

Γk
(Atk)|) + L1f

(p)(|ϕt(at1+) − ϕt(a
t
1−)|) > L1f

(p)(
5π

4
).

Otherwise, according to (4.20), there exists αa 6= 0 for some a = atk. By Lemma 4.3, we notice

that the map θ ∈ (0, π) 7→ f (p)(2π − θ)− f (p)(θ) is decreasing. Then, by (4.17), we easily check

that

Lkf
(p)(|ϕt(atk+)−ϕt(atk−)|)+L1f

(p)

(
∣
∣Arg

ut(a
t
1+)

ut(at1−)

∣
∣

)

≥ Lkf
(p)

(
∣
∣Arg

ut(a
t
k+)

ut(atk−)

∣
∣

)

+L1f
(p)(

5π

4
)

with equality if and only if k = 1. Therefore, (4.23) holds and we also deduce that if ϕ is a

minimizer of F
(u,p)
0 , then for almost every t ∈ (0, 1),

S(ϕt) = S(ut) and αat
k

=







0 if 2 ≤ k ≤ 4,

1 if k = 1.
(4.24)

The uniqueness of the minimizer ψ0 (up to 2πZ constants) follows by (4.24) as in the proof of

Lemma 4.5. �

Proof of (ii) in Theorem 4.1 for p ∈ (0, 4). Let Ω be an arbitrary bounded domain in

RN , for N ≥ 2. Denote by D = (2R) × (−2, 2)N−2 ⊂ RN . By translating and shrinking

homotopically the rectangular parallelepiped D, we may suppose that D ⊂⊂ Ω. Let u, ϕ0

and ψ0 be the functions in R constructed above and denote D1 = R × (−1, 1)N−2. We write

x = (x1, x2, . . . , xN ) = (x1, x2, x
′) ∈ RN . We define in Ω,

w(x) =







u(x1, x2) in D1,

1 in
(
D \ D1

)
∩ {x1 > 0},

−1 otherwise.

Consider the liftings

ζ0(x) =







ϕ0(x1, x2) in D1,

0 in
(
D \ D1

)
∩ {x1 > 0},

π otherwise

and

ξ0(x) =







ψ0(x1, x2) in D1,

0 in
(
D \ D1

)
∩ {x1 > 0},

−π otherwise.

We prove that ζ0 is the unique optimal lifting of w and ξ0 is the unique minimizer of F
(w,p)
0 , but

ζ0 − ξ0 is not constant since

ζ0 =







ξ0 in D ∩ {x1 > 0},
ξ0 + 2π otherwise.
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Step 1. The function ζ0 is the unique optimal lifting of w (up to a 2πZ constant).

Indeed, let ζ ∈ BV (Ω,R) be a lifting of w. Obviously, |ζ+ − ζ−| ≥ dS1(w+, w−) = |ζ+
0 −

ζ−0 | HN−1-a.e. in S(w) ∩
(
Ω \ D1

)
. The restriction of ζ to R × {x′} is a BV lifting of u for

almost every x′ ∈ (−1, 1)N−2. Therefore, by Lemma 4.5, we obtain
∫

Ω
|Dζ| =

∫

Ω\D1

|Dζ| +
∫

D1

|Dζ|

≥
∫

S(w)∩(Ω\D1)
|ζ+ − ζ−| dHN−1 +

∫

(−1,1)N−2

dx′
∫

R×{x′}

∣
∣
∣
∣

( ∂ζ

∂x1
,
∂ζ

∂x2

)
∣
∣
∣
∣

≥
∫

S(w)∩(Ω\D1)
dS1(w+, w−) dHN−1 + 2N−2

∫

R
|Dϕ0| =

∫

Ω
|Dζ0|,

i.e., ζ0 is an optimal lifting of w. Let now ζ be an optimal lifting. From the above it follows that
∫

Ω\D1

|Dζ| =

∫

S(w)∩(Ω\D1)
dS1(w+, w−) dHN−1

and for almost every x′ ∈ (−1, 1)N−2, the restriction of ζ to R× {x′} is an optimal lifting of u,

i.e., ∫

R×{x′}
|Dζ| =

∫

R
|Dϕ0|.

As in the proof of Lemma 4.5, it follows that ζ − ζ0 ≡ 2πm in D1 where m ∈ Z. Since the size

of the jump of ζ must satisfy 0 < dS1(w+, w−) < π on ∂D, we deduce that

ζ − ζ0 ≡ 2πm in Ω.

Hence, ζ0 is the unique optimal lifting of w (up to 2πZ constants).

Step 2. The function ξ0 is the unique minimizer of F
(w,p)
0 (up to 2πZ constants).

As in Step 1, using Lemma 4.6, we have that for every BV lifting ζ of w,

F
(w,p)
0 (ζ)

2
=

∫

S(ζ)∩(Ω\D1)
f (p)(|ζ+ − ζ−|) dHN−1 +

∫

S(ζ)∩D1

f (p)(|ζ+ − ζ−|) dHN−1

≥
∫

S(w)∩(Ω\D1)
f (p)(|ζ+ − ζ−|) dHN−1

+

∫

(−1,1)N−2

dx′
∫

S(ζ)∩(R×{x′})
f (p)(|ζ+ − ζ−|) dH1

≥
∫

S(w)∩(Ω\D1)
f (p)

(
dS1(w+, w−)

)
dHN−1 + 2N−3F

(u,p)
0 (ψ0) =

F
(w,p)
0 (ξ0)

2

i.e., ξ0 is a minimizer of F
(w,p)
0 . The uniqueness of the minimizer follows by the same argument

as above. �

4.6 Proof of (ii) in Theorem 4.1 for p 6= 4

In this section we shall complete the proof of our main result in the general case p ∈ (0, 4) ∪
(4,+∞). The strategy will be to construct a family of functions U = {Ut}t∈(− 1

4
, 1
4
) in BV (Ω, S1)
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with the following property: for every p 6= 4, there exists a function Ut in the family U such that

Ut has a unique optimal lifting (up to translations in 2πZ) and the energy F
(Ut,p)
0 of the optimal

lifting is larger than the minimal energy minF
(Ut,p)
0 . First of all, we make that construction in

the special case of the two-dimensional disc

Ω := {z ∈ C : |z| < 2}.

Construction of the family U = {Ut}t∈(− 1
4
, 1
4
) in the disc Ω = B(0, 2) ⊂ R2. For any

z ∈ Ω \ {0}, we denote the argument θ̄(z) ∈ [0, 2π), i.e., z
|z| = eiθ̄(z). Let t ∈ (−1

4 ,
1
4). We define

the set

At := { z ∈ Ω : z = reiθ, r ∈ (1, 2), 0 < θ < (
3

4
+ t) ln r }

and we consider the function θ̂t : Ω → R given by

θ̂t(z) := θ̄(z) + 2πχAt(z), ∀z ∈ Ω, (4.25)

where χAt is the characteristic function associated to the set At. Now let Ut ∈ BV (Ω, S1) be

defined by

Ut(z) := ei
9
10
θ̂t(z), ∀z ∈ Ω. (4.26)

Set the liftings ϕ1,t, ϕ2,t ∈ BV (Ω,R) of Ut:

ϕ1,t :=
9

10
θ̂t =

9

10
θ̄ +

9π

5
χAt and ϕ2,t :=

9

10
θ̂t − 2πχAt =

9

10
θ̄ − π

5
χAt . (4.27)

We will show that:

. .
O(0, 0) (1, 0)

AtPt
Rt

Qt

Figure 4.2: The construction for the general case p 6= 4

Lemma 4.7

(i) For any t ∈ (−1
4 , 0), ϕ1,t is the unique optimal lifting of Ut (up to 2πZ additive constants);

(ii) For any t ∈ (0, 1
4 ), ϕ2,t is the unique optimal lifting of Ut (up to 2πZ additive constants).
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The conclusion of Theorem 4.1 (in the case of the disc) will then follow from the next result:

Lemma 4.8

(i) For every 0 < p < 4 there exists a positive number ρp ∈ (0, 1
4) such that for any t ∈

(−ρp, 0) we have that F
(Ut,p)
0 (ϕ1,t) > F

(Ut,p)
0 (ϕ2,t), i.e., the optimal lifting ϕ1,t of Ut is not

a minimizer of F
(Ut,p)
0 . Moreover, ϕ2,t is the unique minimizer of F

(Ut,p)
0 (up to a 2πZ

translation), for every t ∈ (−ρp, ρp).

(ii) For any p > 4 there exists ρp ∈ (0, 1
4) such that F

(Ut,p)
0 (ϕ2,t) > F

(Ut,p)
0 (ϕ1,t), for each

t ∈ (0, ρp), i.e., the optimal lifting ϕ2,t of Ut is not a minimizer of F
(Ut,p)
0 . Moreover, ϕ1,t

is the unique minimizer of F
(Ut,p)
0 (up to a 2πZ translation), for every t ∈ (−ρp, ρp).

Before proving the above Lemmas, we shall introduce some notations (see Figure 2). Set

Pt := {z ∈ C : z = r, r ∈ (0, 1)} and Qt := {z ∈ C : z = rei(3/4+t) ln r, r ∈ (1, 2)}. (4.28)

Then the jump set of Ut is given by

S(Ut) = Pt ∪Qt ∪ {(0, 0), (1, 0)}; (4.29)

moreover, we have that

H1(Pt) = 1 and H1(Qt) =
√

1 + (3/4 + t)2. (4.30)

We choose the orientation of the jump set S(Ut) to be given by the unit normal vector νUt ∈ S1

defined by

νUt(z) =







(0, 1) z ∈ Pt,
1

|γ′t(|z|)|
(
− γ′t,2(|z|), γ′t,1(|z|)

)
z ∈ Qt,

where γt(r) = γt,1(r) + iγt,2(r) := rei(3/4+t) ln r. Then for any z ∈ S(Ut) we consider the traces

U+
t (z) = ei

9
10
θ̄(z) and U−

t (z) = ei
9
10

(θ̄(z)+2π) = ei
(

9
10
θ̄(z)−π

5

)

.

We start by giving a useful characterization of a general lifting ϕ ∈ BV (Ω,R) of Ut. We can

choose the orientation of S(ϕ) to coincide with the orientation of S(Ut) on S(ϕ)∩S(Ut). Then,

we have

ϕ+(z) − ϕ−(z) =
π

5
+ 2πn(z), ∀z ∈ S(Ut) and ϕ+(z) − ϕ−(z) = 2πn(z), ∀z ∈ S(ϕ) \ S(Ut),

where n : S(ϕ) → Z is an integrable function. We define the sets

Lϕ := {z ∈ S(ϕ) : n(z) 6= 0} and Lrϕ := {r ∈ (0, 2) : ∃ θ ∈ R, reiθ ∈ Lϕ}. (4.31)

We next prove the following property:

Lemma 4.9 For any lifting ϕ ∈ BV (Ω,R) of Ut, we have H1(Lrϕ) = 2.
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Proof. By contradiction, assume that H1(Lrϕ) < 2. Then, there exists a compact set K ⊂ (0, 2)

such that H1(K) > 0 and Lrϕ ∩K = ∅. Consider a sequence of open sets Vk ⊂⊂ (0, 2) such that

K ⊂ Vk ⊂⊂ (0, 2) and
⋂∞
k=1 Vk = K. Now take a sequence of functions σk ∈ C1

c

(
(0, 2),R

)
that

satisfy 0 ≤ σk ≤ 1, σk(r) = 1 for any r ∈ K and σk(r) = 0 for any r ∈ (0, 2) \ Vk. Define the

functions δk ∈ C2
c (Ω,R) by

δk(z) :=

∫ 2

|z|
σk(t)dt.

For z = (x, y), we denote ∇⊥δk := (−∂yδk, ∂xδk). Then we have

∫

Ω
∇⊥δk(z) d[Dϕ](z) = 0. (4.32)

Since Ut = eiϕ, we obtain from the chain rule (4.7),

Dϕ = Daϕ+Djϕ =
9

10
Daθ̄ +

π

5
νUt H1xS(Ut) + 2πn(·)νϕH1xLϕ.

Therefore, by (4.32) we infer

−2πδk(0) + 2π

∫

Lϕ

n(z)∇⊥δk(z) · νϕ(z) dH1(z) = 0. (4.33)

Define the sets Wk := {z ∈ Ω : |z| ∈ Vk \K}, ∀k ≥ 1. Then by the construction of δk, we deduce

from (4.33),

δk(0) =

∫

Lϕ∩Wk

n(z)∇⊥δk(z) · νϕ(z) dH1(z).

Since |∇⊥δk| ≤ 1, it follows that

|δk(0)| ≤
∫

Lϕ∩Wk

|n(z)| dH1(z) ≤ 1

π

∫

Lϕ∩Wk

|ϕ+(z) − ϕ−(z)| dH1(z) ≤ 1

π

∫

Wk

|Dϕ|.

Using ∩∞
k=1Wk = ∅, we get that

lim
k→∞

δk(0) = 0. (4.34)

On the other hand, according to the definition of δk, we have

δk(0) =

∫ 2

0
σk(t)dt ≥

∫

K
1 dt = H1(K) > 0,

which leads to a contradiction to (4.34). This completes the proof of Lemma 4.9. �

We now present the proofs of Lemmas 4.7 and 4.8:

Proof of Lemma 4.7. The jump set of ϕ1,t and ϕ2,t are

S(ϕ1,t) = S(Ut) = Pt∪Qt∪{(0, 0), (1, 0)} and S(ϕ2,t) = Pt∪Qt∪Rt∪{(0, 0), (1, 0)}, (4.35)

where Rt := {z ∈ C : z = r, r ∈ (1, 2)}. Moreover, the size of the jump is

|ϕ+
1,t(z) − ϕ−

1,t(z)| =
9π

5
, ∀z ∈ Pt ∪Qt
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and

|ϕ+
2,t(z) − ϕ−

2,t(z)| =







9π
5 if z ∈ Pt,

π
5 if z ∈ Qt,

2π if z ∈ Rt.

Therefore, by (4.30), it follows that
∫

Ω
|Djϕ1,t| =

9π

5
+

9π

5

√

1 + (3/4 + t)2;

∫

Ω
|Djϕ2,t| =

9π

5
+
π

5

√

1 + (3/4 + t)2 + 2π.

(4.36)

Hence, we have
∫

Ω
|Djϕ1,t| <

∫

Ω
|Djϕ2,t|, ∀t ∈ (−1/4, 0),

∫

Ω
|Djϕ1,t| >

∫

Ω
|Djϕ2,t|, ∀t ∈ (0, 1/4),

∫

Ω
|Djϕ1,0| =

∫

Ω
|Djϕ2,0|.

(4.37)

Let now ϕ ∈ BV (Ω,R) be an arbitrary lifting of Ut. From (4.11) it follows that

∫

Ω
|Daϕ| =

∫

Ω
|DaUt| and

∫

Ω
|Dcϕ| =

∫

Ω
|DcUt| = 0. We choose an orientation of S(ϕ) that coincides with

the orientation of S(Ut) on S(ϕ) ∩ S(Ut). Put






xϕ := H1(Lϕ ∩ Pt), yϕ := H1(Lϕ ∩Qt),
wϕ := H1(S(ϕ) \ S(Ut)) = H1

(
Lϕ \ (Pt ∪Qt)

)
,

zϕ := wϕ + xϕ +
yϕ√

1+(3/4+t)2
,

(4.38)

where Pt and Qt are defined in (4.28) and Lϕ is given in (4.31). Consider the following decom-

position of Lrϕ (defined in (4.31)):

Lrϕ = Arϕ ∪Br
ϕ ∪Dr

ϕ a.e. in (0, 2),

where 





Arϕ := {r ∈ (0, 1) : ∃ θ ∈ R, reiθ ∈ Lϕ ∩ Pt},
Br
ϕ := {r ∈ (1, 2) : ∃ θ ∈ R, reiθ ∈ Lϕ ∩Qt},

Dr
ϕ := {r ∈ (0, 2) : ∃ θ ∈ R, reiθ ∈ Lϕ \ (Pt ∪Qt)}.

(4.39)

Note that Arϕ ∩Br
ϕ = ∅, but Arϕ (resp. Br

ϕ) and Dr
ϕ are not necessarily disjoint. We have

H1(Arϕ) = xϕ and H1(Br
ϕ) =

yϕ
√

1 + (3/4 + t)2
,

where the last equality follows by the construction of Qt. It is clear then that

wϕ ≥ H1
(
Dr
ϕ) ≥ H1

(
Lrϕ \ (Arϕ ∪Br

ϕ)
)

= H1
(
Lrϕ) − xϕ − yϕ

√

1 + (3/4 + t)2
.
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By Lemma 4.9 we have H1(Lrϕ) = 2. Therefore,

wϕ ≥ 2 − xϕ − yϕ
√

1 + (3/4 + t)2
, i.e., zϕ ≥ 2. (4.40)

By (4.30), we deduce that

(xϕ, yϕ, zϕ) ∈Mt := {(x, y, z) ∈ R3 : 0 ≤ x ≤ 1, 0 ≤ y ≤
√

1 + (3/4 + t)2, z ≥ 2}. (4.41)

We define the function Φt : Mt → R by

Φt(x, y, z) := 2πz − 2π

5
x+

2π
(
4
√

1 + (3/4 + t)2 − 5
)

5
√

1 + (3/4 + t)2
y +

π

5

(

1 +
√

1 + (3/4 + t)2
)

.

It is easy to check that for t > 0 the unique minimum point of Φt on the set Mt is achieved

at the point (1, 0, 2). Similarly, if t < 0 then Φt attains its unique minimum on the set Mt at

(x, y, z) =
(
1,
√

1 + (3/4 + t)2, 2
)
.

On the other hand, from (4.29) we infer
∫

Ω
|Djϕ| ≥

∫

S(ϕ)\S(Ut)
|ϕ+ − ϕ−| +

∫

(Lϕ∩Pt)∪(Lϕ∩Qt)
|ϕ+ − ϕ−| +

∫

(Pt∪Qt)\Lϕ

|ϕ+ − ϕ−|

≥ 2πwϕ +
(

2π − π

5

)

(xϕ + yϕ) +
π

5

(

1 +
√

1 + (3/4 + t)2 − xϕ − yϕ

)

= Φt(xϕ, yϕ, zϕ). (4.42)

Therefore,
∫

Ω
|Djϕ| ≥ Φt(xϕ, yϕ, zϕ) ≥ Φt

(
1,
√

1 + (3/4 + t)2, 2
)

=

∫

Ω
|Djϕ1,t|, if t ∈ (−1/4, 0),

∫

Ω
|Djϕ| ≥ Φt(xϕ, yϕ, zϕ) ≥ Φt(1, 0, 2) =

∫

Ω
|Djϕ2,t|, if t ∈ (0, 1/4).

(4.43)

We conclude that for t ∈ (−1/4, 0), ϕ1,t is an optimal lifting of Ut while for t ∈ (0, 1/4), ϕ2,t is

an optimal lifting of Ut.

It remains to prove the uniqueness of the optimal lifting of Ut. Let ϕ be an arbitrary optimal

lifting of Ut. Then all inequalities in (4.42) and (4.43) become equalities.

(i) In the case of t ∈ (−1/4, 0), we deduce that xϕ = 1, yϕ =
√

1 + (3/4 + t)2, wϕ = 0 (hence,

S(ϕ) = S(Ut)). Moreover, by (4.42),

|ϕ+ − ϕ−| =
9π

5
H1-a.e. in S(ϕ).

Since every lifting has the same diffuse part (see (4.11)), it follows that

D(ϕ− ϕ1,t) = 0 in Ω.

Since Ω is connected, we conclude that ϕ− ϕ1,t is constant in Ω.

(ii) In the case t ∈ (0, 1/4) we obtain xϕ = 1, yϕ = 0, wϕ = 1. Moreover, by (4.42),

|ϕ+ − ϕ−| =







9π
5 H1-a.e. in S(ϕ) ∩ Pt,
π
5 H1-a.e. in S(ϕ) ∩Qt,
2π H1-a.e. in S(ϕ) \ (Pt ∪Qt).
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Then, according to (4.11), it follows that

D(ϕ− ϕ2,t) = 2π

(

νϕ2,tH1xRt − νϕH1x
(
S(ϕ) \ S(Ut)

)
)

.

We deduce that for every function δ ∈ C1
c (Ω),

∫

S(ϕ)\S(Ut)

∂δ

∂τϕ
dH1 =

∫

S(ϕ)\S(Ut)
∇⊥δ · νϕ dH1 = δ(1, 0),

where τϕ stands for the tangent vector to the H1-rectifiable set S(ϕ) \ S(Ut). Using the same

technique as in [53], since H1
(
S(ϕ)\S(Ut)

)
= dist ((0, 1), ∂Ω) = 1, we conclude that S(ϕ) \ S(Ut)

coincides with Rt (which is the geodesic line between the point (0, 1) and ∂Ω). Thus, D(ϕ −
ϕ2,t) = 0 in Ω, i.e., ϕ− ϕ2,t is constant in Ω. This completes the proof of Lemma 4.7. �

Proof of Lemma 4.8. Let p > 0. By Lemma 4.3 we compute

F
(Ut,p)
0 (ϕ1,t) =

(
1 +

√

1 + (3/4 + t)2
)

9π/10∫

−9π/10

2|eis − 1|p/2ds

= 2p/2+3
(
1 +

√

1 + (3/4 + t)2
)

9π/20∫

0

sinp/2 s ds

= 2p/2+3

9π/20∫

0

sinp/2 s ds+ 2p/2+3
√

1 + (3/4 + t)2

π/2∫

π/20

cosp/2 s ds.

On the other hand,

F
(Ut,p)
0 (ϕ2,t) =

∫ 9π/10

0
4|eis − 1|p/2ds+

√

1 + (3/4 + t)2
∫ π/10

0
4|eis − 1|p/2ds

+

∫ π

0
4|eis − 1|p/2ds

= 2p/2+3

( 9π/20∫

0

sinp/2 s ds+
√

1 + (3/4 + t)2

π/20∫

0

sinp/2 s ds+

π/2∫

0

cosp/2 s ds

)

.

Therefore, we infer that

2−p/2−3
(
F

(Ut,p)
0 (ϕ1,t) − F

(Ut,p)
0 (ϕ2,t)

)
=

=
(√

1 + (3/4 + t)2 − 1
)

π/2∫

0

cosp/2 s ds−
√

1 + (3/4 + t)2

π/20∫

0

(
cosp/2 s+ sinp/2 s

)
ds

=
(√

1 + (3/4 + t)2 − 1
)

π/4∫

0

(
cosp/2 s+ sinp/2 s

)
ds −

√

1 + (3/4 + t)2

π/20∫

0

(
cosp/2 s+ sinp/2 s

)
ds

=
1

5

∫ π/4

0

(
cosp/2 s+ sinp/2 s

)
ds ·

(

5
(√

1 + (3/4 + t)2 − 1
)
− cp

√

1 + (3/4 + t)2
)

, (4.44)
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where we denoted

cp :=
5
∫ π/20
0

(
cosp/2 s+ sinp/2 s

)
ds

∫ π/4
0

(
cosp/2 s+ sinp/2 s

)
ds

∈ (0, 5).

Since the function

s ∈ (0,
π

4
) 7→

(
cosp/2 s+ sinp/2 s

)

is increasing for 0 < p < 4 and decreasing for p > 4, it turns out that

cp < 1, ∀p ∈ (0, 4) and cp > 1, ∀p ∈ (4,∞).

Therefore, by (4.44), for any p ∈ (0, 4) there exists 0 < ρp < 1/4 such that

F
(Ut,p)
0 (ϕ1,t) > F

(Ut,p)
0 (ϕ2,t) ∀t ∈ (−ρp, ρp). (4.45)

Similarly, for any p ∈ (4,∞), there exists 0 < ρp < 1/4 such that

F
(Ut,p)
0 (ϕ1,t) < F

(Ut,p)
0 (ϕ2,t) ∀t ∈ (−ρp, ρp). (4.46)

Now we prove that for any t ∈ (−ρp, ρp), ϕ2,t (resp. ϕ1,t) is the unique minimizer of F
(Ut,p)
0 if

p ∈ (0, 4) (resp. p > 4). Let ϕ ∈ BV (Ω,R) be an arbitrary lifting of Ut. We choose an orientation

on S(ϕ) that coincides with the orientation of S(Ut) on S(ϕ) ∩ S(Ut). In the following we use

the same notations as in the proof of Lemma 4.7 (see (4.38), (4.39) and (4.41)). We define the

function Ψt : Mt → R by

Ψt(x, y, z) : = f (p)(2π)z −
(

f (p)(2π) + f (p)
(π

5

)
− f (p)

(9π

5

))

x

+

(

f (p)
(9π

5

)
− f (p)(2π)
√

1 + (3/4 + t)2
− f (p)

(π

5

)
)

y + f (p)
(π

5

)(

1 +
√

1 + (3/4 + t)2
)

= f (p)(2π)z −
(

f (p)(2π) + f (p)
(π

5

)
− f (p)

(9π

5

))

x

+
y

√

1 + (3/4 + t)2

(

F
(Ut,p)
0 (ϕ1,t) − F

(Ut,p)
0 (ϕ2,t)

)

+ f (p)
(π

5

)(

1 +
√

1 + (3/4 + t)2
)

.

By (4.45) and (4.46), it can be easily checked that: if p ∈ (0, 4) and t ∈ (−ρp, ρp) then the

unique minimal point of Ψt in the set Mt is achieved in (1, 0, 2), while if p > 4 and t ∈ (−ρp, ρp)
then Ψt has also a unique minimal point in Mt for (x, y, z) =

(
1,
√

1 + (3/4 + t)2, 2
)
. Using the

same argument as in the proof of Lemma 4.7, it follows that

F
(Ut,p)
0 (ϕ)

2
≥
∫

S(ϕ)\S(Ut)
f (p)(|ϕ+ − ϕ−|) dH1 +

∫

(Lϕ∩Pt)∪(Lϕ∩Qt)
f (p)(|ϕ+ − ϕ−|) dH1

+

∫

(Pt∪Qt)\Lϕ

f (p)(|ϕ+ − ϕ−|) dH1

≥ f (p)(2π)wϕ + f (p)
(

2π − π

5

)

(xϕ + yϕ) + f (p)
(π

5

)(

1 +
√

1 + (3/4 + t)2 − xϕ − yϕ

)

= Ψt(xϕ, yϕ, zϕ). (4.47)
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Therefore, for every t ∈ (−ρp, ρp),






F
(Ut,p)
0 (ϕ) ≥ 2Ψt(xϕ, yϕ, zϕ) ≥ 2Ψt

(
1,
√

1 + (3/4 + t)2, 2
)

= F
(Ut,p)
0 (ϕ1,t) if p > 4,

F
(Ut,p)
0 (ϕ) ≥ 2Ψt(xϕ, yϕ, zϕ) ≥ 2Ψt(1, 0, 2) = F

(Ut,p)
0 (ϕ2,t) if p ∈ (0, 4).

(4.48)

It follows that for any t ∈ (−ρp, ρp), ϕ1,t is a minimizer of F
(Ut,p)
0 if p > 4, and ϕ2,t is a minimizer

of F
(Ut,p)
0 if p ∈ (0, 4). It remains to prove the uniqueness of the minimizer of F

(Ut,p)
0 for any

t ∈ (−ρp, ρp). Let ϕ be a lifting of Ut that minimizes the energy F
(Ut,p)
0 . Then all inequalities

in (4.47) and (4.48) become equalities. Next we distinguish two cases:

(i) In the case of p > 4 we deduce that xϕ = 1, yϕ =
√

1 + (3/4 + t)2, wϕ = 0 (hence,

S(ϕ) = S(Ut)). Moreover, by Lemma 4.3 and (4.47),

|ϕ+ − ϕ−| =
9π

5
H1-a.e. in S(ϕ).

Since every lifting has the same diffuse part (see (4.11)), it follows that

D(ϕ− ϕ1,t) = 0 in Ω.

Since Ω is connected, we conclude that ϕ− ϕ1,t is constant in Ω.

(ii) In the case p ∈ (0, 4) we obtain that xϕ = 1, yϕ = 0, wϕ = 1. Moreover, by (4.47)

|ϕ+ − ϕ−| =







9π
5 H1-a.e. in S(ϕ) ∩ Pt,
π
5 H1-a.e. in S(ϕ) ∩Qt,
2π H1-a.e. in S(ϕ) \ (Pt ∪Qt).

Then, by the same argument as in the end of the proof of Lemma 4.7, we conclude that ϕ−ϕ2,t

is constant in Ω. �

In the following, we shall adapt our construction of the family U to the general case of an

arbitrary domain G:

Proof of (ii) in Theorem 4.1. Assume that G is an arbitrary bounded domain in RN for

N ≥ 2. We construct a family of functions Ũ = {Ũt}t∈(−1/4,1/4) in BV (G,S1) that will have the

same behavior as the family U = {Ut}t∈(−1/4,1/4), defined in (4.26) over the set Ω = {(x1, x2) ∈
R2 : x2

1 + x2
2 < 4}. Let us introduce the sets

Ω1 := {(x1, x2) ∈ R2 : x2
1 + x2

2 < 16},

G1 := Ω × (−1/2, 1/2)N−2 ⊂ RN and G2 := Ω1 × (−1, 1)N−2 ⊂ RN .

For t ∈ (−1/4, 1/4), set also

Ht := { (x1, x2) ∈ Ω1 : (x1, x2) = reiθ, r ∈ (1, 4), 0 < θ < (3/4 + t) ln r },
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and define H̃t := Ht× (−1, 1)N−2 ⊂ RN . As before, by translating and shrinking homotopically

the set G2, we may suppose that G2 ⊂ G. We write x = (x1, x2, . . . , xN ) = (x1, x2, x
′) ∈ RN .

Next we define the function Ũt ∈ BV (G,S1) by

Ũt(x) :=







Ut(x1, x2) x ∈ G1,

1 x ∈ H̃t \G1,

−1 otherwise.

(4.49)

Recall the liftings ϕ1,t, ϕ2,t ∈ BV (Ω,R) of Ut defined in (4.27). Then, consider the liftings

Φ1,t,Φ2,t ∈ BV (G,R) of Ũt given by

Φ1,t(x) :=







ϕ1,t(x1, x2) x ∈ G1,

2π x ∈ H̃t \G1,

π otherwise

and Φ2,t(x) :=







ϕ2,t(x1, x2) x ∈ G1,

0 x ∈ H̃t \G1,

π otherwise.

(4.50)

The jump part of these liftings enjoys the following property: for every j = 1, 2, and every

t ∈ (−1/4, 1/4) we have

S(Φj,t)\G1 = S(Ũt)\G1 and
∣
∣Φ+

j,t(x)−Φ−
j,t(x)

∣
∣ = dS1

(
Ũ+
t (x), Ũ−

t (x)
)
HN−1-a.e. in S(Φj,t)\G1.

(4.51)

In the sequel we will prove that the analog results to those of Lemmas 4.7 and 4.8 hold for the

functions Φj,t, j = 1, 2.

Step 1. For j = 1, 2, Φj,t is the unique optimal lifting of Ũt (up to 2πZ constants) if t is between

0 and (−1)j/4.

Indeed, let Φ : G → R be an arbitrary lifting of Ũt on G. First notice that by (4.12), we have

that ∫

G\G1

|DaΦ| +
∫

G\G1

|DcΦ| =

∫

G\G1

|DaŨt| +
∫

G\G1

|DcŨt| = 0.

Using Lemma 4.7 it follows that

∫

G
|DΦ| =

∫

G\G1

|DΦ| +
∫

G1

|DΦ|

=

∫

S(Φ)\G1

|Φ+ − Φ−| dHN−1 +

∫

G1

|DΦ|

≥
∫

S(Ũt)\G1

dS1(Ũ+
t , Ũ

−
t )dHN−1 +

∫

(−1/2,1/2)N−2

dx′
∫

Ω×{x′}

∣
∣
∣

( ∂Φ

∂x1
,
∂Φ

∂x2

)∣∣
∣

≥
∫

S(Ũt)\G1

dS1(Ũ+
t , Ũ

−
t )dHN−1 +

∫

Ω

|Dϕj,t| =

∫

G
|DΦj,t|, (4.52)

i.e., Φj,t is an optimal lifting of Ũt if t is between 0 and (−1)j/4. It remains to show the

uniqueness of the optimal lifting. For that, let Φ be an arbitrary optimal lifting of Ũt. Then we
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must have equalities in (4.52) and therefore we obtain:

S(Φ)\G1 = S(Ũt)\G1 and
∣
∣Φ+(x)−Φ−(x)

∣
∣ = dS1

(
Ũ+
t (x), Ũ−

t (x)
)

HN−1-a.e. in S(Φj,t)\G1 ,

(4.53)

and for almost every x′ ∈ (−1/2, 1/2)N−2, the restriction of Φ to Ω × {x′} is an optimal lifting

of Ut. Therefore, the jump set of Φ satisfies:

S(Φ) ∩G1 = S(ϕj,t) × (−1/2, 1/2)N−2 = S(Φj,t) ∩G1.

By (4.11), it follows that D(Φ − Φj,t) = 0 in G1 \ S(Φj,t), i.e., Φ − Φj,t is constant on all j

connected components of G1 \ S(Φj,t), j = 1, 2. The optimality of Φ does not allow any jumps

for Φ − Φj,t on S(Φj,t) ∩G1. Hence, by (4.53), we conclude that Φ − Φj,t is constant in G.

Step 2. For every p ∈ (4,∞) (resp. p ∈ (0, 4)), there exists ρp ∈ (0, 1
4) such that for any

0 < t < ρp (resp. −ρp < t < 0), we have

F
(Ũt,p)
0 (Φ2,t) > F

(Ũt,p)
0 (Φ1,t) (resp. F

(Ũt,p)
0 (Φ1,t) > F

(Ũt,p)
0 (Φ2,t) ),

i.e., the optimal lifting of Ũt is not a minimizer of F
(Ũt,p)
0 for the above ranges of p and t.

Indeed, let us prove the claim for p > 4 (the other case follows using the same argument). Take

ρp ∈ (0, 1/4) as given by Lemma 4.8. Then, by Step 1 and Lemma 4.8, we deduce that for

t ∈ (0, ρp),

F
(Ũt,p)
0 (Φ2,t) =

∫

S(Φ2,t)\G1

f (p)(|Φ+
2,t − Φ−

2,t|) dHN−1 +

∫

G1∩S(Φ2,t)
f (p)(|Φ+

2,t − Φ−
2,t|)dHN−1

=

∫

S(Ũt)\G1

f (p)
(
dS1(Ũ+

t , Ũ
−
t )
)
dHN−1 +

∫

Ω∩S(ϕ2,t)
f (p)(|ϕ+

2,t − ϕ−
2,t|)dH1

>

∫

S(Ũt)\G1

f (p)
(
dS1(Ũ+

t , Ũ
−
t )
)
dHN−1 +

∫

Ω∩S(ϕ1,t)
f (p)(|ϕ+

1,t − ϕ−
1,t|) dH1

= F
(Ũt,p)
0 (Φ1,t).

As before, one can also obtain that for any t ∈ (−ρp, ρp), Φ2,t (resp. Φ1,t) is the unique minimizer

of F
(Ũt,p)
0 if p ∈ (0, 4) (resp. p > 4). �

We remark that forW 1,1 functions, the minimizers of the energy E(·) defined in (4.3) coincide

with those of F
(·,p)
0 , for any p > 0:

Proposition 4.10 Let Ω ⊂ RN be a bounded domain, 0 < p < ∞ and u ∈ W 1,1(Ω, S1). Then

a lifting ϕ of u is a minimizer of F
(u,p)
0 if and only if ϕ is an optimal lifting of u.

Proof. Let ϕ ∈ BV (Ω,R) be a lifting of u. Then

ϕ+ − ϕ− ≡ 0 (mod 2π) in S(ϕ).
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We denote n(x) =
|ϕ+(x) − ϕ−(x)|

2π
∈ N for HN−1-a.e. x ∈ S(ϕ). By (4.12), we have

∫

Ω
|Dϕ| =

∫

Ω
|∇u| dx+ 2π

∫

S(ϕ)
n(x) dHN−1(x).

According to (4.16), we deduce that

F
(u,p)
0 (ϕ) = 2f (p)(2π)

∫

S(ϕ)
n(x) dHN−1(x).

Therefore, ϕ is a minimizer of F
(u,p)
0 if and only if it minimizes the energy E(u). �
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Chapter 5

On an open problem about how to

recognize constant functions

Abstract

We find necessary and sufficient conditions for the function ω in order that any measurable

function f : Ω → R which satisfies

Z

Ω

Z

Ω

ω

„

|f(x) − f(y)|

|x − y|

«

dx dy

|x − y|N
< +∞, (5.1)

is constant a.e. in Ω. We also study what regularity on f should be assumed so that for

any function ω which is continuous, ω(0) = 0 and ω(t) > 0 for every t > 0, if (5.1) holds,

then f is a constant.

The first part of this chapter is published in Houston J. Math. 31 (2005), 285–304 (cf.

[51]) and the second part is a work in progress in collaboration with R.-A. Todor.

5.1 Introduction

In this chapter, we investigate an open question posed by Brezis in [25]. The starting point is

the following result (see [21], [25]):

Theorem 5.1 (Bourgain, Brezis, Mironescu) Let Ω be a domain (i.e. a connected open set) in

RN . If f : Ω → R is a measurable function which satisfies

∫

Ω

∫

Ω

|f(x) − f(y)|
|x− y|

dx dy

|x− y|N < +∞,

then f is a constant a.e. in Ω. More generally, if p ≥ 1 and

∫

Ω

∫

Ω

|f(x) − f(y)|p
|x− y|p

dx dy

|x− y|N < +∞,

then the same conclusion holds.
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The motivation comes from the theory of Ginzburg-Landau equation where the problem of

existence and uniqueness of lifting in Sobolev spaces is essential. More precisely, if Ω ⊂ RN is

an open set and u ∈ W s,p(Ω, S1), is there a lifting ϕ ∈ W s,p(Ω,R) of u (i.e. u = eiϕ a.e. in

Ω)? Is this lifting unique in W s,p (up to 2πZ constants)? Here, 0 < s < ∞ et 1 < p < ∞. The

answer to the question of existence of lifting was given by Bourgain, Brezis and Mironescu (see

[20]). The uniqueness of lifting holds if sp ≥ 1 and is a direct consequence of Theorem 5.1 (see

Corollary 5.10). Another motivation comes from the degree theory for classes of discontinuous

maps: if the degree deg ht(·) remains constant along a homotopy ht(·) as t varies in some

connected parameter space, then it is possible to define a degree. For the case of Sobolev maps,

we refer to the work of Brezis and Coron [26] and Brezis, Li, Mironescu and Nirenberg [28].

We denote

W = {ω ∈ C(R+,R+) |ω(0) = 0, ω(t) > 0, ∀t > 0} .

The following problem now arises:

Problem 1 Find a necessary and sufficient condition for ω ∈ W so that any measurable func-

tion f : Ω → R which satisfies

∫

Ω

∫

Ω

ω

( |f(x) − f(y)|
|x− y|

)
dx dy

|x− y|N < +∞, (5.2)

is constant (a.e. in Ω).

Observe that the restriction ω ∈ W is natural. Indeed, the continuity of ω is needed to make

the left hand side of (5.2) well-defined. Also, ω(0) = 0 (since for any constant function f , (5.2)

should hold) and ω(t) > 0,∀t > 0 (if ω(t) = 0 for some t > 0, take N = 1 and f(x) = tx).

Henceforth it is assumed that ω ∈ W.

Three theorems are established concerning Problem 1. Theorem 5.2 gives a necessary condi-

tion and Theorems 5.3 and 5.4 provide sufficient conditions. The question whether the necessary

condition in Theorem 5.2 is also sufficient remains open.

Theorem 5.2 Let Ω ⊂ RN be a bounded domain. Let ω ∈ W be such that any measurable

function f : Ω → R that satisfies (5.2) is constant a.e. in Ω. Then
∫ +∞
1

ω(t)
t2 dt = +∞.

Theorem 5.3 Let Ω ⊂ RN be a domain, f : Ω → R be a measurable function and ω ∈ W such

that lim inft→+∞
ω(t)
t > 0. If (5.2) holds, then f is constant a.e. in Ω.

Theorem 5.4 Let Ω ⊂ RN be a domain, f : Ω → R be a measurable function and ω ∈ W.

Define φ : (0,+∞) 7→ (0,+∞), φ(t) = t−1ω(t) for all t > 0. Assume that ω is a non-decreasing

function such that
∫ +∞

1

ω(t)

t2
dt = +∞ and sup

0<s≤t

φ(t)

φ(s)
< +∞.

If (5.2) holds, then f is constant a.e. in Ω.
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Open question 1 Is the condition
∫ +∞
1

ω(t)
t2
dt = +∞ sufficient for Problem 1 (of course, under

the assumption ω ∈ W)?

In the second part of the chapter, we investigate the following problem:

Problem 2 What regularity on f should be assumed so that for any ω ∈ W, (5.2) imply f is a

constant?

The motivation is clear: if we don’t want any restriction on ω ∈ W, we need to impose an

additional condition on f in order that (5.2) yields f to be a constant. We establish the following

results for Problem 2. Theorem 5.5 says that the condition f ∈ W 1,1
loc (Ω) guarantees that

Problem 2 has a positive answer. The other two theorems deal with the question raised by

Brezis in [25]: Is the continuity (or even the C0,α
loc regularity) of f sufficient for Problem 2? The

answer is negative in general. In the end, we state another open question (related to the previous

one).

Theorem 5.5 Let Ω be a domain in RN and f ∈ W 1,1
loc (Ω). For any ω ∈ W, if (5.2) holds,

then f is constant a.e in Ω.

Theorem 5.6 Let Ω be the unit cube in RN i.e. Ω = (0, 1)N . For every 0 < α < 1, there is a

nonconstant α-Hölder continuous function f : [0, 1]N 7→ R of bounded variation which satisfies

(5.2), for every bounded function ω ∈ W.

Theorem 5.7 Let Ω = (0, 1)N . For every 0 < α < 1, there is a nonconstant α-Hölder continu-

ous function f : [0, 1]N 7→ R of bounded variation which satisfies

∫

Ω

∫

Ω

|f(x) − f(y)|θ
|x− y|θ

dx dy

|x− y|N < +∞, ∀θ ∈ (0, 1).

Open question 2 Let ω ∈ W be such that
∫ +∞
1

ω(t)
t2

dt = +∞. Suppose f is continuous (or

even C0,α
loc for some 0 < α < 1) and satisfies (5.2). Is f constant?

The outline of the chapter is the following: In Section 5.2, we prove the necessary condition

for Problem 1 stated in Theorem 5.2. In Section 5.3, we show the sufficient conditions for

Problem 1 announced in Theorems 5.3 and 5.4. In Section 5.3, we prove the W 1,1 case for

Problem 2. In Section 5.5 we present some remarkable properties concerning a generalized

Cantor set and Cantor function, results that we use in the proof of Theorems 5.6 and 5.7 in

Section 5.6. In Sections 5.7-5.9, we present some further results about Problem 1 that will

appear in [59]: first we prove a dimension reduction theorem, then we show that the necessary

condition in Theorem 5.2 prevents the function f to be a non-trivial indicator function in Ω and

also from being a Cantor function.
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5.2 Necessary condition for Problem 1

In this section we prove Theorem 5.2 i.e., the condition
∫ +∞

1

ω(t)

t2
dt = +∞

is necessary for Problem 1. Firstly, we present a preliminary result. It states that the above

condition is needed in order to prevent f from being a step function.

Lemma 5.8 Let Ω = (−1, 1) × (0, 1)N−1 and ω ∈ W. Let f be the characteristic function of

the unit cube i.e. f = χ(0,1)N . Then (5.2) holds if and only if
∫∞
1

ω(t)
t2 dt < +∞.

Proof : We denote x = (x1, x2, . . . , xN ) = (x1, x
′) ∈ RN and

I =

∫

Ω

∫

Ω

ω

( |f(x) − f(y)|
|x− y|

)
dx dy

|x− y|N .

After a change of variable t = x1 − y1 we get I = 2(I1 + I2) where

I1 =

∫

(0,1)N−1

∫

(0,1)N−1

dx′ dy′
∫ 1

0
ω

(
1

√

|x′ − y′|2 + t2

)
t

(|x′ − y′|2 + t2)
N
2

dt

I2 =

∫

(0,1)N−1

∫

(0,1)N−1

dx′ dy′
∫ 2

1
ω

(
1

√

|x′ − y′|2 + t2

)
2 − t

(|x′ − y′|2 + t2)
N
2

dt.

We remark that |I2| ≤ ||ω||L∞[0,1] and

I1 = 2N−1

∫ 1

0
. . .

∫ 1

0
︸ ︷︷ ︸

N times

ω

(
1

|x|

) x1

N∏

i=2
(1 − xi)

|x|N dx.

If N = 1, then I1 =
∫ 1
0 ω

(
1
x

)
dx =

∫∞
1

ω(z)
z2

dz. If N ≥ 2, after the change of variable z =
1√

x2
1+|x′|2

for each x′, we get I1 = 2N−1(I3 + I4) where

I3 =

∫ 1

1√
N

ω(z)zN−3

∫

(0,1)N−1

N∏

i=2

(1 − xi) · χ( 1√
|x′|2+1

, 1
|x′| )

(z) dx′ dz

I4 =

∫ ∞

1
ω(z)zN−3

∫

|x′|≤ 1
z

x′∈[0,1]N−1

N∏

i=2

(1 − xi) dx
′ dz.

Note that |I3| ≤ ||ω||L∞[0,1]. Therefore it is sufficient to show that I4 < +∞ if and only if
∫∞
1

ω(t)
t2 dt < +∞. For 0 < t < 1, define

TN (t) =

∫

x∈[0,1]N

|x|≤t

N∏

i=1

(1 − xi) dx.
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Then
∫

[0, t√
N

]N

N∏

i=1

(1 − xi) dx ≤ TN (t) ≤
∫

[0,t]N

N∏

i=1

(1 − xi) dx;

so there is a constant cN = ( 1
2
√
N

)N such that

cN t
N ≤ TN (t) ≤ tN for all t ∈ (0, 1).

This yields I4 ≈
∫∞
1

ω(z)
z2

dz. �

Proof of Theorem 5.2: Assume the contrary i.e.
∫ +∞
1

ω(t)
t2 dt < +∞. Since Ω is bounded,

Ω ⊂ (−r, r)N for some r > 0. For the simplicity, we suppose that 0 ∈ Ω. Take now the

characteristic function f = χ(0,r)×(−r,r)N−1 . By Lemma 5.8,

∫

(−r,r)N

∫

(−r,r)N

ω

( |f(x) − f(y)|
|x− y|

)
dx dy

|x− y|N < +∞.

Therefore (5.2) holds which contradicts the hypothesis that f is not constant on Ω. �

5.3 Sufficient conditions for Problem 1

In this section, the proofs of Theorem 5.3 and Theorem 5.4 are presented. We call mollifiers in

RN , any family (ρε)ε>0 of functions in L1
loc(0,∞) satisfying the following properties







ρε ≥ 0 a.e. in (0,+∞),
∫ ∞

0
ρε(t) t

N−1 dt = 1 ∀ε > 0,

lim
ε→0

∫ ∞

δ
ρε(t) t

N−1 dt = 0 ∀δ > 0.

Recall the following result of Brezis (see e.g. [71] Proposition 1 and Lemma 4):

Theorem 5.9 (Brezis) Let Ω ⊂ RN be a domain, (ρε) be mollifiers in RN , f ∈ L1
loc(Ω) and

ω ∈ W be a convex function. If

lim
ε→0

∫

Ω

∫

Ω

ω

( |f(x) − f(y)|
|x− y|

)

ρε(|x− y|) dx dy = 0

then f is constant a.e. in Ω.

First proof of Theorem 5.3: Since ω ∈ W we can construct a convex function ω̃ ∈ W
such that ω̃(t) ≤ ω(t),∀t ∈ [0, 1] and ω̃(t) = at + b,∀t ≥ 1 for some a, b > 0. The hypothesis

lim inft→∞
ω(t)
t > 0 implies the existence of a constant c > 0 such that ω(t) ≥ c ω̃(t),∀t ≥ 0.

Therefore ∫

Ω

∫

Ω

ω̃

( |f(x) − f(y)|
|x− y|

)
dx dy

|x− y|N < +∞.
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Consider the mollifiers in RN

ρε(t) =

{
ε

tN−ε if 0 < t < 1

0 if t ≥ 1
. (5.3)

By the dominated convergence theorem,

lim
ε→0

∫

Ω

∫

Ω

ω̃

( |f(x) − f(y)|
|x− y|

)

ρε(|x− y|) dx dy = 0.

If f ∈ L1
loc(Ω), we conclude by Theorem 5.9. In the general case of a measurable function f , we

consider

fn(x) =







f(x) if |f(x)| ≤ n

n if f(x) ≥ n

−n if f(x) ≤ −n
.

So fn ∈ L1
loc(Ω), fn → f a.e. in Ω and

|fn(x) − fn(y)| ≤ |f(x) − f(y)| ∀x, y ∈ Ω.

Since ω̃ is increasing, we get for all n ≥ 1,

lim
ε→0

∫

Ω

∫

Ω

ω̃

( |fn(x) − fn(y)|
|x− y|

)

ρε(|x− y|) dx dy = 0.

This yields fn ≡ cn et cn → f a.e. in Ω. Thus f is constant a.e. �

We now present a second method2 of proving Theorem 5.3 without making use of Theo-

rem 5.9:

Second proof of Theorem 5.3: By the same argument as above, we may assume that ω is

convex and f ∈ L∞(Ω). Let x0 ∈ Ω and r > 0 be such that B(x0, 3r) ⊂ Ω. We denote B1 =

B(x0, r) and B2 = B(x0, 2r). Let (ρn)n∈N be a sequence of mollifiers with supp ρn ⊂ B(0, 1
n).

Set

fn = ρn ∗ f on B2.

Then fn ∈ C1(B2) and fn → f a.e. on B2. Using that w is an increasing convex function, it

follows by Jensen’s inequality

∫

B2

∫

B2

ω

( |fn(x) − fn(y)|
|x− y|

)
dx dy

|x− y|N ≤
∫

B2

∫

B2

ω






∫

B(0, 1
n

)

ρn(z)
|f(x− z) − f(y − z)|

|x− y| dz






dx dy

|x− y|N

≤
∫

B2

∫

B2

∫

B(0, 1
n

)

ρn(z)ω

( |f(x− z) − f(y − z)|
|x− y|

)
dx dy

|x− y|N dz

≤
∫

B(0, 1
n

)

ρn(z)

∫

B2−z

∫

B2−z

ω

( |f(x) − f(y)|
|x− y|

)
dx dy

|x− y|N dz

≤
∫

Ω

∫

Ω

ω

( |f(x) − f(y)|
|x− y|

)
dx dy

|x− y|N .

2This part does not appear in the published version of the paper [51]
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Write
∫

B2

∫

B2

ω
( |fn(x) − fn(y)|

|x− y|
) dx dy

|x− y|N ≥
∫

B1

dx

∫

SN−1

dσ

∫ r

0
ω
( |fn(x+ tσ) − fn(x)|

t

)dt

t

and deduce that for a.e. x ∈ B1 and for a.e. σ ∈ SN−1,
∫ r

0
ω

( |fn(x+ tσ) − fn(x)|
t

)
dt

t
< +∞.

