
Energy expansion and vortex location for a two

dimensional rotating Bose-Einstein condensate

Radu Ignat Vincent Millot

Laboratoire J.L. Lions, Université Pierre et Marie Curie, B.C. 187
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Abstract

We continue the analysis started in [14] on a two dimensional rotating Bose-Einstein condensate
where we minimize a Gross-Pitaevskii energy defined in R2 under the unit mass constraint. We
estimate the critical rotational speeds Ωd for having d vortices in the bulk of the condensate and we
determine precisely their location. Our approach relies on an asymptotic expansion of the energy.

1 Introduction

Since its first experimental achievement in dilute alkali gases, the phenomenon of Bose-Einstein
condensation has given rise to a very active area of research in condensed matter physics. A Bose-
Einstein condensate (BEC) is a quantum object in which every atom is in the lowest quantum state, so
that it can be described by a single wave function. One of the most interesting feature of these systems
is the superfluid behavior (see [10]): above some critical velocity, a BEC rotates through the existence
of vortices, i.e., zeroes of the wave function around which there is a circulation of phase. When the
angular speed gets larger, the number of vortices increases and they arrange themselves in a regular
pattern around the center of the condensate. This has been observed experimentally by the ENS group
[16, 17] and by the MIT group [1].

We consider here a two dimensional model describing a condensate placed in a trap that strongly
confines the atoms in the direction of the rotation axis. In the nondimensionalized form (see [2]), the
wave function uε minimizes the Gross-Pitaevskii energy

Fε(u) =
∫

R2

{
1
2
|∇u|2 +

1
4ε2

[
(|u|2 − a(x))2 − (a−(x))2

]− Ωx⊥ ·(iu,∇u)
}

dx (1.1)

under the constraint ∫

R2

|u|2 = 1 (1.2)

1
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where ε > 0 is small and describes the ratio of two characteristic lengths and Ω = Ω(ε) ≥ 0 is the
angular velocity. The function a(x) in (1.1) comes from the existence of a potential trapping the atoms,
and is normalized such that

∫
R2 a+(x) = 1. We will restrict our attention to the specific case of a

harmonic trapping, that is a(x) = a0−x2
1−Λ2x2

2 with a0 =
√

2Λ/π for some constant Λ ∈ (0, 1], which
corresponds to actual experiments (see [16, 17]).

Our goal is to compute an asymptotic expansion of the energy Fε(uε) and to determine the number
and the location of vortices of the wave function uε according to the value of the angular speed Ω(ε)
in the limit ε → 0. More precisely, we want to estimate the critical velocity Ωd for which the d th
vortex becomes energetically favorable and to express the part of the energy governing the location of
the vortices (the “renormalized energy”).

We have started in [14] the analysis of minimizers of the functional Fε under the constraint (1.2)
and we have determined the critical rotational speed Ω1 =

√
π(1+Λ2)√

2Λ
| ln ε| of nucleation of a first vortex

inside the domain
D =

{
x ∈ R2 : a(x) > 0

}
.

Actually, the set D represents the region occupied by the condensate since in the limit ε → 0, the
minimization of Fε forces |uε|2 to be close to a+. We proved that for subcritical velocities Ω ≤ Ω1 −
δ ln | ln ε| with −δ < ω?

1 < 0 for some constant ω?
1, there is no vortex in D and uε behaves as the

“vortex-free profile” η̃εe
iΩS . Here, the phase function S : R2 → R is given by

S(x) =
Λ2 − 1
Λ2 + 1

x1 x2 (1.3)

and η̃ε is the positive solution of the minimization problem

Min
{
Eε(u) : u ∈ H, ‖u‖L2(R2) = 1

}
(1.4)

where

Eε(u) =
∫

R2

1
2
|∇u|2 +

1
4ε2

[
(|u|2 − a(x))2 − (a−(x))2

]
and H =

{
u ∈ H1(R2,C) :

∫

R2

|x|2|u|2 < ∞}
.

In this paper, we push forward the study of the shape of minimizers uε started in [14]. We find the
following estimate of the critical speed Ωd as ε → 0 ,

Ωd =
1 + Λ2

a0
(| ln ε|+ (d− 1) ln | ln ε|) =

√
π(1 + Λ2)√

2Λ
(| ln ε|+ (d− 1) ln | ln ε|)

for any integer d ≥ 1. We prove that for velocities ranged between Ωd and Ωd+1, the wave function has
exactly d vortices of degree +1 inside D and we obtain the asymptotic expansion of Fε(uε) as ε → 0. The
vortices are distributed near the origin in a regular configuration in order to minimize the renormalized
energy given by (1.5) below. We also improve the result stated in [14] for the nonexistence of vortices
in the subcritical case by showing that the best constant is ω?