Since
∫ r
0
dt
t = ∞, we get

lim inf
t→0

ω

( |fn(x+ tσ) − fn(x)|
t

)

= 0, i.e. ω(|∇fn(x) · σ|) = 0 for a.e. x ∈ B1 and σ ∈ SN−1

We conclude that fn is a constant on B1. Hence, f is constant. �

As consequence, we obtain the uniqueness of lifting in W s,p for sp ≥ 1:

Corollary 5.10 Let Ω ⊂ RN be a connected open set, s > 0 and p > 1 such that sp ≥ 1.

Consider u ∈ W s,p(Ω, S1). If ϕ1, ϕ2 ∈ W s,p(Ω,R) are two liftings of u, then ϕ1 − ϕ2 is a

constant function.

Proof. Let f := ϕ1 − ϕ2 ∈ W s,p(Ω,Z). Let B be an arbitrary ball in Ω. Since W s,p(B) is

embedded in W
1
p
,p(B), it is enough to prove the statement for s = 1

p . Recall the Gagliardo

seminorm in W 1/p,p (see [2] )

|f |p
W

1
p ,p

(B)
=

∫

B

∫

B

|f(x) − f(y)|p
|x− y|N+1

dx dy.

Since f takes values in Z, we have that |f(x) − f(y)| ≤ |f(x) − f(y)|p. Then
∫

B

∫

B

|f(x) − f(y)|
|x− y|

dx dy

|x− y|N <∞.

The conclusion follows from Theorem 5.3 for ω(t) = t. �

Proof of Theorem 5.4: Since ω is non-decreasing, using the same argument as in the first

proof of Theorem 5.3, it is sufficient to show that the conclusion holds for f ∈ L∞
loc(Ω). Firstly,

assume that the function φ is non-increasing on (0,+∞). Take an arbitrary ball B̄ ⊂ Ω. For

simplicity, we suppose that |f | ≤ 1
2 a.e. in B. By these assumptions we get

∫

B

∫

B

|f(x) − f(y)|
|x− y| φ

(
1

|x− y|

)
dx dy

|x− y|N < +∞.

For each ε > 0, set

0 < cε :=

∫ 1

0
φ

(
1

t

)
ε

t1−ε
dt ≤ φ(1).

Consider the functions

ρε(t) =

{
1
cε
φ
(

1
t

)
ε

tN−ε if 0 < t < 1

0 if t ≥ 1
∀ε > 0.
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Using the hypothesis that
∫ 1
0 φ
(

1
t

)
dt
t = +∞, we see that (ρε) are mollifiers in RN . We also

notice that limε→0
ε
cε

= 0. By dominated convergence theorem we obtain

lim
ε→0

∫

B

∫

B

|f(x) − f(y)|
|x− y| ρε(|x− y|)dxdy = 0.

Hence Theorem 5.9 implies f is constant a.e. in B and since Ω is connected, we conclude that

f is constant a.e. in Ω. We now consider the general case when c := sup0<s≤t
φ(t)
φ(s) < +∞. Set

φ(0) = φ(1)
c and define

φ̃ : [0,+∞) 7→ (0,+∞), φ̃(t) = min
s∈[0,t]

φ(s) ∀t ≥ 0.

So φ̃ is continuous and non-increasing on [0,+∞) and φ̃(t) ≤ φ(t),∀t > 0. From here,

∫

Ω

∫

Ω

|f(x) − f(y)|
|x− y| φ̃

( |f(x) − f(y)|
|x− y|

)
dx dy

|x− y|N < +∞.

We also have that φ(t) ≤ c2 φ̃(t),∀t ≥ 1 and thus
∫ 1
0 φ̃
(

1
t

)
dt
t = +∞. By the previous case, f is

constant a.e. in Ω. �

5.4 The case of W 1,1
loc functions

In this section, we show that for f ∈W 1,1
loc (Ω) (in particular for Lipschitz functions), the answer

to Problem 2 is positive. We will present two different approaches for solving this case.

Proof of Theorem 5.5: Let x0 ∈ Ω. Take r > 0 such that B̃ = B(x0, 2r) ⊂ Ω and denote

B = B(x0, r). Then f ∈ W 1,1(B) i.e. f ∈ L1(B) and ∇f ∈
(
L1(B)

)N
. So it makes sense to

speak of f(x) and ∇f(x) for a.e. x ∈ B. Let σ ∈ SN−1. By Fubini’s theorem we find that for

a.e. x ∈ B there is a small tx > 0 such that Ix = {x+ tσ | t ∈ (−tx, tx)} ⊂ B and f ∈ W 1,1(Ix)

i.e., f is absolutely continuous on Ix. Therefore for every σ ∈ SN−1,

lim
t→0

f(x+ tσ) − f(x)

t
= ∇f(x) · σ for a.e. x ∈ B. (5.4)

Write
∫

B̃

∫

B̃

ω
( |f(x) − f(y)|

|x− y|
) dx dy

|x− y|N ≥
∫

B

dx

∫

SN−1

dσ

∫ r

0
ω
( |f(x+ tσ) − f(x)|

t

)dt

t

and by (5.2) deduce that for a.e. x ∈ B and for a.e. σ ∈ SN−1,

∫ r

0
ω

( |f(x+ tσ) − f(x)|
t

)
dt

t
< +∞.

Using
∫ r
0
dt
t = ∞, we get

lim inf
t→0

ω

( |f(x+ tσ) − f(x)|
t

)

= 0.
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ω being continuous, by (5.4) one can find N linear independent directions (σi)1≤i≤N such that

ω (|∇f(x) · σi|) = 0 for a.e. x ∈ B and for every i ∈ {1, ..., N}. This implies ∇f = 0 a.e. in B.

By the Poincaré-Wirtinger inequality, we have that
∥
∥
∥
∥
f − 1

|B|

∫

B

f

∥
∥
∥
∥
L1(B)

≤ C ‖∇f‖L1(B) = 0

i.e. f is constant a.e. in B. Since x0 was arbitrarly chosen and Ω is connected, we conclude that

f is constant a.e. in Ω. �

Remark: One could prove this result using another method, as follows. Define ω̃ : [0,+∞) 7→
[0, 1], ω̃(t) = min(ω(t), 1) for every t ≥ 0. Take an arbitrary ball B̄ ⊂ Ω. Then

∫

B

∫

B

ω̃

( |f(x) − f(y)|
|x− y|

)
dx dy

|x− y|N < +∞.

Consider the mollifiers (5.3) in RN . By the dominated convergence theorem, we obtain

lim
ε→0

∫

B

∫

B

ω̃

( |f(x) − f(y)|
|x− y|

)

ρε (|x− y|) dx dy = 0.

On the other hand, one can show that for a bounded continuous function ω̃ on [0,+∞) and

f ∈W 1,1(B),

lim
ε→0

∫

B

∫

B

ω̃

( |f(x) − f(y)|
|x− y|

)

ρε (|x− y|) dx dy =

∫

B

∫

SN−1

ω̃ (|∇f(x) · σ|) dx dσ

(see e.g. [71] Lemma 5). As before, this yields ∇f = 0 a.e. in B for every ball B̄ ⊂ Ω; since

f ∈W 1,1
loc (Ω) and Ω is connected, f is constant a.e. in Ω. �

5.5 Some generalized Cantor sets and Cantor functions

Let 0 < β < 1. We recall the definition of some general Cantor sets, called here β-Cantor sets,

all homeomorphic to the standard one and which can be obtained by deleting a sequence of

pairwise disjoint open intervals from the interior of the segment I
(0)
0 = [0, 1], as follows (see [50]).

Firstly, remove the centered open interval from I
(0)
0 which has length β = β ·

∣
∣
∣I

(0)
0

∣
∣
∣ i.e., delete

the interval J
(1)
0 =

(
1−β

2 , 1+β
2

)

and leave two segments I
(1)
0 =

[

0, 1−β
2

]

and I
(1)
1 =

[
1+β

2 , 1
]

. The

second step consists in deleting the open subinterval of length β ·
∣
∣
∣I

(1)
0

∣
∣
∣ = β ·

∣
∣
∣I

(1)
1

∣
∣
∣ = β 1−β

2 from

the center of each of the segments I
(1)
0 and I

(1)
1 , namely J

(2)
0 =

(
(1−β)2

4 , 1−β2

4

)

and J
(2)
1 = 1−J (2)

0 ;

thus, there remains 22 segments, denoted I
(2)
0 , I

(2)
1 , I

(2)
2 and I

(2)
3 . We iterate this procedure; at

the (n + 1) step, remove the centered open subinterval J
(n+1)
k of length β ·

∣
∣
∣I

(n)
k

∣
∣
∣ from each

segment I
(n)
k = [a

(n)
k , b

(n)
k ] and leave the two segments

I
(n+1)
2k = [a

(n+1)
2k , b

(n+1)
2k ] and I

(n+1)
2k+1 = [a

(n+1)
2k+1 , b

(n+1)
2k+1 ] for k = 0, 1, . . . , 2n − 1.
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2

1 b-

)1(

0J

)2(

0J
)2(

1J

)2(

0I
)2(

1I
)2(

2I
)2(

3I

1
2

1 b+0

The limit set is the β-Cantor set, denoted by Cβ. It is a compact set, containing an

uncountable infinity of points; it has Lebesgue measure zero and it is nowhere dense (i.e. it has

no interior). We will give the specific form of Cβ. In order to do that, let us consider σn and δn

the length of the removed interval J
(n)
k and respectively, of the remaining segment I

(n)
k at the n

step. A simple computation yields

δn =

(
1 − β

2

)n

, σn = βδn−1 ∀n ≥ 1 (here δ0 = 1).

Set εn = δn + σn. Then one can deduce (see [50]) that

Cβ =

{ ∞∑

k=1

αkεk |αk ∈ {0, 1}, k = 0, 1, . . .

}

.

In fact, the binary decomposition

j = αn + 2αn−1 + · · · + 2n−1α1 = (α1 . . . αn)2

gives a
(n)
j =

n∑

k=1

αkεk and b
(n)
j = a

(n)
j +

∑

k≥n+1

εk.

We define now the β-Cantor function, denoted here by fβ (see [36]). Set fβ(0) = 0 and

fβ(1) = 1. So fβ is specified at the endpoints of I
(0)
0 . Define fβ(x) = 1

2 if x ∈ clJ
(1)
0 . Thus

fβ(x) is the average of the values of fβ at the endpoints of I
(0)
0 when x belongs to the removed

interval J
(1)
0 and fβ is specified at the endpoints of I

(1)
0 and I

(1)
1 . At the n + 1 step, define

fβ ≡ fβ(b
(n)
k )−fβ(a

(n)
k )

2 on the closure of each J
(n+1)
k , the removed interval from I

(n)
k = [a

(n)
k , b

(n)
k ].

By that, fβ is defined in every endpoint of I
(n+1)
2k and I

(n+1)
2k+1 for k = 0, 1, . . . , 2n − 1; then we

can iterate the process.

Suppose fβ is not yet defined at x. At each n step, x is in the interior of exactly one of the

2n retained segments, say [an, bn] of length δn. Moreover, bn = an + δn, fβ(bn) = fβ(an) + 2−n,

an ≤ an+1 < bn+1 ≤ bn and fβ(an) ≤ fβ(an+1) < fβ(bn+1) ≤ fβ(bn); then fβ(x) is defined by

lim
n→∞

fβ(an) = fβ(x) = lim
n→∞

fβ(bn).

Furthermore, fβ is a continuous, nondecreasing map of [0, 1] onto [0, 1] (so fβ is a function

of bounded variation on [0, 1] ) and f ′β(x) = 0 for a.e. x ∈ [0, 1]. One can easily check that on
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4

1

2

1

4

3

1

0
1

the β-Cantor set we have

fβ

( ∞∑

k=1

αkεk

)

=

∞∑

k=1

αk2
−k.

We now show that each β-Cantor function is Hölder continuous with Hölder exponent equal

to the Hausdorff dimension of Cβ i.e. Hβ = 1
1−log2(1−β) (see also [46]).

Theorem 5.11 The β-Cantor function is α-Hölder if and only if 0 < α ≤ Hβ.

Proof : Since Cβ is nowhere dense and fβ is continuous, it is sufficient to prove that for every

α ≤ Hβ, there exists lα > 0 such that

|fβ(x) − fβ(y)| ≤ lα|x− y|α ∀x, y ∈ [0, 1]\Cβ . (5.5)

Take x < y, x, y ∈ [0, 1]\Cβ i.e. x and y are in the interior of two removed intervals in the

construction of Cβ, say (b, a) and (b̃, ã). Write a =
n∑

k=1

αkεk,αk ∈ {0, 1}, αn = 1 and ã =

m∑

j=1
γjεj , γj ∈ {0, 1}, γm = 1. Then b = a−σn, b̃ = ã−σm. If the two removed intervals coincide,

then fβ(x) = fβ(y) and (5.5) is obvious. Otherwise, a < b̃. Take s ≥ 1 such that αj = γj for

j = 1, . . . , s− 1 and αs 6= γs (we may consider αj = 0,∀j > n). Thus γs = 1, αs = 0 and s ≤ m.

ab a~b
~ yx
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If s < n, we get

fβ(y) − fβ(x) =

m∑

j=1

γj2
−j −

n∑

k=1

αk2
−k

= 2−n +

m∑

j=s+1

γj2
−j +

n∑

k=s+1

(1 − αk)2
−k,

y − x ≥ b̃− a =
m∑

j=1

γjεj − σm −
n∑

k=1

αkεk

≥ δn +

m∑

j=s+1

γjδj +

n∑

k=s+1

(1 − αk)δk

(here we used εs = σs + δs = σs + εs+1 + · · ·+ εn + δn ). Otherwise, s > n (since s 6= n) and we

have

fβ(y) − fβ(x) =
m∑

j=s

γj2
−j,

y − x ≥ b̃− a =

m∑

j=s

γjεj − σm ≥
m∑

j=s

γjδj .

So in both cases, we can write

fβ(y) − fβ(x) =

M∑

j=1

hj2
−j and y − x ≥

M∑

j=1

hjδj

where M ≥ 1, hj ∈ {0, 1, 2}, j = 1, . . . ,M. We distinguish three cases:

Case 1: 0 < α < Hβ. Set ε = Hβ − α > 0. By Hölder’s inequality, we get

M∑

j=1

hj2
−j =

M∑

j=1

hαj δ
α
j h

1−α
j δεj ≤

( M∑

j=1

hjδj

)α( M∑

j=1

hjδ
ε

1−α

j

)1−α
.

Since hj ∈ {0, 1, 2}, we deduce

M∑

j=1

hjδ
ε

1−α

j ≤ 2
∑

j≥1

(

δ
ε

1−α

1

)j

=: lα
1

1−α < +∞.

So |f(x) − f(y)| ≤ lα|x− y|α.
Case 2: α = Hβ i.e. δαj = 2−j ,∀j ≥ 0. Take the smallest j0 ≥ 1 such that hj0 6= 0. Then

M∑

j=j0

hjδ
α
j

(
M∑

j=j0

hjδj

)α ≤
2
∑

j≥j0
δαj

δαj0
= 2

∑

j≥0

2−j = 4.
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Thus, (5.5) is satisfied.

Case 3: α > Hβ. Take x = εn and y = δn−1 =
∑

k≥n
εk. Then

f(y) − f(x)

|y − x|α =
2−n

|δn−1 − εn|α
=

2−n

δαn
→ ∞ if n→ ∞.

So, in this case, fβ is not an α-Hölder continuous function. �

5.6 Some counter-examples

In this section, we present some counter-examples for Problem 2 in the case of regularity C0,α.

We will assume that Ω is the unit cube in RN i.e. Ω = (0, 1)N .

Theorem 5.12 For every α ∈ (0, 1), there is a nonconstant α-Hölder function f : [0, 1]N 7→ R

of bounded variation which satisfies (5.2), for all ω ∈ W with the property that ω(t) ≤ 1
t ,∀t > 0.

Proof : Let α ∈ (0, 1). Consider the unique β ∈ (0, 1) such that α = Hβ.

Case 1: N = 1. Let f be the β-Cantor function. Take an arbitrary ω ∈ W such that

ω(t) ≤ 1
t ,∀t > 0. Denote by J the (countable) set of all removed intervals in the construction

of the β-Cantor set i.e.

J =
{

J
(n+1)
k : n ≥ 0, k = 0, 1, . . . , 2n − 1

}

.

We have

I =

∫ 1

0

∫ 1

0
ω

( |f(x) − f(y)|
|x− y|

)
dx dy

|x− y|

=
∑

J∈J

∑

J̃∈J

∫

J

∫

J̃
ω

( |f(x) − f(y)|
|x− y|

)
dx dy

|x− y|

= 2
∑

J,J̃∈J
J<J̃

∫

J

∫

J̃
ω

( |f(x) − f(y)|
|x− y|

)
dx dy

|x− y|

(we denote J = (b, a) < J̃ = (b̃, ã) if a < b̃). We want to prove that I < +∞. Take two removed

intervals J = (b, a) and J̃ = (b̃, ã) such that J < J̃ . Write a =
n∑

k=1

αkεk, αk ∈ {0, 1}, αn = 1

and ã =
m∑

j=1
γjεj , γj ∈ {0, 1}, γm = 1 ; here b = a − σn, b̃ = ã − σm. Take r = f |J̃ − f |J =

m∑

j=1
γj2

−j −
n∑

k=1

αk2
−k > 0. We use these notations in the rest of the chapter. Since

ω(t) ≤ 1
t ,∀t > 0 we get

∫

J

∫

J̃
ω

( |f(x) − f(y)|
|x− y|

)
dx dy

|x− y| ≤
∫

J

∫

J̃

dx dy

r
=

|J | · |J̃ |
r

=
σnσm
r

.
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The aim is to estimate

S =
∑

J<J̃

J,J̃∈J

|J | · |J̃ |
f |J̃ − f |J

.

Firstly, consider the interval J = (b, a) fix. Let J̃ = (b̃, ã) be a variable removed interval (in the

construction of Cβ) such that J̃ > J (i.e. a < ã). Each time, we consider the first s step (in

the construction of Cβ) when J and J̃ do not belong anymore to the same remaining interval;

that means the biggest 1 ≤ s ≤ n such that αj = γj for j = 1, . . . , s− 1 (if α1 6= γ1 then s = 1).

Notice that s ≤ m, γs = 1 and αs = γs ⇐⇒ s = n.

If s < m i.e. dist(J, J̃) ≥ δm then

r = f |J̃ − f |J =
m∑

j=1

γj2
−j −

n∑

k=1

αk2
−k ≥

m∑

j=s+1

γj2
−j .

If we sum up over these J̃ , we get:

∑

J̃∈J ,J<J̃
dist(J,J̃)≥δm

|J̃ |
f |J̃ − f |J

=

n∑

s=1

∑

m≥s+1

∑

γj∈{0,1},γs=γm=1

s+1≤j≤m−1

σm
r

≤
n∑

s=1

∑

m≥s+1

σm
∑

γj∈{0,1},γm=1

s+1≤j≤m−1

1
m∑

j=s+1
γj2−j

≤
n∑

s=1

∑

m≥s+1

σm2m
2m−s−1∑

j=1

1

j

≤
n∑

s=1

∑

m≥s+1

σm2m(m− s)

≤ nL

where L =
∑

m≥1
σm2mm = β

δ1

∑

m≥1
(1 − β)mm < +∞.

Otherwise, s = m i.e. dist(J, J̃) < δm. Thus s < n and

r = f |J̃ − f |J = 2−s −
n∑

k=s+1

αk2
−k =

n−1∑

k=s+1

(1 − αk)2
−k + 2−n.

We get

∑

J̃∈J ,J<J̃
dist(J,J̃)<δm

|J̃ |
f |J̃ − f |J

=

n−1∑

s=1

σs
n−1∑

k=s+1

(1 − αk)2−k + 2−n
.
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Finally, if we let J be variable in J , we deduce

S ≤
∑

n≥1

∑

αk∈{0,1}
1≤k≤n−1

σn

(

nL+

n−1∑

s=1

σs
n−1∑

k=s+1

(1 − αk)2−k + 2−n

)

=
∑

n≥1

nσn2
n−1L+

∑

n≥1

σn2
n
n−1∑

s=1

σs
∑

α̃k∈{0,1}
1≤k≤n−1

1

1 +
n−s−1∑

k=1

α̃k2k

≤ L2 +
∑

n≥1

σn · 2n
n−1∑

s=1

σs2
s(n− s)

≤ 2L2.

Case 2: N ≥ 2. We denote x = (x1, x
′) = (x1, x2, . . . , xN ) ∈ [0, 1]N . Take f(x) = fβ(x1),∀x ∈

[0, 1]N . So f ∈ C0,α ∩BV (Ω). Choose any ω ∈ W with the property that ω(t) ≤ 1
t for all t > 0.

Firstly, remark that

I =

∫

(0,1)N

∫

(0,1)N

ω

( |f(x) − f(y)|
|x− y|

)
dx dy

|x− y|N

= 2N−1

∫ 1

0

∫ 1

0

∫

(0,1)N−1

ω

( |fβ(x1) − fβ(y1)|
√

|x′|2 + (x1 − y1)2

)

N∏

i=2
(1 − xi) dx1 dy1 dx

′

(|x′|2 + (x1 − y1)2)
N
2

≤ 2N
∑

J,J̃∈J
J<J̃

∫

J

∫

J̃

∫

(0,1)N−1

ω

( |fβ(x1) − fβ(y1)|
√

|x′|2 + (x1 − y1)2

)
dx1 dy1 dx

′

(|x′|2 + (x1 − y1)2)
N
2

≤ 2N |SN−2|
∑

J,J̃∈J
J<J̃

1

fβ|J̃ − fβ|J

∫

J

∫

J̃

dx1 dy1

∫ N−1

0

tN−2

(t2 + (x1 − y1)2)
N−1

2

dt.

On the other hand, we have

∫ N−1

0

tN−2 dt

(t2 + (x1 − y1)2)
N−1

2

≤ 2

∫ N−1

0

dt

y1 − x1 + t
≤ 2

(

lnN + ln
1

y1 − x1

)

for every 0 ≤ x1 < y1 ≤ 1. Therefore there is a constant c = c(N) > 0 such that

I ≤ c(N)

(
∑

J,J̃∈J
J<J̃

|J | · |J̃ |
fβ|J̃ − fβ|J

+
∑

J,J̃∈J
J<J̃

|J | · |J̃ |
fβ|J̃ − fβ|J

ln
1

dist(J, J̃)

)

.

We have already proved that the first sum converges; it remains to show that the second one

is convergent, too. As before, fix J = (b, a) and let J̃ = (b̃, ã) be such that J < J̃ ; write
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a =
n∑

k=1

αkεk, b = a − σn and ã =
m∑

j=1
γjεj , b̃ = ã − σm. Set r = fβ|J̃ − fβ|J . We have that

dist(J, J̃) = b̃− a. Using the same argument as in the case N = 1, we get

∑

J̃∈J ,J<J̃
dist(J,J̃)≥δm

|J̃ |
fβ|J̃ − fβ|J

ln
1

dist(J, J̃)
≤

n∑

s=1

∑

m≥s+1

∑

γj∈{0,1},γm=1

s+1≤j≤m−1

σm
r

ln
1

δm

≤
n∑

s=1

∑

m≥s+1

mσm2m
2m−s−1∑

j=1

1

j
ln

1

δ1

≤ nL̃ ln
1

δ1

where L̃ =
∑

m≥1
σm2mm2 < +∞. Since dist(J, J̃) ≥ min(δn, δm), it results

∑

J̃∈J ,J<J̃
dist(J,J̃)<δm

|J̃ |
fβ|J̃ − fβ|J

ln
1

dist(J, J̃)
≤

n−1∑

s=1

σs
n−1∑

k=s+1

(1 − αk)2−k + 2−n
ln

1

δn
.

Similarly, allowing J to be variable in J we conclude that:

∑

J,J̃∈J
J<J̃

|J | · |J̃ |
fβ|J̃ − fβ|J

ln
1

dist(J, J̃)
≤ 2L L̃ ln

1

δ1
.

�

We now prove Theorem 5.7:

Proof of Theorem 5.7: Let α ∈ (0, 1). Take β ∈ (0, 1) such that α = Hβ.

Case 1: N = 1. Let f be the β-Cantor function. Choose an arbitrary θ ∈ (0, 1) and set

ω(t) = tθ,∀t ≥ 0. Like in the previous proof, we want to show that

∑

J,J̃∈J
J<J̃

∫

J

∫

J̃
ω

( |f(x) − f(y)|
|x− y|

)
dx dy

|x− y| < +∞.

As before, consider the interval J = (b, a) fix. Let J̃ = (b̃, ã) be a variable removed interval such

that a < ã. Each time, we consider the first s step (in the construction of Cβ) when J and J̃ do

not belong anymore to the same remaining interval. Let us denote p = 1
δ1
> 2 and we use the

same notations r = f |J̃ − f |J , b = a − σn, b̃ = ã − σm, a =
n∑

k=1

αkεk, αk ∈ {0, 1}, αn = 1 and

ã =
m∑

j=1
γjεj , γj ∈ {0, 1}, γm = 1.

If dist(J, J̃) ≥ δm i.e. s < m, we distinguish two cases:

i) dist(J, J̃) ≥ δn i.e. s < n. Here we have b̃− a ≥ σs and r ≤ 2−s+1. We write:

E(J, J̃) =

∫

J

∫

J̃
ω

( |f(x) − f(y)|
|x− y|

)
dx dy

|x− y|

=

∫ 1

0

∫ 1

0

ω(r)σnσm dt dz

(b̃− a+ tσn + zσm)1+θ
≤ rθσnσm

(b̃− a)1+θ
.
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If we sum up over these J̃ , we get:

∑

J̃∈J ,J<J̃
dist(J,J̃)≥max{δm,δn}

E(J, J̃) ≤ σn

n−1∑

s=1

∑

m≥s+1

∑

γj∈{0,1}
s+1≤j≤m−1

σm
σs

1

(2s−1σs)θ

≤ σn

n−1∑

s=1

1

(2s−1σs)θ

∑

m≥s+1

(
2

p

)m−s

≤ cσn

n−2∑

s=0

(p

2

)sθ
L1

≤ cσnL1

(p

2

)θ(n−1)

where for q > 0 we denote Lq =
∑

m≥0

(
2
p

)mq
< +∞ and c = c(β, θ) is a constant that depends

only on β and θ.

ii) dist(J, J̃) < δn i.e. s = n. In this case,

E(J, J̃) ≤
∫ 1

0

rθσnσm dt

(b̃− a+ tσn)1+θ
.

We have b̃− a =
m∑

j=n+1
γjεj − σm ≥

m∑

j=n+1
γjδj and r =

m∑

j=n+1
γj2

−j . From here, we obtain

∑

J̃∈J ,J̃>J
δm≤dist(J,J̃)<δn

E(J, J̃) ≤ cLθ L1−θ σn
(p

2

)nθ

where c = c(β, θ) is a constant that depends only on β and θ. If we let J be variable in J , we

deduce

∑

J,J̃∈J ,J<J̃
dist(J,J̃)≥δm

E(J, J̃) ≤ c(β, θ)
∑

n≥1

∑

αk∈{0,1}
1≤k≤n−1

σn

(p

2

)nθ

≤ c(β, θ)
∑

n≥1

(
2

p

)n(1−θ)

< +∞.

Otherwise, dist(J, J̃) < δm i.e. s = m. Thus m < n,

b̃− a = δm −
n∑

k=m+1

αkεk ≥
n−1∑

k=m+1

(1 − αk)δk + δn

r =

n−1∑

k=m+1

(1 − αk)2
−k + 2−n and E(J, J̃) ≤

∫ 1

0

rθσnσm dz

(b̃− a+ zσm)1+θ
.

111



Chapter 5. On an open problem about how to recognize constant functions

We get

∑

J̃∈J ,J<J̃
dist(J,J̃)<δm

E(J, J̃) ≤ σn

n−1∑

m=1

∫ 1

0

σm

( n−1∑

k=m+1

(1 − αk)2
−k + 2−n

)θ
dz

( n−1∑

k=m+1

(1 − αk)δk + δn + zσm

)1+θ
.

Finally, if we let J be variable in J , we find

∑

J,J̃∈J ,J<J̃
dist(J,J̃)<δm

E(J, J̃) ≤ c(β, θ)LθM1−θ

where M1−θ =
∑

n≥1
n
(

2
p

)n(1−θ)
< +∞.

Case 2: N ≥ 2. Let f(x) = fβ(x1),∀x ∈ [0, 1]N . As before, take θ ∈ (0, 1) and set ω(t) =

tθ,∀t ≥ 0. Write

I =

∫

(0,1)N

∫

(0,1)N

ω

( |f(x) − f(y)|
|x− y|

)
dx dy

|x− y|N

≤ 2N
∑

J,J̃∈J
J<J̃

∫

J

∫

J̃

∫

(0,1)N−1

ω

( |fβ(x1) − fβ(y1)|
√

|x′|2 + (x1 − y1)2

)
dx1 dy1 dx

′

(|x′|2 + (x1 − y1)2)
N
2

≤ 2N |SN−2|
∑

J,J̃∈J
J<J̃

∫

J

∫

J̃
ω(r) dx1 dy1

∫ N−1

0

tN−2

(t2 + (x1 − y1)2)
N+θ

2

dt

(here we denote r = fβ|J̃ − fβ|J). On the other hand, we have

∫ N−1

0

tN−2 dt

(t2 + (x1 − y1)2)
N+θ

2

≤ 4

∫ N−1

0

dt

(y1 − x1 + t)2+θ
≤ 4

(y1 − x1)1+θ

for every 0 ≤ x1 < y1 ≤ 1. Therefore there is a constant c = c(N) > 0 such that

I ≤ c(N)
∑

J,J̃∈J
J<J̃

∫

J

∫

J̃
ω

( |fβ(x1) − fβ(y1)|
|x1 − y1|

)
dx1dy1

|x1 − y1|
.

By Case 1, the conclusion follows. �

Theorem 5.6 is a consequence of the previous two ’counter-examples’; indeed, for some 0 <

θ < 1 a bounded function ω satisfies ω(t) ≤ ||ω||L∞ ·
(

1
t + tθ

)
for every t > 0.

5.7 Dimension reduction

The following result permits to reduce the proof of Problem 1 to one-dimensional domains3:

3This result is part of the forthcoming paper [59]
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Theorem 5.13 Let ω ∈ W. Suppose that Problem 1 holds true for any interval in R, i.e., for

any interval Ω ⊂ R, if f : Ω → R is a measurable function with (5.2), then f is a constant.

Then Problem 1 holds true for any domain Ω ⊂ RN , N > 1.

Proof. Let Ω ⊂ RN and x0 ∈ Ω. Take r > 0 such that B̃ = B(x0, (
√
N + 1)r) ⊂ Ω. Denote the

balls B = B(x0, r) and B̌ = B(x0,
√
Nr). Write

∫

B̃

∫

B̃

ω
( |f(x) − f(y)|

|x− y|
) dx dy

|x− y|N ≥
∫

SN−1

dσ

∫

B̌

dx

∫ r

0
ω
( |f(x+ tσ) − f(x)|

t

)dt

t
.

By (5.2), we deduce that for a.e. σ ∈ SN−1,

∫

B̌

dx

∫ r

0
ω

( |f(x+ tσ) − f(x)|
t

)
dt

t
< +∞.

Therefore, one can find an orthonormal basis (σi)1≤i≤N for which the above inequality holds.

For simplicity of the writing, we assume that x0 = 0 and σi are the cartesian directions in

RN , i.e., σi = xi for every i = 1, . . . , N . Set the N−cube P = (−r, r)N ⊂ B̌. Then for each

1 ≤ i ≤ N and for a.e. (x1, . . . , xi−1, xi+1, . . . , xN ) ∈ (−r, r)N−1, we have that

∫ r

−r

∫ r

0
ω

( |f(x1, . . . , xi−1, xi + t, xi+1, . . . , xN ) − f(x1, . . . , xi, . . . , xN )|
t

)
dt dxi
t

< +∞.

Hence, by our assumption on one-dimensional domains, it follows that

xi ∈ (−r, r) → f(x1, . . . , xi, . . . , xN )

is constant a.e. in (−r, r). According to Lemma 2 in [28], we deduce that f is constant a.e. in

the cube P . �

5.8 The case of an indicator function

In this section4, we prove that the condition

ω ∈ W,

∫ +∞

1

ω(t)

t2
dt = +∞ (5.6)

prevents a measurable f : Ω → R satisfying
∫

Ω

∫

Ω
ω

( |f(x) − f(y)|
|x− y|

)
1

|x− y| dxdy < +∞

from being the indicator function of a measurable subsetA ⊆ Ω with λ(A), λ(CA) > 0 (λ denotes

the Lebesgue measure on Ω and CA := Ω\A) . Note that if ω(t) = t, ∀t ∈ R+ (satisfying (5.6)),

the following result has been already proved, using a different approach, in [25]. Notice that in

Theorem 5.2, it was proved that the condition (5.6) is necessary to prevent f from being a step

function.
4This section is part of the forthcoming paper [59]
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Proposition 5.14 Let Ω ⊂ RN be a domain in RN . If ω satisfies (5.6) and A ⊆ Ω is measurable

such that ∫

A

∫

CA
ω

(
1

|x− y|

)
1

|x− y| dxdy < +∞, (5.7)

then λ(A) ∈ {0, 1}.

Proof. By the argument in Theorem 5.13, we may reduce the proof to the one-dimensional

case: let us assume that Ω = (0, 1) ⊂ R. Suppose that λ(A), λ(CA) > 0 and (5.7) holds. We

show that ∫ +∞

1

ω(t)

t2
dt < +∞. (5.8)

Let x0 ∈ (0, 1) be an arbitrary point of density of CA. We recall that almost all points of a

measurable set are points of density (see [11, 86]), so that such an x0 exists due to λ(CA) > 0,

and the corresponding density condition reads,

lim
tց0

λ(CA ∩ [x0 − t, x0 + t])

2t
= 1. (5.9)

Let us introduce the notations

A− := A ∩ (0, x0), A+ := A ∩ (x0, 1),

CA− := CA ∩ (0, x0), CA+ := CA ∩ (x0, 1).

W.l.o.g. we assume that λ(A−) > 0, so that from (5.7) we deduce

+∞ >

∫

A−

∫

CA−
ω

(
1

|x− y|

)
1

|x− y| dxdy ≥
∫ +∞

0
ω

(
1

t

)
1

t
ψA−(t) dt, (5.10)

where the measurable function ψA− : R+ → [0, 1] is given by

ψA−(t) := λ({x ∈ A− : (x+ t ∈ CA−) ∨ (x− t ∈ CA−)})
= λ({x ∈ A− : x+ t ∈ CA−} ∪ {x ∈ A− : x− t ∈ CA−}) ∀t ≥ 0. (5.11)

Obviously, ψA−(0) = 0.

The main idea is to investigate the behavior of ψA− at t = 0. If we are able to show that

ψA− vanishes at t = 0 of order at most 1 (in the sense t . ψA−(t) on [0, ε] for some ε > 0) we

are done, since
∫ ε

0
ω

(
1

t

)

dt
t=1/s
=

∫ +∞

1/ε

ω(s)

s2
ds.

We formulate therefore

Claim 1.

ψA− vanishes at t = 0 of order at most 1, that is, there exist εA, cA > 0 such that

ψA−(t) ≥ cAt ∀t ∈ [0, εA].

To see this, let us introduce also the measurable function φA− : R → [0, 1] given by

φA−(t) := λ({x ∈ A− : x+ t ∈ CA−}) ∀t ∈ R, (5.12)
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so that due to (5.11) we have,

max{φA−(t), φA−(−t)} ≤ ψA−(t) ≤ φA−(t) + φA−(−t) ∀t ∈ R+. (5.13)

Claim 1 follows from (5.13), if we show

Claim 2.

φA− |R+ is continuous and vanishes at t = 0 of order at most 1, that is, there exist εA, cA > 0

such that

φA−(t) ≥ cAt ∀t ∈ [0, εA].

Note first that

φA−(t) := λ({x ∈ A− : x+ t ∈ CA−}) = λ((t+A−) ∩ CA−) =

∫

R

1A−(x)1CA−(x+ t) dx

y=−x
=

∫

R

1−A−(y)1CA−(t− y) dy = (1−A− ⋆ 1CA−)(t),

so that φA− is positive and continuous (by the dominated convergence theorem), vanishing at

t = 0.

Next note that

φA−(t) = λ((t+A−) ∩ CA−) = λ((t+A−) ∩ (0, x0)) − λ((t+A−) ∩A−).

= φA−,1(t) + φA−,2(t) (5.14)

with

φA−,1(t) := λ((t+A−) ∩ (0, x0)) − λ(A−)

φA−,2(t) := λ(A−) − λ((t+A−) ∩A−).

The continuity of φA−,1, φA−,2 on R follows again by the dominated convergence theorem, but

more refined analysis of the behavior of φA−,1, φA−,2 at t = 0 is needed to prove Claim 2.

For φA−,1 we write for any t ≥ 0, due to the invariance of the Lebesgue measure under translation,

φA−,1(t) = −λ((x0 − t, x0) ∩A),

so that

lim
tց0

φA−,1(t)

t
= 0, (5.15)

since x0 is a point of density of CA (see (5.9)).

As for φA−,2, using the notation

A−
t := (t+A−) ∩A− ⊆ A−,

we write

λ(A−
t+s) = λ((t+ s+A−) ∩A−) ≥ λ((t+A−

s ) ∩A−)

= λ((t+A−) ∩A−) − λ((t+ (A− \A−
s )) ∩A−)

≥ λ(A−
t ) − λ(A− \ A−

s )

= λ(A−
t ) + λ(A−

s ) − λ(A−),
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which ensures that the positive, continuous function φA−,2 : R → R+ which satisfies

φA−,2(t) = λ(A−) − λ(A−
t ) ∈ R+ ∀t ∈ R (5.16)

is subadditive,

φA−,2(s+ t) ≤ φA−,2(s) + φA−,2(t) ∀s, t ∈ R. (5.17)

It is easy to see that this property and the continuity of φA−,2 imply a linear growth estimate

from above on φA−,2 in the neighbourhood of t = +∞,

φA−,2(t) ≤ cA · t ∀t ≥ 1,

but this is not really useful in our context.

We prove that in fact the subadditivity condition (5.17) ensures also a lower bound of this type

on φA−,2, in the neighbourhood of t = 0. More precisely, we show that

Claim 3. Either φA−,2 = 0 on [0,∞] or there exist εA, cA > 0 such that

φA−,2(t) ≥ cA · t ∀t ∈ [0, εA]. (5.18)

Indeed, if the latter does not hold, we have that there exists a sequence (tn)n∈N+ ց 0 such that

φA−,2(t) ≤
tn
n

∀n ∈ N+. (5.19)

Taking t ≥ 0 arbitrary, we have by continuity, subadditivity and (5.19),

φA−,2(t) = lim
n→∞

φA−,2

(⌊
t

tn

⌋

tn

)

≤
⌊
t

tn

⌋

φA−,2 (tn)
(5.19)

≤ t

n
,

for any n such that tn ≤ t. Letting n → ∞ we obtain the desired conclusion, φA−,2 = 0 on

[0,∞].

Note now that φA−,2 = 0 on [0,∞] immediately implies via (5.16) that λ(A−) = 0, contra-

diction. Combining (5.18) and (5.15) we thus obtain the existence of εA, cA > 0 such that

φA−(t) ≥ cA · t ∀t ∈ [0, εA]. (5.20)

This concludes the proof of Claim 2 and, via (5.13), of Claim 1 and Proposition 5.14 too. �

Remark 5.1 The method we use to prove Proposition 5.14 is based on the control of the

behavior at t = 0 of

R ∋ t→ λ((t+A) ∩ CA) ∈ R+,

and allows therefore a similar treatment of a more general condition than (5.7),

∫

A

∫

CA
ω(|f(x) − f(y)|, |x− y|) dxdy < +∞.
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5.9 The case of a Cantor function

In this section5 we show that condition (5.6) prevents f from being a Cantor function.

Proposition 5.15 If ω satisfies (5.6) and 0 < β < 1, then for the Cantor function fβ : [0, 1] →
[0, 1] it holds:

∫

[0,1]

∫

[0,1]
ω

( |fβ(x) − fβ(y)|
|x− y|

)
1

|x− y| dxdy = +∞. (5.21)

Proof. Let J, J̃ be two arbitrary, disjoint intervals removed in the construction of the Cantor set

Cβ. We assume w.l.o.g. J < J̃ (that is, J = (b, a), J̃ = (b̃, ã) with b < a < b̃ < ã) and we aim

next at estimating from below the integral

IJJ̃(fβ) :=

∫

J

∫

J̃
ω

( |fβ(x) − fβ(y)|
|x− y|

)
1

|x− y| dxdy.

Using the same substitution as in the case of an indicator function we write

IJJ̃(fβ) =

∫ ∞

0
ω
(rJJ̃
t

) 1

t
ψJJ̃(t) dt, (5.22)

where

rJJ̃ = f |J̃ − f |J , ψJJ̃(t) = λ({x ∈ J, x+ t ∈ J̃}).

We now remark that, in contrast to the case of an indicator function, ψJJ̃ vanishes in a neigh-

bourhood of t = 0. But, since J, J̃ are intervals, we can write ψJJ̃ explicitly. To this end we

introduce the notations,

dJJ̃ := b̃− a, mJJ̃ := min{|J |, |J̃ |}, MJJ̃ := max{|J |, |J̃ |}, r := rJJ̃ .

Note that d,m,M, r depend on the intervals J, J̃ . For notational ease however we do not indicate

here and in the following this dependence using sub/superscripts.

With the substitution t := r/z, (5.22) becomes,

IJJ̃(fβ) =

∫ ∞

0

ω(z)

z2
· zψJJ̃(r/z) dz,

so that
∫

[0,1]

∫

[0,1]
ω

( |fβ(x) − fβ(y)|
|x− y|

)
dx dy

|x− y| =
∑

J,J̃

IJJ̃(fβ)

=

∫ ∞

0

ω(z)

z2
· Ψ(1/z) dz, (5.23)

where

Ψ(x) :=

∑

J,J̃ ψ̃J,J̃(x)

x
, ψ̃J,J̃(x) := ψJ,J̃(rx) ∀x ∈ (0,∞).

Returning now to the explicit form of ψJJ̃ , we have that ψJJ̃ vanishes on [0, d], increases

linearly with slope 1 on [d, d+m], stays constant equal to m on [d+m,d+M ], decreases linearly

5This section is part of the forthcoming paper [59]
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with slope −1 on [d +M,d +M +m], and stays equal to 0 afterwards. More formally we can

write for ψ̃JJ̃ (appearing in the definition of Ψ),

ψ̃JJ̃(x) =







0 0 ≤ x ≤ d/r

rx− d d/r ≤ x ≤ (d+m)/r

m (d+m)/r ≤ x ≤ (d+M)/r

m− (rx− d−M) (d+M)/r ≤ x ≤ (d+m+M)/r

0 (d+m+M)/r ≤ x < +∞

. (5.24)

The proof is concluded from (5.23) if we can show that

lim inf
xց0

Ψ(x) > 0. (5.25)

The argument we present in the following for the proof of (5.25) is based on the self-similarity

of the Cantor set Cβ and of the corresponding Cantor function fβ. More precisely, let us denote

by S(x) the numerator in the definition of Ψ(x),

S(x) :=
∑

J,J̃

ψ̃J,J̃(x) ∀x ∈ [0,∞).

Recall that I
(1)
0 := [0, (1 − β)/2], J

(1)
0 := ((1 − β)/2, 1 + β)/2), I

(1)
1 := [(1 + β)/2, 1] the three

intervals into which [0, 1] is divided in the first step of the construction of Cβ, and split the sum

in the definition of S accordingly,

S =
∑

J,J̃

J,J̃⊂I
(1)
0

ψ̃J,J̃ +
∑

J,J̃

(J=J
(1)
0

)∨(J̃=J
(1)
0

)

ψ̃J,J̃ +
∑

J,J̃

J⊂I
(1)
0

,J̃⊂I
(1)
1

ψ̃J,J̃ +
∑

J,J̃

J⊂I
(1)
1

,J̃⊂I
(1)
0

ψ̃J,J̃ +
∑

J,J̃

J,J̃⊂I
(1)
1

ψ̃J,J̃ .

Denoting by S1, . . . , S5 the sums above, we remark that S1, . . . , S5 are all positive and S1 = S5,

so that

S(x) ≥ 2S1(x) ∀x ∈ [0,∞). (5.26)

But now a rescaling argument allows us to express S1 in terms of S itself. More precisely, the

stretching
[

0,
1 − β

2

]

= I
(1)
0 ∋ t

φβ→ 2

1 − β
t ∈ [0, 1]

gives a bijection between the intervals J ⊂ I
(1)
0 and all intervals J ⊂ [0, 1] removed in the

construction of the Cantor set. Additionally, the explicit form (5.24) of ψ̃J,J̃ allows us to write

for any pair J, J̃ ⊂ I
(1)
0 ,

ψ̃J,J̃(x) =
1 − β

2
ψ̃φβ(J),φβ(J̃)((1 − β)−1x) ∀x ∈ [0,∞). (5.27)

Indeed, let d,m,M, r and d′,m′,M ′, r′ be the sets of parameters describing via (5.24) ψ̃J,J̃ and

ψ̃φβ(J),φβ(J̃) respectively. By stretching we have d′ = 2
1−βd, m

′ = 2
1−βm, M ′ = 2

1−βM , whereas

the definition of the Cantor function ensures r′ = 2r. The scaling property (5.27) follows then
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using these relations in (5.24).

Summing (5.27) over J, J̃ ⊂ I
(1)
0 we obtain,

S1(x) =
1 − β

2
S((1 − β)−1x) ∀x ∈ [0,∞). (5.28)

From (5.26) and (5.28) we obtain

S(x) ≥ (1 − β)S((1 − β)−1x) ∀x ∈ [0,∞),

which then ensures

Ψ(x) ≥ Ψ((1 − β)−1x) ∀x ∈ (0,∞),

so that

Ψ(x) ≥ inf
y∈[1,(1−β)−1]

Ψ(y) ∀x ∈ (0, 1),

and the conclusion follows due to the fact that Ψ satisfies the condition:

Ψ(x) ≥ cK > 0, for every compact K ⊂ (0,∞). (5.29)

Indeed, let J := J
(1)
0 be the first removed interval in the construction of the Cantor set and

J̃ := Jn be the closest removed interval at the right side of J at the step n, n > 1 (see notations

in Section 5.5). We have that

dJJ̃ = δn, rJJ̃ =
1

2n
, mJJ̃ = σn, MJJ̃ = σ1.

Now let x ∈ K. Then there exists nK > 0 such that

ψ̃J,Jn(x) = mJ,Jn , for every n ≥ nK .

Therefore, (5.29) holds since

∑

n≥nK

ψ̃J,Jn(x) ≥ C
∑

n≥nK

(1 − β)n ≥ CK > 0.

�
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Part II

Vortices in a 2d rotating

Bose-Einstein condensate
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Chapter 6

The critical velocity for vortex

existence in a two dimensional

rotating Bose-Einstein condensate

Abstract

We investigate a model corresponding to the experiments for a two dimensional rotating

Bose-Einstein condensate. It consists in minimizing a Gross-Pitaevskii functional defined in

R2 under the unit mass constraint. We estimate the critical rotational speed Ω1 for vortex

existence in the bulk of the condensate and we give some fundamental energy estimates for

velocities close to Ω1.

This chapter is written in collaboration with V. Millot; the original text is published in

J. Funct. Anal. 233 (2006), 260–306 (cf. [55]) and some of these results were annouced in

C. R. Math. Acad. Sci. Paris 340 (2005), 571–576 (cf. [54]).

6.1 Introduction

The phenomenon of Bose-Einstein condensation has given rise to an intense research, both

experimentally and theoretically, since its first realization in alkali gases in 1995. One of the

most beautiful experiments was carried out by the ENS group and consisted in rotating the

trap holding the atoms [65, 66] (see also [1]). Since a Bose-Einstein condensate (BEC) is a

quantum gas, it can be described by a single complex-valued wave function (order parameter)

and it rotates as a superfluid: above a critical velocity, it rotates through the existence of

vortices, i.e., zeroes of the wave function around which there is a circulation of phase. In an

experiment where a harmonic trap strongly confines the atoms in the direction of the rotation

axis, the mathematical analysis becomes two-dimensional by the decoupling of the wave function

(see [33, 34, 79]). We restrict our study to this two-dimensional model used in [33, 34]. After

the nondimensionalization of the energy (see [4]), the wave function uε minimizes the Gross-

Pitaevskii energy
∫

R2

{
1

2
|∇u|2 +

1

2ε2
V (x)|u|2 +

1

4ε2
|u|4 − Ωx⊥ ·(iu,∇u)

}

dx (6.1)
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Chapter 6. The critical velocity for vortex existence in a 2d rotating BEC

under the constraint ∫

R2

|u|2 = 1, (6.2)

where ε>0 is small and represents a ratio of two characteristic lengths and Ω = Ω(ε)≥0 denotes

the rotational velocity. We consider here the harmonic trapping case, that is V (x) = |x|2Λ :=

x2
1 + Λ2x2

2 for a fixed parameter 0 < Λ ≤ 1. In [34], the equilibrium configurations are studied

by looking for the minimizers in a reduced class of functions and some numerical simulations

are presented.

Our aim is to estimate the critical velocity above which the wave function has vortices,

and in Chapter 7 to analyze in more details the vortex patterns in the bulk of the condensate.

According to numerical and theoretical predictions (see [4, 34]), we expect to find the critical

speed in the regime Ω = O(| ln ε|) so that we restrict our study to this situation.

Due to the constraint (6.2), we may rewrite the energy in the equivalent form

Fε(u) =

∫

R2

{
1

2
|∇u|2 +

1

4ε2
[
(|u|2 − a(x))2 − (a−(x))2

]
− Ωx⊥ · (iu,∇u)

}

dx (6.3)

where a(x) = a0 − |x|2Λ and a0 is determined by
∫

R2 a
+(x) = 1 so that a0 =

√

2Λ/π . Here a+

and a− represent respectively the positive and the negative part of a. Then we consider the

wave function uε as a solution of the variational problem

Min
{
Fε(u) : u ∈ H, ‖u‖L2(R2) = 1

}
where H =

{
u ∈ H1(R2,C) :

∫

R2

|x|2|u|2 < +∞
}
.

In the limit ε → 0, the minimization of Fε strongly forces |uε|2 to be close to a+ which means

that the resulting density is asymptotically localized in the ellipsoidal region

D :=
{
x ∈ R2 : a(x) > 0

}
=
{
(x1, x2) ∈ R2 : x2

1 + Λ2x2
2 < a0

}
.

We will also see that |uε| decays exponentially fast outside D. Actually, the domain D represents

the region occupied by the condensate and consequently, vortices will be sought inside D.

The main tools for studying vortices were developed by Béthuel, Brezis and Hélein [17]

for “Ginzburg-Landau type” problems. We also refer to Sandier [75] and Sandier and Serfaty

[76, 77, 78] for complementary techniques. In the case a(x) ≡ 1 and for a disc in R2, Serfaty

proved the existence of local minimizers having vortices for different ranges of rotational velocity

(see [83]). In [4], Aftalion and Du follow the strategy in [83] for the study of global minimizers

of the Gross-Pitaevskii energy (6.3) where R2 is replaced by D. In [3], Aftalion, Alama and

Bronsard analyze the global minimizers of (6.3) for potentials of different nature leading to an

annular region of confinement. We finally refer to [5, 6, 61] for mathematical studies on 3D

models.

We emphasize that we tackle here the problem which corresponds exactly to the physical

model. In particular, we minimize Fε under the unit mass constraint and the admissible config-

urations are defined in the whole space R2. Several difficulties arise, especially in the proof of

the existence results and the construction of test functions. We point out that we do not assume

any implicit bound on the number of vortices. The singular and degenerate behavior of
√
a+
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near ∂D induces a cost of order | ln ε| in the energy and requires specific tools to detect vortices

in the boundary region. Therefore we shall restrict our analysis to vortices lying down in the

interior domain

Dε = {x ∈ D : a(x) > νε| ln ε|−3/2} (6.4)

where νε is a chosen parameter in the interval (1, 2) (see Proposition 6.16).

We now start to describe our main results. We prove that

Ω1 :=
Λ2 + 1

a0
| ln ε| =

√
π(Λ2 + 1)√

2Λ
| ln ε|

is the asymptotic estimate as ε→ 0 of the critical angular speed for nucleation of vortices in D.

The critical angular velocity Ω1 coincides with the one found in [4, 34]. We observe that a very

stretched condensate, i.e., Λ ≪ 1, yields a very large value of Ω1 and that the smallest Ω1 is

reached for Λ = 1/
√

3 (and surprisingly not for the symmetric case, i.e., Λ = 1). For subcritical

velocities, we will see that uε behaves as the “vortex-free” profile η̃εe
iΩS where η̃ε is the positive

minimizer of

Eε(u) =

∫

R2

{
1

2
|∇u|2 +

1

4ε2
[
(|u|2 − a(x))2 − (a−(x))2

]
}

dx

under the constraint (6.2) and the phase S is given by

S(x) =
Λ2 − 1

Λ2 + 1
x1x2 . (6.5)

For rotational speeds larger than Ω1, we show the existence of vortices close to the origin. We

also give some fundamental energy estimates in the regime Ω = Ω1+O(ln | ln ε|) which will allow

to study the precise vortex structure of uε in Chapter 7.

Theorem 6.1 Let uε be any minimizer of Fε in H under the mass constraint (6.2).

(i) There exists a constant ω⋆1 < 0 such that if Ω ≤ Ω1 + ω1 ln | ln ε| with ω1 < ω⋆1 then

|uε| →
√
a+ in L∞

loc(R
2 \ ∂D) as ε→ 0. Moreover,

Fε(uε) = Fε
(
η̃εe

iΩS
)

+ o(1) (6.6)

and for any sequence εn → 0, there exists a subsequence (still denoted by εn) and α ∈ C

with |α| = 1 such that uεne
−iΩS → α

√
a+ in H1

loc(D) as n→ +∞.

(ii) If there exists some constant δ > 0 such that Ω1 + δ ln | ln ε| ≤ Ω ≤ O(| ln ε|), then uε

has at least one vortex xε ∈ D such that dist (xε, ∂D) ≥ C > 0 with C independent

of ε. If in addition, Ω ≤ Ω1 + O(ln | ln ε|), then xε remains close to the origin, i.e.,

|xε| ≤ O(| ln ε|−1/6).

(iii) Set vε = uε/(η̃εe
iΩS) and assume that Ω ≤ Ω1 + ω1 ln | ln ε| for some ω1 > 0. Then there

exist two positive constants M1 and M2 depending only on ω1 such that
∫

Dε

a(x)|∇vε|2 +
a2(x)

ε2
(|vε|2 − 1)2 ≤ M1| ln ε|,

∫

Dε\{|x|Λ<2| ln ε|−1/6}
a(x)|∇vε|2 +

a2(x)

ε2
(|vε|2 − 1)2 ≤ M2 ln | ln ε|.
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From the estimates in (iii) in Theorem 6.1, we are going to determine in Chapter 7 the

number and the location of vortices in function of the angular speed Ω as ε→ 0. More precisely,

we will compute the asymptotic expansion of the energy Fε(uε) in order to estimate the critical

velocity Ωd for having d vortices in the bulk and to exhibit the configuration of vortices by a

certain renormalized energy. We also mention that the techniques used in Chapter 7 will permit

to prove that the best constant in (i) in Theorem 6.1 is ω⋆1 = 0. The proof will rely mostly on

the study of “bad discs” in [17].

Sketch of the proof. We now describe briefly the content of this chapter.

Section 2 is devoted to the study of the density profile η̃ε. We first introduce the real positive

minimizer ηε of Eε, i.e.,

Eε(ηε) = Min
{
Eε(η) : η ∈ H

}
. (6.7)

We show the existence and uniqueness of ηε (see Theorem 6.2) and we have that Eε(ηε) ≤ C| ln ε|
and ηε →

√
a+ in L∞(R2) ∩ C1

loc(D) as ε → 0 (see Proposition 6.3). Then we prove that there

is a unique positive solution of the problem

Min
{
Eε(η) : η ∈ H , ‖η‖L2(R2) = 1

}
(6.8)

called η̃ε, which can be obtained from ηε by a change of scale (see Theorem 6.7). This relationship

yields an important estimate on the Lagrange multiplier kε associated to η̃ε : |kε| ≤ O(| ln ε|),
as well as the asymptotic properties of η̃ε from those of ηε (see Proposition 6.8). In particular,

we have η̃ε →
√
a+ in L∞(R2) ∩ C1

loc(D) as ε→ 0.

In Section 3, we prove the existence of minimizers uε under the mass constraint (6.2) (see

Proposition 6.10) and some general results about their behavior: Eε(uε) ≤ C| ln ε|2, uε decreases

exponentially quickly to 0 outside D, |∇uε| ≤ CKε
−1 and |uε| .

√
a+ in any compact K ⊂ D

(see Proposition 6.11). Using a method introduced by Lassoued and Mironescu [63], we show

that Fε(uε) splits into two independent pieces (see Lemma 6.12): the energy of the “vortex-free”

profile Fε(η̃εe
iΩS) and the reduced energy of vε = uε/(η̃εe

iΩS):

Fε(uε) = Fε(η̃εe
iΩS) + F̃ε(vε) + T̃ε(vε) (6.9)

where

F̃ε(vε)= Ẽε(vε) + R̃ε(vε), (6.10)

Ẽε(vε)=
∫

R2

η̃2
ε

2
|∇vε|2 +

η̃4
ε

4ε2
(|vε|2 − 1)2 , R̃ε(vε)=

Ω

Λ2 + 1

∫

R2

η̃2
ε∇⊥a · (ivε,∇vε) , (6.11)

T̃ε(vε) =
1

2

∫

R2

(
Ω2|∇S|2 − 2Ω2x⊥ · ∇S + kε

)
η̃2
ε(|vε|2 − 1). (6.12)

The motivation of S is explained in [4]: S satisfies div
(
a+(∇S−x⊥)

)
= 0 in R2 and corresponds

to the limit as ε → 0 of the phase (globally defined in R2) divided by Ω, of any solution of

Min
{
Fε(u) : u = ηeiϕ ∈ H, η > 0

}
. The existence of the global limiting phase S is new in this

type of variational problems related to the “Ginzburg-Landau” energy. We point out that the
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anisotropy carried by the phase S, leads to a negative term of order Ω2 for Λ ∈ (0, 1) in the

energy (see Remark 6.5):

Fε
(
η̃εe

iΩS
)

= Eε(η̃ε) −
√

2(1 − Λ2)2

12
√
π(1 + Λ2)Λ3/2

Ω2 + o(1).

We will prove that |T̃ε(vε)| = O(ε| ln ε|3). Thus, we may focus on the reduced energy F̃ε(vε). We

study the vortex structure of uε via the map vε applying the Ginzburg-Landau techniques to the

weighted energy Ẽε(vε); the difficulty will arise in the region where η̃ε is small. We notice that

vε inherits from uε and η̃ε, the following properties (see Proposition 6.13): Ẽε(vε) ≤ C| ln ε|2,
|∇vε| ≤ CKε

−1 and |vε| . 1 in any compact K ⊂ D. Using η̃εe
iΩS as a test function and (6.9),

we obtain in Proposition 6.14, a crucial upper bound of the reduced energy inside Dε:

F̃ε(vε,Dε) ≤ o(1). (6.13)

Motivated by the behavior η̃2
ε ∼ a+ (see (6.98) and (6.99)), we will use in the sequel the energies

Fε, Eε and Rε in the interior of D (see Notations below).

In Section 4, we compute a first lower bound of Eε(vε) using a method due to Sandier and

Serfaty (see [76, 78]). We start with the construction of small disjoint balls {B(pi, ri)}i∈Iε in the

domain Dε (given by (6.4)): outside these balls |vε| is close to 1, so that vε carries a degree di

on ∂B(pi, ri) (see Proposition 6.16) and

Eε(vε,Dε) ≥
∑

i∈Iε
Eε(vε, B(pi, ri)) & π

∑

i∈Iε
a(pi)|di| | ln ε|. (6.14)

Then we prove an asymptotic expansion of the rotational energy outside the balls {B(pi, ri)}i∈Iε
(see Proposition 6.17),

Rε

(
vε,Dε \ ∪i∈IεBi

)
≈ − πΩ

Λ2 + 1

∑

i∈Iε
a2(pi) di. (6.15)

The presence of a2(pi) is due to the harmonic type of the potential. In fact, for slightly more

general potentials a(x), we compute the solution ξ of the problem (see [4])

div
(1

a
∇ξ
)

= −2 in D and ξ = 0 on ∂D (6.16)

and the rotational energy will exhibit the terms ξ(pi) in (6.15). For our harmonic potential a(x),

an easy computation leads to ξ = a2

2(Λ2+1)
. By (6.14) and (6.15), the first term in the lower

expansion of the energy is

π
∑

i∈Iε
a(pi)

(

|di|| ln ε| − diΩ
2ξ(pi)

a(pi)

)

. (6.17)

For having a vortex ball Bi with nonzero degree, Ω has to be larger than Ω1 = 1+Λ2

a0
| ln ε|, pi

maximizes ξ/a and di is positive. Indeed, we obtain the subcritical case (i) in Theorem 6.1

matching (6.13) with (6.17). For velocities larger than Ω1, we use an improvement of the upper
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estimate (6.13) using a test function having a single vortex at the origin. From here, we deduce

(ii) in Theorem 6.1. We also prove that for Ω ≤ Ω1+O(ln | ln ε|), the number of vortex balls with

nonzero degree is uniformly bounded in ε and they appear close to the origin (see Proposition

6.19). We conclude by the two fundamental energy estimates stated in (iii) in Theorem 6.1.

Our analysis deals with vortices inside D. However, we believe that for Ω small (Ω = O(1)),

the solution should not have any vortices in R2. For Ω larger (Ω ∼ Ω1), vortices may exist in

the region where uε is small. The study of the vortex structure in the region where |uε| is small

requires the development of other tools than energy estimates.

We recall that the choice of the harmonic potential is motivated by the physical experiments.

For some other potentials a such that ξ/a has a unique maximum point at the origin, our method

can be applied and the critical speed is given by

Ω1 =
a(0)

2ξ(0)
| ln ε|.

If the set of maximum points of ξa is not finite (it can be a curve, see Remark 6.6), the techniques

are different and it will be the topic of a future work.

Notations. Throughout the chapter, we denote by C a positive constant independent of ε and

we use the subscript to point out a possible dependence on the argument. For x = (x1, x2) ∈ R2,

we write

x⊥ = (−x2, x1), |x|Λ =
√

x2
1 + Λ2x2

2 and BΛ
R =

{
x ∈ R2 : |x|Λ < R

}

and for A ⊂ R2,

Ẽε(v,A) =

∫

A

1

2
η̃2
ε |∇v|2 +

η̃4
ε

4ε2
(1 − |v|2)2 , Eε(v,A) =

∫

A

1

2
a|∇v|2 +

a2

4ε2
(1 − |v|2)2,

R̃ε(v,A) =
Ω

1 + Λ2

∫

A
η̃2
ε∇⊥a · (iv,∇v) , Rε(v,A) =

Ω

1 + Λ2

∫

A
a∇⊥a · (iv,∇v),

F̃ε(v,A) = Ẽε(v,A) + R̃ε(v,A) , Fε(v,A) = Eε(v,A) + Rε(v,A). (6.18)

We do not write the dependence on A when A = R2.

6.2 Analysis of the density profiles

In this section, we establish some preliminary results on ηε and η̃ε defined respectively by (6.7)

and (6.8). We will show that the shapes of ηε and η̃ε are similar.

We notice that the space H in which we perform the minimization, is exactly the set of

finiteness for Eε. In the sequel, we endow H with the scalar product

〈u, v〉H =

∫

R2

∇u · ∇v + (1 + |x|2)(u · v) for u, v ∈ H;

obviously, (H, 〈·, ·〉H) is a Hilbert space.
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6.2.1 The free profile

We start by proving the existence and uniqueness for small ε of ηε defined as the real positive

solution of (6.7). Hence ηε has to satisfy the associated Euler-Lagrange equation







ε2∆ηε + (a(x) − η2
ε)ηε = 0 in R2,

ηε > 0 in R2.
(6.19)

We denote by λ, the first eigenvalue of the elliptic operator −∆ + |x|2Λ in R2, i.e.,

λ = Inf

{∫

R2

|∇φ|2 + |x|2Λ|φ|2 : φ ∈ H , ‖φ‖L2(R2) = 1

}

.

We have the following result:

Theorem 6.2 If 0 < ε < a0
λ , there exists a unique classical solution ηε of (6.19). Moreover,

ηε ≤
√
a0 and ηε is the unique minimizer of Eε in H up to a complex multiplier of modulus one.

If ε ≥ a0
λ , then zero is the unique critical point of Eε in H.

The method that we use for solving (6.19) involves several classical arguments generally used

for a bounded domain. The main difficulty here is due to the fact that the equation is posed

in the entire space R2 without any condition at infinity. We start with the construction of the

minimal solution: we consider the solution ηR,ε of the same equation posed in a ball of large

radius R with homogeneous Dirichlet boundary condition and then we pass to the limit in R.

We prove the uniqueness by estimating the ratio between the constructed solution and any other

solution. A crucial point in the proof is an L∞-bound of any weak solution.

Before proving Theorem 6.2, we present the asymptotic properties of ηε as ε→ 0. We show

that ηε decays exponentially fast outside D and that η2
ε tends uniformly to a+. The following

estimates will be essential at several steps of our analysis.

Proposition 6.3 For ε sufficiently small, we have

6.3.a) Eε(ηε) ≤ C| ln ε|,

6.3.b) 0 < ηε(x) ≤ Cε1/3 exp

(
a(x)

4ε2/3

)

in R2 \ D,

6.3.c) 0 ≤
√

a(x) − ηε(x) ≤ Cε1/3
√

a(x) for x ∈ D with |x|Λ <
√
a0 − ε1/3,

6.3.d) ‖∇ηε‖L∞(R2) ≤ Cε−1,

6.3.e) ‖ηε −
√
a ‖C1(K) ≤ CKε

2 for any compact subset K ⊂ D.

Remark 6.1 We observe that 6.3.a) in Proposition 6.3 implies

∫

R2\D
|ηε|4 + 2a−(x)|ηε|2 +

∫

D
(a(x) − |ηε|2)2 ≤ Cε2| ln ε|. (6.20)
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Proof of Theorem 6.2. Step 1: Existence for 0 < ε < a0
λ . For R > 0, we consider the equation







ε2∆ηR + (a(x) − η2
R
)ηR = 0 in BR,

ηR > 0 in BR,

ηR = 0 on ∂BR.

(6.21)

By a result of Brezis and Oswald (see [32]), we have the existence and uniqueness of weak

solutions of (6.21) if and only if the following first eigenvalue condition holds

Inf

{∫

BR

|∇φ|2 − a(x)|φ|2
ε2

: φ ∈ H1
0 (BR) , ‖φ‖L2(BR) = 1

}

< 0, i.e.,

λ1(Lε, BR) = Inf

{∫

BR

|∇φ|2 +
|x|2Λ|φ|2
ε2

: φ ∈ H1
0 (BR) , ‖φ‖L2(BR) = 1

}

<
a0

ε2
(6.22)

where we denoted the elliptic operator Lε = −∆ +
|x|2Λ
ε2

. We claim that for R sufficiently

large, (6.22) is fulfilled. Indeed, let ψ be an eigenfunction of Lε in R2 associated to the first

eigenvalue λ1(Lε,R2) with ‖ψ‖L2(R2) = 1 (the existence of ψ is a direct consequence of the

compact embedding H →֒ L2(R2) proved in Lemma 6.4). For any integer n ≥ 1, set ψn(x) =

cn ζ
(
|x|
n

)

ψ(x), where ζ : R → R is the “cut-off” type function given by

ζ(t) =







1 if t ≤ 1,

2 − t if t ∈ (1, 2),

0 if t ≥ 2

(6.23)

and the constant cn is chosen such that ‖ψn‖L2(R2) = 1. We easily check that

λ1(Lε, B2n) ≤
∫

B2n

(

|∇ψn|2 +
|x|2Λ
ε2

|ψn|2
)

−→
n→+∞

∫

R2

(

|∇ψ|2 +
|x|2Λ
ε2

|ψ|2
)

= λ1(Lε,R
2)

and we deduce that the sequence
{
λ1(Lε, BR)

}

R>0
(which is decreasing in R) tends to λ1(Lε,R2)

as R→ ∞. Since

λ1(Lε,R
2) =

λ

ε
,

we conclude that there exists Rε > 0 such that for every R > Rε, condition (6.22) is fulfilled

and equation (6.21) admits a unique weak solution ηR,ε.

By standard methods, it results that ηR,ε is a smooth classical solution of (6.21). We notice

that, for any Rε < R < R̃, ηR̃,ε is a supersolution of (6.21) in BR and thus ηR,ε ≤ ηR̃,ε in BR by

the uniqueness of ηR,ε. By the maximum principle, we infer that ηR,ε ≤
√
a0 in R2. For every

R > Rε, we extend ηR,ε by 0 in R2 \ BR. Since the function R → ηR,ε(x) is non-decreasing

for any x ∈ R2, we may define for x ∈ R2, ηε(x) = lim
R→+∞

ηR,ε(x). It results that ηε satisfies

0 < ηε ≤
√
a0 and

ε2∆ηε + (a(x) − η2
ε)ηε = 0 in D′(R2). (6.24)

Since ηε ∈ L∞(R2), we derive by standard methods that ηε is a smooth classical solution of

(6.2).
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Step 2. L∞-bound for solutions of (6.19). The method we use in this step is due to Farina (see

[43]) and relies on a result of Brezis (see [24]). We present the proof for convenience. Let η be

any weak solution of (6.19) in L3
loc(R

2). We claim that

η ≤ √
a0 a.e. in R2.

Indeed, if we consider w = ε−1(η−√
a0), then w ∈ L3

loc(R
2) and since η satisfies (6.19), we infer

that ∆w ∈ L1
loc(R

2). By Kato’s inequality, we have

∆(w+) ≥ sgn+(w)∆w ≥ sgn+(w)

ε3
(η2 − a0)η =

1

ε2
w+(εw + 2

√
a0)(εw +

√
a0) ≥ (w+)3.

Therefore w+ ∈ L3
loc(R

2) and w+ satisfies

−∆(w+) + (w+)3 ≤ 0 in D′(R2).

By Lemma 2 in [24], it leads to w+ ≤ 0 a.e. in R2 and thus w+ ≡ 0.

Step 3. Uniqueness for 0 < ε < a0
λ . Let ηε be the solution constructed at Step 1 and let η be

any weak solution of (6.19) in L3
loc(R

2). By the previous step, η ∈ L∞(R2) and using standard

arguments, we derive that η is smooth and defines a classical solution of (6.19). We observe that

η is a supersolution of (6.21) for every R > Rε. Since ηR,ε is extended by 0 outside BR, ηR,ε ≤ η

in R2. Passing to the limit in R, we get that 0 < ηε ≤ η in R2. Hence the function ρ : R2 → R

defined by ρ = ηε/η is smooth and takes values in (0, 1]. We easily check that ρ satisfies

div(η2∇ρ) +
η4

ε2
(1 − ρ2)ρ = 0 in R2. (6.25)

For every integer n ≥ 1, we set ζn(x) = ζ
(
n−1|x|

)
, where ζ is given by (6.23). Multiplying

(6.25) by (1 − ρ)ζ2
n and integrating by parts, we derive

∫

R2

(
η4

ε2
ρ(1 − ρ)2(1 + ρ)ζ2

n + η2ζ2
n|∇ρ|2

)

= 2

∫

R2

η2(1 − ρ)ζn(∇ρ · ∇ζn). (6.26)

Since ρ is bounded, the Cauchy-Schwarz inequality yields

∫

R2

η2(1 − ρ)ζn(∇ρ · ∇ζn) =

∫

B2n\Bn

η2(1 − ρ)ζn(∇ρ · ∇ζn)

≤
(∫

B2n

η2(1 − ρ)2|∇ζn|2
)1/2

(
∫

B2n\Bn

η2ζ2
n|∇ρ|2

)1/2

≤ 2
√
π ‖η‖L∞(R2)

(
∫

R2\Bn

η2ζ2
n|∇ρ|2

)1/2

.

Using (6.26) and the L∞-bound on η obtained in Step 2, we infer that

∫

R2

η2ζ2
n|∇ρ|2 ≤ 4

√
πa0

(
∫

R2\Bn

η2ζ2
n|∇ρ|2

)1/2

. (6.27)
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It follows

16πa0 ≥
∫

R2

η2ζ2
n|∇ρ|2 −→

n→+∞

∫

R2

η2|∇ρ|2

by monotone convergence. Since η2|∇ρ|2 ∈ L1(R2), the right hand side in (6.27) tends to 0 as

n → +∞ and we finally deduce that
∫

R2 η
2|∇ρ|2 = 0. Hence ρ is constant in R2 and by (6.26),

we necessarily have ρ = 1, i.e., η = ηε.

Step 4. End of the proof. The existence of a minimizer η of Eε in H is standard. Since

Eε(|η̂|) ≤ Eε(η̂) for any η̂ ∈ H, we infer that η̂ := |η| is also a minimizer and therefore η̂ satisfies

the equation 





ε2∆η̂ + (a(x) − η̂2)η̂ = 0 in R2,

η̂ ≥ 0 in R2.
(6.28)

By the maximum principle, it follows that either η̂ > 0 in R2 or η̂ ≡ 0.

If 0 < ε < a0
λ , we claim that η̂ > 0. Indeed, for R > 0 sufficiently large, we consider the

unique solution ηR,ε of (6.21). By [32], ηR,ε is the unique non-negative minimizer of Eε(·, BR)

in H1
0 (BR,R). Since ηR,ε is extended by 0 outside BR, we have

Eε(η̂) ≤ Eε(ηR,ε) = Eε(ηR,ε , BR) < Eε(0, BR) = Eε(0)

which implies that η̂ is not identically equal to 0. Then η̂ solves (6.19) and by Step 3, we conclude

that |η| = η̂ = ηε. From the equality Eε(|η|) = Eε(η), we easily deduce that there exists a real

constant α such that η = |η|eiα = ηεe
iα.

If ε ≥ a0
λ , we prove that η̂ ≡ 0. Multiplying (6.28) by η̂, it results

∫

R2

|∇η̂|2 +
|x|2Λ
ε2

η̂2 +
1

ε2
η̂4 =

a0

ε2

∫

R2

η̂2 ≤ λ

ε

∫

R2

η̂2.

On the other hand,

∫

R2

|∇η̂|2 +
|x|2Λ
ε2

η̂2 ≥ λ1(Lε,R
2)

∫

R2

η̂2 =
λ

ε

∫

R2

η̂2.

It follows that
∫

R2 η̂
4 = 0, i.e., η̂ ≡ 0. Thus, in this range of ε, zero is the unique minimizer of

Eε.

Now it remains to show that zero is the unique critical point of Eε when ε ≥ a0
λ . Indeed, let

η̃ be any critical point of Eε in H, i.e., η̃ satisfies the equation (6.24). Then

∫

R2

|∇η̃|2 =
1

ε2

∫

R2

a(x)η̃2 − η̃4. (6.29)

Since zero is the global minimizer, we have that Eε(η̃) ≥ Eε(0), so that

∫

R2

|∇η̃|2 +
1

2ε2

∫

R2

η̃4 − 2a(x)η̃2 ≥ 0. (6.30)

Combining (6.29) and (6.30), we derive that
∫

R2 η̃
4 = 0, i.e., η̃ ≡ 0. �

We recall the following classical result:
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Lemma 6.4 The embedding H →֒ L2(R2,C) is compact.

Proof. Let un ⇀ 0 weakly in H as n → ∞. Extracting a subsequence if necessary, by the

Sobolev embedding theorem, we may assume that un → 0 strongly in L2
loc(R

2). Obviously,
∫

R2 |x|2|un|2 ≤ C. For any R > 0, we have

R2 lim sup
n→∞

∫

R2\BR

|un|2 ≤ lim sup
n→∞

∫

R2

|x|2|un|2 ≤ C.

Letting R→ +∞ in this inequality, we conclude that un → 0 strongly in L2(R2). �

Remark 6.2 We emphasize that from the proof of Theorem 6.2, it follows that any smooth

function η satisfying 





−ε2∆η ≥ (a(x) − |η|2)η in R2,

η > 0 in R2,

verifies η ≥ ηε in R2.

Proof of Proposition 6.3. Proof of 6.3.a). We construct an explicit test function ϕ ∈ H1(R2)

such that Eε(ϕ) ≤ C| ln ε|. Since ηε minimizes Eε, we deduce Eε(ηε) ≤ Eε(ϕ) ≤ C| ln ε|. The

function ϕ is defined as in [61]: let

γ(s) =







√
s if s ≥ ε2/3,
s

ε1/3
otherwise

and set ϕ(x) = γ(a+(x)) for x ∈ R2. It results that

∫

R2

|∇ϕ|2 ≤ C| ln ε| and

∫

R2

(a+ − ϕ2)2 ≤ Cε2 (6.31)

for a positive constant C independent of ε.

Proof of 6.3.b). We construct a supersolution η of (6.19) of the form:

η(x) =







√

a(x) if |x|Λ ≤ √
a0 − δ ,

−|x|Λ
√
a0 − δ + a0√
δ

if
√
a0 − δ ≤ |x|Λ ≤ rδ,

β exp(−|x|2Λ/2σ) otherwise,

(6.32)

where δ > 0 will be determined later,

rδ =
a0

2
√
a0 − δ

+

√
a0

2

and β, σ are chosen such that η ∈ C1(R2), i.e.,

β =
a0 −

√

a0(a0 − δ)

2
√
δ

exp(r2δ/2σ) and σ =
a0δ

4(a0 − δ)
.
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A straightforward computation shows that for δ = 4a
1/3
0 ε2/3, η is a supersolution of (6.19) and

we also have

rδ −
√
a0 = O(ε2/3), σ = O(ε2/3) and β = O(ε1/3ea0/2σ).

By Remark 6.2, it results that ηε ≤ η in R2 which leads to 6.3.b). Notice that we also obtain







ηε(x) ≤
√

a(x) for |x|Λ ≤
√
a0 − δ ,

ηε(x) ≤ Cε1/3 for
√
a0 − δ ≤ |x|Λ ≤ √

a0 .
(6.33)

Proof of 6.3.c). The estimate 6.3.c) follows the ideas in Proposition 2.1 in [3]. Let x0 ∈ D be

such that

dist (x0, ∂D) ≥ ε1/3 (6.34)

and set α = min
{
a(y), y ∈ B(x0, ε

2/3)
}
. We want to construct a subsolution in Bδ(x0). For

ε̃ = ε1/3/
√
α , we denote by w̃ the unique solution of







−∆w̃ +
1

ε̃2
(w̃2 − 1)w̃ = 0 in B1,

w̃ > 0 in B1,

w̃ = 0 on ∂B1.

(6.35)

From Proposition 2.1 in [14], we know that

0 ≤ 1 − w̃(x) ≤ C exp

(

−1 − |x|2
2ε̃

)

.

Then we map w̃ to B(x0, ε
2/3), namely

w(x) =
√
α w̃

(
x− x0

ε2/3

)

.

From (6.35) we derive

−∆w +
1

ε2
(w2 − a(x))w ≤ −∆w +

1

ε2
(w2 − α)w = 0 in B(x0, ε

2/3).

Since ηε > 0 on ∂B(x0, ε
2/3), by the uniqueness of w̃, we deduce that

w ≤ ηε in B(x0, ε
2/3).

The decay estimate on w̃ implies 0 ≤ √
α−w(x0) ≤ C

√
α exp

(

−
√
α

2ε1/3

)

≪ C
√
αε1/3. By (6.34),

we have
√

a(x0) −
√
α ≤ C

√

a(x0)ε
1/3.

Then (6.33) yields

0 ≤
√

a(x0) − ηε(x0)
√

a(x0)
≤
√

a(x0) −w(x0)
√

a(x0)
=

√

a(x0) −
√
α

√

a(x0)
+

√
α− w(x0)
√

a(x0)
≤ Cε1/3,
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for a constant C independent of x0.

Proof of 6.3.d). Taking x0 ∈ R2 arbitrarily, it suffices to show that |∇ηε| ≤ Cε−1 in B(x0, ε) with

a constant C independent of x0. We define the re-scaled function φε : B2(0) → R by φε(y) =

ηε(x0+εy). From estimates 6.3.b) and 6.3.c), we derive that |∆φε| = |
(
a(x0 + εy) − φ2

ε

)
φε| ≤ C

in B2(0) for a constant C independent of x0. By elliptic regularity, we deduce that for any

1 ≤ p <∞, ‖φε‖W 2,p(B1(0)) ≤ Cp for a constant Cp independent of ε and x0. Taking some p > 2,

it implies that ‖∇φε‖L∞(B1(0)) ≤ C for a constant C independent of ε and x0 which yields the

result.

Proof of 6.3.e). The idea of the proof is due to Shafrir [84]. First we prove that |∇ηε| remains

bounded with respect to ε in any compact set K ⊂ D. We choose some radii 0 < r < R <
√
a0

such that K ⊂ BΛ
r ⊂ BΛ

R ⊂ D. We claim that

|ηε −
√
a | ≤ CR ε

2 in BΛ
r . (6.36)

Indeed, we infer from (6.19) that

−ε2∆(
√
a− ηε) + ηε(ηε +

√
a )(

√
a− ηε) = −ε2∆(

√
a ) = O(ε2) in BΛ

R.

By estimate 6.3.c), we have |√a−ηε| ≤
√
a

2 in BΛ
R for ε small. Thus ηε(ηε+

√
a) ≥ AR > 0 in BΛ

R

for some positive constant AR which only depends on R. Then (6.36) follows from Lemma 6.5

below (which is a slight modification of Lemma 2 in [16]).

Lemma 6.5 Assume that A > 0 and 0 < r < R. Let wε be a smooth function satisfying







−ε2∆wε +Awε ≤ Bε2 in BΛ
R,

wε ≤ 1 on ∂BΛ
R,

for some constant B ∈ R. Then wε ≤ Cε2 in BΛ
r with C = C(R, r,A,B).

Proof of 6.3.e) completed. By (6.19) and (6.36), we deduce that ηε is uniformly bounded in

W 2,p(BΛ
r ) for any 1 ≤ p <∞. In particular, it implies

‖∇ηε‖L∞(K) ≤ CK . (6.37)

We repeat the above argument with the functions zε = ∂ηε

∂xj
and z0 = ∂

√
a

∂xj
, j = 1, 2. Obviously,

we can assume that (6.36) and (6.37) hold in BΛ
R. Using (6.36), we easily check that

−ε2∆(zε − z0) + (3η2
ε − a)(zε − z0) = O(ε2).

By (6.37), we can apply Lemma 6.5 which yields the announced result. �

We now state a result that we will require in Section 2.2. We follow here a technique

introduced by Struwe (see [87]).
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Lemma 6.6 Let I : (0,∞) 7→ R+ defined by

I(ε) = Min
{
Eε(η) : η ∈ H

}
. (6.38)

Then I(·) is locally Lipschitz continuous and non-increasing in (0,∞). Moreover,

|I ′(ε)| ≤ C

( | ln ε|
ε

+ 1

)

for almost every ε ∈ (0,∞). (6.39)

Proof. For every ε ≥ a0
λ , we know by Theorem 6.19 that I(ε) = Eε(0) = C

ε2 and |I ′(ε)| = C
ε3 .

Hence it remains to prove that the conclusion holds for 0 < ε < a0
λ + 1. By convention, we set

ηε ≡ 0 if ε ≥ a0
λ . Naturally, we have

I(ε) = Eε(ηε) ≤ Eε(0) =
C

ε2
for every ε > 0. (6.40)

If ε is small, we infer from 6.3.b) in Proposition 6.3 that we can find some radius R >
√
a0
Λ such

that ∫

R2\BR

|ηε|4 + 2a−(x)|ηε|2 ≤ Cε3. (6.41)

Using (6.40), we deduce that (6.41) holds for 0 < ε < a0
λ +1. Let us now fix some ε0 ∈ (0, a0λ +1)

and 0 < h≪ 1. We have

Eε0+h(ηε0+h) = I(ε0 + h) ≤ Eε0+h(ηε0−h) ≤ Eε0−h(ηε0−h) = I(ε0 − h) ≤ Eε0−h(ηε0+h).

Hence, I is a non-increasing function and

Eε0−h(ηε0−h) − Eε0+h(ηε0−h) ≤ I(ε0 − h) − I(ε0 + h) ≤ Eε0−h(ηε0+h) − Eε0+h(ηε0+h).

By (6.41), it leads to

I(ε0 + h) − I(ε0 − h)

2h
≥ −ε0

2(ε0 + h)2(ε0 − h)2

(∫

BR

(a(x) − |ηε0+h|2)2 − (a−(x))2
)

−C (6.42)

and

I(ε0 + h) − I(ε0 − h)

2h
≤ −ε0

2(ε0 + h)2(ε0 − h)2

∫

BR

[
(a(x) − |ηε0−h|2)2 − (a−(x))2

]
(6.43)

which proves with (6.40) that I(·) is locally Lipschitz continuous in (0, a0λ + 1). Therefore I(·) is

differentiable almost everywhere in (0, a0λ + 1). We easily check using standard arguments that

ηε0−h → ηε0 and ηε0+h → ηε0 in L4(BR) as h→ 0. Assuming that ε0 is a point of differentiability

of I(·), we obtain letting h→ 0 in (6.42) and (6.43),

I ′(ε0) =
−1

2ε30

∫

BR

[
(a(x) − |ηε0 |2)2 − (a−(x))2

]
+ O(1). (6.44)

Then we deduce (6.39) combining (6.20) and (6.44). �
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6.2.2 The profile under the mass constraint

In this section, we study the minimization problem (6.8). The motivation is to define the

“vortex-free” profile

η̃εe
iΩS (6.45)

and to construct admissible test functions for the model. Existence and uniqueness results for

general potentials a are also presented in [64]. Our contribution consists in proving the identity

(6.47) between ηε and η̃ε. By this formula, we obtain a precise information about the asymptotic

behavior of the profile η̃ε.

Theorem 6.7 For every ε > 0, problem (6.8) admits a unique solution η̃ε up to a complex

multiplier of modulus one. Moreover, there exists kε ∈ R such that

−∆η̃ε =
1

ε2
(a(x) − |η̃ε|2)η̃ε + kεη̃ε in R2 (6.46)

and η̃ε is characterized by

η̃ε(x) =

√
a0 + kεε2√

a0
ηε̃
(

√
a0 x√

a0 + kεε2

)
with ε̃ =

a0ε

a0 + kεε2
∈ (0,

a0

λ
) . (6.47)

In addition, for small ε > 0,

|kε| ≤ C| ln ε| (6.48)

and
∣
∣Eε(η̃ε) − Eε(ηε)

∣
∣ ≤ Cε2| ln ε|2. (6.49)

Identity (6.47) gives us automatically the asymptotic properties of η̃ε from those of ηε by a

change of scale and hence we obtain the analogue of Proposition 6.3 for η̃ε:

Proposition 6.8 For ε sufficiently small, we have

6.8.a) Eε(η̃ε) ≤ C| ln ε|,

6.8.b) 0 < η̃ε(x) ≤ Cε1/3 exp

(
a(x)

4ε2/3

)

for |x|Λ ≥ √
a0 + ε,

6.8.c)
∣
∣
√

a(x) − η̃ε(x)
∣
∣ ≤ Cε1/3

√

a(x) for x ∈ D with |x|Λ <
√
a0 − 2ε1/3,

6.8.d) ‖∇η̃ε‖L∞(R2) ≤ Cε−1,

6.8.e) ‖η̃ε −
√
a ‖C1(K) ≤ CKε

2| ln ε| for any compact subset K ⊂ D.

Remark 6.3 We observe that 6.8.a) in Proposition 6.8 implies for small ε > 0,

∫

R2\D
|η̃ε|4 + 2a−(x)|η̃ε|2 +

∫

D
(a(x) − |η̃ε|2)2 ≤ Cε2| ln ε| (6.50)
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Proof of Theorem 6.7. Step 1: Existence. Let (ηn)n∈N be a minimizing sequence for (6.8).

Extracting a subsequence if necessary, by Lemma 6.4, we may assume that ηn ⇀ η̃ε weakly in

H and strongly in L2(R2) as n→ ∞. Then we derive from (6.2) that ‖η̃ε‖L2(R2) = 1. We easily

check that Eε is lower semi-continuous on H with respect to the weak H-topology and therefore

Eε(η̃ε) ≤ lim infn→∞Eε(ηn), i.e., η̃ε is a minimizer of (6.8). Since Eε(|η̃ε|) = Eε(η̃ε), we infer

that η̃ε = |η̃ε|eiα for some constant α. Hence we may assume that η̃ε ≥ 0 in R2.

Step 2: Proof of (6.47). Let η̃ε be a solution of (6.8). As in Step 1, we may assume that η̃ε ≥ 0.

Since η̃ε is a minimizer of Eε under the constraint ‖η̃ε‖L2(R2) = 1, there exists kε ∈ R such that

η̃ε satisfies (6.46) and we necessarily have η̃ε > 0 in R2 by the maximum principle. We rewrite

equation (6.46) as

−∆η̃ε =
1

ε2
(aε(x) − |η̃ε|2)η̃ε in R2, (6.51)

with

aε(x) = a0 + kεε
2 − |x|2Λ. (6.52)

Multiplying (6.51) by η̃ε, integrating by parts and using that
∫

R2 |η̃ε|2 = 1, we obtain that

a0 + kεε
2

ε2
=

∫

R2

|∇η̃ε|2 +
|x|2Λ
ε2

|η̃ε|2 +
1

ε2
|η̃ε|4 > λ1(Lε,R

2) =
λ

ε

and therefore, ε̃ = a0ε
a0+kεε2

∈
(
0, a0λ

)
. Setting

ϑε(x) =

√
a0√

a0 + kεε2
η̃ε(

√
a0 + kεε2 x√

a0
), (6.53)

a straightforward computation shows that






−ε̃2∆ϑε = (a(x) − |ϑε|2)ϑε in R2,

ϑε > 0 in R2.

By Theorem 6.2, it leads to

ϑε ≡ ηε̃. (6.54)

Combining this identity with (6.53) we obtain (6.47).

Step 3: Uniqueness. Let η̂ε be another solution of (6.8). As for η̃ε, we may assume that η̂ε is a

real positive function. Let k̂ε be the Lagrange multiplier associated to η̂ε, i.e., η̂ε satisfies

−∆η̂ε =
1

ε2
(a(x) − |η̂ε|2)η̂ε + k̂εη̂ε in R2.

By Step 2, the solution η̂ε is characterized by

η̂ε(x) =

√

a0 + k̂εε2√
a0

ηε̂(

√
a0 x

√

a0 + k̂εε2
) with ε̂ =

a0ε

a0 + k̂εε2
∈ (0,

a0

λ
) .

Hence it suffices to prove that k̂ε = kε. We proceed by contradiction. Assume for instance that

kε < k̂ε. Then η̂ε satisfies

−∆η̂ε ≥
1

ε2
(a(x) − |η̂ε|2)η̂ε + kεη̂ε in R2. (6.55)
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We consider the function

ϑ̂ε(x) =

√
a0√

a0 + kεε2
η̂ε(

√
a0 + kεε2 x√

a0
), (6.56)

which satisfies by (6.55),







−ε̃2∆ϑ̂ε ≥ (a(x) − |ϑ̂ε|2)ϑ̂ε in R2,

ϑ̂ε > 0 in R2.

Therefore ϑ̂ε is a supersolution of (6.19) with ε̃ instead of ε. By Remark 6.2 we infer that ϑ̂ε ≥ ηε̃

in R2. By (6.47) and (6.56), it leads to η̂ε ≥ η̃ε in R2. Since ‖η̂ε‖L2(R2) = ‖η̃ε‖L2(R2) = 1, we

conclude that η̂ε ≡ η̃ε and hence kε = k̂ε, contradiction.

Step 4: Energy bound for small ε > 0. We now prove that for small ε > 0,

Eε(η̃ε) ≤ C| ln ε|. (6.57)

Let ϕ be the test function constructed in the proof of 6.3.a) in Proposition 6.3. Setting ϕ̂ =

‖ϕ‖−1
L2(R2)

ϕ, it suffices to check that Eε(ϕ̂) ≤ C| ln ε| by the minimizing property of η̃ε. First

we show that ‖ϕ‖L2(R2) remains close to 1 as ε → 0. Since
∫

R2 a
+ = 1, we have

∫

R2 |ϕ|2 =

1 +
∫

D(|ϕ|2 − a+(x)) and by (6.31),

∫

D

∣
∣|ϕ|2 − a+(x)

∣
∣ ≤ C

(∫

D
(|ϕ|2 − a+(x))2

)1/2

≤ Cε.

Hence ‖ϕ‖2
L2(R2) = 1 + O(ε). Then we derive from (6.31),

∫

R2

|∇ϕ̂|2 = ‖ϕ‖−2
L2(R2)

∫

R2

|∇ϕ|2 ≤
∫

R2

|∇ϕ|2 + Cε| ln ε| ≤ C| ln ε|

and

1

ε2

∫

D
(a(x) − |ϕ̂|2)2 =

1

ε2

∫

D
(a(x) − |ϕ|2)2 +

2(1 − ‖ϕ‖−2
L2(R2)

)

ε2

∫

D
(a(x) − |ϕ|2)|ϕ|2

+
(1 − ‖ϕ‖−2

L2(R2)
)2

ε2

∫

D
|ϕ|4

≤C + C

(
1

ε2

∫

D
(a− |ϕ|2)2

)1/2

≤ C.

Therefore Eε(ϕ̂) ≤ C| ln ε| and (6.57) holds.

Step 5: First bound on the Lagrange multiplier for small ε > 0. Let η̃ε be the positive solution

of (6.8) and let kε ∈ R be such that η̃ε satisfies (6.46). Multiplying (6.46) by η̃ε, integrating by

parts and using that
∫

R2 |η̃ε|2 = 1, we obtain that

kε =

∫

R2

|∇η̃ε|2 +
1

ε2

∫

R2

(
|η̃ε|2 − a(x)

)
|η̃ε|2. (6.58)
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From (6.57) we derive
∣
∣
∣
∣
∣

∫

R2

|∇η̃ε|2 +
1

ε2

∫

R2\D

(
|η̃ε|2 − a(x)

)
|η̃ε|2

∣
∣
∣
∣
∣
≤ C| ln ε|

and
∣
∣
∣
∣

1

ε2

∫

D
(|η̃ε|2 − a(x))|η̃ε|2

∣
∣
∣
∣
≤ 1

ε2

∫

D
(|η̃ε|2 − a(x))2 +

1

ε2

∫

D
a(x)

∣
∣|η̃ε|2 − a(x)

∣
∣

≤ C| ln ε| + C

ε2

(∫

D
(|η̃ε|2 − a(x))2

)1/2

≤ Cε−1| ln ε|1/2.

Hence, by (6.58), we have

|kε| ≤ Cε−1| ln ε|1/2. (6.59)

Step 6: Proof of (6.48). We define the functional Ẽε : H → R by

Ẽε(u) =
1

2

∫

R2

|∇u|2 +
1

4ε2

∫

R2

(aε(x) − |u|2)2 − (a−ε (x))2 (6.60)

where aε(x) is given by (6.52). Then, by (6.47), we get

Ẽε(η̃ε) =
a0 + kεε

2

a0
Eε̃(ηε̃) =

a0 + kεε
2

a0
I(ε̃). (6.61)

Since ‖η̃ε‖L2(R2) = 1, we have

Ẽε(η̃ε) = Eε(η̃ε) −
kε
2

+
1

4ε2

∫

R2

(a+
ε (x))2 − (a+(x))2 (6.62)

≥ I(ε) − kε
2

+
1

4ε2

∫

R2

(a+
ε (x))2 − (a+(x))2. (6.63)

Using the fact that
∫

R2 a
+ = 1, a simple computation leads to

−kε
2

+
1

4ε2

∫

R2

(a+
ε (x))2 − (a+(x))2 =

πa0k
2
εε

2

4Λ
+
πk3

εε
4

12Λ
. (6.64)

Combining (6.61), (6.63) and (6.64), we infer that

πa0k
2
εε

2

4Λ
≤ |I(ε̃) − I(ε)| + |kε|ε2

a0
I(ε̃) +

π|kε|3ε4
12Λ

. (6.65)

For small ε > 0, we obtain using (6.39), (6.59) and 6.3.a) in Proposition 6.3,

∣
∣I(ε̃) − I(ε)

∣
∣ ≤ Cε−1| ln ε||ε̃− ε| ≤ C|kε|ε2| ln ε| (6.66)

and
|kε|ε2
a0

I(ε̃) ≤ C|kε|ε2| ln ε|,
π|kε|3ε4

12
≤ C|kε|ε2| ln ε|.

Inserting this estimates in (6.65), we deduce that |kε| ≤ C| ln ε|.
Step 7: Proof of (6.49). From (6.48), (6.61), (6.66) and 6.3.a) in Proposition 6.3, we derive

that Ẽε(η̃ε) = Eε(ηε)+O(ε2| ln ε|2). On the other hand, (6.48), (6.62) and (6.64) yield Ẽε(η̃ε) =

Eε(η̃ε) + O(ε2| ln ε|2) and (6.49) follows. �
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6.3 Minimizing Fε under the mass constraint

Our aim in this section is to make a first description of minimizers uε of Fε under the mass

constraint. We prove the existence of uε and some asymptotic properties of uε (in particular,

we show that |uε| is concentrated in D). We also present some tools that we will require in the

sequel, in particular the splitting of energy (6.9).

6.3.1 Existence and first properties of minimizers

First, we seek minimizers uε of Fε under the constraint ‖uε‖L2(R2) = 1. We perform the mini-

mization in H and we shall see that Fε is well defined on H:

Lemma 6.9 For any u ∈ H, σ > 0 and R >
√
a0 , we have

∣
∣
∣
∣
Ω

∫

R2

x⊥ · (iu,∇u)
∣
∣
∣
∣
≤ σ

∫

R2

|∇u|2 +
Ω2R2

8Λ2σ(R2 − a0)

∫

R2

[
(a(x) − |u|2)2 − (a−(x))2

]
+CR,σ Ω2.

In particular, the functional Fε is well defined on H.

Proposition 6.10 Assume that Ω < Λε−1. Then there exists at least one minimizer uε of Fε

in
{
u ∈ H : ‖u‖L2(R2) = 1

}
. Moreover, uε is smooth and there exists ℓε ∈ R such that uε

satisfies

−∆uε + 2iΩx⊥ · ∇uε =
1

ε2
(a(x) − |uε|2)uε + ℓεuε in R2. (6.67)

We emphasize that the result is stated for an angular velocity Ω strictly less than Λ/ε but

we only consider in this chapter the case of an rotational speed Ω at most of order | ln ε|, i.e.,

Ω ≤ ω0| ln ε| (6.68)

for some positive constant ω0.

Before proving Lemma 6.9 and Proposition 6.10, we present some basic properties of any

minimizer uε. We point out that the exponential decay of |uε| outside the domain D (see 6.11.c)

in Proposition 6.11) shows that almost all the mass of uε is concentrated in D.

Proposition 6.11 Assume that (6.68) holds for some ω0 > 0. For ε sufficiently small, we have

6.11.a) Eε(uε) ≤ Cω0 | ln ε|2,

6.11.b) |ℓε| ≤ Cω0 ε
−1| ln ε|,

6.11.c) |uε(x)| ≤ Cω0 ε
1/3| ln ε|1/2 exp

(
a(x)

4ε2/3

)

for x ∈ R2 \ D with |x|Λ ≥
√

a0 + 2ε1/3,

6.11.d) |uε(x)| ≤
√

a(x) + |ℓε|ε2 + ε2Ω2|x|2 for x ∈ D with |x|Λ ≤ √
a0 − ε1/8,

6.11.e) |uε| ≤
√
a0 + Cω0 ε| ln ε| in R2,

6.11.f) ‖∇uε‖L∞(K) ≤ Cω0,K ε
−1 for any compact set K ⊂ R2.
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Remark 6.4 We observe that 6.11.a) in Proposition 6.11 implies
∫

R2\D

(
|uε|4 + 2a−(x)|uε|2

)
+

∫

D
(|uε|2 − a(x))2 ≤ Cω0 ε

2| ln ε|2. (6.69)

Proof of Lemma 6.9. Let u ∈ H and σ ∈ (0, 1). We have

4σ

∣
∣
∣
∣
Ω

∫

R2

x⊥ · (iu,∇u)
∣
∣
∣
∣
≤ 4σ2

∫

R2

|∇u|2 + Ω2

∫

R2

|x|2|u|2 ≤ 4σ2

∫

R2

|∇u|2 +
Ω2

Λ2

∫

R2

|x|2Λ|u|2.

For R >
√
a0 , we easily check that |x|2Λ ≤ − R2

R2−a0 a(x) whenever |x|Λ ≥ R. Then we derive

4σ

∣
∣
∣
∣
Ω

∫

R2

x⊥ · (iu,∇u)
∣
∣
∣
∣
≤ 4σ2

∫

R2

|∇u|2 − Ω2R2

2Λ2(R2 − a0)

∫

R2\BΛ
R

2a(x)|u|2 +
Ω2

Λ2

∫

BΛ
R

|x|2Λ|u|2.

(6.70)

Now we notice that
∫

BΛ
R

|x|2Λ|u|2 =
R2

2(R2 − a0)

∫

BΛ
R

−2a(x)|u|2 − a0

R2 − a0

∫

BΛ
R

|x|2Λ|u|2 +
a0R

2

R2 − a0

∫

BΛ
R

|u|2

≤ R2

2(R2 − a0)

∫

BΛ
R

−2a(x)|u|2 +
R2

2(R2 − a0)

∫

BΛ
R

|u|4 +
πR4a2

0

2Λ(R2 − a0)
.