1 = 0, that is subcritical velocities go up
to Ω1 − δ ln | ln ε| for any δ > 0.

Our main theorem can be stated as follows:
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Theorem 1.1. Let uε be any minimizer of Fε in H under the constraint (1.2) and let 0 < δ ¿ 1 be
any small constant.

(i) If Ω ≤ Ω1− δ ln | ln ε|, then for any R0 <
√

a0 , there exists εR0 > 0 such that for any ε < εR0, uε

is vortex free in BΛ
R0

=
{
x ∈ R2 : |x|2Λ = x2

1 + Λ2x2
2 ≤ R2

0

}
, i.e., uε does not vanish in BΛ

R0
. In

addition,
Fε(uε) = Fε(η̃εe

iΩS) + o(1).

(ii) If Ωd + δ ln | ln ε| ≤ Ω ≤ Ωd+1 − δ ln | ln ε| for some integer d ≥ 1, then for any R0 <
√

a0, there
exists εR0 > 0 such that for any ε < εR0, uε has exactly d vortices xε

1, . . . , x
ε
d of degree one in BΛ

R0
.

Moreover,

|xε
j | ≤ C Ω−1/2 for any j = 1, . . . , d , and |xε

i − xε
j | ≥ C Ω−1/2 for any i 6= j

where C > 0 denotes a constant independent of ε. Setting x̃ε
j =

√
Ωxε

j , the configuration
(x̃ε

1, . . . , x̃
ε
d) tends to minimize as ε → 0 the renormalized energy

w(b1, . . . , bd) = −πa0

∑

i 6=j

ln |bi − bj |+ πa0

1 + Λ2

d∑

j=1

|bj |2Λ. (1.5)

In addition,

Fε(uε) = Fε(η̃εe
iΩS)− πa2

0d

1 + Λ2
(Ω− Ω1) +

πa0

2
(d2 − d) ln | ln ε|+ Min

b∈R2d
w(b) + Qd,Λ + o(1) (1.6)

where Qd,Λ is a constant depending only on d and Λ.

These results are in agreement with the study made by Castin and Dum [11] which have looked for
minimizers in a reduced class of functions. More precisely, we find the same critical angular velocity Ω1

as well as the regular distribution of vortices around the origin at a scale
√

Ω . Our approach relies on
the mathematical framework proposed by Aftalion and Du [2].

The minimizing configurations for the renormalized energy w(·) in the radial case Λ = 1 has been
studied by Gueron and Shafrir in [12]. They prove that for d ≤ 6, regular polygons centered at the
origin and “stars” are local minimizers. For larger d, they numerically found minimizers with a shape
of concentric polygons and then triangular lattices as d increases. These figures are exactly the ones
observed in physical experiments (see [16, 17]).

Before describing the main ideas of the proof of Theorem 1.1, we shall recall some properties of any
minimizer uε and of the profile η̃ε proved in [14]. In the regime

Ω ≤ 1 + Λ2

a0

(
| ln ε|+ ω1 ln | ln ε|

)
(1.7)

for some constant ω1 ∈ R, we proved the existence and smoothness of any minimizer uε of Fε under
the constraint (1.2) and some preliminary results about their behavior: Eε(uε) ≤ C| ln ε|2, |uε| .

√
a+



R. Ignat & V. Millot 4

in any compact K ⊂ D and |uε| decreases exponentially quickly to 0 outside D. For every ε > 0, we
showed the existence and uniqueness of the positive minimizer η̃ε of Eε under the mass constraint (1.2).
Moreover, the corresponding Lagrange multiplier kε ∈ R satisfies

|kε| ≤ C| ln ε| (1.8)

and we have Eε(η̃ε) ≤ C| ln ε| for ε small and η̃ε →
√

a+ in L∞(R2) ∩ C1
loc(D) as ε → 0. Using a

splitting technique introduced by Lassoued and Mironescu [15], we obtained that for any u ∈ H, the
energy Fε(u) decouples into two independent parts: the energy of the “vortex-free profile” η̃εe

iΩS and
a reduced energy of v = u/(η̃εe

iΩS), i.e.,

Fε(u) = Fε(η̃εe
iΩS) + F̃ε(v) + T̃ε(v) (1.9)

where the functionals F̃ε and T̃ε are defined as follows

F̃ε(v)= Ẽε(v) + R̃ε(v), (1.10)