Inserting this estimate in (6.70), we obtain
∣
∣
∣
∣
Ω

∫

R2

x⊥ · (iu,∇u)
∣
∣
∣
∣
≤ σ

∫

R2

|∇u|2 +
Ω2R2

8Λ2σ(R2 − a0)

∫

R2

[
(a(x) − |u|2)2 − (a−(x))2

]

+
πΩ2R4a2

0

8Λ3σ(R2 − a0)

and the proof is complete. �

Proof of Proposition 6.10. Since Ω < Λε−1, we can find 0 < δ < 1 such that Ω ≤ δΛε−1. Taking

in Lemma 6.9,

σ =
δ2 + 1

4
and R =

√

2(1 + δ2)a0

1 − δ2
,

we infer that for any u ∈ H,

1 − δ2

4
Eε(u) −Cδ Ω2 ≤ Fε(u) ≤ 2Eε(u) + Cδ Ω2. (6.71)

We easily check that Eε is coercive in H (i.e., there exists a positive constant C such that

Eε(u) ≥ C(‖u‖2
H − 1) for any u ∈ H) and by (6.71), Fε is coercive, too. Let (un)n∈N ⊂ H be

a minimizing sequence of Fε in
{
u ∈ H : ‖u‖L2(R2) = 1

}
. From the coerciveness of Fε, we get

that (un)n∈N is bounded in H and therefore, there exists uε ∈ H such that up to a subsequence,

un ⇀ uε weakly in H and un → uε in L4
loc(R

2). (6.72)

By Lemma 6.4, it results that un → uε in L2(R2) and consequently, ‖uε‖L2(R2) = 1. We write

for u ∈ H,

Fε(u) =
1

2

∫

R2

∣
∣
∣(∇− iΩx⊥)u

∣
∣
∣

2
+

1

2ε2

∫

{a−(x)≥Ω2ε2|x|2}

[
1

2
|u|4 +

(
a−(x) − ε2Ω2|x|2

)
|u|2
]

+
1

4ε2

∫

{a−(x)≤Ω2ε2|x|2}

[
(a(x) − |u|2)2 − (a−(x))2 − 2Ω2ε2|x|2 |u|2

]
.
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We observe that the functional

u ∈ H 7→ 1

2

∫

R2

∣
∣
∣(∇− iΩx⊥)u

∣
∣
∣

2
+

1

2ε2

∫

{a−(x)≥Ω2ε2|x|2}

[
1

2
|u|4 + (a−(x) − ε2Ω2|x|2) |u|2

]

is convex continuous on H for the strong topology. Then from (6.72), it follows that Fε(uε) ≤
lim infn→∞ Fε(un). Hence uε minimizes Fε in

{
u ∈ H : ‖u‖L2(R2) = 1

}
and by the Lagrange

multiplier rule, there exists ℓε ∈ R such that (6.67) holds. By standard elliptic regularity, we

deduce that uε is smooth in R2. �

Proof of Proposition 6.11. Proof of 6.11.a). Let η̃ε be the positive real minimizer of Eε under

the constraint ‖η̃ε‖L2(R2) = 1. Since η̃ε is real valued, we have (iη̃ε,∇η̃ε) ≡ 0 and we derive from

(6.57),

Fε(uε) ≤ Fε(η̃ε) = Eε(η̃ε) ≤ C| ln ε|. (6.73)

By (6.71) (with δ = 1√
2
), we infer that for ε small enough,

1

8
Eε(uε) − CΩ2 ≤ Fε(uε). (6.74)

Combining (6.68), (6.73) and (6.74), we obtain 6.11.a).

Proof of 6.11.b). Multiplying equation (6.67) by uε and using
∫

R2 |uε|2 = 1, we infer that

ℓε =

∫

R2

|∇uε|2 − 2Ω

∫

R2

x⊥ · (iuε,∇uε) +
1

ε2

∫

R2

(|uε|2 − a(x))|uε|2. (6.75)

From 6.11.a) and Lemma 6.9, we derive

∣
∣
∣
∣
∣

∫

R2

|∇uε|2 − 2Ω

∫

R2

x⊥ · (iuε,∇uε) +
1

ε2

∫

R2\D
(|uε|2 − a(x))|uε|2

∣
∣
∣
∣
∣
≤ Cω0 | ln ε|2 (6.76)

and arguing as in the proof of (6.59), we obtain by (6.69),

∣
∣
∣
∣

1

ε2

∫

D
(|uε|2 − a(x))|uε|2

∣
∣
∣
∣
≤ Cω0 ε

−1| ln ε|. (6.77)

Using (6.75), (6.76) and (6.77), we conclude that |ℓε| ≤ Cω0ε
−1| ln ε|.

Proof of 6.11.c). We argue as in [3], Proposition 2.5. Setting Uε := |uε|2, we deduce from

equation (6.67),

1

2
∆Uε = |∇uε|2 − 2Ωx⊥ · (iuε,∇uε) −

1

ε2
(a(x) − Uε)Uε − ℓεUε

and hence

∆Uε ≥
2

ε2
(
Uε − (a(x) + ε2|ℓε| + ε2Ω2|x|2)

)
Uε in R2. (6.78)

Let Θε =
{
x ∈ R2 \ D : a−(x) > 2(ε2|ℓε| + ε2Ω2|x|2)

}
. From (6.78), we infer that

∆Uε ≥
1

ε2
a−(x)Uε ≥ 0 in Θε (6.79)
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and thus Uε is subharmonic in Θε ⊂ R2 \ D. Note that by (6.69),
∫

R2\D
U2
ε ≤ Cω0ε

2| ln ε|2. (6.80)

By 6.11.b), for ε small enough we have ∂Θε ⊂
{
x ∈ R2 : |x|2Λ ≤ a0 + ε1/3

2

}
. Consider now for

rε =
√

a0 + ε1/3, the set Ξε = R2 \ BΛ
rε =

{
x ∈ R2 : |x|2Λ > a0 + ε1/3

}
⊂ Θε. Then for ε small

and any x0 ∈ Ξε, we have B(x0,
ε1/3

2 ) ⊂ Θε. We infer from the subharmonicity of Uε in Θε and

(6.80),

0 ≤ Uε(x0) ≤
4

πε2/3

∫

B(x0,
ε1/3

2
)
Uε ≤

C

ε1/3

(
∫

B(x0,
ε1/3

2
)
U2
ε

)1/2

≤ C⋆ω0
ε2/3| ln ε| for x0 ∈ Ξε,

with a constant C⋆ω0
independent of x0. Hence we conclude that Uε → 0 locally uniformly in

R2 \ D as ε → 0. It also follows that uε ∈ L∞(R2) and then Uε ∈ H1(R2). By (6.79), Uε is a

subsolution of 





−ε2∆w + a−(x)w = 0 in Ξε,

w = C⋆ω0
ε2/3| ln ε| on ∂Ξε.

(6.81)

We easily check that for ε small enough,

vout(x) = C⋆ω0
ε2/3| ln ε| exp

(a0 + ε1/3 − |x|2Λ
ε2/3

)

is a supersolution of (6.81). Therefore

Uε(x) = |uε(x)|2 ≤ vout(x) ≤ C⋆ω0
ε2/3| ln ε| exp

(
a0 − |x|2Λ

2ε2/3

)

for |x|2Λ ≥ a0 + 2ε1/3.

Proof of 6.11.d) and 6.11.e). We set r̃ε =
√
a0 − ε1/8 (recall that rε =

√

a0 + ε1/3 ). We define

in BΛ
rε , the function

vin(x) =







a(x) + |ℓε|ε2 +
ε2Ω2

Λ2
|x|2Λ if |x|Λ ≤ r̃ε,

a0 − (1 − ε2Ω2

Λ2
)r̃ε(2|x|Λ − r̃ε) + |ℓε|ε2 if r̃ε ≤ |x|Λ ≤ rε.

We easily verify that for ε sufficiently small, vin satisfies






−ε2∆vin ≥ 2
(
a(x) + |ℓε|ε2 + ε2Ω2|x|2 − vin

)
vin in BΛ

rε ,

vin(x) ≥ C⋆ω0
ε2/3| ln ε| on ∂BΛ

rε

(6.82)

and

vin(x) ≥ a(x) + |ℓε|ε2 + ε2Ω2|x|2 > 0 in BΛ
rε .

Setting Vε = Uε − vin, we deduce from (6.78) and (6.82),






−ε2∆Vε + b(x)Vε ≤ 0 in BΛ
rε ,

Vε ≤ 0 on ∂BΛ
rε ,
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with

b(x) = 2
(
Uε + vin − (a(x) + |ℓε|ε2 + ε2Ω2|x|2)

)
≥ 0 in BΛ

rε .

Hence Vε ≤ 0 which gives us 6.11.d). Then estimate 6.11.e) directly follows from the construction

of vin and vout and from 6.11.b).

Proof of 6.11.f). Without loss of generality, we may assume that K = BR with R > 0. Consider

the re-scaled function ũε(x) = uε(εx) defined for x ∈ B3+Rε−1 . From (6.67), we obtain

−∆ũε = (a(εx) − |ũε|2)ũε − 2iΩε2x⊥ · ∇ũε + ℓεε
2ũε in B3+Rε−1 .

Taking an arbitrary x0 ∈ BRε−1, it suffices to prove that exists a constant CR > 0 independent

of x0 and ε such that

‖∇ũε‖L∞(B(x0,1)) ≤ Cω0,R. (6.83)

By 6.11.c), we know that a(x)uε is uniformly bounded in R2. Using 6.11.a), 6.11.b) and 6.11.e),

we derive that

‖∆ũε‖L2(B(x0,3)) ≤C
(
‖(a(x) + ℓεε

2 − |uε|2)uε‖L∞(R2) + Ωε2‖x⊥ · ∇ũε‖L2(B(x0,3))

)

≤Cω0(1 + Ωε‖x⊥ · ∇uε‖L2(BR+1)) ≤ Cω0,R.

Since ‖ũε‖L∞(B(x0,3)) ≤ Cω0 by 6.11.e), it follows that ‖ũε‖H2(B(x0,2)) ≤ Cω0,R. From Sobolev

imbedding, we deduce that ‖∇ũε‖L4(B(x0,2)) ≤ Cω0,R. We now repeat the above argument

and it follows ‖∆ũε‖L4(B(x0,2)) ≤ Cω0,R(1 + Ωε3/2‖∇ũε‖L4(B(x0,2))) ≤ Cω0,R. It finally yields

‖ũε‖W 2,4(B(x0,1)) ≤ Cω0,R which implies (6.83) by Sobolev imbedding. �

6.3.2 Splitting the energy

In this section, we prove the splitting of the energy (6.9). The splitting technique has been

introduced by Lassoued and Mironescu in [63]. The goal is to decouple the energy Fε(u) into

two independent parts: the energy of the “vortex-free” profile η̃εe
iΩS and the reduced energy of

u/(η̃εe
iΩS) where the function S is defined in (6.5). For ε > 0, we introduce the class

Gε =

{

v ∈ H1
loc(R

2,C) :

∫

R2

η̃2
ε |∇v|2 + η̃4

ε(1 − |v|2)2 < +∞
}

.

We have the following result (valid for any rotational speed Ω):

Lemma 6.12 Let u ∈ H and ε > 0. Then v = u/(η̃εe
iΩS) is well defined, belongs to Gε and

Fε(u) = Fε(η̃εe
iΩS) + F̃ε(v) + T̃ε(v) (6.84)

where the functionals F̃ε and T̃ε are defined in (6.10) and (6.12).

Before proving Lemma 6.12, we are going to translate some of the properties of the map uε

to uε/(η̃εe
iΩS). To this aim, we define the subclass G̃ε ⊂ Gε by

G̃ε =
{
v ∈ Gε : η̃εv ∈ H and ‖η̃εv‖L2(R2) = 1

}
.
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Proposition 6.13 Assume that (6.68) holds for some ω0 > 0. Let uε be a minimizer of Fε

in
{
u ∈ H : ‖u‖L2(R2) = 1

}
. Then vε = uε/(η̃εe

iΩS) minimizes the functional F̃ε + T̃ε in G̃ε.
Moreover, for ε > 0 sufficiently small, we have

6.13.a) Ẽε(vε) ≤ Cω0| ln ε|2,

6.13.b)
∣
∣T̃ε(vε)

∣
∣ ≤ Cω0 ε| ln ε|3,

6.13.c) |vε(x)| ≤ 1 + Cω0 ε
1/3 for x ∈ D with |x|Λ ≤ √

a0 − ε1/8,

6.13.d) ‖∇vε‖L∞(K) ≤ Cω0,K ε
−1 for any compact subset K ⊂ D.

Proof of Lemma 6.12: Step 1. For u ∈ H, we set ṽ = u/η̃ε ∈ H1
loc(R

2). We want to prove that

ṽ ∈ Gε and

Eε(u) = Eε(η̃ε) + Ẽε(ṽ) +
kε
2

∫

R2

η̃2
ε(|ṽ|2 − 1). (6.85)

We consider the sequence (un)n∈N ⊂ H defined by un(x) = ζ
(
n−1|x|

)
u(x) where ζ is the “cut-

off” type function defined in (6.23). We easily check that un → u a.e. and ∇un → ∇u a.e. in

R2. Setting ṽn = un/η̃ε, then we have ṽn → ṽ a.e. and ∇ṽn → ∇ṽ a.e. in R2. Since un has a

compact support, we get that ṽn ∈ Gε for any n ∈ N. We have

|∇un|2 = |∇η̃ε|2 + η̃2
ε |∇ṽn|2 + (|ṽn|2 − 1)|∇η̃ε|2 + η̃ε∇η̃ε · ∇(|ṽn|2 − 1),

and therefore,

Eε(un) = Eε(η̃ε) +
1

2

∫

R2

(
η̃2
ε |∇ṽn|2 +

η̃4
ε

2ε2
(|ṽn|2 − 1)2

)

+
1

2

∫

R2

(
(|ṽn|2 − 1)|∇η̃ε|2 + η̃ε∇η̃ε · ∇(|ṽn|2 − 1) +

1

ε2
η̃2
ε(|ṽn|2 − 1)(η̃2

ε − a(x))
)
.

As in [63], the main idea is to multiply the equation (6.46) by η̃ε(|ṽn|2 −1) and then to integrate

by parts. It leads to

∫

R2

{

(|ṽn|2 − 1)|∇η̃ε|2 + η̃ε∇η̃ε∇(|ṽn|2 − 1) +
η̃2
ε

ε2
(|ṽn|2 − 1)(η̃2

ε − a(x))

}

= kε

∫

R2

η̃2
ε(|ṽn|2 − 1)

and we conclude that for every n ∈ N,

Eε(un) = Eε(η̃ε) + Ẽε(ṽn) +
kε
2

∫

R2

η̃2
ε(|ṽn|2 − 1).

Now we observe that

|un| ≤ |u| and |∇un| ≤ |∇u| + |u| a.e. in R2, (6.86)

and by the dominated convergence theorem, it results that Eε(un) → Eε(u) and

kε
2

∫

R2

η̃2
ε(|ṽn|2 − 1) =

kε
2

∫

R2

(|un|2 − η̃2
ε) −→

kε
2

∫

R2

(|u|2 − η̃2
ε) =

kε
2

∫

R2

η̃2
ε(|ṽ|2 − 1).
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Applying Fatou’s lemma, we obtain

Ẽε(ṽ) ≤ lim
n→+∞

Ẽε(ṽn) = lim
n→+∞

{

Eε(un) − Eε(η̃ε) −
kε
2

∫

R2

(|un|2 − η̃2
ε)

}

= Eε(u) − Eε(η̃ε) −
kε
2

∫

R2

η̃2
ε(|ṽ|2 − 1) < +∞,

and we conclude that ṽ ∈ Gε. Since |ṽn||∇η̃ε| ≤ |∇u| + η̃ε|∇ṽ| , we infer from (6.86) that

η̃2
ε |∇ṽn|2 ≤ C(|∇u|2 + |u|2 + η̃2

ε |∇ṽ|2) and η̃4
ε(|ṽn|2 − 1)2 ≤ 2(|u|4 + η̃4

ε). By the dominated

convergence theorem, we finally get that

Ẽε(ṽ) = lim
n→+∞

Ẽε(ṽn) = Eε(u) − Eε(η̃ε) −
kε
2

∫

R2

η̃2
ε(|ṽ|2 − 1).

Step 2. Consider now ũ = u/eiΩS . Then ũ ∈ H and we have the decomposition

Fε(u) = Eε(ũ) +
Ω

1 + Λ2

∫

R2

∇⊥a · (iũ,∇ũ) +
Ω2

2

∫

R2

(
|∇S|2 − 2x⊥ · ∇S

)
|ũ|2. (6.87)

Indeed, we use that

|∇u|2 − 2Ωx⊥ · (iu,∇u) = |∇ũ|2 +
2Ω

1 + Λ2
∇⊥a · (iũ,∇ũ) + Ω2

(
|∇S|2 − 2x⊥ · ∇S

)
|ũ|2 a.e. in R2.

Since |∇S| ≤ C|x|, |∇a| ≤ C|x|, we infer that (6.87) holds.

Step 3. We show that (6.84) takes place. Let u ∈ H. Set ũ = u/eiΩS and v = ũ/η̃ε. By Step 1

and Step 2, it results that ũ ∈ H and v ∈ Gε. By (6.85), we have

Eε(ũ) = Eε(η̃ε) + Ẽε(v) +
kε
2

∫

R2

η̃2
ε(|v|2 − 1). (6.88)

Since ∇⊥a · (iũ,∇ũ) = η̃2
ε∇⊥a · (iv,∇v) and |ũ|2 = η̃2

ε |v|2 a.e. in R2, we infer from (6.87) and

(6.88) that

Fε(u) = Eε(η̃ε) + Ẽε(v) + R̃ε(v) +
Ω2

2

∫

R2

(
|∇S|2 − 2x⊥ ·∇S

)
η̃2
ε |v|2 +

kε
2

∫

R2

η̃2
ε(|v|2 − 1). (6.89)

On the other hand, (6.87) yields

Fε(η̃εe
iΩS) = Eε(η̃ε) +

Ω2

2

∫

R2

(
|∇S|2 − 2x⊥ · ∇S

)
η̃2
ε (6.90)

and the conclusion follows combining (6.89) and (6.90). �

Remark 6.5 The energy of the “vortex-free” profile is given by

Fε(η̃εe
iΩS) = Eε(η̃ε) −

πa3
0(1 − Λ2)2

24(1 + Λ2)Λ3
Ω2 + o(1). (6.91)

It directly follows from (6.90) and Proposition 6.8.
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Proof of Proposition 6.13. The minimizing property of vε follows directly from Proposition 6.10

and Lemma 6.12.

Proof of 6.13.a) and 6.13.b). Since uε minimizes Fε in
{
u ∈ H : ‖u‖L2(R2) = 1

}
, we have using

Lemma 6.12,

Fε(uε) = Fε(η̃εe
iΩS) + Ẽε(vε) + R̃ε(vε) + T̃ε(vε) ≤ Fε(η̃εe

iΩS),

and it yields

Ẽε(vε) ≤ |R̃ε(vε)| + |T̃ε(vε)|. (6.92)

Arguing as in the proof of Lemma 6.9 with σ = 1/4 and R =
√

2a0 , we infer from 6.11.e) in

Proposition 6.11 and (6.69),

∣
∣
∣R̃ε(vε)

∣
∣
∣ ≤ 1

4

∫

R2

η̃2
ε |∇vε|2 +

4Ω2

(Λ2 + 1)2

∫

R2

|x|2Λ|uε|2

≤ 1

4

∫

R2

η̃2
ε |∇vε|2 +

4Ω2

(Λ2 + 1)2

∫

R2\BΛ√
2a0

2a−(x)|uε|2 +
8a0Ω

2

(Λ2 + 1)2

∫

BΛ√
2a0

|uε|2

≤ 1

2
Ẽε(vε) + Cω0| ln ε|2. (6.93)

We obtain from (6.48), (6.50) and (6.69) that

|T̃ε(vε)| =
∣
∣
1

2

∫

R2

(
Ω2|∇S|2 − 2Ω2x⊥ · ∇S + kε

)
(|uε|2 − η̃2

ε)
∣
∣

≤Cω0 | ln ε|2
[ ∫

R2\BΛ√
2a0

2a−(x)(|uε|2 + η̃2
ε) +

(∫

BΛ√
2a0

(|uε|2 − a+)2 + (η̃2
ε − a+)2

)1/2]

≤Cω0 ε| ln ε|3. (6.94)

According to (6.92), (6.93) and (6.94), we conclude that Ẽε(vε) ≤ Cω0| ln ε|2.

Proof of 6.13.c). From 6.8.c) in Proposition 6.8, 6.11.b) and 6.11.d), we infer that

|vε(x)| =
|uε(x)|
η̃ε(x)

≤
√

a(x) + |ℓε|ε2 + ε2Ω2|x|2
(1 − Cε1/3)

√

a(x)
≤ 1 + Cω0ε

1/3 for x ∈ BΛ√
a0−ε1/8.

Proof of 6.13.d). Let K ⊂ BΛ√
a0

be any compact set. We denote ṽε = eiΩSvε = uε
η̃ε

. By

6.8.c) in Proposition 6.8, we know that there exists CK > 0 independent of ε such that η̃ε ≥
(1 − Cε1/3)

√
a ≥ CK in K. Since ∇ṽε = η̃−1

ε ∇uε − (η̃−2
ε ∇η̃ε)uε, using Proposition 6.8 and

Proposition 6.11, it follows ‖∇ṽε‖L∞(K) ≤ Cω0,Kε
−1. Hence we deduce (using 6.13.c)) that

‖∇vε‖L∞(K) ≤ ‖∇ṽε‖L∞(K) + Ω‖ṽε∇S‖L∞(K) ≤ Cω0,K ε
−1

and the proof is complete. �
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6.3.3 Splitting the domain

The main goal in this section is to show that we can excise the region of R2 where the density

|uε| is very small (which corresponds to the exterior of D) without modifying the relevant part

in the energy.

Proposition 6.14 Assume that (6.68) holds. For small ε > 0 and ν ∈ [1, 2], we set Dν
ε =

{
x ∈

R2 : a(x) > ν| ln ε|−3/2
}
. We have

F̃ε(vε,Dν
ε ) ≤ Cω0| ln ε|−1.

Proof. Since uε minimizes Fε on
{
u ∈ H : ‖u‖L2(R2) = 1

}
, we have for ε sufficiently small that

Fε(uε) ≤ Fε
(
η̃εe

iΩS
)
. Then Lemma 6.12 yields F̃ε(vε) + T̃ε(vε) ≤ 0 and we derive from 6.13.b)

in Proposition 6.13,

F̃ε(vε) ≤ Cω0ε| ln ε|3. (6.95)

We now set N ν
ε = R2 \ Dν

ε . From the previous inequality, it suffices to prove that

F̃ε(vε,N ν
ε ) ≥ −Cω0| ln ε|−1 (6.96)

for a constant Cω0 > 0 independent of ε and ν. Arguing as in the proof of Lemma 6.9 with

σ = 1/4 and R =
√

2a0 , we infer from (6.69),

∣
∣
∣R̃ε(vε,N ν

ε )
∣
∣
∣ ≤1

4

∫

N ν
ε

η̃2
ε |∇vε|2 +

4Ω2

(1 + Λ2)2

∫

N ν
ε

|x|2Λ|uε|2

≤1

4

∫

N ν
ε

η̃2
ε |∇vε|2 +

4Ω2

(1 + Λ2)2

∫

R2\BΛ√
2a0

2a−(x)|uε|2 +
8a0Ω

2

(1 + Λ2)2

∫

BΛ√
2a0

\Dν
ε

|uε|2

≤1

4

∫

N ν
ε

η̃2
ε |∇vε|2 +

8a0Ω
2

(1 + Λ2)2

∫

BΛ√
2a0

\Dν
ε

|uε|2 + Cω0ε
2| ln ε|4.

By (6.69), we may also estimate

∫

BΛ√
2a0

\Dν
ε

|uε|2 =

∫

BΛ√
2a0

\BΛ√
a0

|uε|2 +

∫

BΛ√
a0

\Dν
ε

(|uε|2 − a(x)) +

∫

BΛ√
a0

\Dν
ε

a(x)

≤C
(∫

BΛ√
2a0

\BΛ√
a0

|uε|4
)1/2

+ C
(∫

BΛ√
a0

\Dν
ε

(|uε|2 − a(x))2
)1/2

+ C| ln ε|−3

≤Cω0(| ln ε|−3 + ε| ln ε|).

Then it follows that

|R̃ε(vε,N ν
ε )| ≤ 1

2
Ẽε(vε,N ν

ε ) + Cω0 | ln ε|−1 (6.97)

which leads to (6.96). �

For some technical reasons, it will be easier to deal with a+ instead of η̃2
ε in the energies. To

replace η̃2
ε by a+, we shall prove that the energy estimates inside Dν

ε remain unchanged.
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Proposition 6.15 Assume that (6.68) holds for some ω0 > 0. We have

Eε(vε,Dν
ε ) ≤ Cω0 | ln ε|2 and Fε(vε,Dν

ε ) ≤ Cω0 | ln ε|−1

where Eε and Fε are defined in (6.18).

Proof. From 6.8.c) in Proposition 6.8, we infer that
∥
∥
∥
∥

a− η̃2
ε

η̃2
ε

∥
∥
∥
∥
L∞(Dν

ε )

≤ Cε1/3 and

∥
∥
∥
∥

a2 − η̃4
ε

η̃4
ε

∥
∥
∥
∥
L∞(Dν

ε )

≤ Cε1/3

and then 6.13.a) in Proposition 6.13 yields
∣
∣
∣Eε(vε,Dν

ε ) − Ẽε(vε,Dν
ε )
∣
∣
∣ ≤ Cε1/3 Ẽε(vε,Dν

ε ) ≤ Cω0ε
1/3| ln ε|2. (6.98)

Using 6.11.a) and 6.11.e) in Proposition 6.11, we derive

∣
∣
∣Rε(vε,Dν

ε ) − R̃ε(vε,Dν
ε )
∣
∣
∣ ≤ Ω

∫

Dν
ε

a− η̃2
ε

η̃2
ε

|uε| |∇uε| ≤ Cε1/3Ω(Eε(uε,Dν
ε ))

1/2 ≤ Cω0ε
1/3| ln ε|2.

Therefore, it follows that
∣
∣
∣Fε(vε,Dν

ε ) − F̃ε(vε,Dν
ε )
∣
∣
∣ ≤ Cω0ε

1/3| ln ε|2. (6.99)

Then the conclusion comes immediately from 6.13.a) in Proposition 6.13 and Proposition 6.14.

�

6.4 Energy and degree estimates

This section is devoted to the proof of Theorem 6.1. The method we use is inspired from [76, 78]

and provides some information about the location and the number of vortices inside D.

6.4.1 Construction of vortex balls and expansion of the rotation energy

We start with the construction of vortex balls by a method due to Sandier [75] and Sandier and

Serfaty [77]; it permits to localize the vorticity set of vε.

Proposition 6.16 Assume that (6.68) holds for some ω0 > 0. Then there exists a positive

constant Kω0 such that for ε sufficiently small, there exist νε ∈ (1, 2) and a finite collection of

disjoint balls
{
Bi
}

i∈Iε :=
{
B(pi, ri)

}

i∈Iε satisfying the conditions:

(i) for every i ∈ Iε,Bi ⊂⊂ Dε =
{
x ∈ R2 : a(x) > νε| ln ε|−3/2

}
,

(ii)
{
x ∈ Dε : |vε(x)| < 1 − | ln ε|−5

}
⊂ ∪i∈IεBi,

(iii)
∑

i∈Iε
ri ≤ | ln ε|−10,

(iv)
1

2

∫

Bi

a(x)|∇vε|2 ≥ πa(pi)|di|
(
| ln ε| − Kω0 ln | ln ε|

)
,

where di = deg

(
vε
|vε|

, ∂Bi

)

for every i ∈ Iε.
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Proof. According to the technique presented in [75] and [77], we construct as in [3] (using

Proposition 6.15 with ν = 1) a finite collection of disjoint balls
{
Bi
}

i∈Ĩε =
{
B(pi, ri)

}

i∈Ĩε such

that
{
x ∈ D : a(x) > | ln ε|−3/2 and |vε(x)| < 1 − | ln ε|−5

}
⊂ ∪i∈ĨεBi ,

(iii) is fulfilled and

∫

Bi

a(x)

2
|(∇− iΩx⊥)vε|2 ≥ πa(pi)|di|

(
| ln ε| − Kω0 ln | ln ε|

)
for each i ∈ Ĩε.

By (iii), we can find νε ∈ (1, 2) such that ∂
{
x ∈ D : a(x) > νε| ln ε|−3/2

}
∩ ∪i∈ĨεBi = ∅. By

cancelling the balls Bi that are not included in
{
x ∈ D : a(x) > νε| ln ε|−3/2

}
, it remains a finite

collection
{
Bi
}

i∈Iε that satisfies (i), (ii) and (iii). Notice now that (iv) takes place since we

have

Ω2

∫

Bi

a(x)

2
|x|2|vε|2 ≤ Ω2

∫

Bi

|x|2|uε|2 ≤ Cω0 | ln ε|2r2i ,

∣
∣Ω

∫

Bi

a(x)x⊥ · (ivε,∇vε)
∣
∣ ≤ CΩ

∫

Bi

a(x)

η̃ε
|uε| |∇vε| ≤ CΩ‖√a∇vε‖L2(Bi)ri ≤ Cω0 | ln ε|2ri

(6.100)

(here we used Proposition 6.15). Hence these terms can be absorbed by Kω0 ln | ln ε| (up to a

different constant Kω0 + 1). �

We are now in a position to compute an asymptotic expansion of the rotation energy accord-

ing to the center of each vortex ball Bi and the associated degree di:

Proposition 6.17 Assume that (6.68) holds for some ω0 > 0. For ε sufficiently small, we have

Rε

(
vε,Dε

)
=

−πΩ

1 + Λ2

∑

i∈Iε
(a2(pi) − ν2

ε | ln ε|−3) di + o(| ln ε|−5).

Proof. By Proposition 6.16, Dε \ ∪i∈IεBi ⊂ Dε \ {|vε| < 1/2} whenever ε is small enough. For

x ∈ Dε such that |vε(x)| ≥ 1/2, we set

wε(x) =
vε(x)

|vε(x)|
.

Since (ivε,∇vε) = |vε|2(iwε,∇wε) in Dε \ {|vε| < 1/2}, we have

Rε (vε,Dε \ ∪i∈IεBi) =
Ω

1 + Λ2

∫

Dε\∪i∈IεBi

a(x)∇⊥a · (iwε,∇wε)

+
Ω

1 + Λ2

∫

Dε\∪i∈IεBi

a(x)(|vε|2 − 1)∇⊥a · (iwε,∇wε). (6.101)

Then we estimate using Proposition 6.15,

∣
∣
∣
∣
∣

∫

Dε\∪i∈IεBi

a(x)(|vε|2 − 1)∇⊥a · (iwε,∇wε)
∣
∣
∣
∣
∣
≤Cε (Eε(vε,Dε))

1/2 ‖∇wε‖L2(Dε\{|vε|<1/2})

≤Cε| ln ε|‖∇wε‖L2(Dε\{|vε|<1/2}) . (6.102)
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In Dε \ {|vε| < 1/2}, we have |∇wε| ≤ 2(|∇vε| + |∇|vε||) ≤ 4|∇vε|. We deduce that
∫

Dε\{|vε|<1/2}
|∇wε|2 ≤ 16

∫

Dε

|∇vε|2 ≤ 16| ln ε|3/2
∫

Dε

a(x)|∇vε|2 ≤ C| ln ε|7/2 (6.103)

and hence we obtain combining (6.101), (6.102) and (6.103),

Rε (vε,Dε \ ∪i∈IεBi) =
Ω

1 + Λ2

∫

Dε\∪i∈IεBi

a(x)∇⊥a · (iwε,∇wε) + O(ε| ln ε|4). (6.104)

Since (iwε,∇wε) = wε ∧∇wε and a(x)∇⊥a = ∇⊥Pε(x) with

Pε(x) =
a2(x) − ν2

ε | ln ε|−3

2
, (6.105)

we derive that
∫

Dε\∪i∈IεBi

a(x)∇⊥a · (iwε,∇wε) =

∫

Dε\∪i∈IεBi

∇⊥Pε(x) · (wε ∧∇wε)

= −
∑

i∈Iε

∫

∂Bi

Pε(x)
(

wε ∧
∂wε
∂τ

)

where τ denotes the counterclockwise oriented unit tangent vector to ∂Bi. The smoothness of

vε implies the existence of αε ∈ (1
2 ,

2
3) such that U =

{
x ∈ R2 : |vε| < αε

}
is a smooth open set.

Then we set for i ∈ Iε, Ui = Bi ∩ U (notice that by Proposition 6.16, Ui ⊂⊂ Bi for small ε).

Using (6.103), we derive

∣
∣
∣
∣

∫

∂Bi

Pε(x)
(

wε ∧
∂wε
∂τ

)

−
∫

∂Ui

Pε(x)
(

wε ∧
∂wε
∂τ

)∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∫

Bi\Ui

∇⊥Pε(x) · (wε ∧∇wε)
∣
∣
∣
∣
∣

≤C ri ‖∇wε‖L2(Dε\{|vε|<1/2})

≤C ri | ln ε|7/4

and since |vε| ≤ αε in Ui and |Pε(x) − Pε(pi)| ≤ ri‖∇Pε‖L∞(D), ∀x ∈ B(pi, ri), it results from

Proposition 6.15,
∣
∣
∣
∣

∫

∂Ui

(Pε(x) −Pε(pi))
(

wε ∧
∂wε
∂τ

)∣
∣
∣
∣
=α−2

ε

∣
∣
∣
∣

∫

∂Ui

(Pε(x) − Pε(pi))
(

vε ∧
∂vε
∂τ

)∣
∣
∣
∣

≤α−2
ε

∣
∣
∣
∣

∫

Ui

a(x)∇⊥a · (ivε,∇vε)
∣
∣
∣
∣

+ 2α−2
ε

∣
∣
∣
∣

∫

Ui

(Pε(x) −Pε(pi)) det(∇vε)
∣
∣
∣
∣

≤C (ri ‖
√
a∇vε‖L2(Dε) + ri | ln ε|3/2 ‖

√
a∇vε‖2

L2(Ui)
)

≤C ri | ln ε|7/2 .

Therefore we conclude by (iii) in Proposition 6.16 that

Rε (vε,Dε \ ∪i∈IεBi) =
−Ω

1 + Λ2

∑

i∈Iε
Pε(pi)

∫

∂Ui

wε ∧
∂wε
∂τ

+ o(| ln ε|−5)

=
−2πΩ

1 + Λ2

∑

i∈Iε
Pε(pi) di + o(| ln ε|−5).
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On the other hand, we infer from (6.100) and (iii) in Proposition 6.16 that

∣
∣Rε(vε,∪i∈IεBi)

∣
∣ ≤ C| ln ε|2

∑

i∈Iε
ri ≤ C| ln ε|−8.

According to (6.105), the proof is completed. �

6.4.2 Asymptotic behavior for subcritical velocities. Proof of (i) in Theo-

rem 6.1

In this section, we prove (i) in Theorem 6.1. We will distinguish different types of vortex balls

through the partition Iε = I0 ∪ I∗ ∪ I− where

I0 =
{
i ∈ Iε : di ≥ 0 and |pi|Λ < | ln ε|−1/6

}
,

I∗ =
{
i ∈ Iε : di ≥ 0 and |pi|Λ ≥ | ln ε|−1/6

}
,

I− =
{
i ∈ Iε : di < 0

}

in order to improve the lower bound for Fε(vε,Dε) (see (6.111)). In the sequel, we assume that

Ω ≤ Ω1 + ω1 ln | ln ε| (6.106)

for some constant ω1 ∈ R. Therefore, if ε is small, we have Ω ≤ 3
a0
| ln ε| and we will use the

constant K 3
a0

given by Proposition 6.16. In fact, one can choose instead of 3
a0

any other constant

ω0 such that ω0 >
1+Λ2

a0
. First, we show the following:

Proposition 6.18 Assume that (6.106) holds with ω1 < ω⋆1 :=
−(1+Λ2)K 3

a0
a0

. Then for ε suffi-

ciently small, we have
∑

i∈Iε |di| = 0 and

|vε| → 1 in L∞
loc(D) as ε→ 0. (6.107)

Moreover,

F̃ε(vε) = o(1) and Ẽε(vε) = o(1). (6.108)

Proof. From Proposition 6.15 and Proposition 6.16, we get that

O(| ln ε|−1) ≥ Fε(vε,Dε) ≥
1

2

∫

Dε\∪i∈IεBi

a(x)|∇vε|2 +
1

4ε2

∫

Dε

a2(x)(1 − |vε|2)2 (6.109)

+ π
∑

i∈Iε
a(pi)|di|

(

| ln ε| − K 3
a0

ln | ln ε|
)

+ Rε(vε,Dε).

Combining Proposition 6.17 and (6.106), it results that

Rε (vε,Dε) ≥
−πa0Ω

1 + Λ2

∑

i∈I0
a(pi)|di| −

π(a0 − | ln ε|−1/3)Ω

1 + Λ2

∑

i∈I∗
a(pi)|di| + o(| ln ε|−5)

≥ − π
∑

i∈I0∪I∗
a(pi)|di|| ln ε| −

πa0ω1

1 + Λ2

∑

i∈I0
a(pi)|di| ln | ln ε| (6.110)

+
π

2a0

∑

i∈I∗
a(pi)|di|| ln ε|2/3 + o(| ln ε|−5)
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(here we used that

(a0 − | ln ε|−1/3)Ω

1 + Λ2
≤ | ln ε| − 1

a0
| ln ε|2/3 +

a0ω1

1 + Λ2
ln | ln ε| ≤ | ln ε| − 1

2a0
| ln ε|2/3

for ε small). Then we deduce from (6.109) and (6.110) that for ε small enough,

1

2

∫

Dε\∪i∈IεBi

a(x)|∇vε|2 +

∫

Dε

a2(x)

4ε2
(1 − |vε|2)2 − π

( a0ω1

1 + Λ2
+ K 3

a0

)
∑

i∈I0
a(pi)|di| ln | ln ε|

(6.111)

+
π

4a0

∑

i∈I∗
a(pi)|di|| ln ε|2/3 +

π

2

∑

i∈I−
a(pi)|di|| ln ε| + o(| ln ε|−5) ≤ Fε(vε,Dε) ≤ O(| ln ε|−1).

Since a0ω1
1+Λ2 < −K 3

a0

and a(pi) ≥ a0/2 for i ∈ I0, we derive from (6.111) that
∑

i∈I0 |di| =

o(| ln ε|−1). Now since a(pi) ≥ | ln ε|−3/2 in Dε, we also obtain from (6.111) that
∑

i∈I∗ |di| =

O(| ln ε|−1/6) and
∑

i∈I− |di| = O(| ln ε|−1/2). Hence
∑

i∈Iε |di| ≡ 0 for ε sufficiently small.

Coming back to (6.111), we infer that for any 0 < R <
√
a0 ,

1

ε2

∫

BΛ
R

(1 − |vε|2)2 ≤ CR
ε2

∫

Dε

a2(x)(1 − |vε|2)2 ≤ o(1). (6.112)

Then the proof of (6.107) follows as in [16] using the estimate 6.13.d) in Proposition 6.13 on

|∇vε|.
Since

∑

i∈Iε |di| = 0, we derive from Proposition 6.17 that Rε(vε,Dε) = o(1). Using that

Fε(vε,Dε) ≤ o(1), we deduce that Eε(vε,Dε) = o(1) and hence we have Fε(vε,Dε) = o(1). By

(6.98) and (6.99), it leads to

Ẽε(vε,Dε) = o(1) (6.113)

and F̃ε(vε,Dε) = o(1). Using (6.95) and (6.96), we get that

o(1) ≤ F̃ε(vε,N νε
ε ) ≤ −F̃ε(vε,Dε) + o(1) ≤ o(1) (6.114)

and therefore F̃ε(vε) = o(1). By (6.97), we have

F̃ε(vε,N νε
ε ) = Ẽε(vε,N νε

ε ) + R̃ε(vε,N νε
ε ) ≥ 1

2
Ẽε(vε,N νε

ε ) + o(1)

and it results from (6.114) that Ẽε(vε,N νε
ε ) = o(1). By (6.113), we conclude that Ẽε(vε) = o(1).

�

Proof of (i) in Theorem 6.1. By 6.8.c) in Proposition 6.8 and (6.107), it follows that |uε| →√
a+ in L∞

loc(D). According to 6.11.c) in Proposition 6.11, it turns out that |uε| →
√
a+ in

L∞
loc(R

2 \ ∂D). Moreover, by (6.108), for any sequence εn → 0 we can extract a subsequence

(still denoted (εn)) such that vεn → α in H1
loc(D) for some constant α ∈ S1. We obtain

that uεne
−iΩS → α

√
a+ in H1

loc(D) by 6.8.e) in Proposition 6.8. By Lemma 6.12, 6.13.b) in

Proposition 6.13 and (6.108), we conclude that (6.6) holds. �
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6.4.3 Vortex existence near the critical velocity. Proof of (ii) in Theorem 6.1

We now prove (ii) in Theorem 6.1. We will use an appropriate test function in order to improve

the upper bound of the energy Fε(uε).

Proof of (ii) in Theorem 6.1. Step1: Construction of a test function. Assume that Ω1 +

δ ln | ln ε| ≤ Ω ≤ ω0| ln ε| for some positive constants δ and ω0 (thus, ω0 >
Λ2+1
a0

). We consider

the map ṽε defined by

ṽε(x) =







x

|x| if |x| ≥ ε,

x

ε
otherwise

and we set ûε = η̃εe
iΩS ṽε. We easily check that ûε ∈ H. Lemma 6.12 yields

Fε(ûε) = Fε(η̃εe
iΩS) + F̃ε(ṽε) + T̃ε(ṽε).

Then we estimate

∣
∣T̃ε(ṽε)

∣
∣ ≤ 1

2

∫

Bε

∣
∣
∣
∣
Ω2|∇S|2 − 2Ω2x⊥ · ∇S + kε

∣
∣
∣
∣
η̃2
ε(1 − |ṽε|2) = o(1).

A straightforward computation (using Proposition 6.7) leads to

F̃ε(ṽε) ≤ − πa2
0δ

1 + Λ2
ln | ln ε| + O(1)

and consequently

Fε(ûε) ≤ Fε(η̃εe
iΩS) − πa2

0δ

1 + Λ2
ln | ln ε| + O(1). (6.115)

We now set ũε = m−1
ε ûε with mε = ‖ûε‖L2(R2) (so that ‖ũε‖L2(R2) = 1). Since ‖η̃ε‖L2(R2) = 1,

we have

m2
ε =

∫

R2

η̃2
ε |ṽε|2 = 1 +

∫

Bε

η̃2
ε(|ṽε|2 − 1) = 1 + O(ε2).

From this estimate, we easily check that

Fε(ũε) = Fε(ûε) + o(1). (6.116)

Step 2. By the minimizing property of uε, we know that Fε(uε) ≤ Fε(ũε). In view of 6.13.b) in

Proposition 6.13, (6.115) and (6.116), it yields

F̃ε(vε) ≤ − πa2
0δ

1 + Λ2
ln | ln ε| + O(1).

Using (6.96) and then (6.99), we derive that

Fε(vε,Dε) ≤ − πa2
0δ

1 + Λ2
ln | ln ε| + O(1). (6.117)

On the other hand, by Proposition 6.17, we have

Rε(vε,Dε) ≥ − πω0

1 + Λ2

∑

i∈Iε, di>0

a2(pi) di| ln ε| + o(1)

≥ −πω0 a0

1 + Λ2

∑

i∈Îε, di>0

a(pi) di| ln ε| −
π

2

∑

i∈Iε\Îε, di>0

a(pi) di| ln ε| + o(1)

155



Chapter 6. The critical velocity for vortex existence in a 2d rotating BEC

where we denoted

Îε =
{
i ∈ Iε : a(pi) ≥

Λ2 + 1

2ω0

}
.

Then, by Proposition 6.16, we deduce that

Fε(vε,Dε) ≥ Eε(vε,∪i∈IεBi) + Rε(vε,Dε) ≥ −Cω0

∑

i∈Îε, di>0

a(pi) di| ln ε| + o(1)

for some constant Cω0 > 0. Therefore, by (6.117), it results that for small ε > 0,

∑

i∈Îε, di>0

di > 0.

We conclude that there exists i0 ∈ Îε such that di0 > 0, so that there exists at least one vortex

inside the bulk D which remains at a positive distance (independent of ε) from ∂D. If in addition,

(6.106) holds, we claim that uε has at least one vortex close to the origin. Indeed, by (6.111)

and (6.117), we obtain

−π
( a0ω1

1 + Λ2
+ K 3

a0

)
∑

i∈I0
a(pi)|di| ln | ln ε| ≤ − πa2

0δ

1 + Λ2
ln | ln ε| + O(1)

which implies for ε small enough that
∑

i∈I0 |di| ≥ C > 0 for a constant C independent of

ε. Hence, for ε small, there exists a ball Bj0 (j0 ∈ I0) that carries a vortex xε with |xε| ≤
O(| ln ε|−1/6). �

6.4.4 Energy estimates near the critical velocity. Proof of (iii) in Theorem 6.1

In this section, we prove the energy estimates stated in (iii) in Theorem 6.1 in the regime

(6.106). First, we shall prove that the number of vortex balls with nonzero degree lying in a

slightly smaller domain than Dε, is bounded.

Proposition 6.19 Assume that (6.106) holds. Then

N0 :=
∑

i∈I0
|di| ≤ Cω1 (6.118)

and setting Bε =
{
x ∈ R2 : a(x) ≥ | ln ε|−1/2

}
, we have for ε sufficiently small,

∑

i∈I∗∪I−, pi∈Bε

|di| = 0. (6.119)

Proof. Arguing as for (6.111), we derive that for ε small enough,
∫

Dε\∪i∈IεBi

a(x)|∇vε|2 +
∑

i∈I∗
a(pi)|di|| ln ε|2/3 +

∑

i∈I−
a(pi)|di|| ln ε| ≤

≤ C
∣
∣
a0ω1

1 + Λ2
+ K 3

a0

∣
∣
∑

i∈I0
a(pi)|di| ln | ln ε| + O(| ln ε|−1)

≤ C0N0 ln | ln ε| + O(| ln ε|−1) (6.120)
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for some positive constant C0 independent of ε. We set

Ĩ∗ = {i ∈ I∗ : pi ∈ Bε} , N∗ =
∑

i∈Ĩ∗

|di|,

and

Ĩ− = {i ∈ I− : pi ∈ Bε} , N− =
∑

i∈Ĩ−

|di|.

Since a(pi) ≥ | ln ε|−1/2 for any i ∈ Ĩ∗ ∪ Ĩ− , we obtain from (6.120),

∫

Dε\∪i∈IεBi

a(x)|∇vε|2 +N∗| ln ε|1/6 +N−| ln ε|1/2 ≤ C0N0 ln | ln ε| + O(| ln ε|−1) (6.121)

which implies in particular that

max{N∗, N−} ≤ N0

2
(6.122)

for ε sufficiently small. We now show that N0 is uniformly bounded in ε. Consider the sets

Iε =
[
| ln ε|−1/6,

√
a0

2

]
and Jε =

{
r ∈ Iε : ∂BΛ

r ∩ (∪i∈IεBi) = ∅
}
.

Notice that Jε is a finite union of intervals verifying |Iε \ Jε| ≤ | ln ε|−10. For r ∈ Jε and ε

small, we have |vε| ≥ 1
2 on ∂BΛ

r and therefore, we can define

D(r) = deg

(
vε
|vε|

, ∂BΛ
r

)

.

By (6.122), we obtain that for small ε,

|D(r)| =
∣
∣
∑

|pi|Λ<r
di
∣
∣ ≥ N0 −N− ≥ N0

2
for any r ∈ Jε.

We have (using elliptic coordinates x1 = r cos θ, x2 = Λ−1r sin θ)

∫

BΛ√
a0
2

\∪i∈IεBi

a(x)|∇vε|2 ≥ 3a0

4Λ

∫

Jε

(∫ 2π

0
|∇vε|2r dθ

)

dr ≥ C

∫

Jε

1

r

(∫ 2π

0

∣
∣vε ∧

∂vε
∂τ

∣
∣2r2 dθ

)

dr.

We set wε = vε
|vε| in BΛ√

a0
2

\ ∪i∈IεBi. Since |vε ∧
∂vε
∂τ

| = |vε|2|wε ∧
∂wε
∂τ

| ≥ 1

4
|wε ∧

∂wε
∂τ

| in

BΛ√
a0
2

\ ∪i∈IεBi, we infer that

∫

BΛ√
a0
2

\∪i∈IεBi

a(x)|∇vε|2 ≥ C

∫

Jε

1

r

(∫ 2π

0

∣
∣wε ∧

∂wε
∂τ

∣
∣2r2 dθ

)

dr

≥ C

∫

Jε

1

r

(∫ 2π

0
wε ∧

∂wε
∂τ

r dθ

)2

dr ≥ C

∫

Jε

D(r)2

r
dr ≥ CN2

0

∫

Jε

dr

r
.

Notice now that ∣
∣
∣
∣

∫

Iε

dr

r
−
∫

Jε

dr

r

∣
∣
∣
∣
≤ | ln ε|1/6|Iε \ Jε| = o(1)
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and since

∫

Iε

dr

r
= C ln | ln ε| + O(1), we finally get that

∫

BΛ√
a0
2

\∪i∈IεBi

a(x)|∇vε|2 ≥ C1 ln | ln ε|N2
0

for some positive constant C1 independent of ε. From (6.121), we derive

(
C1N

2
0 − C0N0

)
ln | ln ε| ≤ O(| ln ε|−1)

which implies that N0 is uniformly bounded in ε. Then it follows by (6.121) that

N∗ ≤ O(
ln | ln ε|
| ln ε|1/6 ) and N− ≤ O(

ln | ln ε|
| ln ε|1/2 ).

Therefore, N− = N∗ = 0 for ε sufficiently small. �

Proof of (iii) in Theorem 6.1. From Proposition 6.17, (6.106) and (6.119), we infer that for ε

small,

Rε

(
vε,Dε

)
≥ −πa0Ω

1 + Λ2

∑

i∈I0
a(pi)|di| −

πΩ

1 + Λ2
| ln ε|−1/2

∑

i∈I∗\Ĩ∗

a(pi)|di| + o(| ln ε|−5)

≥ −π
∑

i∈I0
a(pi)|di|

(
| ln ε| + a0ω1

1 + Λ2
ln | ln ε|

)
− 2π

a0

∑

i∈I∗
a(pi)|di|| ln ε|1/2 + o(| ln ε|−5).

We now inject this estimate in (6.109) to derive that
∑

i∈I∗ a(pi)|di|| ln ε| ≤ CN0 ln | ln ε| + o(1)

and hence, by (6.118),
∑

i∈I∗ a(pi)|di|| ln ε|1/2 = o(1). It yields

Rε(vε,Dε) = Rε (vε,Dε \ ∪i∈IεBi) + o(1) ≥ −π
∑

i∈I0
a(pi)|di|

(
| ln ε| + a0ω1

1 + Λ2
ln | ln ε|

)
+ o(1).