Ẽε(v)=
∫

R2

η̃2
ε

2
|∇v|2 +

η̃4
ε

4ε2
(|v|2 − 1)2 , R̃ε(v)=

Ω
1 + Λ2

∫

R2

η̃2
ε∇⊥a · (iv,∇v) , (1.11)

T̃ε(v) =
1
2

∫

R2

(
Ω2|∇S|2 − 2Ω2x⊥ · ∇S + kε

)
η̃2

ε(|v|2 − 1). (1.12)

Now the vortex structure of a minimizer uε can be studied via the map

vε = uε/(η̃εe
iΩS),

applying the Ginzburg-Landau techniques to the weighted energy Ẽε(vε). The difficulty will arise in
the region where η̃ε is small and we will require the following properties of vε inherited from uε and η̃ε

(see [14]): Ẽε(vε) ≤ C| ln ε|2, ∣∣T̃ε(vε)
∣∣ ≤ o(1), |R̃ε(vε)| ≤ C| ln ε|2, |∇vε| ≤ CKε−1 and |vε| . 1 in any

compact K ⊂ D. Since η̃ε is close to
√

a+, it is more convenient to estimate the energies Fε, Eε and
Rε (see Notations below) of vε inside D. In the regime (1.7), we computed in [14] some fundamental
bounds for the energy of vε in a domain slightly smaller than D:

Fε(vε,Dε) ≤ o(1), (1.13)

Eε(vε,Dε) ≤ Cω1 | ln ε|, (1.14)

Eε(vε,Dε \ {|x|Λ < 2| ln ε|−1/6}) ≤ Cω1 ln | ln ε|, (1.15)

where we denoted
Dε = {x ∈ D : a(x) > νε| ln ε|−3/2} (1.16)

and νε is a chosen parameter in the interval (1, 2) (see Proposition 2.5). These estimates represent the
starting point of our analysis here. They allow us to characterize a fine vortex structure for vε inside D.

Now we proceed with the description of the proof of Theorem 1.1 while indicating the outline of
the paper. In Section 2, we describes the vortex structure of vε in BΛ

R ⊂⊂ D using the method of “bad
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discs” introduced by Bethuel, Brezis and Hélein [8]. We find that the number of bad discs is uniformly
bounded, all of them remaining close to the origin (see Theorem 2.1). The main ingredients are the
energy estimates (1.14) and (1.15) and a local version of the Pohozaev identity. Using the “clustering”
method of Almeida and Bethuel [3] (see also Bethuel and Rivière [9], Serfaty [20, 21, 22]), we obtain a
new family of disjoint discs

{
B(xε

j , ρ)
}

j∈J̃ε
with ρ ∼ εα for some α ∈ (0, 1) such that |vε| ≥ 1/2 outside

these discs and vε has a nonzero degree Dj on ∂B(xε
j , ρ) (see Proposition 2.1). We identify vortices with

the points xε
j . In Section 3, we find lower estimates of the energy taking into account the interaction

between vortices. Following similar methods to [8], we evaluate the energy carried by each vortex (see
Lemma 3.1)

Eε(vε, B(xε
j , ρ)) ≥ πa(xε

j)|Dj | ln
ρ

ε
+O(1) (1.17)

and the energy away from the vortices (see Proposition 3.1)

Eε

(
vε, B

Λ
R \ ∪j∈J̃ε

B(xε
j , ρ)

) ≥ π
∑

j∈J̃ε

D2
j a(xε

j)| ln ρ|+ WR,ε

(
(xε

j , Dj)j∈J̃ε

)
+OR(1). (1.18)

Here, the radius R ∈ (
√

a0

2 ,
√

a0) is fixed and the error term OR(1) is computed as a function of R.
The quantity WR,ε is similar to the renormalized energy in [8] and involves the interaction between the
vortices (see Proposition 3.1). An asymptotic expansion of Rε(vε) away from the modified discs (see
(3.15)) yields (see Lemma 3.2)

Fε(vε,Dε) ≥ Eε(vε, B
Λ
R)− πΩ

1 + Λ2

∑

j∈J̃ε

a2(xε
j) Dj + oR(1). (1.19)

Section 4 is dedicated to the proof of Theorem 1.1. Combining (1.13), (1.17), (1.18) and (1.19), we
deduce that every vortex is of degree 1, i.e., Dj = 1 (see Lemma 4.1), which allows us to improve the
above estimates and to obtain the result in the subcritical case (i) in Theorem 1.1. If Ωd + δ ln | ln ε| ≤
Ω ≤ Ωd+1 − δ ln | ln ε| for any small δ > 0, we are led by the upper bound computed in Section 5 to the
exact number of vortices Card J̃ε = d and to the following expansion of the energy (see Proposition 4.2)

F̃ε(vε) = − πa2
0d

1 + Λ2
(Ω− Ω1) +

πa0

2
(d2 − d) ln | ln ε|+O(1).

Moreover, we find that the vortices are uniformly distributed at a scale Ω−1/2 around the origin (see
Lemma 4.2). Then we compute an asymptotic formula of WR,ε as ε → 0 and R → √

a0 (see (4.21))

lim
ε→0

{
WR,ε(xε

1, . . . , x
ε
d) + πa0

∑

i6=j

ln |xε
i − xε

j |
}

= −πa0d
2`(Λ) + o(1) as R → √

a0

where `(Λ) is a constant defined in Appendix which only depends on Λ. Using again the upper bound
given by the test functions, we conclude that the rescaled configuration (x̃ε

1, . . . , x̃
ε
d) tends to minimize the

renormalized energy w and we also find the complete expansion of the energy (1.6) (see Proposition 4.3).
In Section 5, we construct appropriate test functions using a method due to André and Shafrir [5] and
we obtain the upper bound of the energy announced in Section 4.
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We emphasizes that our study concentrates on the vortex structure inside the domain D. An
interesting problem would be to analyze the vortices in the region where |uε| is small, which surely
requires other methods than energy estimates.

Notations. Throughout the paper, we denote by C a positive constant independent of ε and we use
the subscript to point out a possible dependence on the argument. For x = (x1, x2) ∈ R2, we write

|x|Λ =
√

x2
1 + Λ2x2

2 and BΛ
R =

{
x ∈ R2, |x|Λ < R

}

and for A ⊂ R2,

Ẽε(v,A) =
∫

A

1
2

η̃2|∇v|2 +
η̃4

4ε2
(1− |v|2)2 , Eε(v,A) =

∫

A

1
2

a|∇v|2 +
a2

4ε2
(1− |v|2)2

R̃ε(v,A) =
Ω

1 + Λ2

∫

A
η̃2∇⊥a · (iv,∇v) , Rε(v,A) =

Ω
1 + Λ2

∫

A
a∇⊥a · (iv,∇v)

F̃ε(v,A) = Ẽε(v,A) + R̃ε(v,A) , Fε(v,A) = Eε(v,A) +Rε(v,A). (1.20)

We do not write the dependence on A when A = R2.

2 Fine structure of vortices

The main goal of this section is to define a fine structure of vortices away from the boundary of D.
The analysis here follows the ideas in [8] and [9]. The main difficulty in our situation is due to the
presence in the energy of the weight function a(x) which vanishes on ∂D and it does not allow us to
construct the structure up to the boundary. Throughout this paper, we assume that Ω satisfies (1.7),
so that (1.13), (1.14) and (1.15) hold. We will prove the following results for vε = uε/(η̃εe

iΩS):

Theorem 2.1. 1) For any R ∈ (
√

a0

2 ,
√

a0 ) there exists εR > 0 such that for any ε < εR,

|vε| ≥ 1
2

in BΛ
R \BΛ√

a0
2

.

2) There exist some constants N ∈ N, λ0 > 0 and ε0 > 0 (which only depend on ω1) such that for any
ε < ε0, one can find a finite collection of points

{
xε

j

}
j∈Jε

⊂ BΛ√
a0
4

such that Card(Jε) ≤ N and

|vε| ≥ 1
2

in B
Λ√

a0
2
\ (∪j∈JεB(xε

j , λ0ε)
)
.

Remark 2.1. The statement of Theorem 2.1 also holds if the radius
√

a0

2 is replaced by an arbitrary
r ∈ (0, R) but then the constants in Theorem 2.1 depend on r. For the sake of simplicity, we prefer to
fix r =

√
a0

2 .