Since Fε(vε,Dε) = Eε(vε,Dε) + Rε(vε,Dε) ≤ O(| ln ε|−1), it follows

Eε(vε,Dε) ≤ π
∑

i∈I0
a(pi)|di|

(
| ln ε| + a0ω1

1 + Λ2
ln | ln ε|

)
+ o(1) (6.123)

≤ Cω1N0| ln ε| + o(1) ≤ Cω1| ln ε|.

Set Aε = Dε \BΛ
2| ln ε|−1/6. Matching (iv) in Proposition 6.16 with (6.123), we finally obtain

Eε(vε,Aε) ≤ Eε(vε,Dε \ ∪i∈I0Bi) ≤ π(
a0ω1

1 + Λ2
+ K 3

a0

)
∑

i∈I0
a(pi)|di| ln | ln ε| + o(1)

≤ Cω1N0 ln | ln ε| ≤ Cω1 ln | ln ε|

and the proof is complete. �

Remark 6.6 For general potentials a(x), the analysis becomes rather delicate when the set of

maximum points of the quotient ξ
a in D = {x ∈ R2 : a(x) > 0} is not finite. Recall that ξ is the
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solution of the problem (6.16). An example is given by the following perturbation at the origin

of the harmonic potential 1 − |x|2:

a(x) =







1
1+|x|2 if |x| < 1,

2−|x|
2 if |x| ≥ 1.

Here, the set of maximum points of the quotient ξ
a is a circle centered in the origin.
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Chapter 7

Energy expansion and vortex

location for a two-dimensional

rotating Bose-Einstein condensate

Abstract

We continue the analysis started in Chapter 6 on a model describing a two dimensional

rotating Bose-Einstein condensate. This model consists in minimizing under the unit mass

constraint, a Gross-Pitaevskii energy defined in R2. In this contribution, we estimate the

critical rotational speeds Ωd for having exactly d vortices in the bulk of the condensate and

we determine their topological charge and their precise location. Our approach relies on

asymptotic energy expansion techniques developed by Serfaty [80, 81, 82] for the Ginzburg-

Landau energy of superconductivity in the high κ limit.

This chapter is written in collaboration with V. Millot; the original text is published in

Rev. Math. Phys. 18 (2006), 119–162 (cf. [56]) and some of these results were announced

in C. R. Math. Acad. Sci. Paris 340 (2005), 571–576 (cf. [54]).

7.1 Introduction

As in Chapter 6, we consider here a two dimensional model describing a condensate placed in

a trap that strongly confines the atoms in the direction of the rotation axis. In the nondimen-

sionalized form, the wave function minimizes the Gross-Pitaevskii (GP) energy

Fε(u) =

∫

R2

{
1

2
|∇u|2 +

1

4ε2
[
(|u|2 − a(x))2 − (a−(x))2

]
− Ωx⊥ ·(iu,∇u)

}

dx (7.1)

under the constraint ∫

R2

|u|2 = 1 (7.2)

where ε>0 is small and describes the ratio of two characteristic lengths and Ω = Ω(ε)≥0 is the

angular velocity. The function a(x) in (7.1) comes from the existence of a potential trapping the

atoms, and is normalized such that
∫

R2 a
+(x) = 1. We will restrict our attention to the specific
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Chapter 7. Energy expansion and vortex location for a 2d rotating BEC

case of a harmonic trapping, that is a(x) = a0 −x2
1−Λ2x2

2 with a0 =
√

2Λ/π for some constant

Λ ∈ (0, 1], which corresponds to actual experiments (see [65, 66]).

Our goal is to compute an asymptotic expansion of the energy Fε(uε) and to determine the

number and the location of vortices according to the value of the angular speed Ω(ε) in the limit

ε → 0. More precisely, we want to estimate the critical velocity Ωd for which the d th vortex

becomes energetically favorable and to derive a reduced energy governing the location of the

vortices (the so-called “renormalized energy” by analogy with [17, 80, 81]).

We have started in Chapter 6 the analysis of minimizers uε of the functional Fε under the

constraint (7.2) and we have already determined the critical rotational speed Ω1 =
√
π(1+Λ2)√

2Λ
| ln ε|

of nucleation of the first vortex inside the domain

D =
{
x ∈ R2 : a(x) > 0

}
.

In the physical context, the set D represents the region occupied by the condensate since in

the limit ε → 0, the minimization of Fε forces |uε|2 to be close to the function a+(x) (Fε(uε)

remaining small in front of 1/ε2). We proved that for subcritical velocities Ω ≤ Ω1 − δ ln | ln ε|
with −δ < ω⋆1 < 0 for some constant ω⋆1, there is no vortices in the region D and uε behaves as

the vortex-free profile η̃εe
iΩS where the phase function S : R2 → R is given by

S(x) =
Λ2 − 1

Λ2 + 1
x1 x2 (7.3)

and η̃ε is the (unique) positive solution of the minimization problem

Min
{
Eε(u) : u ∈ H, ‖u‖L2(R2) = 1

}
(7.4)

with

Eε(u) =

∫

R2

1

2
|∇u|2 +

1

4ε2
[
(|u|2 − a(x))2 − (a−(x))2

]

and H =
{
u ∈ H1(R2,C) :

∫

R2

|x|2|u|2 <∞
}
.

In this contribution which constitutes the sequel of Chapter 6, we push forward the study

of minimizers uε. First, we prove the following estimate on the critical speed Ωd for any integer

d ≥ 1 in the asymptotic ε→ 0 ,

Ωd =
1 + Λ2

a0
(| ln ε| + (d− 1) ln | ln ε|) =

√
π(1 + Λ2)√

2Λ
(| ln ε| + (d− 1) ln | ln ε|) .

Then we show that for velocities ranged between Ωd and Ωd+1, any minimizer has exactly d

vortices of degree +1 inside D. Establishing an asymptotic expansion of Fε(uε) as ε → 0, we

derive the distribution of vortices within D as a minimizing configuration of the reduced energy

given by (7.5) below. We also improve the result stated in Chapter 6 for the nonexistence of

vortices in the subcritical case by showing that the best constant is ω⋆1 = 0, that is subcritical

velocities go up to Ω1 − δ ln | ln ε| for any δ > 0.

Our main theorem can be stated as follows:
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Theorem 7.1 Let uε be any minimizer of Fε in H under the constraint (7.2) and let 0 < δ ≪ 1

be any small constant.

(i) If Ω ≤ Ω1 − δ ln | ln ε|, then for any R0 <
√
a0 , there exists ε0 = ε0(R0, δ) > 0 such that

for any ε < ε0, uε is vortex free in BΛ
R0

=
{
x ∈ R2 : |x|2Λ = x2

1 + Λ2x2
2 < R2

0

}
, i.e., uε

does not vanish in BΛ
R0

. In addition,

Fε(uε) = Fε(η̃εe
iΩS) + o(1).

(ii) If Ωd + δ ln | ln ε| ≤ Ω ≤ Ωd+1 − δ ln | ln ε| for some integer d ≥ 1, then for any R0<
√
a0,

there exists ε1 = ε1(R0, d, δ) > 0 such that for any ε < ε1, uε has exactly d vortices

xε1, . . . , x
ε
d of degree one in BΛ

R0
. Moreover,

|xεj | ≤ C Ω−1/2 for any j = 1, . . . , d , and |xεi − xεj | ≥ C Ω−1/2 for any i 6= j

where C > 0 denotes a constant independent of ε. Setting x̃εj =
√

Ωxεj , the configuration

(x̃ε1, . . . , x̃
ε
d) tends to minimize as ε→ 0 the renormalized energy

w(b1, . . . , bd) = −πa0

∑

i6=j
ln |bi − bj| +

πa0

1 + Λ2

d∑

j=1

|bj|2Λ. (7.5)

In addition,

Fε(uε) = Fε(η̃εe
iΩS)− πa2

0d

1 + Λ2
(Ω−Ω1)+

πa0

2
(d2−d) ln | ln ε|+ Min

b∈R2d
w(b)+Qd,Λ+o(1) (7.6)

where Qd,Λ is a constant depending only on d and Λ.

These results are in agreement with the study made by Castin and Dum [34] who have

looked for minimizers in a reduced class of functions. More precisely, we find the same critical

angular velocities Ωd as well as a distribution of vortices around the origin at a scale Ω−1/2 .

The minimizing configurations for the renormalized energy w(·) have been studied in the radial

case Λ = 1 by Gueron and Shafrir in [49]. They prove that for d ≤ 6, regular polygons centered

at the origin and stars are local minimizers. For larger d, they numerically found minimizers

with a shape of concentric polygons and then triangular lattices as d increases. These figures

are exactly the ones observed in physical experiments (see [65, 66]).

Our approach, suggested in [4] by Aftalion and Du, strongly relies on techniques developed

by Serfaty [80, 81, 82] for the Ginzburg-Landau (GL) energy of superconductivity in the high

κ limit. We point out that Serfaty has already applied the method to a simplified GP energy

(the study is made in a ball instead of R2 with a(x) ≡ 1 and the minimization is performed

without mass constraint) and has obtained in [83] a result analogue to Theorem 7.1 which

shows that the simple model captures the main features of the full model concerning vortices.

We emphasize once more that we treat here the exact physical model without any simplifying

assumptions. The outline of our proof follows Serfaty’s method but many technical difficulties

arise from the specificities of the problem such as the unit mass constraint or the degenerate
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behavior of the function a(x) near the boundary of D. As we shall see, a very delicate analysis

is required so that we prefer sometimes to write all the details even if some proofs follow closely

other authors. More precisely, we also make use of the following results on the GL functional

[7, 12, 13, 18, 63, 75, 77, 88], starting from the pioneering work of Béthuel, Brezis and Hélein

[17]. We finally refer to Chapter 6 for additional references on mathematical studies of vortices

in BECs.

For the convenience, we recall now some results already established in Chapter 6. First, we

have proved the existence and smoothness of any minimizer uε of Fε under the constraint (7.2)

in the regime

Ω ≤ 1 + Λ2

a0

(

| ln ε| + ω1 ln | ln ε|
)

(7.7)

for some constant ω1 ∈ R, as well as some qualitative properties: Eε(uε) ≤ C| ln ε|2, |uε| .
√
a+

in any compact K ⊂ D and |uε| decreases exponentially fast to 0 outside D. We have also showed

the existence and uniqueness of the positive minimizer η̃ε of Eε under the mass constraint (7.2)

for every ε > 0. Concerning the Lagrange multiplier kε ∈ R associated to η̃ε and the qualitative

properties of η̃ε, we have obtained:

|kε| ≤ C| ln ε| , (7.8)

Eε(η̃ε) ≤ C| ln ε| for ε small and η̃ε →
√
a+ in L∞(R2) ∩ C1

loc(D) as ε → 0. Using a splitting

technique introduced by Lassoued and Mironescu [63], we were able to decouple into two inde-

pendent parts the energy Fε(u) for any u ∈ H . The first part corresponds to the energy of the

vortex-free profile η̃εe
iΩS and the second part to a reduced energy of v = u/(η̃εe

iΩS), i.e.,

Fε(u) = Fε(η̃εe
iΩS) + F̃ε(v) + T̃ε(v) (7.9)

where the functionals F̃ε and T̃ε are defined by

F̃ε(v)= Ẽε(v) + R̃ε(v) , (7.10)

Ẽε(v)=
∫

R2

η̃2
ε

2
|∇v|2 +

η̃4
ε

4ε2
(|v|2 − 1)2 , R̃ε(v)=

Ω

1 + Λ2

∫

R2

η̃2
ε∇⊥a · (iv,∇v) , (7.11)

T̃ε(v) =
1

2

∫

R2

(
Ω2|∇S|2 − 2Ω2x⊥ · ∇S + kε

)
η̃2
ε(|v|2 − 1). (7.12)

Since the function η̃ε does not vanish, the vortex structure of any minimizer uε can be studied

via the map

vε = uε/(η̃εe
iΩS),

applying the Ginzburg-Landau techniques to the weighted energy Ẽε(vε). It is intuitively clear

that difficulties will arise in the region where η̃ε is small and we will require the following

properties of vε inherited from uε and η̃ε: Ẽε(vε) ≤ C| ln ε|2,
∣
∣T̃ε(vε)

∣
∣ ≤ o(1), |R̃ε(vε)| ≤ C| ln ε|2,

|∇vε| ≤ CKε
−1 and |vε| . 1 in any compact K ⊂ D. In the sequel, it will be more convenient to

replace in the different functionals the function η̃2
ε by its limit a+(x). We denote by Fε, Eε and

Rε the corresponding functionals (see Notations below). In the regime (7.7), we have computed
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in Chapter 6 some fundamental bounds for the energy of vε in a domain slightly smaller than

D:

Fε(vε,Dε) ≤ o(1), (7.13)

Eε(vε,Dε) ≤ Cω1| ln ε|, (7.14)

Eε(vε,Dε \ {|x|Λ < 2| ln ε|−1/6}) ≤ Cω1 ln | ln ε|, (7.15)

where

Dε = {x ∈ D : a(x) > νε| ln ε|−3/2} (7.16)

and νε is a chosen parameter in the interval (1, 2) (see Proposition 6.16 in Chapter 6). These

estimates represent the starting point of our analysis here.

The plan of the chapter is as follows. In Section 2, we prove that the subset of D where |vε|
is smaller than 1/2 can be covered by a family of disjoint discs such that each radius vanishes

as ε → 0, the cardinal of this family is uniformly bounded with respect to ε and vε has a non

vanishing degree around each disc of the family. We will call such a collection of discs a fine

structure of vortices and a vortex one of these discs (identified with their center). In Section 3,

we establish various lower energy estimates namely inside a vortex and away from the vortices.

In Section 4, we prove Theorem 7.1 matching the lower energy estimates with upper estimates

coming from the construction of trial functions. These constructions are presented in Section 5

which can be read independently of the rest of the chapter. Finally, we prove in the Appendix,

an auxiliary result that we shall use in the proof of Theorem 7.1.

Notations. Throughout the chapter, we denote by C a positive constant independent of ε and

we use the subscript to point out a possible dependence on the argument. For x = (x1, x2) ∈ R2,

we write

|x|Λ =
√

x2
1 + Λ2x2

2 and BΛ
R =

{
x ∈ R2, |x|Λ < R

}

and for A ⊂ R2,

Ẽε(v,A) =

∫

A

1

2
η̃2|∇v|2 +

η̃4

4ε2
(1 − |v|2)2 , Eε(v,A) =

∫

A

1

2
a|∇v|2 +

a2

4ε2
(1 − |v|2)2

R̃ε(v,A) =
Ω

1 + Λ2

∫

A
η̃2∇⊥a · (iv,∇v) , Rε(v,A) =

Ω

1 + Λ2

∫

A
a∇⊥a · (iv,∇v)

F̃ε(v,A) = Ẽε(v,A) + R̃ε(v,A) , Fε(v,A) = Eε(v,A) + Rε(v,A). (7.17)

We do not write the dependence on A when A = R2.

7.2 Fine structure of vortices

The main goal of this section is to construct a fine structure of vortices away from the boundary

of D. The analysis here follows the ideas in [17] and [18]. The main difficulty in our situation is

due to the presence in the energy of the weight function a(x) which vanishes on ∂D and it does

not allow us to construct the structure up to the boundary because of the resulting degeneracy

in the energy estimates. Throughout this chapter, we assume that Ω satisfies (7.7), so that

(7.13), (7.14) and (7.15) hold. We will prove the following results for the map vε = uε/(η̃εe
iΩS):
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Theorem 7.2 1) For any R ∈ (
√
a0
2 ,

√
a0 ) there exists εR > 0 such that for any ε < εR,

|vε| ≥
1

2
in BΛ

R \BΛ√
a0
2

.

2) There exist some constants N ∈ N, λ0 > 0 and ε0 > 0 (which only depend on ω1) such that for

any ε < ε0, one can find a finite collection of points
{
xεj
}

j∈Jε
⊂ BΛ√

a0
4

such that Card(Jε) ≤ N

and

|vε| ≥
1

2
in B

Λ√
a0
2

\
(
∪j∈JεB(xεj , λ0ε)

)
.

Remark 7.1 The statement of Theorem 7.2 also holds if the radius
√
a0
2 is replaced by an arbi-

trary r ∈ (0, R) but then the constants in Theorem 7.2 depend on r. For the sake of simplicity,

we prefer to fix r =
√
a0
2 .

In the next proposition, we replace as in [80] the discs {B(xεj , λ0ε)}j∈Jε obtained in Theo-

rem 7.2 by slightly larger discs B(xεj , ρ) (deleting some of the points xεj if necessary), in order to

get a precise information on the behavior of vε on ∂B(xεj , ρ). The resulting family of discs will

represent the vortices of the map vε (and hence the vortices of uε also).

Proposition 7.3 Let 0 < β < µ < 1 be given constants such that µ := µN+1 > β and let

{xεj}j∈Jε be the collection of points given by 2) in Theorem 7.2. There exists 0 < ε1 < ε0 such

that for any ε < ε1, we can find J̃ε ⊂ Jε and ρ > 0 verifying

(i) λ0ε ≤ εµ ≤ ρ ≤ εµ < εβ ,

(ii) |vε| ≥
1

2
in B

Λ√
a0
2

\ ∪j∈J̃ε
B(xεj , ρ),

(iii) |vε| ≥ 1 − 2

| ln ε|2 on ∂B(xεj , ρ) for every j ∈ J̃ε,

(iv)

∫

∂B(xε
j ,ρ)

|∇vε|2 +
1

2ε2
(1 − |vε|2)2 ≤ C(β, µ)

ρ
for every j ∈ J̃ε,

(v) |xεi − xεj| ≥ 8ρ for every i, j ∈ J̃ε with i 6= j.

Moreover, for each j ∈ J̃ε, we have

Dj := deg

(
vε
|vε|

, ∂B(xεj , ρ)

)

6= 0 and |Dj | ≤ C (7.18)

for a constant C independent of ε.

Remark 7.2 We point out that for every j ∈ J̃ε, the disc B(xεj , ρ) carries at least one zero of

vε since the degree Dj 6= 0.
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7.2.1 Some local estimates

We start with a fundamental lemma. It strongly relies on Pohozaev’s identity and it will play

a similar role as Theorem III.2 in [17]. In our situation, we only derive local estimates as in

[7, 18, 88]. Some of the arguments used in the proof are taken from [7, 18].

Lemma 7.4 For any 0 < R <
√
a0 and 2

3 < α < 1, there exists a positive constant CR,α such

that
1

ε2

∫

B(x0,εα)
(1 − |vε|2)2 ≤ CR,α for any x0 ∈ BΛ

R.

Proof. Step 1. Set ũε = uεe
−iΩS . We claim that

Eε(ũε,Dε) ≤ C| ln ε| (7.19)

where Dε is defined in (7.16). Indeed, since ũε = η̃εvε, we get that

|∇ũε|2 ≤ C(η̃2
ε |∇vε|2 + |vε|2|∇η̃ε|2)

By Proposition 6.8 and Proposition 6.13 in Chapter 6, |vε| ≤ C, η̃2
ε ≤ Ca in Dε and Eε(η̃ε) ≤

C| ln ε| and consequently,

∫

Dε

|∇ũε|2 ≤ C

(∫

Dε

a(x)|∇vε|2 +

∫

Dε

|∇η̃ε|2
)

≤ C| ln ε|

by (7.14). On the other hand, we also have

1

ε2

∫

Dε

(a(x) − |ũε|2)2 ≤ C

ε2

∫

Dε

[
(a(x) − η̃2

ε)
2 + η̃4

ε(1 − |vε|2)2
]

≤ C

ε2

(∫

Dε

(a(x) − η̃2
ε)

2 +

∫

Dε

a2(x)(1 − |vε|2)2
)

≤ C| ln ε|

and therefore (7.19) follows.

Step 2. We are going to show that one can find a constant CR,α > 0, independent of ε, such

that for any x0 ∈ BΛ
R, there is some r0 ∈ (εα, εα/2+1/3) satisfying

Eε (ũε, ∂B(x0, r0)) ≤
CR,α
r0

.

We proceed by contradiction. Assume that for all M > 0, there is xM ∈ BΛ
R such that

Eε (ũε, ∂B(xM , r)) ≥
M

r
, for any r ∈ (εα, εα/2+1/3). (7.20)

Obviously, for ε small, B(xM , ε
α/2+1/3) ⊂ Dε. Integrating (7.20) for r ∈ (εα, εα/2+1/3), we

derive that

Eε (ũε,Dε) ≥M

∫ εα/2+1/3

εα

dr

r
= M(α/2 − 1/3)| ln ε|

which contradicts Step 1 for M large enough.
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Step 3. Fix x0 ∈ BΛ
R and let r0 ∈ (εα, εα/2+1/3) be given by Step 2. We recall that any minimizer

uε of Fε in
{
u ∈ H, ‖u‖L2(R2) = 1

}
satisfies

−∆uε + 2iΩx⊥ · ∇uε =
1

ε2
(a(x) − |uε|2)uε + ℓεuε in R2

where ℓε denotes the Lagrange multiplier. Therefore, we have

−∆ũε =
1

ε2
(a(x0) − |ũε|2)ũε+

1

ε2
(a(x) − a(x0))ũε + 2iΩ(∇S − x⊥) · ∇ũε (7.21)

+ (ℓε + 2Ω2x⊥ · ∇S − Ω2|∇S|2)ũε in B(x0, r0).

As in the proof of the Pohozaev identity, we multiply (7.21) by (x− x0) · ∇ũε and we integrate

by parts in B(x0, r0). We have

∫

B(x0,r0)
−∆ũε · [(x− x0) · ∇ũε] =

r0
2

∫

∂B(x0,r0)
|∇ũε|2 − r0

∫

∂B(x0,r0)

∣
∣
∣
∣

∂ũε
∂ν

∣
∣
∣
∣

2

(7.22)

and

1

ε2

∫

B(x0,r0)
(a(x0) − |ũε|2)ũε · [(x− x0) · ∇ũε] =

=
1

2ε2

∫

B(x0,r0)
(a(x0) − |ũε|2)2 −

r0
4ε2

∫

∂B(x0,r0)
(a(x0) − |ũε|2)2 (7.23)

(where ν is the outer normal vector to ∂B(x0, r0)). From (7.21), (7.22) and (7.23) we derive

that

1

ε2

∫

B(x0,r0)
(a(x0) − |ũε|2)2 ≤C

(

r0

∫

∂B(x0,r0)
|∇ũε|2 + r0ε

−2

∫

∂B(x0,r0)
(a(x0) − |ũε|2)2

+ r0ε
−2

∫

B(x0,r0)
|a(x) − a(x0)||ũε||∇ũε| + Ωr0

∫

B(x0,r0)
|∇ũε|2

+ (Ω2 + |ℓε|)r0
∫

B(x0,r0)
|ũε||∇ũε|

)

.

Then we estimate each integral term in the right hand side of the previous inequality. By

Proposition 6.11 in Chapter 6, we have |ℓε| ≤ Cε−1| ln ε| and |ũε| ≤ C in R2. According to

(7.19), we obtain

ε−2

∫

∂B(x0,r0)
(a(x0) − |ũε|2)2 ≤ Cε−2

∫

∂B(x0,r0)

[
(a(x0) − a(x))2 + (a(x) − |ũε|2)2

]

≤ Cε−2

∫

∂B(x0,r0)
(a(x) − |ũε|2)2 + CRε

3
2
α−1,

and

Ωr0

∫

B(x0,r0)
|∇ũε|2 ≤ Ωr0Eε(ũε,Dε) ≤ CR ε

α/2+1/3| ln ε|2,

and

r0ε
−2

∫

B(x0,r0)
|a(x) − a(x0)||ũε||∇ũε| ≤ CR r

2
0 ε

−2

∫

B(x0,r0)
|∇ũε|

≤ CR r
3
0 ε

−2[Eε(ũε,Dε)]
1/2 ≤ CR ε

3
2
α−1| ln ε|1/2,
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and

(Ω2 + |ℓε|)r0
∫

B(x0,r0)
|ũε||∇ũε| ≤ CRε

−1| ln ε| r20 [Eε(ũε,Dε)]
1/2 ≤ CR ε

α− 1
3 | ln ε|3/2

(here we use that |a(x) − a(x0)| ≤ CR r0 for any x ∈ B(x0, r0)). We finally get that

1

ε2

∫

B(x0,r0)
(a(x0) − |ũε|2)2 ≤ CR,α

(
1 + r0Eε (ũε, ∂B(x0, r0))

)

for some constant CR,α independent of ε. By Step 2, we conclude that

1

ε2

∫

B(x0,εα)
(a(x0) − |ũε|2)2 ≤ CR,α. (7.24)

Since ‖η̃ε −
√
a‖C1(BΛ

R) ≤ CRε
2| ln ε| by Proposition 6.8 in Chapter 6, we have

1

ε2

∫

B(x0,εα)
(1 − |vε|2)2 ≤ CR

ε2

∫

B(x0,εα)
(η̃2
ε − |ũε|2)2

≤ CR
ε2

∫

B(x0,εα)
(a(x) − |ũε|2)2 + o(1)

≤ CR
ε2

∫

B(x0,εα)
(a(x0) − |ũε|2)2 + o(1) ≤ CR,α

and we conclude with (7.24). �

The next result will allow us to define the notion of a bad disc as in [17].

Proposition 7.5 For any 0 < R <
√
a0 , there exist two positive constants λR and µR such

that if
1

ε2

∫

B(x0,2l)
(1 − |vε|2)2 ≤ µR with x0 ∈ BΛ

R ,
l

ε
≥ λR and l ≤

√
a0 −R

2
,

then |vε| ≥ 1/2 in B(x0, l).

Proof. In Proposition 6.13 in Chapter 6, we proved the existence of a constant CR > 0 indepen-

dent of ε such that

|∇vε| ≤
CR
ε

in BΛ√
a0+R

2

.

Then the result follows as in [17], Theorem III.3. �

Definition 7.6 For 0 < R <
√
a0 and x ∈ BΛ

R, we say that B(x, λRε) is a bad disc if

1

ε2

∫

B(x,2λRε)
(1 − |vε|2)2 ≥ µR.

Now we can give a local version of Theorem 7.2. We will see that Lemma 7.4 plays a crucial

role in the proof.
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Proposition 7.7 For any 0 < R <
√
a0 and 2

3 < α < 1, there exist positive constants NR,α

and εR,α such that for every ε < εR,α and x0 ∈ BΛ
R , one can find x1, . . . , xNε ∈ B(x0, ε

α) with

Nε ≤ NR,α verifying

|vε| ≥
1

2
in B(x0, ε

α) \
(

∪Nε
k=1B(xk, λRε)

)

.

Proof. We follow the ideas in [17], Chapter IV. Consider a family of discs
{
B(xi, λRε)

}

i∈F such

that

xi ∈ B(x0, ε
α), (7.25)

B

(

xi,
λRε

4

)

∩B
(

xj,
λRε

4

)

= ∅ for i 6= j, (7.26)

B(x0, ε
α) ⊂

⋃

i∈F
B(xi, λRε).

Obviously, the discs
{
B(xi, 2λRε)

}

i∈F cannot intersect more that C times (where C is a universal

constant) and
⋃

i∈F
B(xi, 2λRε) ⊂ B(x0, ε

α′
)

with α′ = 1
2(α+ 2

3). We denote by F ′ the set of indices i ∈ F such that B(xi, λRε) is a bad disc.

We derive from Definition 7.6 that

µR Card(F ′) ≤
∑

i∈F

1

ε2

∫

B(xi,2λRε)
(1 − |vε|2)2 ≤ C

ε2

∫

B(x0,εα′)
(1 − |vε|2)2.

The conclusion now follows by Lemma 7.4 and Proposition 7.5. �

Remark 7.3 By the proof of Proposition 7.7, it follows that any family of discs
{
B(xi, λRε)

}

i∈F
satisfying (7.25) and (7.26) cannot contain more than NR,α bad discs.

In the sequel, we will require the following crucial lemma to prove that vortices of degree

zero do not occur. This result has its source in [7, 18] and the proof is based on the construction

of a suitable test function. Hence the main difference and difficulty in our case come from the

mass constraint we have to take into account in the construction of test functions.

Lemma 7.8 Let D > 0, 0 < β < 1 and γ > 1 be given constants such that γβ < 1. Let

0 < R <
√
a0 and 0 < ρ < εβ be such that ργ > λRε. We assume that for x0 ∈ BΛ

R,

(i)

∫

∂B(x0,ρ)
|∇vε|2 +

1

2ε2
(1 − |vε|2)2 <

D

ρ
,

(ii) |vε| ≥
1

2
on ∂B(x0, ρ),

(iii) deg

(
vε
|vε|

, ∂B(x0, ρ)

)

= 0.

170



7.2. Fine structure of vortices

Then we have

|vε| ≥
1

2
in B(x0, ρ

γ).

Proof of Lemma 7.8. We are going to construct a comparison function as in [7] or [18] to obtain

the following estimate:
∫

B(x0,ρ)
|∇vε|2 +

1

2ε2
(1 − |vε|2)2 ≤ Cβ,R. (7.27)

Since the degree of vε restricted to ∂B(x0, ρ) is zero, we may write on ∂B(x0, ρ)

vε = |vε|eiφε

where φε is a smooth map from ∂B(x0, ρ) into R. Then we define v̂ε : R2 → C by







v̂ε = χεe
iψε in B(x0, ρ)

v̂ε = vε in R2 \B(x0, ρ)

where ψε is the solution of 





∆ψε = 0 in B(x0, ρ)

ψε = φε on ∂B(x0, ρ),

and χε has the form, written in polar coordinates centered at x0,

χε(r, θ) = (|vε(ρeiθ)| − 1)ξ(r) + 1

and ξ is a smooth function taking values in [0, 1] with small support near ρ with ξ(ρ) = 1. By

Proposition 6.13 in Chapter 6, we know that |vε(x)| ≤ 1 + C ε1/3 for x ∈ D with |x|Λ ≥
√
a0 − ε1/8 and we deduce that 0 ≤ χε ≤ 1 +Cε1/3. Arguing as in [16], proof of Theorem 2, we

may prove that

∫

B(x0,ρ)
|∇ψε|2 ≤ Cρ

∫

∂B(x0,ρ)

∣
∣
∣
∣

∂φε
∂τ

∣
∣
∣
∣

2

≤ Cρ

∫

∂B(x0,ρ)
|∇vε|2 (7.28)

and
∫

B(x0,ρ)
|∇χε|2 +

1

ε2
(1 − χ2

ε)
2 ≤ Cρ

∫

∂B(x0,ρ)
|∇vε|2 +

1

2ε2
(1 − |vε|2)2 +O(ρ). (7.29)

From (7.28), (7.29) and assumption (i), we infer that

∫

B(x0,ρ)
|∇v̂ε|2 +

1

2ε2
(1 − |v̂ε|2)2 ≤ C . (7.30)

We set ṽε = m−1
ε v̂ε with mε = ‖η̃εv̂ε‖L2(R2). Clearly, η̃εe

iΩS ṽε ∈ H and ‖η̃εeiΩS ṽε‖L2(R2) = 1.

Since uε = η̃εe
iΩSvε minimizes the functional Fε under the constraint (7.2), we have Fε(uε) ≤

Fε(η̃εe
iΩS ṽε) and by (7.9), it yields

F̃ε(vε) + T̃ε(vε) ≤ F̃ε(ṽε) + T̃ε(ṽε). (7.31)
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We claim that

F̃ε(ṽε) ≤ F̃ε(v̂ε) + Cρ| ln ε|2 and
∣
∣T̃ε(vε) − T̃ε(ṽε)

∣
∣ = O(ρ2| ln ε|2). (7.32)

Indeed, we have already established in the proof of Proposition 6.13 in Chapter 6 that

Ẽε(vε) ≤ C| ln ε|2 and
∣
∣R̃ε(vε)

∣
∣ ≤ C| ln ε|2 (7.33)

so that, using (7.30), ‖η̃εvε‖L2(R2) = 1, v̂ε = vε in R2 \B(x0, ρ) and (7.33), we obtain

m2
ε = 1 +

∫

B(x0,ρ)
η̃2
ε(|v̂ε|2 − 1) +

∫

B(x0,ρ)
η̃2
ε(1 − |vε|2)

= 1 +O(ρ ε| ln ε|). (7.34)

From (7.30), (7.33) and (7.34), we derive
∫

R2

η̃2
ε |∇ṽε|2 = m−2

ε

∫

R2

η̃2
ε |∇v̂ε|2 =

∫

R2

η̃2
ε |∇v̂ε|2 +O(ρε| ln ε|3) (7.35)

and

R̃ε(ṽε) = m−2
ε R̃ε(v̂ε) = R̃ε(v̂ε) +O(ρε| ln ε|3). (7.36)

Since uε remains bounded in R2 and Eε(uε) ≤ C| ln ε|2 by Proposition 6.13 in Chapter 6, we

infer from (7.33),

1

ε2

∫

R2

η̃4
ε(1 − |ṽε|2)2 =

1

ε2

∫

R2

η̃4
ε(1 − |v̂ε|2)2 +

2(1 −m−2
ε )

ε2

∫

R2

η̃2
ε(1 − |v̂ε|2)|η̃εv̂ε|2

+
(1 −m−2

ε )2

ε2

∫

R2

|η̃εv̂ε|4

≤ 1

ε2

∫

R2

η̃4
ε(1 − |v̂ε|2)2

+ Cρ| ln ε|
(

1

ε2

∫

R2\B(x0,ρ)
η̃4
ε(1 − |vε|2)2

)1/2(∫

R2\B(x0,ρ)
|uε|4

)1/2

+ Cρ2| ln ε|2

≤ 1

ε2

∫

R2

η̃4
ε(1 − |v̂ε|2)2 + Cρ| ln ε|2. (7.37)

Finally, we obtain in the same way,

∣
∣T̃ε(vε) − T̃ε(ṽε)

∣
∣ ≤

∣
∣T̃ε(vε) − T̃ε(v̂ε)

∣
∣+
∣
∣T̃ε(v̂ε) − T̃ε(ṽε)

∣
∣ (7.38)

≤ C| ln ε|2
(∫

B(x0,ρ)
(1 + |x|2)η̃2

ε + |1 −m−2
ε |
∫

R2

(1 + |x|2)η̃2
ε |v̂ε|2

)

≤ Cρ2| ln ε|2. (7.39)

From (7.35), (7.36), (7.37) and (7.38), we conclude that (7.32) holds.

Since v̂ε = vε in R2 \B(x0, ρ), we get from (7.31) and (7.32) that

F̃ε(vε, B(x0, ρ)) ≤ F̃ε(v̂ε, B(x0, ρ)) + Cρ| ln ε|2.
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By (7.30), we have Ẽε(v̂ε, B(x0, ρ)) ≤ C and therefore,

∣
∣R̃ε(v̂ε, B(x0, ρ))

∣
∣ ≤ CΩ

∫

B(x0,ρ)
|∇v̂ε| ≤ CΩρ‖∇v̂ε‖L2(B(x0,ρ)) = O(ρ| ln ε|). (7.40)

Hence, F̃ε(v̂ε, B(x0, ρ)) ≤ C and we conclude that

F̃ε(vε, B(x0, ρ)) ≤ Cβ.

As for (7.40), using (7.33) we easily derive that |R̃ε(vε, B(x0, ρ))| = O(ρ| ln ε|2) and we finally

get that Ẽε(vε, B(x0, ρ)) ≤ Cβ which clearly implies (7.27) since η̃2
ε → a+ uniformly as ε → 0

(see Proposition 6.8 in Chapter 6).

We deduce from (7.27) that

∫ ρ

2ργ

(
∫

∂B(x0,s)
|∇vε|2 +

1

2ε2
(1 − |vε|2)2

)

ds ≤ Cβ,R.

Since
∫ ρ
2ργ

ds
s| ln s|1/2 ≥ Cγ | ln ε|1/2, we derive that for small ε there exists s0 ∈ [2ργ , ρ] such that

∫

∂B(x0,s0)
|∇vε|2 +

1

2ε2
(1 − |vε|2)2 ≤ Cβ,R

s0| ln s0|1/2
.

Repeating the arguments used to prove (7.27), we find that

∫

B(x0,s0)
|∇vε|2 +

1

2ε2
(1 − |vε|2)2 ≤ Cβ,R

| ln s0|1/2
.

In particular, we have
1

ε2

∫

B(x0,2ργ)
(1 − |vε|2)2 = o(1)

and the conclusion follows by Proposition 7.5. �

We obtain as in [18] Proposition IV.3 the following result which gives us an estimate of the

contribution in the energy of any vortex. We reproduce here the proof for completeness.

Proposition 7.9 Let 0 < R <
√
a0 and 2

3 < α < 1. Let x0 ∈ BΛ
R and assume that |vε(x0)| < 1

2 .

Then there exists a positive constant CR,α (which only depends on R, α and ω1) such that

∫

B(x0,εα)
|∇vε|2 ≥ CR,α| ln ε|.

Proof. Let NR,α and x1, . . . , xNε ∈ B(x0, ε
α) be as in Proposition 7.7. We set

δα =
α1/2 − α

3(NR,α + 1)

and for k = 0, . . . , 3NR,α + 2, we consider

αk = α1/2 − kδα , Ik = [εαk , εαk+1 ] and Ck = B(x0, ε
αk+1) \B(x0, ε

αk ).
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Then there is some k0 ∈ {1, . . . , 3NR,α + 1} such that

Ck0 ∩
(

∪Nε
j=1B(xj, λRε)

)

= ∅. (7.41)

Indeed, since Nε ≤ NR,α and 2λRε < |Ik| for small ε, the union of Nε intervals of length 2λRε

Nε⋃

j=1

(
|xi − x0| − λRε, |xi − x0| + λRε

)

cannot intersect all the intervals Ik of disjoint interior, for 1 ≤ k ≤ 3NR,α + 1. From (7.41) we

deduce that

|vε(x)| ≥
1

2
for any x ∈ Ck0.

Therefore, for every ρ ∈ Ik0,

dk0 = deg

(
vε
|vε|

, ∂B(x0, ρ)

)

is well defined and does not depend on ρ. We claim that

dk0 6= 0. (7.42)

By contradiction, we suppose that dk0 = 0. According to (7.14), it results that

∫

BΛ√
a0+R
2

|∇vε|2 +
1

2ε2
(1 − |vε|2)2 ≤ CR| ln ε|.

Using the same argument as in Step 2 of the proof of Lemma 7.4, there is a constant CR,α such

that
∫

∂B(x0,ρ0)
|∇vε|2 +

1

2ε2
(1 − |vε|2)2 ≤ CR,α

ρ0
for some ρ0 ∈ Ik0.

According to Lemma 7.8 (with β = αk0+1 and γ =
αk0−1

αk0
), we should have |vε(x0)| ≥ 1

2 which is

a contradiction.

By (7.42), we obtain for every ρ ∈ Ik0,

1 ≤ |dk0 | =
1

2π

∣
∣
∣
∣
∣

∫

∂B(x0,ρ)

1

|vε|2
(
vε ∧

∂vε
∂τ

)

∣
∣
∣
∣
∣
≤ C

∫

∂B(x0,ρ)
|∇vε|

(we use that |vε| ≥ 1
2 in Ck0). Then Cauchy-Schwarz inequality yields

∫

∂B(x0,ρ)
|∇vε|2 ≥ C

ρ
for any ρ ∈ Ik0

and the conclusion follows integrating on Ik0. �
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7.2.2 Proofs of Theorem 7.2 and Proposition 7.3

The part 1) in Theorem 7.2 follows directly from Lemma 7.10 below.

Lemma 7.10 There exists a constant εR > 0 such that for any 0 < ε < εR,

|vε| ≥
1

2
in BΛ

R \BΛ√
a0
5

.

Proof. First, we fix some α ∈ (2
3 , 1). We proceed by contradiction. Suppose that there is

some x0 ∈ BΛ
R \ BΛ√

a0
5

such that |vε(x0)| < 1/2. Then for any ε sufficiently small, we have

B(x0, ε
α) ⊂ Dε \ {|x|Λ < 2| ln ε|−1/6} and therefore, by (7.15), we get that

∫

B(x0,εα)
|∇vε|2 ≤ CR Eε(vε,Dε \ {|x|Λ < 2| ln ε|−1/6}) ≤ CR ln | ln ε|

which contradicts Proposition 7.9 for ε small enough. �

Proof of 2) in Theorem 7.2. We fix some 2
3 < α < 1. As in the proof of Proposition 7.7, we

consider a finite family of points {xj}j∈J satisfying

xj ∈ BΛ√
a0
2

B

(

xi,
λ0ε

4

)

∩B
(

xj ,
λ0ε

4

)

= ∅ for i 6= j ,

BΛ√
a0
2

⊂
⋃

j∈J
B (xj, λ0ε) ,

where λ0 := λ√
a0
2

(defined in Proposition 7.5 with R =
√
a0
2 ) and we denote by Jε the set of

indices j ∈ J such that B(xj, λ0ε) contains at least one point yj verifying

|vε(yj)| <
1

2
. (7.43)

Obviously, B(xj, λ0ε) is a bad disc for every j ∈ Jε. Applying Lemma 7.10 (with R =
3
√
a0

4 ), we

infer that there exists ε0 such that for any 0 < ε < ε0,

B(xj, λ0ε) ⊂ BΛ√
a0
4

for any j ∈ Jε. (7.44)

Then it remains to prove that Card(Jε) is bounded independently of ε. Using Proposition 7.9

(with R =
√
a0
2 ), we derive that for any j ∈ Jε and any point yj satisfying (7.43) in the ball

B(xj, λ0ε), ∫

B(xj ,2εα)
|∇vε|2 ≥

∫

B(yj ,εα)
|∇vε|2 ≥ Cα| ln ε| (7.45)

for some positive constant Cα which only depends on α. We set for ε small enough

W =
⋃

j∈Jε

B(xj, 2ε
α) ⊂ BΛ√

a0
3

.
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We claim that there is a positive integer Mα independent of ε such that any y ∈ W belongs to

at most Mα balls in the collection {B(xj , 2ε
α)}j∈Jε . Indeed, for each y ∈W , consider the subset

Ky ⊂ Jε defined by

Ky =
{
j ∈ Jε : y ∈ B(xj , 2ε

α)
}
.

We have for every j ∈ Ky,

xj ∈ B(y, 2εα) ⊂ B(y, εα
′
) ⊂ BΛ√

a0
2

with α′ =
1

2
(α+

2

3
). (7.46)

Since the family of discs {B(xj , λ0ε)}j∈Ky is a subcover of B(y, εα
′
) satisfying (7.25) and (7.26),

we conclude from Remark 7.3 that

Card(Ky) ≤Mα

with Mα = N√
a0
2
,α′ . From (7.45), we infer that

∫

BΛ√
a0
2

|∇vε|2 ≥
∫

W
|∇vε|2 ≥ 1

Mα

∑

j∈Jε

∫

B(xj ,2εα)
|∇vε|2 ≥ CαCard(Jε)| ln ε|. (7.47)

On the other hand, we know by (7.14),
∫

BΛ√
a0
2

|∇vε|2 ≤ C

∫

BΛ√
a0
2

a(x)|∇vε|2 ≤ C| ln ε| (7.48)

for a constant C independent of ε. Matching (7.47) and (7.48), we conclude that Card(Jε) is

uniformly bounded. �

In the following, we will prove Proposition 7.3. We proceed exactly as in [80], using Theo-

rem 7.2 and an adaptation of Theorem V.1 in [7]. We will use Proposition 6.16 in Chapter 6,

that was shown by a method due to Sandier [75] and Sandier-Serfaty [77].

Proof of Proposition 7.3. By Theorem 7.2, we have for ε small enough,

∪j∈JεB(xεj , λ0ε) ⊂ BΛ√
a0
3

.

From (iii) in Proposition 6.16 in Chapter 6, there exists a radius rε ∈ (
√
a0
3 ,

√
a0
2 ] such that

B̄i ∩ ∂BΛ
rε = ∅ for every i ∈ Iε. (7.49)

Hence we have

|vε| ≥ 1 − | ln ε|−5 on ∂BΛ
rε .

The existence of a subset J̃ε ⊂ Jε satisfying (i)-(v) can now be proved identically as Propo-

sition 3.2 in [80] and it remains to prove (7.18). From the proof of Theorem 7.2, we know

(by construction) that each disc B(xεk, λ0ε), k ∈ Jε, contains at least one point yk such that

|vε(yk)| < 1
2 . Therefore each disc B(xεj , ρ), j ∈ J̃ε, contains at least one of the yk’s with

|xεj − yk| < λ0ε. Assume now that Dj = 0. By Lemma 7.8 with γ = µ−1/2, it would lead to

|vε| ≥ 1
2 in B(xεj , ρ

γ) and then |vε(yk)| ≥ 1
2 for ε small enough, contradiction. We also find a

bound on the degrees Dj:

|Dj | =
1

2π

∣
∣
∣
∣
∣

∫

∂B(xε
j ,ρ)

1

|vε|2
(
vε ∧

∂vε
∂τ

)

∣
∣
∣
∣
∣
≤ C‖∇vε‖L2(∂B(xε

j ,ρ))
√
ρ ≤ C

by (iv) in Proposition 7.3. �
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7.3 Some lower energy estimates

In this section, we obtain various lower energy estimates for vε in terms of the vortex structure

defined in Section 7.2, Proposition 7.3. We start by proving a lower bound on the kinetic

energy away from the vortices which brings out the interaction between vortices. The method

that we use is based on the techniques developed in [7], [17] and [80, 81]. As in the previous

section, the main difficulty is due to the degenerate behavior near the boundary of D of the

function a(x) since the method involves in our case the operator − div(a−1∇) which is not

uniformly elliptic in D. To avoid this problem, we shall establish our estimates in BΛ
R for an

arbitrary radius R ∈ [
√
a0/2,

√
a0 ). The underlying idea here is to let R → √

a0 at the end of

the analysis. To emphasize the possible dependence on R in the “error term”, we will denote

by OR(1) (respectively oR(1)) any quantity which remains uniformly bounded in ε for fixed R

(respectively any quantity which tends to 0 as ε → 0 for fixed R). In the sequel, we will also

write J̃ε = {1, . . . , nε}.

Proposition 7.11 For any R ∈ [
√
a0
2 ,

√
a0 ), let Θρ = BΛ

R \ ∪nε
j=1B(xεj, ρ). We have

1

2

∫

Θρ

a(x)|∇vε|2 ≥ π

nε∑

j=1

D2
j a(x

ε
j)| ln ρ| +WR,ε

(
(xε1,D1), . . . , (x

ε
nε
,Dnε)

)
+OR(1) (7.50)

where

WR,ε

(
(xε1,D1), . . . , (x

ε
nε
,Dnε)

)
= −π

∑

i6=j
DiDj a(x

ε
j) ln |xεi − xεj | − π

nε∑

j=1

DjΨR,ε(x
ε
j)

and ΨR,ε is the unique solution of






div

(
1

a
∇ΨR,ε

)

= −
nε∑

j=1

Dj a(x
ε
j)∇

(
1

a

)

· ∇
(
ln |x− xεj |

)
in BΛ

R,

ΨR,ε = −
nε∑

j=1

Dj a(x
ε
j) ln |x− xεj| on ∂BΛ

R.

(7.51)

Moreover, if ρ
|xε

i−xε
j |
→ 0 as ε→ 0 for any i 6= j then the term OR(1) in (7.50) is in fact oR(1).

Remark 7.4 We point out that the dependence on R in the interaction term WR,ε only appears

in the function ΨR,ε. Moreover, for ΨR,ε to be well defined, 1/a(x) has to be bounded inside BΛ
R

so that we can not pass to the limit R→ √
a0 in (7.50) without an a priori deterioration of the

error term.

Proof of Proposition 7.11. We consider the solution Φρ of the linear problem






div

(
1

a
∇Φρ

)

= 0 in Θρ,

Φρ = 0 on ∂BΛ
R,

Φρ = const. on ∂B(xεj , ρ),
∫

∂B(xε
j ,ρ)

1

a

∂Φρ

∂ν
= 2πDj for j = 1, . . . , nε,
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and ΦR,ε the solution of







div

(
1

a
∇ΦR,ε

)

= 2π

nε∑

j=1

Dj δxε
j

in BΛ
R

ΦR,ε = 0 on ∂BΛ
R

(7.52)

For x ∈ Θρ, we set wε(x) = vε(x)
|vε(x)| and

S =

(

−wε ∧
∂wε
∂x2

+
1

a

∂Φρ

∂x1
, wε ∧

∂wε
∂x1

+
1

a

∂Φρ

∂x2

)

.

We easily check that divS = 0 in Θρ and
∫

∂BΛ
R
S · ν =

∫

∂B(xε
j ,ρ)

S · ν = 0. By Lemma I.1 in [17],

there exists H ∈ C1(Θρ) such that S = ∇⊥H and hence we can write the Hodge-de Rham type

decomposition

wε ∧∇wε =
1

a
∇⊥Φρ + ∇H.

Consequently,

∫

Θρ

a(x)|∇wε|2 =

∫

Θρ

1

a(x)
|∇Φρ|2 + 2

∫

Θρ

∇⊥Φρ · ∇H +

∫

Θρ

a(x)|∇H|2

≥
∫

Θρ

1

a(x)
|∇Φρ|2 + 2

∫

Θρ

∇⊥Φρ · ∇H.

We observe that the last term is in fact equal to zero since it is the integral of a Jacobian and

Φρ is constant on ∂Θρ. Hence

∫

Θρ

a(x)|∇wε|2 ≥
∫

Θρ

1

a(x)
|∇Φρ|2.

Since |∇vε|2 ≥ |vε|2|∇wε|2 in Θρ, we derive that

∫

Θρ

a(x)|∇vε|2 ≥
∫

Θρ

1

a(x)
|∇Φρ|2 + T1 + 2T2

with

T1 =

∫

Θρ

(
|vε|2 − 1

) 1

a(x)
|∇Φρ|2 and T2 =

∫

Θρ

(
|vε|2 − 1

)
∇Φ⊥

ρ · ∇H.

Arguing as in [7] (see Step 4 in the proof of Theorem 6), it turns out that T1 = oR(1) and

T2 = oR(1) and therefore

∫

Θρ

a(x)|∇vε|2 ≥
∫

Θρ

1

a(x)
|∇Φρ|2 + oR(1). (7.53)

On the other hand, integrating by parts we obtain

∫

Θρ

1

a(x)
|∇Φρ|2 =

∫

∂Θρ

1

a(x)

∂Φρ

∂ν
Φρ = −2π

nε∑

j=1

Dj Φρ(zj)

178



7.3. Some lower energy estimates

for any point zj ∈ ∂B(xεj , ρ). Since nε and each Dj remain uniformly bounded in ε by Proposi-

tion 7.3, we may rewrite this equality as

∫

Θρ

1

a(x)
|∇Φρ|2 = −2π

nε∑

j=1

Dj ΦR,ε(zj) +O
(
‖ΦR,ε − Φρ‖L∞(Θρ)

)
. (7.54)

Using an adaptation of Lemma I.4 in [17] (see e.g. [15], Lemma 3.5), we derive that

‖ΦR,ε − Φρ‖L∞(Θρ) ≤
nε∑

j=1

(

sup
∂B(xε

j ,ρ)
ΦR,ε − inf

∂B(xε
j ,ρ)

ΦR,ε

)

. (7.55)

To estimate the right-hand-side term in (7.55), we introduce for x ∈ BΛ
R,

ΨR,ε(x) = ΦR,ε(x) −
nε∑

j=1

Dj a(x
ε
j) ln |x− xεj |.