In the next Proposition, we replace as in [20] the discs {B(xε
j , λ0ε)}j∈Jε obtained in Theorem 2.1

by slightly larger discs: B(xε
j , ρ) (deleting some of the points xε

j if necessary), in order to get a precise
information on the behavior of vε on ∂B(xε

j , ρ). The centers of the resulting family of discs will represent
the vortices of the map vε.
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Proposition 2.1. Let 0 < β < µ < 1 be given constants such that µ := µN+1 > β and let {xε
j}j∈Jε be

the collection of points given by 2) in Theorem 2.1. There exists 0 < ε1 < ε0 such that for any ε < ε1,
we can find J̃ε ⊂ Jε and ρ > 0 verifying

(i) λ0ε ≤ εµ ≤ ρ ≤ εµ < εβ,

(ii) |vε| ≥ 1
2

in B
Λ√

a0
2
\ ∪j∈J̃ε

B(xε
j , ρ),

(iii) |vε| ≥ 1− 2
| ln ε|2 on ∂B(xε

j , ρ) for every j ∈ J̃ε,

(iv)
∫

∂B(xε
j ,ρ)

|∇vε|2 +
1

2ε2
(1− |vε|2)2 ≤ C(β, µ)

ρ
for every j ∈ J̃ε,

(v) |xε
i − xε

j | ≥ 8ρ for every i, j ∈ J̃ε with i 6= j.

Moreover, for each j ∈ J̃ε, we have

Dj := deg
(

vε

|vε| , ∂B(xε
j , ρ)

)
6= 0 and |Dj | ≤ C (2.1)

for a constant C independent of ε.

Remark 2.2. We point out that each disc B(xε
j , ρ) carries at least one zero of vε since Dj 6= 0 for any

j ∈ J̃ε.

2.1 Some local estimates

We start with a fundamental lemma. It strongly relies on Pohozaev’s identity and it will play a
similar role as Theorem III.2 in [8]. In our situation, we only derive local estimates as in [3, 9, 23].
Some of the arguments used in the proof are taken from [3, 9].

Lemma 2.1. For any 0 < R <
√

a0 and 2
3 < α < 1, there exists a positive constant CR,α such that

1
ε2

∫

B(x0,εα)
(1− |vε|2)2 ≤ CR,α for any x0 ∈ BΛ

R.

Proof. Step 1. Set ũε = uεe
−iΩS . We claim that

Eε(ũε,Dε) ≤ C| ln ε| (2.2)

where Dε is defined in (1.16). Indeed, since ũε = η̃εvε, we get that

|∇ũε|2 ≤ C(η̃2
ε |∇vε|+ |vε|2|∇η̃ε|2)

By the results in [14], we know that |vε| ≤ C, η̃2
ε ≤ Ca in Dε and Eε(η̃ε) ≤ C| ln ε| and consequently,

∫

Dε

|∇ũε|2 ≤ C

( ∫

Dε

a(x)|∇vε|2 +
∫

Dε

|∇η̃ε|2
)
≤ C| ln ε|
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by (1.14). On the other hand, we also have

1
ε2

∫

Dε

(a(x)− |ũε|2)2 ≤ C

ε2

∫

Dε

[
(a(x)− η̃2

ε)
2 + η̃4

ε(1− |vε|2)2
]

≤ C

ε2

( ∫

Dε

(a(x)− η̃2
ε)

2 +
∫

Dε

a2(x)(1− |vε|2)2
)
≤ C| ln ε|

and therefore (2.2) follows.
Step 2. We are going to show that one can find a constant CR,α > 0, independent of ε, such that for
any x0 ∈ BΛ

R, there is some r0 ∈ (εα, εα/2+1/3) satisfying

Eε (ũε, ∂B(x0, r0)) ≤ CR,α

r0
.

We proceed by contradiction. Assume that for all M > 0, there is xM ∈ BΛ
R such that

Eε (ũε, ∂B(xM , r)) ≥ M

r
, for any r ∈ (εα, εα/2+1/3). (2.3)

Obviously, for ε small, B(xM , εα/2+1/3) ⊂ Dε. Integrating (2.3) for r ∈ (εα, εα/2+1/3), we derive that

Eε (ũε,Dε) ≥ M

∫ εα/2+1/3

εα

dr

r
= M(α/2− 1/3)| ln ε|

which contradicts Step 1 for M large enough.
Step 3. Fix x0 ∈ BΛ

R and let r0 ∈ (εα, εα/2+1/3) be given by Step 2. We recall that any minimizer uε of
Fε in

{
u ∈ H, ‖u‖L2(R2) = 1

}
satisfies

−∆uε + 2iΩx⊥ · ∇uε =
1
ε2

(a(x)− |uε|2)uε + `εuε in R2

where `ε denotes the Lagrange multiplier. Therefore, we have

−∆ũε =
1
ε2

(a(x0)− |ũε|2)ũε+
1
ε2

(a(x)− a(x0))ũε + 2iΩ(∇S − x⊥) · ∇ũε (2.4)

+ (`ε + 2Ω2x⊥ · ∇S − Ω2|∇S|2)ũε in B(x0, r0).

As in the proof of the Pohozaev identity, we multiply (2.4) by (x− x0) · ∇ũε and we integrate by parts
in B(x0, r0). We have

∫

B(x0,r0)
−∆ũε · [(x− x0) · ∇ũε] =

r0

2

∫

∂B(x0,r0)
|∇ũε|2 − r0

∫

∂B(x0,r0)

∣∣∣∣
∂ũε

∂ν

∣∣∣∣
2

(2.5)

and

1
ε2

∫

B(x0,r0)
(a(x0)− |ũε|2)ũε · [(x− x0) · ∇ũε] =

=
1

2ε2

∫

B(x0,r0)
(a(x0)− |ũε|2)2 − r0

4ε2

∫

∂B(x0,r0)
(a(x0)− |ũε|2)2 (2.6)
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(where ν is the outer normal vector to ∂B(x0, r0)). From (2.4), (2.5) and (2.6) we derive that

1
ε2

∫

B(x0,r0)
(a(x0)− |ũε|2)2 ≤C

(
r0

∫

∂B(x0,r0)
|∇ũε|2 + r0ε

−2

∫

∂B(x0,r0)
(a(x0)− |ũε|2)2

+ r0ε
−2

∫

B(x0,r0)
|a(x)− a(x0)||ũε||∇ũε|+ Ωr0

∫

B(x0,r0)
|∇ũε|2

+ (Ω2 + |`ε|)r0

∫

B(x0,r0)
|ũε||∇ũε|

)
.

Then we estimate each integral term in the right hand side of the previous inequality. By the results in
[14], we have |`ε| ≤ Cε−1| ln ε| and |ũε| ≤ C in R2. According to (2.2), we obtain

ε−2

∫

∂B(x0,r0)
(a(x0)− |ũε|2)2 ≤ Cε−2

∫

∂B(x0,r0)

[
(a(x0)− a(x))2 + (a(x)− |ũε|2)2

]

≤ Cε−2

∫

∂B(x0,r0)
(a(x)− |ũε|2)2 + CRε

3
2
α−1,

and
Ωr0

∫

B(x0,r0)
|∇ũε|2 ≤ Ωr0Eε(ũε,Dε) ≤ CR εα/2+1/3| ln ε|2,

and

r0ε
−2

∫

B(x0,r0)
|a(x)− a(x0)||ũε||∇ũε| ≤ CR r2

0 ε−2

∫

B(x0,r0)
|∇ũε|

≤ CR r3
0 ε−2[Eε(ũε,Dε)]1/2 ≤ CR ε

3
2
α−1| ln ε|1/2,

and
(Ω2 + |`ε|)r0

∫

B(x0,r0)
|ũε||∇ũε| ≤ CRε−1| ln ε| r2

0 [Eε(ũε,Dε)]1/2 ≤ CR εα− 1
3 | ln ε|3/2

(here we use that |a(x)− a(x0)| ≤ CR r0 for any x ∈ B(x0, r0)). We finally get that

1
ε2

∫

B(x0,r0)
(a(x0)− |ũε|2)2 ≤ CR,α

(
1 + r0Eε (ũε, ∂B(x0, r0))

)

for some constant CR,α independent of ε. By Step 2, we conclude that

1
ε2

∫

B(x0,εα)
(a(x0)− |ũε|2)2 ≤ CR,α. (2.7)

Since ‖η̃ε −
√

a‖C1(BΛ
R) ≤ CRε2| ln ε| by [14] , we have

1
ε2

∫

B(x0,εα)
(1− |vε|2)2 ≤ CR

ε2

∫

B(x0,εα)
(η̃2

ε − |ũε|2)2

≤ CR

ε2

∫

B(x0,εα)
(a(x)− |ũε|2)2 + o(1)

≤ CR

ε2

∫

B(x0,εα)
(a(x0)− |ũε|2)2 + o(1) ≤ CR,α
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and we conclude with (2.7). ¥

The next result will allow us to define the notion of a bad disc as in [8].