Since ΦR,ε solves (7.52), we deduce that ΨR,ε may be characterized as the solution of equation

(7.51). By elliptic regularity, we infer that ‖ΨR,ε‖W 2,p(BΛ
R) ≤ CR,p for any 1 ≤ p < 2 (here we

used that {xεj}nε
j=1 ⊂ BΛ√

a0
4

by Theorem 7.2). In particular, ΨR,ε is uniformly bounded with

respect to ε in C0,1/2(BΛ
R) and hence

sup
∂B(xε

j ,ρ)
ΨR,ε − inf

∂B(xε
j ,ρ)

ΨR,ε ≤ CR
√
ρ = oR(1).

Since |xεj − xεi | ≥ 8ρ, we derive from (7.18),

sup
∂B(xε

j ,ρ)

( nε∑

i=1

Di a(x
ε
i ) ln |x− xεi |

)

− inf
∂B(xε

j ,ρ)

( nε∑

i=1

Di a(x
ε
i ) ln |x− xεi |

)

≤

≤ ρ

nε∑

i=1, i6=j
a(xεi ) sup

∂B(xε
j ,ρ)

|Di|
|x− xεi |

≤ O(1),

(respectively ≤ o(1) if ρ
|xε

i−xε
j |

→ 0 as ε → 0 for any i 6= j). Coming back to (7.55), we obtain

that ‖ΦR,ε − Φρ‖L∞(Θρ) ≤ OR(1) (respectively ≤ oR(1) if ρ
|xε

i−xε
j |

→ 0 as ε → 0 for any i 6= j).

Inserting this estimate in (7.54), we get that

∫

Θρ

1

a(x)
|∇Φρ|2 = − 2π

nε∑

j=1

Dj ΦR,ε(zj) +OR(1) (7.56)

= − 2π

nε∑

j=1

Dj ΨR,ε(zj) − 2π
∑

i6=j
DiDj a(x

ε
i ) ln |zj − xεi |

+ 2π

nε∑

j=1

D2
j a(x

ε
j)| ln ρ| +OR(1)

(respectively +oR(1) as ε→ 0). Since ΨR,ε is uniformly bounded with respect to ε in C0,1/2(BΛ
R),

we have |ΨR,ε(zj) − ΨR,ε(x
ε
j)| ≤ CR

√
ρ = oR(1). Moreover, using (7.18) and |xεj − xεi | ≥ 8ρ, we
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derive that
∣
∣
∣
∣

∑

i6=j
DiDj a(x

ε
i )(ln |zj − xεi | − ln |xεj − xεi |)

∣
∣
∣
∣
≤
∑

i6=j
|Di| |Dj | ln

∣
∣
∣
∣
1 +

zj − xεj
xεj − xεi

∣
∣
∣
∣

≤
∑

i6=j
|Di| |Dj |

ρ

|xεj − xεi |
≤ O(1)

(respectively ≤ o(1) as ε→ 0). Hence (7.56) yields

∫

Θρ

1

a(x)
|∇Φρ|2 = − 2π

nε∑

j=1

Dj ΨR,ε(x
ε
j) − 2π

∑

i6=j
DiDj a(x

ε
i ) ln |xεj − xεi |

+ 2π

nε∑

j=1

D2
j a(x

ε
j)| ln ρ| +OR(1)

(respectively +oR(1) as ε→ 0). Combining this estimate with (7.53), we obtain the announced

result. �

Arguing as [80, 81], we estimate the contribution in the energy of each vortex which yields

the following lower bounds for Eε(vε):

Lemma 7.12 For any R ∈ [
√
a0
2 ,

√
a0 ), we have

Eε(vε, BΛ
R) ≥ π

nε∑

j=1

D2
j a(x

ε
j)| ln ρ| + π

nε∑

j=1

|Dj | a(xεj) ln
ρ

ε
+WR,ε +OR(1) (7.57)

and

Eε(vε, BΛ
R) ≥ π

nε∑

j=1

|Dj | a(xεj) ln
ρ

ε
+O(1). (7.58)

Proof. In view of Proposition 7.11, it suffices to show that

Eε(vε, B(xεj , ρ)) ≥ π|Dj | a(xεj) ln
ρ

ε
+O(1) for j = 1, . . . , nε,

which is equivalent to

1

2

∫

B(xε
j ,ρ)

|∇vε|2 +
a(xεj)

2ε2
(1 − |vε|2)2 ≥ π|Dj | ln

ρ

ε
+O(1) for j = 1, . . . , nε (7.59)

(we used that |a(x) − a(xεj)| ≤ Cρ for x ∈ B(xεj , ρ) and Eε(vε, BΛ
R) ≤ CR| ln ε|). Setting

v̂(y) = vε(ρy + xεj) for y ∈ B(0, 1) and ε̂ =
ε

ρ
√

a(xεj)
,

we infer from Proposition 7.3 that |v̂| ≥ 1 − 2
| ln ε|2 on ∂B(0, 1),

1

2

∫

∂B(0,1)
|∇v̂|2 +

1

2ε̂2
(1 − |v̂|2)2 =

ρ

2

∫

∂B(xε
j ,ρ)

|∇vε|2 +
a(xεj)

2ε2
(1 − |vε|2)2 ≤ C (7.60)
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and

1

2

∫

B(0,1)
|∇v̂|2 +

1

2ε̂2
(1 − |v̂|2)2 =

1

2

∫

B(xε
j ,ρ)

|∇vε|2 +
a(xεj)

2ε2
(1 − |vε|2)2.

As in the proof of Lemma VI.1 in [7], (7.60) yields for ε small enough,

1

2

∫

B(0,1)
|∇v̂|2 +

1

2ε̂2
(1 − |v̂|2)2 ≥ π|Dj | | ln ε̂| +O(1) = π|Dj | ln

ρ

ε
+O(1)

and hence (7.59) holds. �

As in Proposition 6.17 in Chapter 6, we may compute an asymptotic expansion of Rε(vε,Dε)

in terms of vortices which leads, in view of Lemma 7.12, to lower expansions of Fε(vε,Dε):

Lemma 7.13 For any R ∈ [
√
a0
2 ,

√
a0 ), we have

Fε(vε,Dε) ≥ π

nε∑

j=1

D2
j a(x

ε
j)| ln ρ| + π

nε∑

j=1

|Dj | a(xεj) ln
ρ

ε
− πΩ

1 + Λ2

nε∑

j=1

a2(xεj)Dj +WR,ε +OR(1)

(7.61)

and

Fε(vε,Dε) ≥ π

nε∑

j=1

|Dj | a(xεj) ln
ρ

ε
− πΩ

1 + Λ2

nε∑

j=1

a2(xεj)Dj +O(1). (7.62)

Proof. We consider the family of balls {Bi}i∈Iε given in Proposition 6.16 in Chapter 6. As in

the proof of Proposition 7.3, we can find rε ∈ [R, (R +
√
a0 )/2] such that (7.49) holds. Setting

I+
R =

{
i ∈ Iε, |pi|Λ > rε and di ≥ 0

}
and I−R =

{
i ∈ Iε, |pi|Λ > rε and di < 0

}
, (7.63)

we have Bi ⊂ Dε\BΛ
rε for any i ∈ I+

R ∪I−R . By Theorem 7.2, Proposition 7.3 and Proposition 6.16

in Chapter 6, we infer that for ε small enough,

|vε| ≥
1

2
in Ξε := Dε \

(
⋃

i∈I+R∪I−R

Bi ∪
nε⋃

j=1

B(xεj, ρ)

)

.

Arguing exactly as Proposition 6.17 in Chapter 6, we obtain that

Rε(vε,Ξε) =
−πΩ

1 + Λ2

nε∑

j=1

a2(xεj)Dj −
πΩ

1 + Λ2

∑

i∈I+R∪I−R

(
a2(pi) − ν2

ε | ln ε|−3
)
di + oR(1). (7.64)

We recall that we have showed in the proof of Proposition 6.17 in Chapter 6 that

Rε(vε,∪i∈I+R∪I−R
Bi) = o(1).
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In the same way, we may prove that Rε(vε,∪nε
j=1B(xεj , ρ)) = o(1). From (iv) in Proposition 6.16

in Chapter 6 and (7.64), we deduce that

Fε(vε,Dε) ≥ Eε(vε,Dε \ ∪i∈I+R∪I−R
Bi) +

∑

i∈I+R∪I−R

1

2

∫

Bi

a(x)|∇vε|2 + Rε(vε,Ξε) + oR(1)

≥ Eε(vε, BΛ
R) − πΩ

1 + Λ2

nε∑

j=1

a2(xεj)Dj + π
∑

i∈I+R∪I−R

a(pi)|di|
(
| ln ε| − K0 ln | ln ε|

)

− πΩ

1 + Λ2

∑

i∈I+R∪I−R

(
a2(pi) − ν2

ε | ln ε|−3
)
di + oR(1). (7.65)

Since pi 6∈ B
Λ
rε for i ∈ I+

R ∪ I−R , we have a(pi) ≪ a0 and we deduce that for ε small enough,

π
∑

i∈I+R∪I−R

a(pi)|di|
(
| ln ε| − K0 ln | ln ε|

)
− πΩ

1 + Λ2

∑

i∈I+R∪I−R

(
a2(pi) − ν2

ε | ln ε|−3
)
di ≥ 0

which leads to

Fε(vε,Dε) ≥ Eε(vε, BΛ
R) − πΩ

1 + Λ2

nε∑

j=1

a2(xεj)Dj + oR(1). (7.66)

Combining (7.57) and (7.66), we obtain (7.61). Similarly, the inequality (7.66) applied with

R =
√
a0/2, and (7.58) yield (7.62). �

7.4 Proof of Theorem 7.1

In this section, we are going to prove Theorem 7.1 in terms of the map vε. We start by showing

that vortices must be of degree one. This yields a fundamental improvement of the estimates

obtained in the previous section. Then we treat separately the points (i) and (ii) of Theorem

7.1.

7.4.1 Vortices have degree one

Lemma 7.14 Whenever ε is small enough, Dj = +1 for j = 1, . . . , nε.

Proof. By Proposition 6.15 in Chapter 6, we have Fε(vε,Dε) ≤ o(1). According to (7.62), it

yields

π

nε∑

j=1

|Dj | a(xεj) ln
ρ

ε
− πa0Ω

1 + Λ2

∑

Dj>0

a(xεj)Dj ≤ π

nε∑

j=1

|Dj | a(xεj) ln
ρ

ε
− πΩ

1 + Λ2

nε∑

j=1

a2(xεj)Dj ≤ O(1).

From (7.7), we derive that

nε∑

j=1

|Dj | a(xεj) ln
ρ

ε
≤
∑

Dj>0

Dj a(x
ε
j)| ln ε| + o(| ln ε|).
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Since ρ ≥ εµ, it leads to (we recall that Dj 6= 0)

(1 − µ)
∑

Dj<0

|Dj | a(xεj)| ln ε| ≤ µ
∑

Dj>0

|Dj | a(xεj)| ln ε| + o(| ln ε|).

By Theorem 7.2, a(xεj) ≥ a0/2 and consequently,

∑

Dj<0

|Dj | ≤
2µ

1 − µ

∑

Dj>0

|Dj | + o(1) ≤ Cµ

1 − µ
+ o(1).

Choosing µ sufficiently small, it yields Dj > 0 for j = 1, . . . , nε whenever ε is small enough.

Since |xεj | ≤ C and Dj > 0, we may now assert that

−π
∑

i6=j
DiDj a(x

ε
j) ln |xεi − xεj | ≥ O(1)

and thus W√
a0
2
,ε
≥ −π∑nε

j=1DjΨ√
a0
2
,ε
(xεj) = O(1). Hence the inequality (7.61) (applied with

R =
√
a0/2) together with Fε(vε,Dε) ≤ o(1) leads us to

π

nε∑

j=1

D2
j a(x

ε
j)| ln ρ| + π

nε∑

j=1

Dj a(x
ε
j) ln

ρ

ε
− πΩ

1 + Λ2

nε∑

j=1

a2(xεj)Dj ≤ O(1).

As previously, we derive from (7.7),
∑nε

j=1(D
2
j − Dj) a(x

ε
j)| ln ρ| ≤ o(| ln ε|). Since ρ ≤ εµ and

a(xεj) ≥ a0/2, we conclude that

µa0

2

nε∑

j=1

(D2
j −Dj) ≤ o(1)

which yields Dj = +1 whenever ε is small enough. �

As a direct consequence of Lemma 7.14, we obtain the following improvement of Lemma 7.13:

Corollary 7.15 For any R ∈ [
√
a0
2 ,

√
a0 ), we have

F̃ε(vε) ≥ π

nε∑

j=1

a(xεj)| ln ε| −
πΩ

1 + Λ2

nε∑

j=1

a2(xεj) +WR,ε

(
(xε1,+1), . . . , (xεnε

,+1)
)

+OR(1).

Proof. It follows directly from (7.61) and Lemma 7.14 that for any R ∈ [
√
a0
2 ,

√
a0 ),

Fε(vε,Dε) ≥ π

nε∑

j=1

a(xεj)| ln ε| −
πΩ

1 + Λ2

nε∑

j=1

a2(xεj) +WR,ε

(
(xε1,+1), . . . , (xεnε

,+1)
)

+OR(1).

On the other hand, we have proved in the proofs of Proposition 6.14 and Proposition 6.15 in

Chapter 6, that |Fε(vε,Dε) − F̃ε(vε,Dε)| = o(1) and F̃ε(vε,R2 \ Dε) ≥ o(1). Hence we have

F̃ε(vε) ≥ Fε(vε,Dε) + o(1) and the conclusion follows. �
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7.4.2 The subcritical case

We are now able to prove (i) in Theorem 7.1. Following the proof of Theorem 6.1 in Chapter 6,

it suffices to show Proposition 7.16 below.

Proposition 7.16 Assume that (7.7) holds with ω1 < 0. Then for ε sufficiently small, we have

that

|vε| → 1 in L∞
loc(D) as ε→ 0. (7.67)

Moreover,

F̃ε(vε) = o(1) and Ẽε(vε) = o(1). (7.68)

Proof. We fix some
√
a0
2 < R0 <

√
a0 . In the proof of Proposition 6.14 in Chapter 6, we have

proved that F̃ε(vε) ≤ o(1) so that Corollary 7.15 applied with R =
√
a0
2 leads to

π

nε∑

j=1

a(xεj)| ln ε| −
πa0Ω

1 + Λ2

nε∑

j=1

a(xεj) ≤ π

nε∑

j=1

a(xεj)| ln ε| −
πΩ

1 + Λ2

nε∑

j=1

a2(xεj) ≤ O(1).

Since a(xεj) ≥ a0/2 and ω1 < 0, we deduce that

a0|ω1|nε
2

ln | ln ε| ≤ −ω1

nε∑

j=1

a(xεj) ln | ln ε| ≤ O(1)

and then nε ≤ o(1) which implies that nε ≡ 0 whenever ε is small enough. Using the notation

(7.63), we derive from (7.65) that

Fε(vε,Dε) ≥ π
∑

i∈I+R0
∪I−R0

a(pi)|di|
(
| ln ε| − K0 ln | ln ε|

)
− πΩ

1 + Λ2

∑

i∈I+R0
∪I−R0

(
a2(pi) − ν2

ε | ln ε|−3
)
di

By Proposition 6.15 in Chapter 6, we have Fε(vε,Dε) ≤ O(| ln ε|−1). Since a(pi) ≪ a0 for

i ∈ I+
R0

∪ I−R0
, we infer that exists c > 0 independent of ε such that

c
∑

i∈I+R0
∪I−R0

a(pi)|di|| ln ε| ≤π
∑

i∈I+R0
∪I−R0

a(pi)|di|
(
| ln ε| − K0 ln | ln ε|

)

− πΩ

1 + Λ2

∑

i∈I+R0
∪I−R0

(
a2(pi) − ν2

ε | ln ε|−3
)
di ≤ O(| ln ε|−1).

Since a(x) ≥ | ln ε|−3/2 in Dε, we finally obtain
∑

i∈I+R0
∪I−R0

|di| ≤ O(| ln ε|−1/2).

Hence
∑

i∈I+R0
∪I−R0

|di| = 0 for ε sufficiently small and we conclude from (7.64),

Rε(vε,Dε \ ∪i∈I+R0
∪I−R0

Bi) = o(1).

By the proof of Proposition 6.17 in Chapter 6, we also have Rε(vε,∪i∈I+R0
∪I−R0

Bi) = o(1) so that

Rε(vε,Dε) = o(1). Consequently,

Eε(vε,Dε) = Fε(vε,Dε) + o(1) ≤ o(1).

Then the rest of the proof follows as in Proposition 6.18 in Chapter 6. �

184



7.4. Proof of Theorem 7.1

7.4.3 The supercritical case

In this section, we will prove (ii) in Theorem 7.1. Writing

Ω =
1 + Λ2

a0

(
| ln ε| + ω(ε) ln | ln ε|

)
, (7.69)

we assume that

(d− 1) + δ ≤ ω(ε) ≤ d− δ (7.70)

for some integer d ≥ 1 and some positive number δ ≪ 1 independent of ε. We start by proving

that, in this regime, vε has vortices whenever ε is small enough:

Proposition 7.17 Assume that (7.70) holds. Then, for ε sufficiently small, vε has exactly d

vortices of degree one, i.e. nε ≡ d, and

F̃ε(vε) = −πa0dω(ε) ln | ln ε| + πa0

2
(d2 − d) ln | ln ε| +O(1). (7.71)

Proof. Step 1. We start by proving that nε ≥ 1 for ε sufficiently small. By Theorem 7.21 in

Section 7.5 (with d = 1), there exists ũε ∈ H such that ‖ũε‖L2(R2) = 1 and

Fε(ũε) ≤ Fε(η̃εe
iΩS) − πa0ω(ε) ln | ln ε| +O(1).

By the minimizing property of uε and (7.9), we have

Fε(uε) = Fε(ηεe
iΩS) + F̃ε(vε) + T̃ε(vε) ≤ Fε(ũε)

and since |T̃ε(vε)| = o(1) (see Proposition 6.13 in Chapter 6), we deduce that

F̃ε(vε) ≤ −πa0ω(ε) ln | ln ε| +O(1).

From here, it turns out by Corollary 7.15 applied with R =
√
a0
2 (recall that W√

a0
2
,ε
≥ O(1)),

−πa0ω(ε) ln | ln ε| +O(1) ≥ F̃ε(vε) ≥ π

nε∑

j=1

a(xεj)| ln ε| −
πΩ

1 + Λ2

nε∑

j=1

a2(xεj) +O(1)

≥ π

nε∑

j=1

a(xεj)

(

−ω(ε) ln | ln ε| +
Ω|xεj|2Λ
1 + Λ2

)

+O(1)

≥ −πa0ω(ε)nε ln | ln ε| +O(1).

Hence nε ≥ 1 + o(1) and the conclusion follows.

Step 2. Now we show that

F̃ε(vε) ≥ −πa0 nεω(ε) ln | ln ε| + πa0

2
(n2
ε − nε) ln | ln ε| +O(1). (7.72)
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In the case nε = 1, we have already proved the result in the previous step. Then we may assume

that nε ≥ 2. Since ‖Ψ√
a0
2
,ε
‖∞ = O(1), we get from Corollary 7.15 applied with R =

√
a0
2 ,

F̃ε(vε) ≥ π

nε∑

j=1

a(xεj)

(

| ln ε| −
nε∑

i=1
i6=j

ln |xεi − xεj | −
Ωa(xεj)

1 + Λ2

)

+O(1)

≥ π

nε∑

j=1

a(xεj)

(

− ω(ε) ln | ln ε| −
nε∑

i=1
i6=j

ln |xεi − xεj | +
Ω|xεj |2Λ
1 + Λ2

)

+O(1) (7.73)

Since F̃ε(vε) ≤ o(1), we derive that

−
∑

i6=j
ln |xεi − xεj | +

Ω

1 + Λ2

nε∑

j=1

|xεj |2Λ ≤ C ln | ln ε|.

On the other hand −∑i6=j ln |xεi − xεj | ≥ O(1) so that |xεj |2 ≤ C
(
ln | ln ε|

)
| ln ε|−1 and hence

π

nε∑

j=1

a(xεj)

(

−ω(ε) ln | ln ε| −
nε∑

i=1
i6=j

ln |xεi − xεj | +
Ω|xεj |2Λ
1 + Λ2

)

= (7.74)

= −πa0 nεω(ε) ln | ln ε| − πa0

∑

i6=j
ln |xεi − xεj| +

πa0Ω

1 + Λ2

nε∑

j=1

|xεj |2Λ + o(1)

Setting r = maxj |xεj |, we remark that

−
∑

i6=j
ln |xεi−xεj |+

Ω

1 + Λ2

nε∑

j=1

|xεj|2Λ ≥ −(n2
ε−nε) ln 2r+

ΩΛ2r2

1 + Λ2
≥ n2

ε − nε
2

ln | ln ε|+O(1). (7.75)

Combining (7.73), (7.74) and (7.75), we obtain (7.72).

Step 3. We start by proving that nε ≥ d. The case d = 1 is proved in Step 1 so that we may

assume that d ≥ 2. By Theorem 7.21 in Section 7.5, there exists for ε small enough, ũε ∈ H
such that ‖ũε‖L2(R2) = 1 and

Fε(ũε) ≤ Fε(η̃εe
iΩS) − πa0 dω(ε) ln | ln ε| + πa0

2
(d2 − d) ln | ln ε| +O(1).

As in Step 1, Fε(uε) ≤ Fε(ũε) yields

F̃ε(vε) ≤ −πa0 dω(ε) ln | ln ε| + πa0

2
(d2 − d) ln | ln ε| +O(1) (7.76)

Matching (7.72) with (7.76), we deduce that

−ω(ε)nε +
n2
ε − nε

2
≤ −ω(ε)d+

d2 − d

2
+ o(1)

and it yields

ω(ε)(d − nε) ≤
(d− nε)(d+ nε − 1)

2
+ o(1). (7.77)
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If assume that nε ≤ d− 1, it would lead to

(d− 1) + δ ≤ d+ nε − 1

2
+ o(1) ≤ d− 1 + o(1)

which is impossible for ε small enough.

Assume now that nε ≥ d+ 1. As previously we infer that (7.77) holds and therefore

d− δ ≥ d+ nε − 1

2
+ o(1) ≥ d+ o(1)

which is also impossible for ε small. Hence nε ≡ d whenever ε is small enough which leads to

(7.71) by (7.72) and (7.76). �

By Proposition 7.17, we may now assume that vε has exactly d vortices. We move on a first

information on their location:

Lemma 7.18 We have

|xεj | ≤ C| ln ε|−1/2 for j = 1, . . . , d and if d ≥ 2, |xεi − xεj | ≥ C| ln ε|−1/2 for i 6= j.

Proof. Matching (7.71) with (7.73) and (7.74) and using that nε = d, we deduce that

−πa0

∑

i6=j
ln |xεi − xεj| +

πa0Ω

1 + Λ2

d∑

j=1

|xεj |2Λ ≤ πa0(d
2 − d) ln

(
| ln ε|1/2

)
+O(1).

Hence
d∑

j=1



−
∑

i6=j
ln
(√

| ln ε| |xεi − xεj |
)

+
Ω|xεj |2

2



 ≤ O(1)

and the conclusion follows. �

Since ρ
|xε

i−xε
j |

= o(1) by Lemma 7.18, we may now improve the lower estimates obtained in

Lemma 7.12 following the method in [80, 81], proof of Proposition 5.2.

Lemma 7.19 For any R ∈ [
√
a0
2 ,

√
a0 ), we have

Eε(vε, BΛ
R) ≥ πa0

d∑

j=1

a(xεj)| ln ε| +WR,ε(x
ε
1, . . . , x

ε
d) +

πa0d

2
ln a0 + a0dγ0 + oR(1)

where γ0 is an absolute constant.

Proof. Since ρ
|xε

i−xε
j |

= o(1) and Dj = 1, Proposition 7.11 yields

1

2

∫

Θρ

a(x)|∇vε|2 ≥ π

d∑

j=1

a(xεj)| ln ρ| +WR,ε(x
ε
1, . . . , x

ε
d) + oR(1) (7.78)

and it remains to estimate Eε(vε, B(xεj , ρ)) for j = 1, . . . , d. We proceed as follows. Since Dj = 1,

we may write on ∂B(xεj , ρ) in polar coordinates with center xεj ,

vε(x) = |vε(x)| ei(θ+ψj (θ)), θ ∈ [0, 2π]
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where ψj ∈ H1([0, 2π],R) and ψj(0) = ψj(2π) = 0. Then in each disc B(xεj , 2ρ), we consider the

map v̂ε defined by

v̂ε(x) =







vε(x) if x ∈ B(xεj , ρ),
(r−ρ

ρ + 2ρ−r
ρ |vε(xεj + ρ eiθ)|

)
e
i
“

θ+ψj(θ)
2ρ−r

ρ
+ψj(0)

ρ−r
ρ

”

if x ∈ B(xεj , 2ρ) \B(xεj, ρ).

Then v̂ε = exp i(θ+ψj(0)) on ∂B(xεj , 2ρ). Exactly as in the proof of Proposition 5.2 in [80, 81],

we prove that
∣
∣Eε(v̂ε, B(xεj , 2ρ) \B(xεj, ρ)) − πa(xεj) ln 2

∣
∣ = o(1). (7.79)

Since |a(x) − a(xεj)| = O(ρ) in B(xεj , 2ρ), we may write

Eε(v̂ε, B(xεj , 2ρ)) =
a(xεj)

2

∫

B(xε
j ,2ρ)

|∇v̂ε|2 +
a(xεj)

2ε2
(1 − |v̂ε|2)2 + o(1). (7.80)

Now we shall recall a result in [17]. For ε̃ > 0, we consider

I(ε̃) = Min
u∈C

1

2

∫

B(0,1)
|∇u|2 +

1

2ε̃2
(1 − |u|2)2

where

C =

{

u ∈ H1(B(0, 1),C), u(x) =
x

|x| on ∂B(0, 1)

}

.

Then we have

lim
ε̃→0

(
I(ε̃) + π ln ε̃

)
= γ0. (7.81)

Since v̂ε(x) =
x−xε

j

|x−xε
j |
eiψj(0) on ∂B(xεj , 2ρ), we obtain by scaling

1

2

∫

B(xε
j ,2ρ)

|∇v̂ε|2 +
a(xεj)

2ε2
(1 − |v̂ε|2)2 ≥ I




ε

2ρ
√

a(xεj)





= π ln
ρ

ε
+ π ln 2 +

π

2
ln a(xεj) + γ0 + o(1).

With (7.79) and (7.80), we derive that for j = 1, . . . , d,

Eε(vε, B(xεj , ρ)) ≥ πa(xεj) ln
ρ

ε
+
πa(xεj)

2
ln a(xεj) + a(xεj)γ0 + o(1)

≥ πa(xεj) ln
ρ

ε
+
πa0

2
ln a0 + a0γ0 + o(1).

Combining this estimate with (7.78), we get the result. �

We are now able to give the asymptotic expansion of F̃ε(vε) which will allow us to locate

precisely the vortices. This concludes the proof of Theorem 7.1.

Proposition 7.20 Setting x̃εj =
√

Ωxεj for j = 1, . . . , d, as ε→ 0 the x̃εj’s tend to minimize the

renormalized energy w : R2d → R given by

w(b1, . . . , bd) = −πa0

∑

i6=j
ln |bi − bj | +

πa0

1 + Λ2

d∑

j=1

|bj|2Λ.
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Moreover, we have

F̃ε(vε) = −πa0dω(ε) ln | ln ε| + πa0

2
(d2 − d) ln | ln ε| + Min

b∈R2d
w(b) +QΛ,d + o(1) (7.82)

where QΛ,d =
πa0

2
(d2 − d) ln(1 + Λ2) + πa0d ln a0 −

πa0d
2

2
ln a0 + a0dγ0 − πa0d

2ℓ(Λ) and ℓ(Λ) is

given by (7.118).

Proof. From Lemma 7.19 and (7.66), we infer that for any R ∈ [
√
a0
2 ,

√
a0 ),

Fε(vε,Dε) ≥ π

d∑

j=1

a(xεj)| ln ε| −
πΩ

1 + Λ2

d∑

j=1

a2(xεj) +WR,ε +
πa0d

2
ln a0 + a0dγ0 + oR(1).

As in the proof of Corollary 7.15, this estimate implies

F̃ε(vε) ≥ π

d∑

j=1

a(xεj)| ln ε| −
πΩ

1 + Λ2

d∑

j=1

a2(xεj) +WR,ε +
πa0d

2
ln a0 + a0dγ0 + oR(1).

Expanding Ω and a(xεj), we derive that

F̃ε(vε) ≥ π

d∑

j=1

a(xεj)

(

− ω(ε) ln | ln ε| +
Ω|xεj |2Λ
1 + Λ2

)

+WR,ε +
πa0d

2
ln a0 + a0dγ0 + oR(1)

and by Lemma 7.18, it yields

F̃ε(vε) ≥ −πa0dω(ε) ln | ln ε| + πa0

1 + Λ2

d∑

j=1

Ω|xεj|2Λ +WR,ε +
πa0d

2
ln a0 + a0dγ0 + oR(1). (7.83)

By Lemma 7.18, we also have

WR,ε = −πa0

∑

i6=j
ln |xεi − xεj | − π

d∑

j=1

ΨR,ε(x
ε
j) + o(1). (7.84)

Since Dj = 1 for all j, the function ΨR,ε satisfies the equation






div

(
1

a
∇ΨR,ε

)

= −
d∑

j=1

a(xεj)∇
(

1

a

)

· ∇
(
ln |x− xεj |

)
in BΛ

R,

ΨR,ε = −
d∑

j=1

a(xεj) ln |x− xεj | on ∂BΛ
R.

(7.85)

We infer from Lemma 7.18 that for j = 1, . . . , d,

a(xεj)∇
(

1

a

)

· ∇
(
ln |x− xεj |

)
=

−2a0|x|2Λ
a2(x)|x|2 + f jε (x).

where f jε satisfies ‖f jε ‖Lp(BΛ
R) = oR(1) for any p ∈ [1, 2) and

∥
∥a0 ln |x|−a(xεj) ln |x−xεj|

∥
∥
C1(∂BΛ

R)
=

o(1). Letting ΨR to be the solution of the equation






div

(
1

a
∇ΨR

)

=
−2|x|2Λ
a2(x)|x|2 in BΛ

R,

ΨR = − ln |x| on ∂BΛ
R,

(7.86)
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it follows by classical results that ‖ΨR,ε−a0dΨR‖L∞(BΛ
R) = oR(1). Hence we obtain from (7.84),

lim
ε→0

{
WR,ε(x

ε
1, . . . , x

ε
d) + πa0

∑

i6=j
ln |xεi − xεj |

}
= −πa0d

2ΨR(0). (7.87)

Combining (7.83) and (7.87), we are led to

lim inf
ε→0

{

F̃ε(vε) + πa0dω(ε) ln | ln ε| + πa0

∑

i6=j
ln |xεi − xεj| −

πa0

1 + Λ2

d∑

j=1

Ω|xεj |2Λ
}

≥

≥ πa0d

2
ln a0 + a0dγ0 − πa0d

2ΨR(0).

Setting x̃εj =
√

Ωxεj , it yields

lim inf
ε→0

{

F̃ε(vε)+πa0dω(ε) ln | ln ε| − πa0

2
(d2 − d) ln | ln ε| − w(x̃ε1, . . . , x̃

ε
d)

}

≥

≥ πa0

2
(d2 − d) ln(1 + Λ2) + πa0d ln a0 −

πa0d
2

2
ln a0 + a0dγ0 − πa0d

2ΨR(0).

Since ΨR(0) → ℓ(Λ) as R→ √
a0 by Lemma 7.23 in Appendix, we conclude that

lim inf
ε→0

{

F̃ε(vε) + πa0ω(ε)d ln | ln ε| − πa0

2
(d2 − d) ln | ln ε| − w(x̃ε1, . . . , x̃

ε
d)

}

≥ QΛ,d (7.88)

and hence

lim inf
ε→0

{

F̃ε(vε) + πa0ω(ε)d ln | ln ε| − πa0

2
(d2 − d) ln | ln ε|

}

≥ Min
b∈R2d

w(b) +QΛ,d. (7.89)

By Theorem 7.21 in Section 5, for any δ′ > 0, there exists ũε ∈ H such that ‖ũε‖L2(R2) = 1 and

lim sup
ε→0

{

Fε(ũε)−Fε(η̃εeiΩS)+πa0dω(ε) ln | ln ε|− πa0

2
(d2−d) ln | ln ε|

}

≤ Min
b∈R2d

w(b)+QΛ,d+δ′

As in the proof of Proposition 7.17, Fε(uε) ≤ Fε(ũε) implies

lim sup
ε→0

{

F̃ε(vε) + πa0dω(ε) ln | ln ε| − πa0

2
(d2 − d) ln | ln ε|

}

≤ Min
b∈R2d

w(b) +QΛ,d + δ′. (7.90)

Matching (7.89) with (7.90), we conclude that

lim
ε→0

{

F̃ε(vε) + πa0dω(ε) ln | ln ε| − πa0

2
(d2 − d) ln | ln ε|

}

= Min
b∈R2d

w(b) +QΛ,d

since δ′ is arbitrarily small. Coming back to (7.88), we are led to

Min w(b) +QΛ,d − lim sup
ε→0

w(xε1, . . . , x
ε
d) ≥ QΛ,d

and therefore lim
ε→0

w(x̃ε1, . . . , x̃
ε
d) = Min

b∈R2d
w(b) which ends the proof. �

Remark 7.5 In the case d = 1, the expansion of the energy takes the simpler form

F̃ε(vε) = −πa0ω(ε) ln | ln ε| +QΛ,1 + o(1)

and the renormalized energy w(·) reduces to w(b) = (πa0|b|2Λ)/(1 + Λ2). In particular, if xε

denotes the single vortex of vε, we have
√

Ωxε → 0 as ε goes to 0.
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7.5 Upper bound of the energy

Here, we give the construction of the test functions used in the previous sections. The difficulties

are twofold: the mass constraint we have to take into account and the vanishing property of the

function a(x) on the boundary of D. Hence the classical methods can not be applied directly.

Concerning the mass constraint, we simply renormalize a suitable trial function. This procedure

requires a high precision in the energy estimates and an almost optimal choice of the preliminary

trial function. To overcome the degeneracy problem induced by the function a(x), we proceed

by upper approximation of a(x). In the sequel, we assume that (7.7) holds. Using notation

(7.69), the result can be stated as follows:

Theorem 7.21 Let d ≥ 1 be an integer. For any δ > 0, there exists (ũε)ε>0 ⊂ H verifying

‖ũε‖L2(R2) = 1 and

lim sup
ε→0

{

Fε(ũε)−Fε(η̃εeiΩS)+πa0ω(ε)d ln | ln ε|− πa0

2
(d2 − d) ln | ln ε|

}

≤ Min
b∈R2d

w(b)+QΛ,d + δ

where the constant QΛ,d is defined in Proposition 7.20.

As mentioned above, the proof of Theorem 7.21 is based on a first construction which is

given by the following proposition. Here, some of the main ingredients are taken from a previous

construction due to André and Shafrir [13].

Proposition 7.22 Let d ≥ 1 be an integer. For any δ > 0, there exists (v̂ε)ε>0 such that

η̃εv̂ε ∈ H and

lim sup
ε→0

{

F̃ε(v̂ε) + πa0ω(ε)d ln | ln ε| − πa0

2
(d2 − d) ln | ln ε|

}

≤ Min
b∈R2d

w(b) +QΛ,d + δ.

Proof. Step 1. Let σ > 0 and κ > 0 be two small parameters that we will choose later. We

consider the function aσ : D → R given by

aσ(x) =







a(x) if |x|Λ ≤ √
a0 − σ,

−2
√
a0 − σ |x|Λ + 2a0 − σ otherwise

It turns out that aσ ∈ C1(D), aσ ≥ a and aσ ≥ Cσ2 in D for some positive constant C. Since

aσ does not vanish in D, we may define Φσ : D → R the solution of the equation







div(
1

aσ
∇Φσ) = 2πd δ0 in D,

Φσ = 0 on ∂D.
(7.91)

By the results in Chap. I of [17], we may find a map vσ0 ∈ C2(D \ {0}, S1) satisfying

vσ0 ∧∇vσ0 =
1

aσ
∇⊥Φσ in D \ {0}. (7.92)

191



Chapter 7. Energy expansion and vortex location for a 2d rotating BEC

Set Θκ,ε = D \B(0, κ−1Ω−1/2). By (7.91) and (7.92), we have for ε small enough,

∫

Θκ,ε

aσ|∇vσ0 |2 =

∫

Θκ,ε

1

aσ
|∇Φσ|2 = −

∫

∂B(0,κ−1Ω−1/2)

1

a

∂Φσ

∂ν
Φσ

= −
∫

∂B(0,κ−1Ω−1/2)

a2
0d

2

a

(∂Ψσ

∂ν
+

1

|x|
)(

Ψσ + ln |x|
)

(7.93)

where Ψσ(x) = (a0d)
−1Φσ(x) − ln |x|. Notice that Ψσ ∈ C1,α(D) for any 0 < α < 1, since it

satisfies the equation






div
( 1

aσ
∇Ψσ

)
= fσ(x) in D,

Ψσ = − ln |x| on ∂D
(7.94)

with

fσ(x) = −∇
( 1

aσ(x)

)
· x

|x|2 =







−2|x|2Λ
a2
σ(x)|x|2

if |x| ≤ √
a0 − σ,

−2
√
a0 − σ |x|Λ

a2
σ(x)|x|2

otherwise.

From (7.93), we derive that

lim sup
ε→0

{

1

2

∫

Θκ,ε

a|∇vσ0 |2 − πa0d
2 ln(κΩ1/2)

}

≤ lim
ε→0

{

1

2

∫

Θκ,ε

aσ|∇vσ0 |2 − πa0d
2 ln(κΩ1/2)

}

≤ −πa0d
2Ψσ(0).

By Lemma 7.23 in Appendix, Ψσ(0) → ℓ(Λ) as σ → 0 where the constant ℓ(Λ) is defined

in (7.118). Consequently, we may choose σ small such that

lim sup
ε→0

{

1

2

∫

Θκ,ε

a|∇vσ0 |2 − πa0d
2 ln(κΩ1/2)

}

≤ −πa0d
2ℓ(Λ) +

δ

2
. (7.95)

In R2 \B(0, κ−1Ω−1/2), we define

v̂ε(x) =







vσ0 (x) if x ∈ Θκ,

vσ0
(
√
a0 x

|x|Λ
)

if x ∈ R2 \ D.

By Proposition 6.8 in Chapter 6, we have ‖η̃2
ε‖L∞(R2\Dε) = o(1). Since v̂ε does not depend on ε

in R2 \ Dε and |v̂ε| = 1 in R2 \ Dε, we derive that

lim
ε→0

Ẽε(v̂ε,R2 \ Dε) = 0. (7.96)

From Proposition 6.8 in Chapter 6, we also know that

∥
∥
∥
∥

a− η̃2
ε

η̃2
ε

∥
∥
∥
∥
L∞(Dε)

≤ Cε1/3 (7.97)
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and hence (7.95) remains valid if one replaces a by η̃2
ε in the left hand side. Since vσ0 is S1-valued,

we deduce that

lim sup
ε→0

{

Ẽε(v̂ε,R2 \B(0, κ−1Ω−1/2)) − πa0d
2 ln(κΩ1/2)

}

≤ −πa0d
2ℓ(Λ) +

δ

2
. (7.98)

Step 2. We are going to extend v̂ε to B(0, κ−1Ω−1/2). As in [17], we may write in a neighborhood

of 0 (using polar coordinates),

vσ0 (x) = exp
(
i(dθ + ψσ(x))

)

where ψσ is a smooth function in that neighborhood. Let (b1, . . . , bd) ∈ R2d be a minimizing

configuration for w(·), i.e.,

w(b1, . . . , bd) = Min
b∈R2d

w(b) (7.99)

(note that we necesarily have bi 6= bj for i 6= j). We choose κ sufficiently small such that

max |bj | ≤ 1/4κ and we set b
(ε)
j = Ω−1/2 bj . Following the proof of Lemma 2.6 in [13], we write

eiψσ(0)
d∏

j=1

x− b
(ε)
j

|x− b
(ε)
j |

= exp
(
i(dθ + φε(x))

)
for x ∈ Aκ,ε = B(0, κ−1Ω−1/2) \B(0, (2κ)−1Ω−1/2)

where φε is a smooth function satisfying |∇φε(x)| ≤ Cσ κ
2Ω1/2) and |φε(x)−ψσ(0)| = Cσ κ

2 for

x ∈ Aκ,ε. We define in Aκ,ε,

v̂ε(x) = exp
(
i(dθ + ψ̂ε(x))

)

with

ψ̂ε(x) =
(
2 − 2κΩ1/2|x|

)
φε(x) +

(
2κΩ1/2|x| − 1

)
ψσ(x).

As in [13], we get that (using (7.97))

lim sup
ε→0

{

Ẽε(v̂ε, Aκ,ε) − πa0d
2 ln 2

}

≤ lim sup
ε→0

{

1

2

∫

Aκ,ε

aσ|∇v̂ε|2 − πa0d
2 ln 2

}

≤ Cσ κ
2. (7.100)

Next we define v̂ε in Ξκ,ε = B(0, (2κ)−1Ω−1/2) \ ∪dj=1B(b
(ε)
j , 2κΩ−1/2) by

v̂ε(x) = eiψσ(0)
d∏

j=1

x− b
(ε)
j

|x− b
(ε)
j |

.

Once more as in [13], we have (using (7.97))

lim sup
ε→0

Ẽε(v̂ε,Ξκ,ε) ≤ lim sup
ε→0

1

2

∫

Ξκ,ε

aσ|∇v̂ε|2 ≤ πa0(d
2 + d) ln

1

2κ
− πa0

∑

i6=j
ln |bi − bj| + Cσ κ.

(7.101)

Finally, in each B
(ε)
j := B(b

(ε)
j , 2κΩ−1/2), we set

v̂ε(x) = eiψσ(0)w̃jε

(

x− b
(ε)
j

2κΩ−1/2

)

(7.102)
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where w̃jε realizes

Min

{

1

2

∫

B(0,1)
|∇v|2 +

1

2ε̂2
(1 − |v|2)2 , v(y) =

d∏

i=1

2κy + bj − bi
|2κy + bj − bi|

on ∂B(0, 1)

}

(7.103)

with

ε̂ =
ε

2κ
√
a0 Ω−1/2

.

As in the proof of Lemma 2.3 in [13], we derive

lim
ε→0

{

1

2

∫

B(0,1)
|∇w̃jε|2 +

1

2ε̂2
(1 − |w̃jε|2)2 − π| ln ε̂|

}

= γ0 +X(κ)

where γ0 is defined in (7.81) and X(κ) denotes a quantity satisfying X(κ) → 0 as κ → 0. By

scaling, we obtain

lim
ε→0

{

1

2

∫

B
(ε)
j

|∇v̂ε|2 +
a0

2ε2
(1 − |v̂ε|2)2 − π ln

2κΩ−1/2

ε

}

=
π

2
ln a0 + γ0 +X(κ).

Notice that in B
(ε)
j ,

aσ(x) = a(x) ≤ a0 − (| ln ε| + ω1 ln | ln ε|)−1 min
y∈B(bj ,2κ)

a0|y|2Λ
1 + Λ2

and consequently,

lim sup
ε→0

{
1

2

∫

B
(ε)
j

aσ|∇v̂ε|2 +
a0aσ
2ε2

(1 − |v̂ε|2)2 − πa0 ln
2κΩ−1/2

ε

}

≤

≤ πa0

2
ln a0 + a0γ0 −

πa0|bj |2Λ
1 + Λ2

+X(κ).

By (7.97), it yields

lim sup
ε→0

{

Ẽε(v̂ε, B(ε)
j ) − πa0 ln

2κΩ−1/2

ε

}

≤ πa0

2
ln a0 + a0γ0 −

πa0|bj |2Λ
1 + Λ2

+X(κ). (7.104)

Combining (7.98), (7.100), (7.101) and (7.104), we conclude that for κ small enough,

lim sup
ε→0

{

Ẽε(v̂ε) − πa0d| ln ε|−
πa0

2
(d2 − d) ln | ln ε|

}

≤ (7.105)

≤ −πa0

∑

i6=j
ln |bi − bj | −

πa0

1 + Λ2

d∑

j=1

|bj |2Λ +QΛ,d + δ.

Step 3. Now it remains to estimate R̃ε(v̂ε). Cauchy-Schwartz inequality yields

|R̃ε(v̂ε,R
2 \ Dε)| ≤ CΩ

(
∫

R2\Dε

|x|2η̃2
ε

)1/2
(
Ẽε(v̂ε,R2 \ Dε)

)1/2
. (7.106)
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By Proposition 6.8 in Chapter 6, Ω2
∫

R2\Dε
|x|2η̃2

ε → 0 as ε→ 0 and according to (7.96), it leads

to

lim
ε→0

∣
∣R̃ε(v̂ε) − R̃ε(v̂ε,Dε)

∣
∣ = 0. (7.107)

By the results in Chap. IX in [17], for ε̂ sufficiently small and each j = 1, . . . , d, there exists

exactly one disc D̂j
ε ⊂ B(0, 1) with diam(D̂j

ε) ≤ Cε̂ such that |w̃jε| ≥ 1/2 in B(0, 1) \ D̂j
ε. By

scaling, we infer that exist exactly d discs D1
ε , . . . ,D

d
ε with Dj

ε ⊂ B
(ε)
j and diam(Dj

ε) ≤ Cε such

that

|v̂ε| ≥
1

2
in Dε \ ∪dj=1D

j
ε.

We derive from (7.104) that

∣
∣R̃ε(v̂ε,∪dj=1D

j
ε)
∣
∣ ≤ CΩ ε

d∑

j=1

(
Ẽε(v̂ε, B(ε)

j )
)1/2 −→

ε→0
0,

and by (7.107), it leads to limε→0

∣
∣R̃ε(v̂ε)−R̃ε(v̂ε,Dε \∪dj=1D

j
ε)
∣
∣ = 0. From (7.97), we infer that

lim
ε→0

∣
∣R̃ε(v̂ε,Dε \ ∪dj=1D

j
ε) −Rε(v̂ε,Dε \ ∪dj=1D

j
ε)
∣
∣ = 0

and hence

lim
ε→0

∣
∣R̃ε(v̂ε) −Rε(v̂ε,Dε \ ∪dj=1D

j
ε)
∣
∣ = 0. (7.108)

To compute Rε(v̂ε,D \ ∪dj=1D
j
ε), we proceed as in Proposition 6.17 in Chapter 6 (here we use

that Ẽε(v̂ε) ≤ C| ln ε| by (7.105)). It yields

lim
ε→0

(

Rε(v̂ε,Dε \ ∪dj=1D
j
ε) +

πΩ

1 + Λ2

d∑

j=1

a2(b
(ε)
j )

)

= 0

since deg(v̂ε/|v̂ε|, ∂Dj
ε) = +1 for j = 1, . . . , d. Expanding a2(b

(ε)
j ) and Ω, we deduce from (7.108)

that

lim
ε→0

(

R̃ε(v̂ε) + πa0d | ln ε| + πa0ω(ε)d ln | ln ε|
)

=
2πa0

1 + Λ2

d∑

j=1

|bj |2Λ. (7.109)

Combining (7.99), (7.105) and (7.109), we obtain the announced result. �

Proof of Theorem 7.21. We consider the map v̂ε given in Proposition 7.22 and we set

ṽε = m−1
ε v̂ε and ũε = η̃εe

iΩS ṽε with mε = ‖η̃εv̂ε‖L2(R2).

We are going to prove that the map ũε satisfies the required property. By Lemma 6.12 in

Chapter 6, we have

Fε(ũε) = F (η̃εe
iΩS) + F̃ε(ṽε) + T̃ε(ṽε).

In view of Proposition 7.22, it suffices to prove that
∣
∣F̃ε(ṽε) − F̃ε(v̂ε)

∣
∣ → 0 and T̃ε(ṽε) → 0 as

ε→ 0. We first estimate mε. Since |v̂ε| = 1 in R2 \ ∪dj=1B
(ε)
j and ‖η̃ε‖L2(R2) = 1, we have

m2
ε =

∫

R2

η̃2
ε +

∫

∪d
j=1B

(ε)
j

η̃2
ε(|v̂ε|2 − 1) = 1 +

∫

∪d
j=1B

(ε)
j

η̃2
ε(|v̂ε|2 − 1).
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Using Cauchy-Schwarz inequality, we derive from (7.102), (7.103) and Theorem III.2 in [17] that

∣
∣

∫

∪d
j=1B

(ε)
j

η̃2
ε(|v̂ε|2 − 1)

∣
∣ ≤ C| ln ε|−1/2

(∫

∪d
j=1B

(ε)
j

(|v̂ε|2 − 1)2
)1/2

≤ Cε| ln ε|−1/2 (7.110)

and thus

m2
ε = 1 +O(ε| ln ε|−1/2). (7.111)

Using |v̂ε| = 1 in R2 \ ∪dj=1B
(ε)
j , |∇S| ≤ C|x|, |kε| ≤ C| ln ε|, (7.110) and (7.111), we derive that

∣
∣T̃ε(ṽε)

∣
∣ ≤ C| ln ε|2

(

|1 −m−2
ε |
∫

R2

(1 + |x|2)η̃2
ε +

∫

∪d
j=1B

(ε)
j

η̃2
ε

(
|1 −m−2

ε ||v̂ε|2 + (1 − |v̂ε|2)
)
)

≤ Cε| ln ε|3/2.