Proposition 2.2. For any 0 < R <
√

a0 , there exist two positive constants λR and µR such that if

1
ε2

∫

B(x0,2l)
(1− |vε|2)2 ≤ µR with x0 ∈ BΛ

R ,
l

ε
≥ λR and l ≤

√
a0 −R

2
,

then |vε| ≥ 1/2 in B(x0, l).

Proof. In [14], we proved the existence of a constant CR > 0 independent of ε such that

|∇vε| ≤ CR

ε
in BΛ√

a0+R

2

.

Then the result follows as in [8], Theorem III.3. ¥

Definition 2.1. For 0 < R <
√

a0 and x ∈ BΛ
R, we say that B(x, λRε) is a bad disc if

1
ε2

∫

B(x,2λRε)
(1− |vε|2)2 ≥ µR.

Now we can give a local version of Theorem 2.1. We will see that Lemma 2.1 plays a crucial role in
the proof.

Proposition 2.3. For any 0 < R <
√

a0 and 2
3 < α < 1, there exist positive constants NR,α and

εR,α such that for every ε < εR,α and x0 ∈ BΛ
R , one can find x1, . . . , xNε ∈ B(x0, ε

α) with Nε ≤ NR,α

verifying

|vε| ≥ 1
2

in B(x0, ε
α) \

(
∪Nε

k=1B(xk, λRε)
)

.

Proof. We follow the ideas in [8], Chapter IV. Consider a family of discs
{
B(xi, λRε)

}
i∈F such that

xi ∈ B(x0, ε
α), (2.8)

B

(
xi,

λRε

4

)
∩B

(
xj ,

λRε

4

)
= ∅ for i 6= j, (2.9)

B(x0, ε
α) ⊂

⋃

i∈F
B(xi, λRε).

Obviously, the discs
{
B(xi, 2λRε)

}
i∈F cannot intersect more that C times (where C is a universal

constant) and ⋃

i∈F
B(xi, 2λRε) ⊂ B(x0, ε

α′)

with α′ = 1
2(α + 2

3). We denote by F ′ the set of indices i ∈ F such that B(xi, λRε) is a bad disc. We
derive from Definition 2.1 that

µR Card(F ′) ≤
∑

i∈F

1
ε2

∫

B(xi,2λRε)
(1− |vε|2)2 ≤ C

ε2

∫

B(x0,εα′ )
(1− |vε|2)2.

The conclusion now follows by Lemma 2.1 and Proposition 2.2. ¥
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Remark 2.3. By the proof of Proposition 2.3, it follows that any family of discs
{
B(xi, λRε)

}
i∈F

satisfying (2.8) and (2.9) cannot contain more than NR,α bad discs.

We will need the following lemma to prove that vortices of degree zero do not occur. The main
ingredients in the proof come from [3, 9].

Lemma 2.2. Let D > 0, 0 < β < 1 and γ > 1 be given constants such that γβ < 1. Let 0 < R <
√

a0

and 0 < ρ < εβ be such that ργ > λRε. We assume that for x0 ∈ BΛ
R,

(i)
∫

∂B(x0,ρ)
|∇vε|2 +

1
2ε2

(1− |vε|2)2 <
D

ρ
,

(ii) |vε| ≥ 1
2

on ∂B(x0, ρ),

(iii) deg
(

vε

|vε| , ∂B(x0, ρ)
)

= 0.

Then we have
|vε| ≥ 1

2
in B(x0, ρ

γ).