Now we may estimate using (7.105), (7.109) and (7.111),

∫

R2

η̃2
ε |∇ṽε|2 = m−2

ε

∫

R2

η̃2
ε |∇v̂ε|2 =

∫

R2

η̃2
ε |∇v̂ε|2 +O(ε| ln ε|1/2), (7.112)

and

R̃ε(ṽε) = m−2
ε R̃ε(v̂ε) = R̃ε(v̂ε) +O(ε| ln ε|1/2). (7.113)

We write

1

ε2

∫

R2

η̃4
ε(1 − |ṽε|2)2 =

1

ε2

∫

R2

η̃4
ε(1 − |v̂ε|2)2 +

2(1 −m−2
ε )

ε2

∫

∪d
j=1B

(ε)
j

η̃4
ε(1 − |v̂ε|2)|v̂ε|2

+
(1 −m−2

ε )2

ε2

∫

R2

η̃4
ε |v̂ε|4. (7.114)

We infer from (7.105) and (7.111) that

(1 −m−2
ε )2

ε2

∫

R2

η̃4
ε |v̂ε|4 ≤ C| ln ε|−1, (7.115)

and from (7.110) and (7.111),

|1 −m−2
ε |

ε2

∫

∪d
j=1B

(ε)
j

η̃4
ε |v̂ε|2

∣
∣1 − |v̂ε|2

∣
∣ ≤ C| ln ε|−1. (7.116)

Combining (7.112), (7.113), (7.114), (7.115) and (7.116), we finally obtain that F̃ε(ṽε) = F̃ε(v̂ε)+
o(1) and the proof is complete. �

7.6 Appendix

In this appendix, we prove that the functions ΨR and Ψσ defined by (7.86) and respectively

(7.94) converge to the same limiting function as R → √
a0 and σ → 0. The proof is based on

the construction of suitable barrier functions.
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Lemma 7.23 For any 0 < R <
√
a0 , respectively any σ > 0, let ΨR be the solution of equation

(7.86), respectively Ψσ the solution of (7.94). Then ΨR → Ψ⋆ as R → √
a0 , respectively

Ψσ → Ψ⋆ as σ → 0, in C1
loc(D) where Ψ⋆ is the unique solution in C0(D) of







div
(1

a
∇Ψ⋆

)
=

−2|x|2Λ
a2(x)|x|2 in D,

Ψ⋆ = − ln |x| on ∂D.

(7.117)

In particular,

lim
R→√

a0
ΨR(0) = lim

σ→0
Ψσ(0) = Ψ⋆(0) =: ℓ(Λ). (7.118)

Proof. Step 1: Uniqueness of Ψ⋆. Assume that (7.117) admits two solutions Ψ1
⋆ and Ψ2

⋆ in

C0(D). Then the difference Ψ1
⋆ − Ψ2

⋆ satisfies div( 1
a∇(Ψ1

⋆ − Ψ2
⋆)) = 0 in D and Ψ1

⋆ − Ψ2
⋆ = 0 on

∂D. By elliptic regularity, we infer that Ψ1
⋆−Ψ2

⋆ ∈ C2(D)∩C0(D). Hence it follows Ψ1
⋆−Ψ2

⋆ ≡ 0

by the classical maximum principle.

Step 2: Existence of Ψ⋆. We set for y ∈ D,

ΥR(y) = ΨR

(
Ry√
a0

)

− ζ(y) + ln(R/
√
a0 )

where ζ is the solution of 





∆ζ = 0 in D,

ζ = − ln |y| on ∂D.

Since ΨR solves (7.86), we deduce that ΥR is the unique solution of







− div

(
1

aR(y)
∇ΥR

)

=
f(y)

a2
R(y)

in D,

ΥR = 0 on ∂D.

(7.119)

where aR(y) = a2
0/R

2 − |y|2Λ and

f(y) =
2|y|2Λ
|y|2 + 2(y1,Λ

2y2) · ∇ζ(y).

We easily check that y 7→ KaR(y), respectively y 7→ −KaR(y), defines a supersolution, resp. a

subsolution, of (7.119) whenever the constant K satisfies K ≥ ‖f‖L∞(D)/(Λ
2a0). Hence

|ΥR| ≤ CaR in D (7.120)

for a constant C independent of R. By elliptic regularity, we deduce that ΥR remains bounded

in W 2,p
loc (D) as R → √

a0 for any 1 ≤ p < ∞. Therefore, from any sequence Rn → √
a0, we

may extract a subsequence, still denoted by (Rn), such that ΥRn → Υ⋆ in C1
loc(D) where Υ⋆

satisfies

− div

(
1

a(y)
∇Υ⋆

)

=
f

a2(y)
in D.

We infer from (7.120) that |Υ⋆(y)| ≤ Ca(y) for any y ∈ D and hence Υ⋆ ∈ C0(D) with Υ⋆|∂D = 0.

Consequently, the function Ψ⋆ := Υ⋆+ ζ defines a solution of (7.117) which is continuous in D.

197



Chapter 7. Energy expansion and vortex location for a 2d rotating BEC

Step 3. By the uniqueness of Ψ⋆, we have that ΥR → Ψ⋆ − ζ in C1
loc(D) as R → √

a0 which

clearly implies ΨR → Ψ⋆ in C1
loc(D) as R→ √

a0 . To prove that Ψσ → Ψ⋆ in C1
loc(D) as σ → 0,

we may proceed as in Step 2. Indeed, we may show as in Step 2, that |Ψσ − ζ| ≤ Caσ in D for

a constant C independent of σ. �
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Optimality of the Néel wall
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Chapter 8

A compactness result in thin-film

micromagnetics and the optimality

of the Néel wall

Abstract

We study the asymptotics of a 2 − d thin-film approximation energy where a transition

angle is imposed on the admissible magnetizations. The goal is to show the optimality

of the 1 − d transition layers (the Néel walls) under 2 − d perturbations. For that, we

prove a compactness result for magnetizations in the energy regime corresponding to a

finite number of Néel walls. The accumulation points are 2− d unit-valued divergence-free

vector fields. In the case of zero-energy states, we show locally Lipschitz continuity and

these limits classically satisfy the principle of characteristics. Then we conclude with the

optimality of the straight walls in the regime of the specific line energy of the Néel wall.

This chapter is written in collaboration with F. Otto and it is published in J. Eur. Math.

Soc. (JEMS) 10 (2008) (4), pp. 909–956 (cf. [57]).

8.1 Introduction

In this chapter we analyze a two-dimensional approximation of the micromagnetic energy of

a thin-film in the absence of external field and crystalline anisotropy. Following [39, 41], the

setting is determined by our goal to prove the optimality of Néel walls under 2−d variation. Let

Ω′ = (−1, 1)×R be the transversal section of a thin infinitely extended cylinder (see Figure 8.1).

The admissible magnetizations are smooth 2-d unit-length vector fields

m′ = (m1,m2) : R2 → S1

that macroscopically act as an angle wall in Ω′ (see Figure 8.2), i.e.,

m′(x′) =

(

m1,∞
±
√

1 −m1,∞2

)

for ± x1 ≥ 1, x2 ∈ R, (8.1)
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where m1,∞ ∈ [0, 1) is some fixed number and we use the shorthand notation x′ = (x1, x2). Here

and in the sequel, the prime always indicates an in-plane quantity. For each magnetization m′

it corresponds a stray field h = (h1, h2, h3) : R3 → R3 which is a 3D vector field related to m′

by the following variational formulation:

∫

R3

h · ∇ζ dx =

∫

R2

ζ∇′ ·m′ dx′, ∀ζ ∈ C∞
c (R3) (8.2)

where we write x = (x′, x3) ∈ R3 and ∇′·m′ for the in-plane divergence of m′. Classically, this

is, 





∇ · h = 0 in R3 \ (R2 × {0}),
[h3] = −∇′·m′ in R2 × {0},

where [h3] denotes the jump of the vertical component of h across the plane R2 × {0}. The

x3

x1

x2

1

-1

L

’

Figure 8.1: The infinite domain Ω′

magnetic field is uniquely determined by ∇′·m′ up to curl vector fields. The micromagnetic

model states that the experimentally observed ground state for the magnetization m′ and for

the magnetostatic potential of the stray field is the minimizer of the micromagnetic energy. In

order to assign the energy density for this configuration we assume that

m′ and h are L−periodic in the infinite x2−direction, (8.3)

where L is an arbitrary positive number. In this chapter we focus on the following non-dimen-

sionalized energy functional:

Eε(m
′, h) = ε

∫

R×[0,L)
|∇′ ·m′|2 dx′ +

∫

R×[0,L)×R

|h|2 dx (8.4)

where ε > 0 is a small length-scale. The first term in (8.4) plays the role of the exchange energy

and the energy of the stray field is called the magnetostatic energy. The stray field equation

yields that the minimal magnetostatic energy corresponds to the homogeneous H−1/2-norm of

∇′·m′ and it is achieved for the curl-free stray field:

min
hwith (8.2)

∫

R×[0,L)×R

|h|2 dx =
1

2

∫

R×[0,L)

∣
∣
∣ |∇′|−1/2∇′ ·m′

∣
∣
∣

2
dx′.

202



8.1. Introduction

x2

x1

x’-plane 

m2

m1

m’

m’

S
1

’

Figure 8.2: The admissible magnetization m′

Now we shall informally explain how the principle of pole avoidance leads to the formation

of walls. For simplicity, we assume that the mesoscopic transition angle imposed by (8.1) on the

boundary ∂Ω′ is 180◦, i.e., m′ · ν ′ = 0 on ∂Ω′. The boundary effects in the tangential direction

are excluded by our choice of Ω′ which is infinite in x2−direction. The competition between the

exchange and magnetostatic energy will try to enforce the divergence-free condition for m′, i.e.,

∇′·m′ = 0 in Ω′. Therefore, we arrive at

|m′| = 1 and ∇′·m′ = 0 in Ω′, m′ · ν ′ = 0 on ∂Ω′. (8.5)

This mesoscopic thin-film description has been justified in [41] using the Γ−convergence method.

We notice that the conditions in (8.5) are too rigid for smooth magnetization m′. This can be

seen by writing m′ = ∇′⊥ψ with the help of a “stream function”ψ. Then (8.5) turns out that ψ

is a solution of the Dirichlet problem for the eikonal equation:

|∇′⊥ψ| = 1 in Ω′, ψ = 0 on ∂Ω′. (8.6)

Using the characteristics method, it follows that there is no smooth solution of the equation

(8.6). On the other hand, there are many continuous solutions that satisfy the first condition

of (8.6) away from a set of vanishing Lebesgue measure. One of them is the “viscosity solution”

given by the distance function

ψ(x′) = dist (x′, ∂Ω′)

that corresponds to the so-called Landau state for the magnetization m′ (see Figure 8.3). Hence,

’

Figure 8.3: Landau state in Ω′

the divergence-free equation in (8.5) has to be interpreted in the distribution sense and it is

expected to induce line-singularities for solutions m′. These ridges are an idealization of the
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wall formation in thin-film elements at the mesoscopic level. At the microscopic level, they are

replaced by smooth transition layers where the magnetization varies very quickly. A final remark

is that the normal component of m′ does not jump across these discontinuity lines (because of

(8.5)) and therefore, walls are determined by the angle between the mesoscopic levels in the

adjacent domains. In the following we will concentrate on the Néel wall which is the favored

t

Figure 8.4: Néel wall in a 3D cylinder

Tail Core Tail

Figure 8.5: Charge distribution in core and tails for a Néel wall

wall type in very thin films (see Figure 8.4). It is characterized by a one-dimensional in-plane

magnetization:

m′ = (m1(x1),m2(x1)), (8.7)

that avoids surface charges, but leads to volume charges (because of (8.1)), i.e.,

∇′ ·m′ =
dm1

dx1
6= 0.

The prototype is the 180◦ Néel wall which corresponds to the boundary condition (8.1) for

m1,∞ = 0, i.e.,

m′(x1) =

(

0

±1

)

for ± x1 ≥ 1. (8.8)

Let us now discuss about the scaling of the energy of the prototypical Néel wall. For magneti-

zations (8.7), the specific energy (8.4) reduces to

E1d
ε (m′) = ε

∫

R

∣
∣
dm1

dx1

∣
∣2 dx1 +

1

2

∫

R

∣
∣
∣
∣

∣
∣
d

dx1

∣
∣1/2m1

∣
∣
∣
∣

2

dx1. (8.9)

We define the Néel wall as the 1d minimizer of (8.9) under the boundary constraint (8.8). The

Néel wall is a two length scale object: a small core (|x1| . wcore) with fast varying rotation

and a logarithmically decaying tail (wcore . |x1| . 1) (see Figure 8.5). The finiteness of Ω′

in x1−direction in our setting serves as the confining mechanism for the Néel wall tail. This

two-scale structure permits to the Néel wall to decrease the specific energy by a logarithmic

factor. The prediction of the logaritmic decay was formally proved by Riedel and Seeger [73]; a
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Figure 8.6: Qualitative behavior of the Néel wall

detailed mathematical discussion of their results was carried out by Garcia-Cervera [45]. Finally,

Melcher rigorously established in [67, 68] the exact logarithmic scaling for the 180◦ Néel wall

tails:

min
(8.7),(8.8)

E1d
ε (m′) ≈ π

2| ln ε| for ε≪ 1

and the minimizer m1 with m1(0) = 1 is symmetric around 0 (wcore ∼ ε) and satisfies

m1(x1) ∼
ln 1

|x1|
| ln ε| for ε≪ |x1| ≪ 1

(see Figure 8.6).

The stability of 180◦ Néel walls under arbitrary 2− d modulation was proved by DeSimone,

Knüpfer and Otto in [39]:

min
m′,h

m′ with (8.8)

Eε(m
′, h) ≈ min

m′,h
m′=m′(x1) with (8.8)

Eε(m
′, h) ≈ πL

2| ln ε| for ε≪ 1.

This means that asymptotically, the minimal energy Eε is assumed by a straight wall. More

precisely, the variations of the optimal 1d transition layer in x2−direction will not decrease the

leading order term in the energy.

Our first result is a qualitative property of the optimal 1d transition layers: We prove that

asymptotically, the minimal energy can be assumed only by the straight walls. This property

holds for general boundary conditions (8.1). It is based on a compactness result for magnetiza-

tions {m′
ε} with energies Eε close to the minimal energy level: any accumulation limit m′ has

the singularities concentrated on a vertical line (see Figure 8.7).

205



Chapter 8. A compactness result in thin-film micromagnetics and the optimality of the Néel wall
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Figure 8.7: Straight wall

Theorem 8.1 Let m1,∞ ∈ [0, 1) and L > 0 be given. For any δ > 0 there exists ε0 > 0 with the

following property: given m′ : R2 → S1 and h : R3 → R3 with

m′ and h are L−periodic in x2, i.e., (8.3) holds,

m′ satisfies the boundary condition (8.1),

m′ and h′ are related by (8.2),

| ln ε|Eε(m′, h) ≤ L
π

2
(1 −m1,∞)2 + ε0, for some 0 < ε ≤ ε0, (8.10)

then we have ∫

R×[0,L)
|m′ −m∗| dx′ ≤ δ, (8.11)

where m∗ is a straight wall given by

m∗(x1, x2) =

(

m1,∞
±
√

1 −m1,∞2

)

for ± x1 > ±x∗1, (8.12)

for some x∗1 ∈ [−1, 1].

Remark: The estimate (8.11) holds in Lp for any δp > 0 and 1 ≤ p <∞.

Let us first discuss the compactness result for the case of 1dmagnetizations. We are interested

in the asymptotics as ε → 0 of families of 1d magnetizations in the more general context of an

energy regime O( 1
| ln ε|). We show that such sequence of magnetizations is relatively compact in

L1
loc and the accumulation points in L1

loc concentrate on a finite number of walls (see Figure 8.8).

As a direct consequence, we obtain the optimality of the straight walls over 1d perturbations in

the asymptotic regime of the minimal energy.

Theorem 8.2 Let m1,∞ ∈ [0, 1). Consider a sequence {εk}k∈N ⊂ (0,∞) with εk ↓ 0. For k ∈ N,

let m′
k = (m1,k,m2,k) : R → S1 such that (8.1) holds and

lim sup
k→∞

| ln εk|
(

εk

∫

R

∣
∣
dm1,k

dx1

∣
∣2 dx1 +

∫

R

∣
∣
∣
∣

∣
∣
d

dx1

∣
∣1/2m1,k

∣
∣
∣
∣

2

dx1

)

<∞. (8.13)
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Then {m′
k} is relatively compact in L1

loc(R). Moreover, any accumulation point m′ : R → S1 of

the sequence {m′
k}k↑∞ in L1

loc is of bounded variation and can be written as

m′ =

2N∑

n=1

(

m1,∞
(−1)n

√

1 −m1,∞2

)

1(bn−1,bn),

where −∞ = b0 < b1 < · · · < b2N−1 < b2N = +∞ and bn ∈ [−1, 1] for n = 1, . . . , 2N − 1.

b1 b2 b3

2
,11 m

2
,11 m

x1

m2

Figure 8.8: The m2 component of a limit with three walls

One may ask whether the above sequences of 1d magnetizations are relatively compact in BV

since their limit has bounded variation. The answer is negative in general. For that, we construct

a family of 1d magnetizations with the energy level in the regime O( 1
| ln ε|) such that the sequence

of total variations of
{dm1,k

dx1

}
blows-up as k → ∞:

Theorem 8.3 There exists a sequence {m′
k : R → S1} with the properties:

(8.1) holds for some m1,∞ ∈ [0, 1),

lim
k→∞

∫

R

∣
∣
dm1,k

dx1

∣
∣ dx1 = ∞,

(8.13) holds for some {εk}k∈N with εk → 0.

Now we investigate the asymptotics as ε → 0 of families of 2d magnetizations when the

energy Eε(m
′
ε, hε) is placed in the regime O( 1

| ln ε|). One of the issues we discuss here is the

question of the L1
loc-compactness of the magnetizations {m′

ε}ε↓0 in the above energy regime,

i.e., whether the topological constraint |m′
ε| = 1 passes to the limit. The difficulty arises from

the fact that in general the sequence of divergences {∇′·m′
ε} is not uniformly bounded in L1

loc

(a counter-example is given in Theorem 8.3). This was one of the particularities used in the

entropy methods for proving compactness results for the Modica-Mortola type problems; we

refer to the studies of Jin and Kohn [62], Ambrosio, De Lellis and Mantegazza [10], DeSimone,

Kohn, Müller and Otto [40], Rivière and Serfaty [74], Alouges, Rivière and Serfaty [8], Jabin,

Otto and Perthame [60]. For our model, the idea is to use a duality argument in the spirit of
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[39, 41] based on an ε-perturbation of a logarithmically failing Gagliardo-Nirenberg inequality

(see Section 8.2). Since the compactness result is a local issue, we state it in the context of the

unit ball B1 ⊂ R3 with no imposed boundary conditions:

Theorem 8.4 Consider a sequence {εk}k∈N ⊂ (0,∞) with εk ↓ 0. For k ∈ N, let m′
k : B′

1 → S1

and hk : B1 → R3 be related by
∫

B1

hk · ∇ζ dx =

∫

B′
1

m′
k · ∇′ζ dx′, ∀ζ ∈ C∞

c (B1). (8.14)

Suppose that

lim sup
k→∞

| ln εk|
(

εk

∫

B′
1

|∇′ ·m′
k|2 dx′ +

∫

B1

|hk|2 dx
)

<∞. (8.15)

Then {m′
k}k↑∞ is relatively compact in L1(B′

1) and any accumulation point m′ : B′
1 → R2

satisfies

|m′| = 1 a.e. in B′
1 and ∇′ ·m′ = 0 distributionally in B′

1. (8.16)

We now focus on the behavior of the finite-energy states m′. As in (8.6), by (8.16), we

formally have that m′ = ∇′⊥φ where φ satisfies the eikonal equation |∇′φ| = 1. We discuss

the case of zero-energy states, i.e., m′ is an accumulation point of sequences {m′
ε}ε↓0 such that

the limit in (8.15) vanishes for some stray potentials {hε} (in the absence of any boundary

condition). The main tool is the principle of characteristics for the eikonal equation. We show

that every zero-energy state m′ is locally Lipschitz continuous. The difference with respect to

the zero-energy states for the Ginzburg-Landau models treated in [60] consists in the avoidance

of vortices. Our result can be stated as follows:

Theorem 8.5 Consider a sequence {εk}k∈N ⊂ (0,∞) with εk ↓ 0. For k ∈ N, let m′
k : B′

1 → S1

and hk : B1 → R3 be related by (8.14). Suppose that

lim
k→∞

| ln εk|
(

εk

∫

B′
1

|∇′ ·m′
k|2 dx′ +

∫

B1

|hk|2 dx
)

= 0. (8.17)

Then any accumulation point m′ : B′
1 → R2 of {m′

k}k↑∞ in L1(B′
1) satisfies

a) m′ is locally Lipschitz in B′
1;

b) m′ satisfies the principle of characteristics related to (8.16), i.e., for any x′0 ∈ B′
1 we have

that

m′(x′0 + tm′(x′0)
⊥) = m′(x′0) for any t ∈ R with x′0 + tm′(x′0)

⊥ ∈ B′
1

(see Figure 8.9).

Remark In general, a function m′ satisfying a) and b) in Theorem 8.5 is not globally Lipschitz

in B′
1; an example is given by

m′(x′) =

(
x′ − P

|x′ − P |

)⊥
for any x′ ∈ B′

1,

for some P ∈ ∂B′
1 (P plays the role of a vortex on the boundary).
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Figure 8.9: Principle of characteristics

The outline of the chapter is as follows. In Section 8.2, we give some fundamental estimates

based on a duality argument and a logarithmically failing interpolation inequality. In Section 8.3,

we prove Theorem 8.4. In Section 8.4, we focus on the zero-energy states: we establish a list of

lemmas that lead to Theorem 8.5. In Section 8.5, we show the optimality of the straight walls in

Theorem 8.1 as an application of Theorems 8.4 and 8.5. In Section 8.6 we discuss the behavior

of 1d magnetizations by proving Theorems 8.2 and 8.3.

8.2 Some fundamental localized estimates

We present some inequalities in the spirit of [39, 41] that are to be used in the next sections.

The idea is the following: in order to have the compactness of magnetizations {m′
ε}, we need

to control in some sense their divergences {σε = ∇′·m′
ε}. Since the second term in the energy

corresponds to the homogeneous H−1/2-norm of σε, the energy regime O( 1
| ln ε|) induces a bound

on σε. By a duality argument, it is enough to study the rate of the failing Gagliardo-Nirenberg

type inequality:
∫
∣
∣ |∇|1/2χ

∣
∣2 dx′ � sup |χ|

∫

|∇χ| dx′.

It is known that this rate is logarithmically slow for an ε−perturbation of the homogeneous

H1/2−norm. The optimal prefactor of the logarithmical failure is 2
π and was proved in [39].

This suggests the optimal leading term in the following localized estimates:

Proposition 8.6 Let h : R3 → R3 and σ : R2 → R be related by

∫

R3

h · ∇ζ dx =

∫

R2

σζ dx′, ∀ζ ∈ C∞
c (B1) (8.18)

where x′ = (x1, x2) ∈ R2 and x = (x′, x3) ∈ R3. Let χ : R2 → R be a bounded function of locally

bounded variation and η ∈ C∞
c (R3) be such that

supp η ⊂ B1 ⊂ R3. (8.19)
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Then there exists a universal constant C > 0 such that for all ε ∈ (0, 1],

∣
∣
∣
∣

∫

R2

η2χσ dx′
∣
∣
∣
∣
≤
(

4

π
| ln ε| sup

R2

|χ|
∫

R2

η2|D′χ|
∫

R3

η2|h|2 dx
)1/2

(8.20)

+ C sup
R3

|η|
(

ε

∫

B′
1

|σ|2 dx′ +
∫

B1

|h|2 dx
)1/2

×
(

sup
R3

|η| + sup
R3

|∇η|
)(

sup
R2

|χ| +
∫

B′
1

|D′χ|
)

,

(8.21)

where D′ denotes the in-plane derivatives (∂1, ∂2).

Proof. We introduce some notations:

• C denotes a generic universal constant;

• ζ̄ : R3 → R denotes the harmonic extension of ζ : R2 → R, i.e.,







∆ζ̄ = 0 in R3 \ (R2 × {0}),
ζ̄(·, x3) = ζ on R2;

• ζε : R2 → R denotes the convolution of ζ : R2 → R with a universal kernel ρε of the form

ρε(x
′) =

1

ε2
ρ1(

x′

ε
) where ρ1 ∈ C∞

c (B′
1), ρ1 ≥ 0,

∫

B′
1

ρ1(x
′) dx′ = 1.

It is sufficient to prove the estimate for χ ∈ W 1,1
loc ∩ L∞(R2); in the general case of a function

χ ∈ BVloc∩L∞(R2), it will follow by a density argument, using a sequence {χδ} ⊂W 1,1
loc ∩L∞(R2)

such that χδ → χ a.e. in B′
1, sup

R2

|χδ| ≤ sup
R2

|χ| and

∫

B′
1

|∇′χδ| dx′ →
∫

B′
1

|D′χ| (hence, |D′χδ| w
∗
⇀

|D′χ| weakly∗ as measures in B′
1).

We rewrite the left-hand side of (8.20) of our estimate as follows:

∫

R2

η2χσ dx′ =

∫

R2

ησ
(
ηχ− (ηχ)ε

)
dx′ +

∫

R2

ησ(ηχ)ε dx
′

and by (8.18) (where suppη(ηχ)ε ⊂ B1),

∫

R2

ησ(ηχ)ε dx
′ =

∫

R3

h · ∇
(
η(ηχ)ε

)
dx

=

∫

R3

(ηχ)εh · ∇η dx+

∫

R3

ηh · ∇(ηχ)ε dx.
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Hence, we obtain the estimate

∣
∣
∣
∣

∫

R2

η2χσ dx′
∣
∣
∣
∣
≤
(∫

R2

η2σ2 dx′
)1/2(∫

R2

∣
∣ηχ− (ηχ)ε

∣
∣2 dx′

)1/2

+ sup
R3

|(ηχ)ε|
∫

R3

|h| |∇η| dx +

(∫

R3

η2|h|2 dx
)1/2(∫

R3

∣
∣∇(ηχ)ε

∣
∣2 dx

)1/2

(8.19)

≤ sup
R3

|η|
(∫

B′
1

σ2 dx′
)1/2(∫

R2

∣
∣ηχ− (ηχ)ε

∣
∣2 dx′

)1/2

(8.22)

+ C sup
R3

|∇η| · sup
R3

|(ηχ)ε|
(∫

B1

|h|2 dx
)1/2

(8.23)

+

(∫

R3

η2|h|2 dx
)1/2(∫

R3

∣
∣∇(ηχ)ε

∣
∣2 dx

)1/2

. (8.24)

As we shall see, only the term (8.24) contributes to the leading order term (8.20). We first

address (8.22) and (8.23). For (8.23), we observe that by the maximum principle,

sup
R3

|(ηχ)ε| ≤ sup
R2

|(ηχ)ε| ≤ sup
R2

|ηχ| ≤ sup
R3

|η| · sup
R2

|χ|,

so that (8.23) can indeed be absorbed into (8.21). For (8.22), we have

∫

R2

∣
∣ηχ− (ηχ)ε

∣
∣2 dx′ ≤ (sup

R2

|(ηχ)ε| + sup
R2

|ηχ|)
∫

R2

∣
∣ηχ− (ηχ)ε

∣
∣ dx′

≤ 2ε sup
R2

|ηχ|
∫

R2

∣
∣∇′(ηχ)

∣
∣ dx′

≤ 2ε sup
R2

|ηχ|
∫

R2

(
|η||∇′χ| + |χ||∇′η|

)
dx′

(8.19)

≤ Cε sup
R3

|η| · sup
R2

|χ|

×
(

sup
R3

|η|
∫

B′
1

|∇′χ| dx′ + sup
R3

|∇η| · sup
R2

|χ|
)

.

Hence, (8.22) can be absorbed into (8.21). We now turn to (8.24). In order to have the desired

inequality, it is sufficient to prove that

∫

R3

∣
∣∇(ηχ)ε

∣
∣2 dx ≤ 4

π
| ln ε| sup

R2

|χ|
∫

R2

η2|∇′χ| dx′ (8.25)

+ C(sup
R3

|η| + sup
R3

|∇η|)2
(

sup
R2

|χ| +
∫

B′
1

|∇′χ| dx′
)2

. (8.26)

We appeal to the following identity

∫

R3

|∇φ̄|2 dx =
1

2π

∫

R2

1

|z′|3
∫

R2

|φ(x′ + z′) − φ(x′)|2 dx′ dz′, (8.27)
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which we apply to φ = (ηχ)ε. Actually, (8.27) is easy to establish (see also [39]): first of all, by

homogeneity and isotropy, it results that for every ξ′ ∈ R2,

1

2π

∫

R2

1

|z′|3 |1 − eiξ
′·z′|2 dz′ =

|ξ′|
2π

∫

R2

1

|z̃′|3 |1 − eiz̃1 |2 dz̃′

=
2|ξ′|
π

∫ 2π

0

(∫ ∞

0

1

r2
sin2

(r| cos θ|
2

)
dr

)

dθ

=
|ξ′|
π

∫ 2π

0

∫ ∞

0

| cos θ|
s2

sin2 s ds dθ

=
|ξ′|
π

∫ 2π

0
| cos θ| dθ

∫ ∞

0

sin2 s

s2
ds = 2|ξ′|. (8.28)

Then, it turns out in terms of the Fourier transform,
∫

R3

|∇φ̄|2 dx =

∫

R3

|ξ|2 |F(φ̄)(ξ)|2 dξ

= 2

∫

R2

|ξ′| |F ′(φ)(ξ′)|2 dξ′

(8.28)
=

1

2π

∫

R2

1

|z′|3
∫

R2

|1 − eiξ
′·z′ |2|F ′(φ)(ξ′)|2 dξ′ dz′

=
1

2π

∫

R2

1

|z′|3
∫

R2

|φ(x′ + z′) − φ(x′)|2 dx′ dz′,

i.e., (8.27) holds. We split the z′−integral on the right-hand side of (8.27) into three different

regions:

1

2π

∫

R2

1

|z′|3
∫

R2

|(ηχ)ε(x
′ + z′) − (ηχ)ε(x

′)|2 dx′ dz′

=
1

2π

∫

R2\B′
1

1

|z′|3
∫

R2

|(ηχ)ε(x
′ + z′) − (ηχ)ε(x

′)|2 dx′ dz′ (8.29)

+
1

2π

∫

B′
ε

1

|z′|3
∫

R2

|(ηχ)ε(x
′ + z′) − (ηχ)ε(x

′)|2 dx′ dz′ (8.30)

+
1

2π

∫

B′
1\B′

ε

1

|z′|3
∫

R2

|(ηχ)ε(x
′ + z′) − (ηχ)ε(x

′)|2 dx′ dz′. (8.31)

As we shall see, only (8.31) contributes to the leading order term (8.25). We first address (8.29)

and (8.30). We start with the term (8.29) corresponding to the long wave length (i.e., |z′| ≥ 1).

Since
∫

R2

|(ηχ)ε(x
′ + z′) − (ηχ)ε(x

′)|2 dx′ ≤ 2

∫

R2

|(ηχ)ε|2 dx′

≤ 2

∫

R2

|ηχ|2 dx′
(8.19)

≤ C sup
R3

|η|2 · sup
R2

|χ|2,

we obtain

1

2π

∫

R2\B′
1

1

|z′|3
∫

R2

|(ηχ)ε(x
′ + z′) − (ηχ)ε(x

′)|2 dx′ dz′

≤ C sup
R3

|η|2 · sup
R2

|χ|2
∫

R2\B′
1

1

|z′|3 dz
′ ≤ C sup

R3

|η|2 · sup
R2

|χ|2,
(8.32)

212



8.2. Some fundamental localized estimates

i.e., (8.29) is absorbed by (8.26). We now tackle the short wave length term (8.30). We have

∫

R2

|(ηχ)ε(x
′ + z′) − (ηχ)ε(x

′)|2 dx′ ≤ |z′|2
∫

R2

|∇′(ηχ)ε|2 dx′

≤ |z′|2 sup
R2

|∇′(ηχ)ε|
∫

R2

|∇′(ηχ)ε| dx′

≤ C

ε
|z′|2 sup

R2

|ηχ|
∫

R2

|∇′(ηχ)| dx′

and thus,

1

2π

∫

B′
ε

1

|z′|3
∫

R2

|(ηχ)ε(x
′ + z′) − (ηχ)ε(x

′)|2 dx′ dz′

(8.19)

≤ C(sup
R3

|η| + sup
R3

|∇η|)2
(

sup
R2

|χ| +
∫

B′
1

|∇′χ| dx′
)2

· 1

ε

∫

B′
ε

dz′

|z′| ,
(8.33)

i.e., (8.30) can also be absorbed by (8.26).

We finally address the medium wave length term (8.31). We start by observing that

∫

R2

|(ηχ)ε(x
′ + z′) − (ηχ)ε(x

′)|2 dx′ ≤
∫

R2

|(ηχ)(x′ + z′) − (ηχ)(x′)|2 dx′.

We consider the integrand, which we shall rewrite in form of

|(ηχ)(x′ + z′) − (ηχ)(x′)|2 = (χ(x′ + z′) − χ(x′))
∫ 1

0
η2(x′ + tz′)∇′χ(x′ + tz′) · z′ dt

+ remainder.

To do so, we proceed as follows

(ηχ)(x′ + z′) − (ηχ)(x′) =

∫ 1

0
∇′(ηχ)(x′ + tz′) · z′ dt

=

∫ 1

0
η(x′ + tz′)∇′χ(x′ + tz′) · z′ dt+

∫ 1

0
χ(x′ + tz′)∇′η(x′ + tz′) · z′ dt,

and thus,

|(ηχ)(x′ + z′) − (ηχ)(x′)|2 = (χ(x′ + z′) − χ(x′))
∫ 1

0
η2(x′ + tz′)∇′χ(x′ + tz′) · z′ dt

+ χ(x′ + z′)
∫ 1

0
(η(x′ + z′) − η(x′ + tz′))η(x′ + tz′)∇′χ(x′ + tz′) · z′ dt

− χ(x′)
∫ 1

0
(η(x′) − η(x′ + tz′))η(x′ + tz′)∇′χ(x′ + tz′) · z′ dt

+

∫ 1

0
η(x′ + tz′)∇′χ(x′ + tz′) · z′ dt

∫ 1

0
χ(x′ + tz′)∇′η(x′ + tz′) · z′ dt

+

(∫ 1

0
χ(x′ + tz′)∇′η(x′ + tz′) · z′ dt

)2

.
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This yields the estimate

|(ηχ)(x′ + z′) − (ηχ)(x′)|2 ≤ 2 sup
R2

|χ|
∫ 1

0
η2(x′ + tz′)|∇′χ(x′ + tz′) · z′| dt

+ 3|z′|2 sup
R2

|χ| · sup
R3

|∇η|
∫ 1

0
|η(x′ + tz′)||∇′χ(x′ + tz′)| dt

+ |z′|2 sup
R2

|χ|2 · sup
R3

|∇η|
∫ 1

0
|∇′η(x′ + tz′)| dt.

Integration in x′ gives
∫

R2

|(ηχ)(x′ + z′) − (ηχ)(x′)|2 dx′

≤ 2 sup
R2

|χ|
∫

R2

η2|∇′χ · z′| dx′ + 3|z′|2 sup
R2

|χ| · sup
R3

|∇η|
∫

R2

|η||∇′χ| dx′

+ |z′|2 sup
R2

|χ|2 · sup
R3

|∇η|
∫

R2

|∇′η| dx′

≤ 2 sup
R2

|χ|
∫

R2

η2|∇′χ · z′| dx′

+ C|z′|2(sup
R3

|η| + sup
R3

|∇η|)2
(

sup
R2

|χ| +
∫

B′
1

|∇′χ| dx′
)2

.

Integration in z′ yields
∫

B′
1\B′

ε

1

|z′|3
∫

R2

|(ηχ)(x′ + z′) − (ηχ)(x′)|2 dx′ dz′

≤ 2 sup
R2

|χ|
∫

R2

η2(x′)
∫

B′
1\B′

ε

1

|z′|3 |∇
′χ(x′) · z′| dz′ dx′

+ C(sup
R3

|η| + sup
R3

|∇η|)2
(

sup
R2

|χ| +
∫

B′
1

|∇′χ| dx′
)2 ∫

B′
1\B′

ε

dz′

|z′| .

(8.34)

Notice that for any v′ ∈ R2,

∫

B′
1\B′

ε

1

|z′|3 |v
′ · z′| dz′ =

∫ 2π

0

∫ 1

ε

1

r3

∣
∣
∣
∣
v′ ·
(

r cos θ

r sin θ

)∣
∣
∣
∣
r dr dθ

= |v′|
∫ 2π

0
| cos θ| dθ

∫ 1

ε

1

r
dr = 4| ln ε| |v′|.

Hence (8.34) turns into

1

2π

∫

B′
1\B′

ε

1

|z′|3
∫

R2

|(ηχ)(x′ + z′) − (ηχ)(x′)|2 dx′ dz′ ≤ 4

π
| ln ε| sup

R2

|χ|
∫

R2

η2|∇′χ| dx′

+ C(sup
R3

|η| + sup
R3

|∇η|)2
(

sup
R2

|χ| +
∫

B′
1

|∇′χ| dx′
)2

.

(8.35)

Combining identity (8.27) with the estimates (8.32), (8.33) and (8.35), we conclude that (8.25)

holds. �

By rescaling length in Proposition 8.6 from unity to some R > 0, we obtain:
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Corollary 8.7 Let R > 0 and x0 = (x′0, 0) ∈ R2 × {0}. Consider h : R3 → R3 and σ : R2 → R

be related by ∫

R3

h · ∇ζ dx =

∫

R2

σζ dx′, ∀ζ ∈ C∞
c (B(x0, R)).

Let χ : R2 → R be a bounded function of locally bounded variation and η ∈ C∞
c (R3) be such that

suppη ⊂ B(x0, R) ⊂ R3. (8.36)

Then there exists a universal constant C > 0 such that for all ε ∈ (0, R],

∣
∣
∣
∣

∫

R2

η2χσ dx′
∣
∣
∣
∣
≤
(

4

π
| ln ε| sup

R2

|χ|
∫

R2

η2|D′χ|
∫

R3

η2|h|2 dx
)1/2

+ C(1 +
√

| lnR|) sup
R3

|η|
(

ε

∫

B′(x′0,R)
|σ|2 dx′ +

∫

B(x0,R)
|h|2 dx

)1/2

×
(

sup
R3

|η| +R sup
R3

|∇η|
)(√

R sup
R2

|χ| + 1√
R

∫

B′(x′0,R)
|D′χ|

)

.

(8.37)

Proof. The change of variables x = Rx̂ + x0 (and ε = Rε̂) preserves (8.18) and turns (8.36)

into suppη ⊂ B̂1, so that we may apply Proposition 8.6. It yields in the original variables:

∣
∣
∣
∣
R−2

∫

R2

η2χσ dx′
∣
∣
∣
∣
≤
(

4

π
| ln ε

R
| sup

R2

|χ|R−1

∫

R2

η2|D′χ|R−3

∫

R3

η2|h|2 dx
)1/2

+ C sup
R3

|η|
(
ε

R
R−2

∫

B′(x′0,R)
|σ|2 dx′ +R−3

∫

B(x0,R)
|h|2 dx

)1/2

× (sup
R3

|η| +R sup
R3

|∇η|)
(

sup
R2

|χ| +R−1

∫

B′(x′0,R)
|D′χ|

)

,

that is,

∣
∣
∣
∣

∫

R2

η2χσ dx′
∣
∣
∣
∣
≤
(

4

π
(| ln ε| + | lnR|) sup

R2

|χ|
∫

R2

η2|D′χ|
∫

R3

η2|h|2 dx
)1/2

+ C sup
R3

|η|
(

ε

∫

B′(x′0,R)
|σ|2 dx′ +

∫

B(x0,R)
|h|2 dx

)1/2

× (sup
R3

|η| +R sup
R3

|∇η|)
(

R1/2 sup
R2

|χ| +R−1/2

∫

B′(x′0,R)
|D′χ|

)

.

The conclusion is now straightforward. �

If one drops the test function η and localizes the function χ in Corollary 8.7, the following

result comes out:

Corollary 8.8 Let d,R > 0 and x0 = (x′0, 0) ∈ R2×{0}. Consider h : R3 → R3 and σ : R2 → R

be related by ∫

R3

h · ∇ζ dx =

∫

R2

σζ dx′, ∀ζ ∈ C∞
c (B(x0, R+ d)).
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Let χ : R2 → R be a bounded function of bounded variation such that

suppχ ⊆ B̄′(x′0, R) ⊂ R2.

Then there exists a universal constant C > 0 such that for all ε ∈ (0, R + d],
∣
∣
∣
∣

∫

R2

χσ dx′
∣
∣
∣
∣
≤
(

4

π
| ln ε| sup

R2

|χ|
∫

R2

|D′χ|
∫

B(x0,R+d)
|h|2 dx

)1/2

+ C
(1 +R+ d)2

d

(

ε

∫

B′(x′0,R+d)
|σ|2 dx′ +

∫

B(x0,R+d)
|h|2 dx

)1/2

×
(

sup
R2

|χ| +
∫

R2

|D′χ|
)

.

Proof. Let η ∈ C∞
c (B(x0, R + d)) be such that

η = 1 in B′(x′0, R) × {0}, |η| ≤ 1 and |∇η| ≤ C

d
in B(x0, R + d). (8.38)

We apply Corollary 8.7:
∣
∣
∣
∣

∫

R2

η2χσdx′
∣
∣
∣
∣

(8.38)

≤
(

4

π
| ln ε| sup

R2

|χ|
∫

R2

|D′χ|
∫

B(x0,R+d)
|h|2 dx

)1/2

+ C(1 +
√

| ln(R + d)|)
(

ε

∫

B′(x′0,R+d)
|σ|2 dx′ +

∫

B(x0,R+d)
|h|2 dx

)1/2

× (1 +
R+ d

d
)

(√
R+ d sup

R2

|χ| + 1√
R+ d

∫

R2

|D′χ|
)

,

and the conclusion is straightforward. �

A periodic version of Proposition 8.6 is the following:

Corollary 8.9 Let L > 0 be a positive number. Consider h : R3 → R3 and σ : R2 → R be

related by ∫

R3

h · ∇ζ dx =

∫

R2

σζ dx′, ∀ζ ∈ C∞
c (R3).

Let χ : R2 → R be a bounded function of bounded variation in R × [0, L) and η ∈ C∞(R3) be

such that

suppη ⊂ (−2, 2) × R × (−1, 1). (8.39)

Assume that the functions

h, σ, χ and η are L− periodic in x2. (8.40)

Then there exists a universal constant C > 0 such that for all ε ∈ (0, L],
∣
∣
∣
∣

∫

R×[0,L)
η2χσ dx′

∣
∣
∣
∣
≤
(

4

π
| ln ε| sup

R2

|χ|
∫

R×[0,L)
η2|D′χ|

∫

R×[0,L)×R

η2|h|2 dx
)1/2

+ C
L̃3

L2
sup
R3

|η|
(

ε

∫

R×[0,L)
|σ|2 dx′ +

∫

R×[0,L)×R

|h|2 dx
)1/2

× (sup
R3

|η| + L sup
R3

|∇η|)
(√

L sup
R2

|χ| + 1√
L

∫

R×[0,L)
|D′χ|

)

,

(8.41)
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where L̃ = max{2, L}.

Proof. Select a universal ζ ∈ C∞
c (R) such that

supp ζ ⊂ (−1, 1), |ζ| ≤ 1,
∑

k∈Z

ζ2(x2 + k) = 1, ∀x2 ∈ R (8.42)

and set

η̃(x1, x2, x3) = ζ(
x2

L
)η(x1, x2, x3), ∀(x1, x2, x3) ∈ R3. (8.43)

In view of (8.39) and (8.42) we have that

supp η̃ ⊂ BR

for some radius

L̃ ≤ R ≤ 2L̃. (8.44)

Hence, we may apply (8.37) to σ, h and η̃. Notice that because of (8.40) and (8.42),

∫

R2

η̃2χσ dx′ =

∫

R×[0,L)
η2χσ dx′,

∫

R3

η̃2|h|2 dx =

∫

R×[0,L)×R

η2|h|2 dx,
∫

R2

η̃2|D′χ| =

∫

R×[0,L)
η2|D′χ|.

Furthermore, we have because of (8.40) and (8.44),

∫

B′
R

|σ|2 dx′ ≤ C
L̃

L

∫

R×[0,L)
|σ|2 dx′,

∫

BR

|h|2 dx ≤ C
L̃

L

∫

R×[0,L)×R

|h|2 dx,
∫

B′
R

|D′χ| ≤ C
L̃

L

∫

R×[0,L)
|D′χ|.

Finally, it follows from (8.42) and (8.43),

sup
R3

|η̃| ≤ sup
R3

|η|

sup
R3

|∇η̃| ≤ C

L
sup
R3

|η| + sup
R3

|∇η|.

Hence, (8.37) yields (8.41). �

Remark: The conclusion of Corollary 8.9 holds true for a more general support of η than (8.39)

(for example, (−a, a)×R×(a, a) for every a > 0). The choice of the interval (−2, 2) in (8.39) (as

support in x1 variable) is needed in the proof of Theorem 8.1 due to the choice of the boundary

data (8.1).
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8.3 Compactness of the Néel wall

This section is devoted to the proof of the compactness result for magnetizations in the energy

regime O( 1
| ln ε|):

Proof of Theorem 8.4. Since |m′
k| = 1 in B′

1, it results that the sequence {‖m′
k‖L∞(B′

1)} is

bounded and therefore, there exists m′ ∈ L∞(B′
1,R

2) such that up to a subsequence,

m′
k
w∗
⇀m′ weakly∗ in L∞. (8.45)

In particular,

|m′|2 ≤ 1 a.e. in B′
1. (8.46)

In order to have the strong convergence in some Lp with 1 ≤ p < ∞, we need to show that

|m′| = 1 a.e. in B′
1. Indeed, that will imply ‖m′

k‖L2(B′
1) → ‖m′‖L2(B′

1) and by the weak conver-

gence in L2, it will lead to the strong convergence in L2 and then, in any other Lp, 1 ≤ p <∞.

We define the finite positive measures {µk} ⊂ M(B′
1) as

µk(A
′) = | ln εk|

∫

B1∩(A′×R)
|hk|2 dx

for every Borel set A′ ⊂ B′
1. Then by (8.15), the family of positive measures {µk} is bounded

in M(B′
1) and hence, there exists a positive measure µ ∈ M(B′

1) such that

µk
w∗
⇀ µ weakly∗ in M(B′

1).

Let x′0 ∈ B′
1 be a Lebesgue point of m′ and of vanishing H1-density of µ, i.e.,

lim
r→0

1

r2

∫

B′(x′0,r)
|m′(x′) −m′(x′0)| dx′ = 0 and lim sup

r→0

µ(B′(x′0, r))
r

= 0 (8.47)

(by Lebesgue decomposition theorem and Vitali covering lemma, almost every point in B′
1 has

the above properties). We want to show that |m′(x′0)| = 1. As in [39], we identify a curved

center line of the transition layer: let Xk be the orbit of the vector field m′
k
⊥ passing by x′0 (see

Figure 8.10), i.e.,






Ẋk(t) = m′
k
⊥(Xk(t)),

Xk(0) = x′0.

The orbit Xk does not have cycles and it separates the ball B′
1 into a right side G′

k (where m′
k

is the inner normal vector to ∂G′
k) and a left side B′

1 \G′
k. We define

χk =







1
2 in G′

k,

−1
2 in B′

1 \G′
k.

(8.48)

Then χk ∈ BVloc(B
′
1) with D′χk = m′

kH1xXk. Moreover, in the ball B′(x′0, 1 − |x′0|) ⊂ B′
1 we

have that for every r ∈ (0, 1 − |x′0|),
∫

B′(x′0,r)
|D′χk| = H1({Xk ∈ B′(x′0, r)}) ≥ 2r (8.49)
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k=
2

1

k=-
2

1

'

0
x

'

k
m

'

k
G

Figure 8.10: The orbit Xk of the vector field m′
k
⊥ passing by x′0 in the ball B′

1

and the integration by parts yields

∫

∂B′(x′0,r)
χ−
km

′
k · ν dH1 =

∫

B′(x′0,r)
χk∇′·m′

k dx
′ +
∫

B′(x′0,r)
|D′χk| (8.50)

where χ−
k denotes the interior trace of χk

∣
∣
∂B′(x′0,r)

and ν is the unit outer normal vector on

∂B′(x′0, r).

We proceed in three steps:

Step 1. The sequence {χk} is uniformly locally bounded in BV (B′
1) and any accumulation point

χ of {χk} in L1
loc(B

′
1) belongs to BVloc(B

′
1, {−1

2 ,
1
2}). For that, it is enough to prove that {χk}

is bounded in BV (B′(x′0, r)) for any ball B′(x′0, r+d) ⊂ B′
1 where r and d are arbitrary positive

numbers and x′0 ∈ B′
1. We apply Corollary 8.8 in the ball B(x0, r + d) for the restriction of

χk
∣
∣
B′(x′0,r)

where x0 = (x′0, 0) ∈ B1:

∣
∣
∣
∣

∫

B′(x′0,r)
χk∇′ ·m′

k dx
′
∣
∣
∣
∣

(8.48)

≤
(

2

π
| ln εk|

∫

B̄′(x′0,r)
|D′χk|

∫

B(x0,r+d)
|hk|2 dx

)1/2

+
C

d

(

εk

∫

B′
1

|∇′ ·m′
k|2 dx′ +

∫

B1

|hk|2 dx
)1/2

×
(

1 +

∫

B̄′(x′0,r)
|D′χk|

)

,

which implies by Young’s inequality,

∣
∣
∣
∣

∫

B′(x′0,r)
χk∇′ ·m′

k dx
′
∣
∣
∣
∣

(8.15)

≤ δ

∫

B̄′(x′0,r)
|D′χk| +

C

δ
µk(B

′(x′0, r + d)) +
C

d
√

| ln εk|

(

1 +

∫

B̄′(x′0,r)
|D′χk|

)

≤ (δ +
C

d
√

| ln εk|
)

∫

B̄′(x′0,r)
|D′χk| +

C

δ
µk(B

′(x′0, r + d)) +
C

d
√

| ln εk|
(8.51)

for some small δ > 0. Here we wrote

∫

B̄′(x′0,r)
|D′χk| =

∫

B′(x′0,r)
|D′χk| +

∫

∂B′(x′0,r)
|χ−
k | dH1

(8.48)

≤
∫

B′(x′0,r)
|D′χk| + πr. (8.52)
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By (8.50), (8.51) and (8.52), we deduce that
∫

∂B′(x′0,r)
χ−
km

′
k · ν dH1 ≥ (1 − δ − C

d
√

| ln εk|
)

∫

B′(x′0,r)
|D′χk| −

C

δ
µk(B

′(x′0, r + d))

− C

d
√

| ln εk|
(1 + rπ) − πδr.

(8.53)

It results that
∫

B′(x′0,r)
|D′χk| ≤ Cd and thus, up to a subsequence, there exists a function

χ ∈ BV (B′(x′0, r), {−1
2 ,

1
2}) such that

χk → χ in L1(B′(x′0, r)). (8.54)

Step 2. We show that |m′(x′0)| = 1. We restrict the analysis in a ball B′(x′0, 2R) ⊂ B′
1. To

this purpose, we apply (8.53) for every ball B′(x′0, r) where r ∈ (0, R) and d = R: by (8.49), we

deduce that
∫

∂B′(x′0,r)
χ−
km

′
k · ν dH1 +

C

δ
µk(B

′(x′0, 2R)) +
C

R
√

| ln εk|
(1 + rπ) + πδr ≥ 2(1− δ− C

R
√

| ln εk|
)r.

Integrating for r ∈ (0, R) and dividing by R2, it leads to

1

R2

∫

B′(x′0,R)
χ−
km

′
k · ν dx′ +

C

δ

µk(B
′(x′0, 2R))

R
+

C

R2
√

| ln εk|
(1 +Rπ) + πδ ≥ 1− δ − C

R
√

| ln εk|
.

We know that χ−
k = χk L2−a.e. in B′(x′0, R) and for almost every R > 0, µ(∂B′(x′0, R)) = 0.

Passing to the limit as k → ∞, it follows from (8.45) and (8.54) that

1

R2

∫

B′(x′0,R)
χm′ · ν dx′ + C

δ

µ(B′(x′0, 2R))

R
≥ 1 − (1 + π)δ, (8.55)

for a.e. R ∈ (0,
1−|x′0|

2 ). By (8.48) we notice that

1

R2

∫

B′(x′0,R)
χm′ · ν dx′ ≤ 1

2R2

∫

B′(x′0,R)
|m′(x′) −m′(x′0)| dx′ + |m′(x′0)|

∣
∣

1

R2

∫

B′(x′0,R)
χν dx′

∣
∣

and we estimate the modulus of the vector w =
1

R2

∫

B′(x′0,R)
χν as

|w| =
1

R2

∫

B′(x′0,R)
χ

(

ν · w|w|

)

dx′ ≤ 1

2R2

(∫

B′
R

(x1)
+ +

∫

B′
R

(x1)
−
)

= 1.

Letting now R → 0, we conclude by (8.47) and (8.55) that |m′(x′0)| ≥ 1 − (1 + π)δ for every

small δ, and hence, by (8.46), |m′(x′0)| = 1.

Step 3.End of proof. Let now m′ be an accumulation point of the sequence {m′
k}. Since

|m′
k| = 1, we deduce that |m′| = 1 a.e. in B′

1. By (8.15), we have that

∫

B1

|hk|2 dx → 0 as

k → ∞ and therefore, (8.14) yields that

lim
k→∞

∫

B′
1

ζ∇′·m′
k dx

′ = 0,∀ζ ∈ C∞
c (B′

1).

Thus, ∇′·m′ = 0 distributionally in B′
1. �
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8.4 Zero-energy states

In order to prove Theorem 8.5, we proceed in several steps. A key ingredient to Theorem 8.5 is

the following additional property of limits m′:

Lemma 8.10 Next to (8.16), any accumulation point m′ : B′
1 → R2 of {m′

k}k↑∞ in L1(B′
1) has

the following property: for all x′0 ∈ B′
1 there exists χ : B′

1 → {−1
2 ,

1
2} such that

∇′ · (χm′) = |D′χ| distributionally in B′
1, (8.56)

∫

B′(x′0,r)
|D′χ| ≥ 2r, for all 0 < r < 1 − |x′0|. (8.57)

Proof of Lemma 8.10. Let x′0 ∈ B′
1 be given. Let {χk} be defined in B′

1 as in the proof of

Theorem 8.4 (see (8.48)). By Step 1 in the proof of Theorem 8.4, we know that the sequence

{∫

B′
r

|D′χk|
}

k↑∞
is bounded for all 0 < r < 1. (8.58)

Hence, after passage to a subsequence, we may assume that there exists χ : B′
1 → {−1

2 ,
1
2} of

locally bounded variation such that

χk → χ in L1(B′
1). (8.59)

It remains to argue that χ satisfies (8.56) and (8.57). For a given ζ ∈ C∞
c (B′

1), we shall establish

the following four statements:

−
∫

B′
1

χk∇′ζ ·m′
k dx

′ −
∫

B′
1

ζ|D′χk| → 0, (8.60)

−
∫

B′
1

χ∇′ζ ·m′ dx′ −
∫

B′
1

ζ|D′χ| ≥ 0 if ζ ≥ 0, (8.61)

−
∫

B′
1

χ∇′ζ ·m′ dx′ −
∫

B′
1

ζ|D′χ| ≤ 0 if ζ ≥ 0, (8.62)

∫

B′
1

ζ|D′χk| →
∫

B′
1

ζ|D′χ| if ζ ≥ 0. (8.63)

In order to establish (8.60), we will use again the identity based on the construction of χk, i.e.,

m′
k ·D′χk = |D′χk|; namely,

−
∫

B′
1

∇′ζ ·m′
kχk dx

′ −
∫

B′
1

ζ|D′χk| =

∫

B′
1

ζχk∇′·m′
k dx

′ +
∫

B′
1

ζm′
k ·D′χk −

∫

B′
1

ζ|D′χk|

=

∫

B′
1

ζχk∇′·m′
k dx

′. (8.64)
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The second ingredient is Corollary 8.8, applied for the function ζχk in the ball B′
1 and d =

dist (supp ζ, ∂B1) > 0. Because of sup |χk| = 1
2 , we obtain

∣
∣
∣
∣

∫

R2

(ζχk)∇′ ·m′
k dx

′
∣
∣
∣
∣
≤
(

2

π
| ln εk| sup |ζ|

∫

B′
1

|D′(ζχk)|
∫

B1

|hk|2 dx
)1/2

+
C

d

(

εk

∫

B′
1

|∇′ ·m′
k|2 dx′ +

∫

B1

|hk|2 dx
)1/2

×
(

1 +

∫

B′
1

|D′(ζχk)|
)

.

Since |D′(ζχk)| ≤
1

2
|∇′ζ| + |ζ||D′χk|, by (8.58) we deduce that the sequence

{∫

B′
1

|D′(ζχk)|
}

is bounded and by (8.17), it follows that

∫

B′
1

ζχk∇′·m′
k dx

′ → 0 as k → ∞. (8.65)

Now (8.60) follows from (8.64) and (8.65). Statement (8.61) follows easily from (8.60). Indeed,

because of (8.59) and m′
k → m′ in L1(B′

1), we have

∫

B′
1

χk∇′ζ ·m′
k dx

′ →
∫

B′
1

χ∇′ζ ·m′ dx′; (8.66)

on the other hand, the lower semicontinuity of |D′χk| under (8.59) implies

∫

B′
1

ζ|D′χ| ≤ lim inf
k→∞

∫

B′
1

ζ|D′χk| if ζ ≥ 0 in B′
1.

Statement (8.62) is a general fact which follows from (8.16). Indeed, let {m′
δ}δ↓0 denote the

mollification of m′ by convolution. For any r < 1 and sufficiently small δ, we then have in a

classical sense:

∇′·m′
δ = 0 and |m′

δ|2 ≤ 1 in B′
r. (8.67)

Therefore,

∫

B′
1

χ∇′ζ ·m′
δ dx

′ (8.67)
=

∫

B′
1

χ∇′ · (ζm′
δ) dx

′ = −
∫

B′
1

ζm′
δ ·D′χ

(8.67)

≤
∫

B′
1

ζ|D′χ| if ζ ≥ 0.

Statement (8.63) is a straightforward consequence of the previous ones:

lim
k→∞

∫

B′
1

ζ|D′χk|
(8.60)
= − lim

k→∞

∫

B′
1

χk∇′ζ ·m′
k dx

′ (8.66)
= −

∫

B′
1

χ∇′ζ ·m′ dx′
(8.61),(8.62)

=

∫

B′
1

ζ|D′χ|,

if ζ ≥ 0.

We now argue that (8.56) and (8.57) are true. We start with (8.56). From (8.61) and (8.62),

we already know that

−
∫

B′
1

χ∇′ζ ·m′ dx′=
∫

B′
1

ζ|D′χ| for all ζ ∈ C∞
c (B′

1) with ζ ≥ 0. (8.68)
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Since any ζ ∈ C∞
c (B′

1) can be approximated both in H1(B′
1) and Cc(B

′
1) by ζδ’s of the form

ζδ = ζ+
δ − ζ−δ with ζ+

δ , ζ
−
δ ∈ C∞

c (B′
1), (8.69)

(8.68) implies (8.56). An approximation of the form (8.69) can be constructed as follows

ζδ = φδ(ζ),

where {φδ}δ↓0 ⊂ C∞(R) is an approximation of the identity with the following properties:

φδ(t) = 0 for |t| ≤ δ,
dφδ
dt

(t) → 1 for t 6= 0,

∣
∣
∣
∣

dφδ
dt

(t)

∣
∣
∣
∣
≤ 1 for all t.

We now address (8.57). Let 0 < r < 1 − |x′0| be given. We will derive (8.57) from the corre-

sponding property of χk (see (8.49)) and (8.63). Let {ηδ}δ↓0 ⊂ C∞
c (B′

1) be an approximation of

the characteristic function 1B′(x′0,r)
in the following sense

ηδ(x
′) = 0 for x′ /∈ B′(x′0, r), ηδ(x

′) = 1 for x′ ∈ B′(x′0, r − δ), 0 ≤ ηδ(x
′) ≤ 1 for x′ ∈ B′

1.

Then
∫

B′(x′0,r)
|D′χ| ≥

∫

B′
1

ηδ|D′χ| (8.63)
= lim

k→∞

∫

B′
1

ηδ|D′χk| ≥ lim inf
k→∞

∫

B′(x′0,r−δ)
|D′χk|

(8.49)

≥ 2(r − δ).

�

The next lemma establishes that the χ’s from Lemma 8.10 are minimal (perimeter minimiz-

ing). It is a well-known general fact that sets whose normal can be extended to a divergence-free

unit-length vector field are minimal.

Lemma 8.11 Let χ : B′
1 → {−1

2 ,
1
2} have the property (8.56) for some m′ : B′

1 → S1 with

∇′·m′ = 0 distributionally in B′
1.

Then χ is minimal in B′
1 in the sense that for any function χ̃ : B′

1 → {−1
2 ,

1
2} with supp(χ̃ −

χ) ⊂⊂ B′
1, we have

|D′χ|(B′
1) ≤ |D′χ̃|(B′

1).

Proof of Lemma 8.11 . Let 0 < r < 1 be such that supp(χ̃−χ) ⊂ B′
r. Select an ζ ∈ C∞

c (B′
1)

with ζ = 1 in B′
r and ζ ≥ 0 in B′

1. Then we have

|D′χ|(B′
r) − |D′χ̃|(B′

r) =

∫

B′
1

ζ|D′χ| −
∫

B′
1

ζ|D′χ̃|

(8.56)
= −

∫

B′
1

χ∇′ζ ·m′ dx′ −
∫

B′
1

ζ|D′χ̃|

= −
∫

B′
1

χ̃∇′ζ ·m′ dx′ −
∫

B′
1

ζ|D′χ̃|.

The argument used to establish the inequality (8.62) in the proof of Lemma 8.10 also yields this

lemma (with χ replaced by χ̃). �

For convenience of the reader, the following lemma gives an elementary proof for the fact

that minimal sets in two dimensions are locally half-spaces.
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Lemma 8.12 Let χ : B′
1 → {−1

2 ,
1
2} satisfy

χ is minimal in B′
1, (8.70)

∫

B′
r

|D′χ| ≥ 2r for all r ∈ (0, 1). (8.71)

Then χ is the characteristic function of a centered half-space in B′
1−π

4
(see Figure 8.11), i.e.,

there exists ν ∈ S1 such that

χ =

{
1
2 for x′ · ν > 0

−1
2 else

}

L2-a.e. in B′
1−π

4
.

0

=
2

1

=-
2

1

Figure 8.11: The characteristic χ in the ball B′
1−π

4

Proof of Lemma 8.12. We start by arguing that

|D′χ|(B′
1) ≤ π. (8.72)

Let 0 < r < 1 be arbitrary. We compare χ to χ̃+, χ̃− given by

χ̃+ =

{
1
2 in B′

r

χ else

}

, χ̃− =

{

−1
2 in B′

r

χ else

}

.

By assumption (8.70), we obtain that

|D′χ|(B′
r) ≤ min

{

|D′χ̃−|(B′
r) +

∫

∂B′
r

|χ− − χ̃−
−| dH1,

|D′χ̃+|(B′
r) +

∫

∂B′
r

|χ− − χ̃−
+| dH1

}

,

where χ−, χ̃−
− and χ̃−

+ denote the interior traces of χ
∣
∣
∂B′

r
, χ̃−

∣
∣
∂B′

r
and χ̃+

∣
∣
∂B′

r
respectively. In

view of the form of χ̃−, χ̃+, this turns into

|D′χ|(B′
r) ≤ min

{∫

∂B′
r

|χ− +
1

2
| dH1,

∫

∂B′
r

|χ− − 1

2
| dH1

}

= min

{

πr +

∫

∂B′
r

χ− dH1, πr −
∫

∂B′
r

χ− dH1

}

≤ πr.
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From this, we deduce (8.72) by monotone convergence under r ↑ 1. We now argue that there

exists an r ∈ [1 − π
4 , 1) such that

∫

∂B′
r

|Dθχ
−| ∈ {0, 2} (8.73)

where
∫

∂B′
r
|Dθχ

−| denotes the total variation of the trace χ− on ∂B′
r. Indeed, we have

L1({r ∈ (0, 1) :

∫

∂B′
r

|Dθχ
−| ≥ 4}) ≤ 1

4

∫ 1

0

(
∫

∂B′
r

|Dθχ
−|
)
dr

≤ 1

4
|D′χ|(B′

1)
(8.72)

≤ π

4
.

Hence, there exists 1 − π
4 ≤ r < 1 such that

∫

∂B′
r

|Dθχ
−| < 4. (8.74)

But since χ− ∈ {−1
2 ,

1
2}, we have that

∫

∂B′
r
|Dθχ

−| ∈ {0, 2, 4, . . . }, so that (8.74) entails (8.73).

We now argue that there exists ν ∈ S1 such that

χ− =

{
1
2 for x′ · ν > 0

−1
2 else

}

H1-a.e. on ∂B′
r, (8.75)

where r is as in (8.73). Indeed, because of (8.73), there exist ν ∈ S1 and α ∈ R such that

χ− =

{
1
2 for x′ · ν > α

−1
2 else

}

H1-a.e. on ∂B′
r. (8.76)

We compare χ with χ̃ given by

χ̃ =







1
2 for x′ · ν > α and x′ ∈ B′

r,

−1
2 for x′ · ν ≤ α and x′ ∈ B′

r,

χ else.







Because of (8.76), the traces of χ
∣
∣
∂B′

r
and χ̃

∣
∣
∂B′

r
coincide. Hence we obtain by the assumption

(8.70),

|D′χ|(B′
r) ≤ |D′χ̃|(B′

r). (8.77)

Because of assumption (8.71) this yields

2r ≤ H1({x′ · ν = α} ∩B′
r),

which enforces α = 0 so that (8.76) turns into (8.75). We finally argue that

χ =

{
1
2 for x′ · ν > 0

−1
2 else

}

L2-a.e. in B′
r, (8.78)

where ν is as in (8.75). Indeed, (8.75) implies that

∫

B′
r

ν ·D′χ =

∫

∂B′
r

ν · x
′

r
χ− dH1 = 2r,

225



Chapter 8. A compactness result in thin-film micromagnetics and the optimality of the Néel wall

whereas (8.77) yields

|D′χ|(B′
r) ≤ H1({x′ · ν = 0} ∩B′

r) ≤ 2r.

Hence we necessarily have

D′χ = ν|D′χ| |D′χ|-a.e. in B′
r.

Since χ ∈ {−1
2 ,

1
2}, this implies that

χ =

{
1
2 for x′ · ν > α

−1
2 else

}

L2-a.e. in B′
r,

for some α ∈ R. Since its trace χ− is given by (8.75), χ must indeed be of form (8.78). �

The next lemma establishes that the characteristic functions from Lemma 8.10 are locally

ordered.

Lemma 8.13 Let m′ : B′
1 → R2 satisfy (8.16). Let χ0 : B′

1 → {−1
2 ,

1
2} have the properties:

• χ0 is the characteristic function of a centered half-space, i.e., there exists ν0 ∈ S1 such

that

χ0 =

{
1
2 for x′ · ν0 > 0

−1
2 else

}

in B′
1;

• χ0 satisfies (8.56).

Let χ : B′
1 → {−1

2 ,
1
2} have the properties:

• χ is the characteristic function of a half-space, i.e., there exist ν ∈ S1 and α ∈ R such that

χ =

{
1
2 for x′ · ν > α

−1
2 else

}

in B′
1;

• χ satisfies (8.56).

Then χ ≤ χ0 in B′
1−π

4
or χ ≥ χ0 in B′

1−π
4
.

Proof of Lemma 8.13. We distinguish three cases.

Case 1: H0({x′ · ν0 = 0} ∩ {x′ · ν = α}) ≤ 1 and α ≤ 0. In this case, we consider χ̃ given by

χ̃ =

{
1
2 for x′ · ν0 > 0 and x′ · ν > α

−1
2 else

}

in B′
1

(see Figure 8.12). We argue that

∇′·(χ̃m′) = |D′χ̃| distributionally in B′
1, (8.79)

∫

B′
r

|D′χ̃| ≥ 2r for all r ∈ (0, 1). (8.80)

Indeed, (8.79) holds distributionally in
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0

0=
2

1

0=-
2

1

=
2

1

=-
2

1

~

=
2

1

~

=-
2

1

O
4

1

Figure 8.12: The characteristics χ0, χ and χ̃ in the ball B′
1

• B′
1 ∩ {x′ · ν0 > 0}, since there χ̃ = χ, so that (8.79) follows from the property (8.56) of χ;

• B′
1 ∩ {x′ · ν0 < 0}, since there χ̃ = −1

2 , so that (8.79) follows from (8.16);

• B′
1 ∩{x′ · ν > α}, since there χ̃ = χ0, so that (8.79) follows from the property (8.56) of χ0;

• B′
1 ∩ {x′ · ν < α}, since there χ̃ = −1

2 , so that (8.79) follows from (8.16).

Hence, (8.79) holds distributionally in B′
1 \ ({x′ · ν0 = 0} ∩ {x′ · ν = α}). By assumption,

{x′ · ν0 = 0} ∩ {x′ · ν = α} consists of at most a single point. But (8.79) is oblivious to

sets of vanishing H1-measure. This establishes (8.79). (8.80) follows from the fact that 0 ∈
∂({x′ · ν0 > 0} ∩ {x′ · ν > α}), which is a consequence of our assumption α ≤ 0. According to

Lemma 8.11, (8.16) and (8.79) imply that χ̃ is minimal in B′
1. According to Lemma 8.12, this

and (8.80) imply that χ̃ is the characteristic function of a centered half-space in B′
1−π

4
. Hence

{x′ · ν0 > 0} ∩ {x′ · ν > α} is a centered half-space in B′
1−π

4
. In view of α ≤ 0, this yields

{x′ · ν0 > 0} ∩ {x′ · ν > α} ∩B′
1−π

4
= {x′ · ν0 > 0} ∩B′

1−π
4
,

that is

x′ · ν > α in {x′ · ν0 > 0} ∩B′
1−π

4
,

whence χ ≥ χ0 in B′
1−π

4
.

Case 2: H0({x′ · ν0 = 0} ∩ {x′ · ν = α}) ≤ 1 and α ≥ 0. In this case, we consider χ̃ given by

χ̃ =

{
1
2 for x′ · ν0 > 0 or x′ · ν > α

−1
2 else

}

in B′
1

and we argue as before to arrive at χ ≤ χ0 in B′
1−π

4
.

Case 3: H0({x′ · ν0 = 0} ∩ {x′ · ν = α}) > 1. In this case, we necessarily have

α = 0 and (ν = ν0 or ν = −ν0).

In the case of ν = ν0, we have χ = χ0. The case of ν = −ν0 cannot occur since then

χ0 + χ = 0 L2-a.e. in B′
1
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so that (8.56) could yield

|D′χ0| + |D′χ| = ∇′·(χ0m
′) + ∇′·(χm′) = 0,

in particular, D′χ0 = 0 which is a contradiction. �

The next lemma establishes Lipschitz continuity of m′ locally in B′
1. Because of translation

and scaling invariance, it suffices to prove the following:

Lemma 8.14 Let m′ be as in Lemma 8.10. Let 0 and y′ ∈ B′
1 be Lebesgue points of m′. Then

|m′(y′) −m′(0)| ≤ 2
√

2

(1 − π
4 )2

|y′| for all y′ ∈ B′
1
2
(1−π

4
)2
.

Proof of Lemma 8.14. Let χ0 and χ denote the characteristic functions associated to 0 and

y′ respectively, according to Lemma 8.10. According to Lemmas 8.11 and 8.12, there exist ν0,

ν ∈ S1 such that

χ0 =

{
1
2 for x′ · ν0 > 0

−1
2 else

}

in B′
1−π

4
, (8.81)

χ =

{
1
2 for (x′ − y′) · ν > 0

−1
2 else

}

in B′(y′, (1 − π

4
)(1 − |y′|)). (8.82)

Since

|y′| ≤ 1

2
(1 − π

4
)2 ≤

1
2 (1 − π

4 )

2 − π
4

,

we have

B′(y′, (1 − π

4
)(1 − |y′|)) ⊃ B′(0, (1 − π

4
)(1 − |y′|) − |y′|) ⊃ B′

1
2
(1−π

4
)
,

so that both (8.81) and (8.82) hold in B′
1
2
(1−π

4
)
. Thus an application of Lemma 8.13 yields

χ ≤ χ0 in B′
1
2
(1−π

4
)2

or χ ≥ χ0 in B′
1
2
(1−π

4
)2
.

W.l.o.g. we consider only the first alternative, that is,

{x′ · ν0 ≤ 0} ∩B′
1
2
(1−π

4
)2

⊂ {(x′ − y′) · ν ≤ 0}.

Thus, ν · ν0 > 0. We introduce the abbreviations

δ :=
y′ · ν
r

, r :=
1

2
(1 − π

4
)2.

By elementary geometry (see Figure 8.13), this implies

|ν − ν0|2 ≤ 2δ2. (8.83)

Indeed, if ν = ν0, then (8.83) is obvious. Otherwise, ν 6= ν0 and then the point of intersection

z′ of the two lines respectively orthogonal to ν0 and ν and passing through 0 and y′, lies outside

the ball B′
r; denoting by θ = ∠(ν, ν0) ∈ (0, π2 ] the angle between ν and ν0, it follows that

y′ · ν
sin θ

= |z′| ≥ r,
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0
y’

z’

m’(0) 

m’(y’) 

Figure 8.13: Geometry of characteristics

that is,

δ ≥ sin θ = 2 sin
θ

2
cos

θ

2
≥ |ν − ν0|

1√
2
.

Hence,

|ν − ν0| ≤
2
√

2

(1 − π
4 )2

|y′|.

It remains to prove that (8.56) implies

ν = m′(y′) and ν0 = m′(0). (8.84)

W.l.o.g. we establish ν0 = m′(0). Indeed, in the view of (8.81), (8.56) takes the form

1

2

∫

{x′·ν0<0}
m′ · ∇′ζ dx′ − 1

2

∫

{x′·ν0>0}
m′ · ∇′ζ dx′ =

∫

{x′·ν0=0}
ζ dH1, (8.85)

for all ζ ∈ C∞
c (B′

1−π
4
). We now fix a ζ1 ∈ C∞

c (B′
1−π

4
) such that

∫

{x′·ν0=0} ζ1 dH1 = 1 and for

r < 1, consider ζr ∈ C∞
c (B′

r(1−π
4
)) given by

ζr(x
′) =

1

r
ζ1(

x′

r
).

Since ∫

R2

|∇′ζr| dx′ =

∫

R2

|∇′ζ1| dx′

and 0 is a Lebesgue point of m′, we have

lim
r→0

(
1

2

∫

{x′·ν0<0}
m′ · ∇′ζr dx′ −

1

2

∫

{x′·ν0>0}
m′ · ∇′ζr dx′

)

= m′(0) · lim
r→0

(
1

2

∫

{x′·ν0<0}
∇′ζr dx′ −

1

2

∫

{x′·ν0>0}
∇′ζr dx′

)

= (m′(0) · ν0) lim
r→0

∫

{x′·ν0=0}
ζr dH1. (8.86)
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Since ∫

{x′·ν0=0}
ζr dH1 =

∫

{x′·ν0=0}
ζ1 dH1 = 1,

we obtain from (8.85) and (8.86), m′(0) · ν0 = 1, which implies (8.84) because of |m′(0)| = 1. �

The last lemma establishes the principle of characteristics form′ inB′
1. Because of translation

and scaling invariance and a continuity argument, it suffices to prove the following:

Lemma 8.15 Let m′ be as in Lemma 8.10 and Lipschitz continuous. Then

m′(tm′(0)⊥) = m′(0) for all |t| < 1 − π

4
. (8.87)

Proof of Lemma 8.15. Let χ be the characteristic function associated to 0 according to

Lemma 8.10. From Lemmas 8.11 and 8.12 we gather that there exists ν ∈ S1 such that

χ =

{
1
2 for x′ · ν > 0

−1
2 else

}

in B′
1−π

4
.

As in Lemma 8.14 we deduce from (8.56) and the continuity of m′:

m′ = ν on {x′ · ν = 0} ∩B′
1−π

4
.

This is a reformulation of (8.87). �

8.5 Optimality of the straight walls

In this section, we prove Theorem 8.1:

Proof of Theorem 8.1. Let m′ : R2 → S1 and h : R3 → R3 satisfy the hypothesis of

Theorem 8.1. Using the same argument as in the proof of Theorem 8.4 and because of (8.1),

there exists a set G′ ⊂ R2 with the outer normal ν ′ such that

G′ is L−periodic in x2,

(1,+∞) × R ⊂ G′, (−∞,−1) × R ⊂ R2 \G′

m′ = ν ′ on ∂G′
(8.88)

(see Figure 8.14). This set was introduced in [39]. We consider the related characteristic function

χ =







−1
2 in R2 \G′,

1
2 in G′.

(8.89)

Then (8.88) translates into

χ is L−periodic in x2, (8.90)

χ = ±1

2
for ± x1 ≥ 1, (8.91)

∫

R×[0,L)
η2χ∇′ ·m′ dx′ = −

∫

R×[0,L)
∇′(η2) ·m′χdx′ −

∫

R×[0,L)
η2|D′χ|, (8.92)
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x2

x1

=-
2

1

=
2

1

G’

m’

Figure 8.14: Center line of the wall

where η ∈ C∞(R3) is a L−periodic function in x2 that satisfies (8.39). We also introduce the

energy density e as a non-negative measure on R3 via
∫

R3

ζ de =
2

π
| ln ε|

(

ε

∫

R2

ζ|∇′ ·m′|2 dx′ +
∫

R3

ζ|h|2 dx
)

, ∀ζ ∈ C∞
c (R3). (8.93)

Step 1. We have an a priori bound on L−1
∫

R×[0,L) |D′χ| in terms of L−1e(R × [0, L)× R): for

any α ∈ (0, 1),

(1 − α)L−1

∫

R×[0,L)
|D′χ| ≤ m1,∞ +

1

4α
L−1e(R × [0, L) × R) (8.94)

+
CL̃4

L2
√

| ln ε|

(

L−1e(R × [0, L) × R)

)1/2(

1 + L−1

∫

R×[0,L)
|D′χ|

)

,

where L̃ = max{2, L}. Indeed, with the above choices and notations, (8.41) turns into
∣
∣
∣
∣

∫

R×[0,L)
η2χ∇′ ·m′ dx′

∣
∣
∣
∣

(8.91)

≤
(∫

R×[0,L)×R

η2 de

∫

R×[0,L)
η2|D′χ|

)1/2

+
CL̃3

L2
sup
R3

|η|
(

| ln ε|−1e(R × [0, L) × R)

)1/2

× (sup
R3

|η| + L sup
R3

|∇η|) ·
(

L1/2 + L−1/2

∫

R×[0,L)
|D′χ|

)

.

Using (8.92) on the left-hand side and Young’s inequality on the first term of the right-hand

side yields for any α ∈ (0, 1),

(1 − α)

∫

R×[0,L)
η2|D′χ| ≤ −

∫

R×[0,L)
∇′(η2) ·m′χdx′ +

1

4α

∫

R×[0,L)×R

η2 de

+
CL̃3

L2
sup
R3

|η|
(

| ln ε|−1e(R × [0, L) × R)

)1/2

× (sup
R3

|η| + L sup
R3

|∇η|) ·
(

L1/2 + L−1/2

∫

R×[0,L)
|D′χ|

)

.

(8.95)

We select η : R3 → R such that

η = η(x1, x3), η = 1 on (−1, 1) × R × {0},
supp η ⊂ (−2, 2) × R × (−1, 1), |η| ≤ 1, |∇η| ≤ C.

(8.96)

231



Chapter 8. A compactness result in thin-film micromagnetics and the optimality of the Néel wall

We consider the terms in (8.95) one-by-one:

∫

R×[0,L)
η2|D′χ| (8.91,8.96)

=

∫

R×[0,L)
|D′χ|,

−
∫

R×[0,L)
∇′(η2) ·m′χdx′

(8.1,8.91,8.96)
= −

∫

(−∞,−1)×[0,L)

(

∂1η
2

0

)

·
(

m1,∞
−
√

1 −m1,∞2

)

−1

2
dx′

−
∫

(1,+∞)×[0,L)

(

∂1η
2

0

)

·
(

m1,∞
√

1 −m1,∞2

)

1

2
dx′

= Lm1,∞, (8.97)
∫

R×[0,L)×R

η2 de ≤ e(R × [0, L) × R).

Using (8.96) to estimate the η−terms in (8.95), we then obtain

(1 − α)

∫

R×[0,L)
|D′χ| ≤ Lm1,∞ +

1

4α
e(R × [0, L) × R)

+
CL̃4

L2
√

| ln ε|
e(R × [0, L) × R)1/2

(√
L+

1√
L

∫

R×[0,L)
|D′χ|

)

.

Dividing by L yields (8.94).

Step 2. Sketch of the proof of Theorem 8.1. We give an argument by contradiction. To

this purpose, we consider sequences {εk}k∈N ⊂ (0,∞) with εk ↓ 0, {m′
k : R2 → S1}k↑∞ and

{hk : R3 → R3}k↑∞ that satisfy the first three hypothesis in Theorem 8.1 and

lim sup
k→∞

L−1ek(R × [0, L) × R) ≤ (1 −m1,∞)2, (8.98)

which corresponds to (8.10) (here, ek is the energy density (8.93) associated to m′
k and hk).

Because of periodicity of ek, (8.98) implies that the energy is locally bounded, so that we may

apply Theorem 8.4. Hence there exists a measurable m′ : R2 → S1 with

m′
k → m′ in L1

loc(R
2), (8.99)

after passage to a subsequence. Properties (8.1) and (8.3) are preserved under (8.99) while in

addition (see Theorem 8.4),

∇′ ·m′ = 0 distributionally in R2.

Because of (8.1) and (8.3), (8.99) yields

∫

R×[0,L)
|m′

k −m′| dx′ → 0.

We thus have to argue that m′ has the form (8.12). Because of periodicity of e, (8.98) implies

that exists a non-negative measure e on R3 such that

ek
w∗
⇀ e weakly∗ in M(R3), (8.100)
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after passage to a subsequence. Notice that (8.98) is preserved under (8.100):

L−1e(R × [0, L) × R) ≤ (1 −m1,∞)2. (8.101)

We shall argue that there exists an x∗1 ∈ [−1, 1] such that

supp e ∩ (−2, 2) × R × (−1, 1) ⊂ {x∗1} × R × {0}. (8.102)

We then apply Theorem 8.5 on balls in (−2, x∗1)×R×(−1, 1) and (x∗1, 2)×R×(−1, 1) respectively.

This yields that m′ is locally Lipschitz and satisfies the principle of characteristics in both

(−2, x∗1) × R × (−1, 1) and (x∗1, 2) × R × (−1, 1). In view of the form (8.1), this indeed implies

that m′ is of the form (8.12). Hence it suffices to show (8.102).

Step 3. Proof of (8.102). We first address the function χk defined as in (8.89) for m′
k. In

view of (8.94) (applied to χk and ek) and (8.98), we have
{

L−1

∫

R×[0,L)
|D′χk|

}

k↑∞
is bounded. (8.103)

Because of periodicity (8.90), there exists a measurable function χ : R2 → {−1
2 ,

1
2} of locally

bounded variation such that

χk → χ in L1
loc(R

2). (8.104)

Notice that periodicity (8.90) and the boundary conditions (8.91) are preserved by (8.104). We

shall argue in Step 4 that χ is of the form

χ = ±1

2
for ± x1 > ±x∗1, (8.105)

for some x∗1 ∈ [−1, 1]. Now we give the argument how (8.105) implies (8.102). For this we turn

back to (8.95). Again, because of the convergences (8.99), (8.100), (8.104) and the boundedness

expressed in (8.98) and (8.103), (8.95) (applied for χk, m
′
k and ek) yields in the limit as k → ∞

(1 − α)

∫

R×[0,L)
η2|D′χ| ≤ −

∫

R×[0,L)
∇′(η2) ·m′χdx′ +

1

4α

∫

R×[0,L)×R

η2 de (8.106)

for any η ∈ C∞(R3) that is L− periodic in x2 and satisfies (8.39). We choose

α =
(1 −m1,∞)

2
.

In view of (8.106),
∫

R×[0,L)×R

ζ dλ =
1

4α

∫

R×[0,L)×R

ζ de−
∫

R×[0,L)
∇′ζ ·m′χdx′ − (1 − α)

∫

R×[0,L)
ζ|D′χ|

defines a non-negative distribution in (−2, 2) × R × (−1, 1) for functions ζ : R3 → R which are

L−periodic in x2 and satisfy (8.39). Because of (8.105), λ simplifies to
∫

R×[0,L)×R

ζ dλ =
1

4α

∫

R×[0,L)×R

ζ de

+
1

2

∫

(−∞,x∗1)×[0,L)
∇′ζ ·m′ dx′ − 1

2

∫

(x∗1 ,∞)×[0,L)
∇′ζ ·m′ dx′

− (1 − α)

∫

[0,L)
ζ(x∗1, x2, 0) dx2.

(8.107)
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In fact, λ is a non-negative measure: because of |m′| = 1 and the divergence-free property

(see (8.16)), we have
∣
∣
∣
∣

1

2

∫

(−∞,x∗1)×[0,L)
∇′ζ ·m′ dx′ − 1

2

∫

(x∗1,∞)×[0,L)
∇′ζ ·m′ dx′

∣
∣
∣
∣
≤
∫

[0,L)
|ζ(x∗1, x2, 0)| dx2. (8.108)

Estimate (8.108) formally follows from integration by parts and can be rigorously established by

approximating m′ with smooth m′’s while preserving |m′| ≤ 1, ∇′ ·m′ = 0 and the periodicity

in x2. We now consider ζ = η2 in (8.107) such that (8.39) holds and

η = η(x1, x3), η = 1 on (−1, 1) × R × {0}, |η| ≤ 1.

Using the same arguments as in (8.97), we learn that (8.107) turns into
∫

R×[0,L)×R

η2 dλ =
1

4α

∫

R×[0,L)×R

η2 de+ Lm1,∞ − L(1 − α).

Since (8.101) implies that

∫

R×[0,L)×R

η2 de ≤ e(R × [0, L) × R) ≤ L(1 −m1,∞)2, this yields

∫

R×[0,L)×R

η2 dλ ≤ L

[
1

4α
(1 −m1,∞)2 +m1,∞ − (1 − α)

]

=0.

We let η2 converge monotonically to one in (−2, 2)×R× (−1, 1) and obtain λ((−2, 2)× [0, L)×
(−1, 1)) ≤ 0 and thus, λ ≡ 0 in (−2, 2) × [0, L) × (−1, 1). Hence, (8.107) simplifies to

1

4α

∫

R×[0,L)×R

ζ de = (1 − α)

∫

[0,L)
ζ(x∗1, x2, 0) dx2

− 1

2

∫

(−∞,x∗1)×[0,L)
∇′ζ ·m′ dx′ +

1

2

∫

(x∗1,∞)×[0,L)
∇′ζ ·m′ dx′

(8.108)

≤ (1 − α)

∫

[0,L)
ζ(x∗1, x2, 0) dx2 +

∫

[0,L)
|ζ(x∗1, x2, 0)| dx2,

for every ζ ∈ C∞(R3) that is L−periodic in x2 and satisfies (8.39). This implies (8.102) by

periodicity of e. Thus, it remains to prove (8.105).

Step 4. Proof of (8.105). We first notice that because of (8.98), (8.103) and the lower semi-

continuity of
∫

R×[0,L) |D′χk| under (8.104), (8.94) (applied for χk and ek) yields in the limit as

k → ∞,

(1 − α)L−1

∫

R×[0,L)
|D′χ| ≤ m1,∞ +

(1 −m1,∞)2

4α
.

As before, the choice of α =
(1−m1,∞)

2 gives

L−1

∫

R×[0,L)
|D′χ| ≤ 1. (8.109)

Now the boundary conditions (8.91) and the inequality (8.109) enforce the form (8.105). For

the convenience of the reader, we display this standard argument. Let µ and ν ′ be the measure-

theoretic line measure |D′χ| and normal
D′χ
|D′χ| related to the function χ of bounded variation.
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Both inherit the periodicity of χ and are characterized by

−
∫

R×[0,L)
∇′ · ζ ′χdx′ =

∫

R×[0,L)
ν ′ · ζ ′ dµ (8.110)

for all ζ ′ : R2 → R2 which are L−periodic in x2 and compactly supported in x1. Now we show

that (8.91) yields
∫

R×[0,L)
ν1 dµ = L. (8.111)

Indeed, (8.111) can be seen by selecting a function η = η(x1) with η = 1 for |x1| ≤ 1 and

suppη ⊂ (−2, 2) so that

∫

R×[0,L)
ν1 dµ =

∫

R×[0,L)
η2ν1 dµ

(8.110)
= −

∫

R×[0,L)

dη2

dx1
χdx′

= −
∫

(−∞,−1)×[0,L)

−1

2

dη2

dx1
dx′ −

∫

(1,∞)×[0,L)

1

2

dη2

dx1
dx′ = L.

Now (8.109) (i.e.,

∫

R×[0,L)
dµ ≤ L) and (8.111) combine to

∫

R×[0,L)(1 − ν1) dµ ≤ 0. But since

1− ν1 ≥ 0 we must have 1− ν1 = 0 µ−a.e., that is, ν =

(

1

0

)

µ−a.e. Hence (8.110) turns into

−
∫

R×[0,L)
∇′ · ζ ′χdx′ =

∫

R×[0,L)
ζ1 dµ. (8.112)

Choosing ζ ′ with ζ1 ≡ 0, we deduce that χ has a representative with χ = χ(x1). In particular,

(8.112) then yields

−
∫

R

dη2

dx1
χdx1 ≥ 0,

for all η = η(x1) with compact support. Hence χ has a representative with χ = χ(x1) that is

monotone non-decreasing. Since χ ∈ {−1
2 ,

1
2}, this yields (8.105). Now the proof of the theorem

is completed. �

Remark: One can improve (8.102) to supp e ⊂ {x∗1} × R × {0} using Corollary 8.9 for trial

functions η with support in (−a, a) × R × (−a, a), where a is arbitrarily large.

8.6 The case of 1d magnetizations

In the framework of Theorem 8.1, we focus here on 1d magnetizations m′ = (m1(x1),m2(x1)).

As in [39], we consider the minimal stray field corresponding to m′ in the strip R × [0, 1). For

that, let U ∈ H1
0 (R× (0, 1)×R) be the unique 1−periodic function in x2−direction that satisfies

∫

R×(0,1)×R

∇U · ∇ζ dx = −
∫

R×(0,1)
ζ∇′ ·m′ dx′, ∀ζ ∈ C∞

c (R × (0, 1) × R). (8.113)

(That is a direct application of the Lax-Milgram Theorem.) The function U is the unique

symmetric harmonic map in H1
0 (R× (0, 1)×R) with the trace of the normal derivative given by
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∇′ ·m′, i.e., 





∆U = 0 in R × (0, 1) × (R \ {0}),
[
∂U
∂x3

]

= ∇′ ·m′ on R × (0, 1),

where [ξ] denotes the jump of a quantity ξ across the plane R2 × {0}. Then an elementary

computation yields that the stray field energy is given by the homogeneous H−1/2 norm of the

divergence of m′:
∫

R×(0,1)×R

|∇U |2 dx =
1

2

∫

R×(0,1)

∣
∣
∣
∣
|∇′|−1/2∇′ ·m′

∣
∣
∣
∣

2

dx′. (8.114)

Since m′ is one-dimensional, then

∫

R×(0,1)

∣
∣
∣
∣
|∇′|−1/2∇′ ·m′

∣
∣
∣
∣

2

dx′ =

∫

R

∣
∣
∣
∣

∣
∣
d

dx1

∣
∣1/2m′

∣
∣
∣
∣

2

dx1

and therefore, (8.114) explains the expression of the energy E1d
ε (m′) given in (8.9). Also observe

that the chosen stray field energy is minimal because for any h : R3 → R3 that is 1−periodic in

x2 and satisfies (8.2) for ∇′·m′, we have
∫

R×(0,1)×R

|∇U |2 dx ≤
∫

R×(0,1)×R

|h|2 dx.

We now present the proof of Theorems 8.2 and 8.3:

Proof of Theorem 8.2. We proceed in several steps:

Step 1. We show that

m1,k −m1,∞ → 0 in L1(R) as k → ∞.

Indeed, by (8.1) and (8.13), we deduce that

∫

R

|m1,k −m1,∞|2 dt =

∫ 1

−1
|m1,k −m1,∞|2 dt =

∫ 1

−1

∫ 3

2
|m1,k(t) −m1,k(t+ s)|2 dt ds

≤ 9

∫ 1

−1

∫ 3

2

|m1,k(t) −m1,k(t+ s)|2
s2

dt ds

≤ 9

∫

R

∫

R

|m1,k(t) −m1,k(s)|2
|t− s|2 dt ds → 0 as k → ∞

and the conclusion follows by (8.1).

Step 2. We locate the regions where m1,k (and m2,k) have large variations. For that, we choose

the intervals (akn, b
k
n), n = 1, . . . , Nk in the following way (see Figure 8.15): we set bk0 = −∞ and

we recursively define for n = 1, . . . , Nk, b
k
n ∈ (bkn−1, 1] to be the smallest number such that

m2,k(b
k
n) =

(−1)n−1
√

1 −m1,∞2

2

and respectively, akn ∈ [bkn−1, b
k
n] be the biggest number such that

m2,k(a
k
n) =

(−1)n
√

1 −m1,∞2

2
.
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Figure 8.15: The variations of m2

By (8.1), we have that

−1 < ak1 < bk1 ≤ ak2 < bk2 ≤ · · · ≤ akNk
< bkNk

< 1 and Nk ≤
2

1 −m1,∞2

∫

R

∣
∣
dm2,k

dt

∣
∣2 dt

since

1 −m1,∞2

bkn − akn
=

1

bkn − akn

(∫ bkn

ak
n

dm2,k

dt
dt

)2

≤
∫ bkn

ak
n

∣
∣
dm2,k

dt

∣
∣2 dt ≤

∫

R

∣
∣
dm2,k

dt

∣
∣2 dt.

We also notice that Nk is an odd integer (because of (8.1)),

|m2,k| ≤
√

1 −m1,∞2

2
in any interval (akn, b

k
n) (8.115)

and (−1)n−1m2,k ≤
√

1 −m1,∞2

2
in (bkn−1, b

k
n) , n = 1, . . . , Nk. (8.116)

Step 3. We prove that the sequence {Nk} is bounded. The idea is to define a good step function

with 2Nk jumps and to apply Corollary 8.9. Set

χk =







sgn(m1,k) in (akn, c
k
n) for n = 1, . . . , Nk,

0 elsewhere,

where ckn ∈ [akn, b
k
n] is the smallest number such that m2,k(c

k
n) = 0. Since (8.115) implies that
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m1,k does not change sign in (akn, c
k
n), we obtain:

∫

R

∣
∣
dχk
dt

∣
∣ = 2Nk

∫ 1

−1
χk

dm1,k

dt
dt =

Nk∑

n=1

∫ ckn

ak
n

sgn(m1,k)
dm1,k

dt
dt

=

Nk∑

n=1

(
|m1,k|(ckn) − |m1,k|(akn)

)
= Nk

(
1 −

√

3 +m1,∞2

2

)
.

(8.117)

Now we apply Corollary 8.9 for the harmonic extension Uk of m′
k given by (8.113) where we

choose L = 1 and for the test function η = η(x1, x3) : R3 → [−1, 1] with η = 1 in (−1, 1)×R×{0}
and supp η ⊂ (−2, 2) × R × (−1, 1),

∣
∣
∣
∣

∫

R×[0,1)
η2χk

dm1,k

dx1
dx′
∣
∣
∣
∣
≤
(

4

π
| ln εk|

∫

R×[0,1)
η2|D′χk|

∫

R×[0,1)×R

η2|∇Uk|2 dx
)1/2

+ C

(

εk

∫

R×[0,1)
|dm1,k

dx1
|2 dx′ +

∫

R×[0,1)×R

|∇Uk|2 dx
)1/2

×
(

1 +

∫

R×[0,1)
|D′χk|

)

,

that is,

∣
∣
∣
∣

∫ 1

−1
χk
dm1,k

dt
dt

∣
∣
∣
∣

(8.114)

≤ C

(

| ln εk|E1d
εk

(m′
k)

∫

R

|dχk
dt

|
)1/2

+
C

√

| ln εk|

(

| ln εk|E1d
εk

(m′
k)

)1/2

×
(

1 +

∫

R

|dχk
dt

|
)

.

Therefore, by (8.13) and (8.117), we deduce that Nk ≤ C for some absolute constant C > 0.

Step 4. We show that the sequence {m2,k} is relatively compact in L1
loc

. We consider the step

function

ψk =

Nk+1
∑

n=1

(−1)n
√

1 −m1,∞2 1(bkn−1,b
k
n),

where bkNk+1 = +∞. Observe that

∫

R

|dψk
dt

| = 2Nk

√

1 −m1,∞2.

It follows by Step 3 that the sequence {ψk} is bounded in BV
loc

(R). Therefore, any accumulation

point ψ : R → {±
√

1 −m1,∞2} of {ψk} in L1
loc is of bounded variation and has the form

ψ =

2N∑

n=1

(−1)n
√

1 −m1,∞2 1(bn−1,bn),
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where −∞ = b0 < b1 < · · · < b2N−1 < b2N = +∞ and bn ∈ [−1, 1] for n = 1, . . . , 2N − 1.

Finally, by (8.116), we have that |ψk +m2,k| ≥
√

1−m1,∞2

2 in R and therefore,

∫

R

|ψk −m2,k| dt =

∫ 1

−1
|ψk −m2,k| dt ≤

2
√

1 −m1,∞2

∫ 1

−1
|ψ2
k −m2

2,k| dt

≤ 2
√

1 −m1,∞2

∫ 1

−1
|(1 −m1,∞2) −m2

2,k| dt

≤ 4
√

1 −m1,∞2

∫ 1

−1
|m1,k −m1,∞| dt.

We conclude by Step 1 that up to a subsequence, m2,k − ψ → 0 in L1(R), i.e.,

m′
k −

(

m1,∞
ψ

)

→ 0 in L1(R)

as k → ∞. �

Since the asymptotic limit of the sequence {m′
k} belongs to BV , one may ask whether the

sequence {m′
k} is bounded in BV . The answer is negative according to Theorem 8.3. The idea

is that m′
k may have small variations on a large number of intervals (that have not been taken

into account in the construction of the trial functions χk in the previous proof).

Proof of Theorem 8.3. For simplicity, we assume that m1,∞ = 0. Set δ = ε1/4, ω = ε1/2 and

η = ε| ln ε|. For small ε > 0, we consider the following sample in (−ω, ω):

fε(t) =







δ
| ln ε| ln

ω√
t2+ε2

if |t| ≤
√
ω2 − ε2 ,

0 if t ∈ (−ω, ω) \ (−
√
ω2 − ε2,

√
ω2 − ε2).

We define m1,ε as follows: we fill in the intervals (−1,−1
2 ) and (1

2 , 1) by at most 1
2ω samples of

length 2ω where m1,ε is given via fε. In the interval (−
√

1
2 − η2,

√
1
2 − η2), set

m1,ε(t) =
1

| ln(
√

2η)|
ln

1
√

2(t2 + η2)
.

Otherwise, we set m1,ε = 0. Hence, m1,ε is an H1−function, |m1,ε| ≤ δ/2 in R \ (−1
2 ,

1
2) and

m1,ε(0) = 1. We then define

m2,ε(t) = ±
√

1 −m2
1,ε(t) if ± t ≥ 0;

hence, m2,ε is an H1−function and (8.1) is satisfied. We compute the energy E1d
ε ( (m1,ε,m2,ε) ).

We have for ε≪ 1,
∫

(−1,− 1
2
)∪( 1

2
,1)

∣
∣
dm1,ε

dt

∣
∣2 dt ≤ C

ω

∫ ω

−ω

δ2

| ln ε|2
t2

(t2 + ε2)2
dt

≤ C

ε| ln ε|2
∫ ω

ε

0

y2

(y2 + 1)2
dy ≤ C

ε| ln ε|2
(
1 +

∫ ε−1/2

1

dy

y

)
≤ C

ε| ln ε| .

(8.118)
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Similarly, we compute that ∫

(− 1
2
, 1
2
)

∣
∣
dm1,ε

dt

∣
∣2 dt ≤ C

ε| ln ε| .

Now we compute the homogeneous H1/2−norm of m1,ε. For that, we extend the function m1,ε

to the entire plane by

m̃1,ε(t, s) = m1,ε(
√

t2 + s2) , ∀(t, s) ∈ R2.

According to the trace estimate in H1/2, it follows by the same argument as in (8.118),

∫

R

∣
∣
∣
∣

∣
∣
d

dt

∣
∣1/2m1,ε

∣
∣
∣
∣

2

dt ≤ 1

2

∫

R2

|∇m̃1,ε(t, s)|2 dt ds

≤ C

ω

∫ ω

0

δ2

| ln ε|2
t3

(t2 + ε2)2
dt+

C

| ln η|2
∫ 1/2

0

t3

(t2 + ε2)2
dt ≤ C

| ln ε| .

Hence, | ln ε|E1d
ε (m′

ε ) ≤ C where C > 0 is a universal constant. On the other hand, we have

∫

R

∣
∣
dm1,ε

dt

∣
∣ dt ≥

∫

(−1,− 1
2
)∪( 1

2
,1)

∣
∣
dm1,ε

dt

∣
∣ dt ≥ Cδ

ω| ln ε|

∫ ω

0

t

(t2 + ε2)
dt ≥ C

ε1/4
→ ∞ as ε→ 0.

�
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Abstract

In this dissertation, we first study the problem of lifting for functions u ∈ BV (Ω, S1). We

prove the existence of a BV lifting with an optimal control on the total variation. Then we

compute the minimal variation of a lifting and construct an optimal lifting in the case of Ω ∈
{S1, S2}; if Ω = S2, that relies on the study of topological singularities of u. We also show the

connection between optimal liftings and minimizers of a Γ−limit energy.

In the second part, we study the vortex structure of a rotating Bose-Einstein condensate.

We estimate the critical rotational speeds Ωd for having exactly d vortices inside the bulk of the

condensate and we determine their topological charge and their precise location.

Next we are interested in 1d transition layers which connect two opposite magnetisations (so

called Néel walls) in a thin-film sample in micromagnetism. We prove the optimality of the Néel

wall under 2d perturbations.

Keywords: BV functions, lifting, minimal connection, Γ−limit energy, Bose-Einstein conden-

sate, vortices, renormalized energy, micromagnetism, Néel wall.