Proof of Lemma 2.2. We are going to construct a comparison function as in [3] or [9] to obtain the
following estimate: ∫

B(x0,ρ)
|∇vε|2 +

1
2ε2

(1− |vε|2)2 ≤ Cβ,R. (2.10)

Since the degree of vε restricted to ∂B(x0, ρ) is zero, we may write on ∂B(x0, ρ)

vε = |vε|eiφε

where φε is a smooth map from ∂B(x0, ρ) into R. Then we define v̂ε : R2 → C by




v̂ε = χεe
iψε in B(x0, ρ)

v̂ε = vε in R2 \B(x0, ρ)

where ψε is the solution of 



∆ψε = 0 in B(x0, ρ)

ψε = φε on ∂B(x0, ρ),

and χε has the form, written in polar coordinates centered at x0,

χε(r, θ) = (|vε(ρeiθ)| − 1)ξ(r) + 1

and ξ is a smooth function taking values in [0, 1] with small support near ρ with ξ(ρ) = 1. By the
results in [14], we know that |vε(x)| ≤ 1 + C ε1/3 for x ∈ D with |x|Λ ≥ √

a0 − ε1/8 and we deduce
that 0 ≤ χε ≤ 1 + Cε1/3. Arguing as in [7], proof of Theorem 2, we may prove that

∫

B(x0,ρ)
|∇ψε|2 ≤ Cρ

∫

∂B(x0,ρ)

∣∣∣∣
∂φε

∂τ

∣∣∣∣
2

≤ Cρ

∫

∂B(x0,ρ)
|∇vε|2 (2.11)
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and ∫

B(x0,ρ)
|∇χε|2 +

1
ε2

(1− χ2
ε)

2 ≤ Cρ

∫

∂B(x0,ρ)
|∇vε|2 +

1
2ε2

(1− |vε|2)2 + O(ρ). (2.12)

From (2.11), (2.12) and assumption (i), we infer that
∫

B(x0,ρ)
|∇v̂ε|2 +

1
2ε2

(1− |v̂ε|2)2 ≤ C . (2.13)

We set ṽε = m−1
ε v̂ε with mε = ‖η̃εv̂ε‖L2(R2). Clearly, η̃εe

iΩS ṽε ∈ H and ‖η̃εe
iΩS ṽε‖L2(R2) = 1. Since

uε = η̃εe
iΩSvε minimizes the functional Fε under the constraint (1.2), we have Fε(uε) ≤ Fε(η̃εe

iΩS ṽε)
and by (1.9), it yields

F̃ε(vε) + T̃ε(vε) ≤ F̃ε(ṽε) + T̃ε(ṽε). (2.14)

We claim that

F̃ε(ṽε) ≤ F̃ε(v̂ε) + Cρ| ln ε|2 and
∣∣T̃ε(vε)− T̃ε(ṽε)

∣∣ = O(ρ2| ln ε|2). (2.15)

Indeed, we proved in [14]

Ẽε(vε) ≤ C| ln ε|2 and
∣∣R̃ε(vε)

∣∣ ≤ C| ln ε|2 (2.16)

so that, using (2.13), ‖η̃εvε‖L2(R2) = 1, v̂ε = vε in R2 \B(x0, ρ) and (2.16), we obtain

m2
ε = 1 +

∫

B(x0,ρ)
η̃2

ε(|v̂ε|2 − 1) +
∫

B(x0,ρ)
η̃2

ε(1− |vε|2)

= 1 + O(ρ ε| ln ε|). (2.17)

From (2.13), (2.16) and (2.17), we derive
∫

R2

η̃2
ε |∇ṽε|2 = m−2

ε

∫

R2

η̃2
ε |∇v̂ε|2 =

∫

R2

η̃2
ε |∇v̂ε|2 + O(ρε| ln ε|3) (2.18)

and
R̃ε(ṽε) = m−2

ε R̃ε(v̂ε) = R̃ε(v̂ε) + O(ρε| ln ε|3). (2.19)

Since uε remains bounded in R2 and Eε(uε) ≤ C| ln ε|2 by the results in [14], we infer from (2.16),

1
ε2

∫

R2

η̃4
ε(1− |ṽε|2)2 =

1
ε2

∫

R2

η̃4
ε(1− |v̂ε|2)2 +

2(1−m−2
ε )

ε2

∫

R2

η̃2
ε(1− |v̂ε|2)|η̃εv̂ε|2

+
(1−m−2

ε )2

ε2

∫

R2

|η̃εv̂ε|4

≤ 1
ε2

∫

R2

η̃4
ε(1− |v̂ε|2)2

+ Cρ| ln ε|
(

1
ε2

∫

R2\B(x0,ρ)
η̃4

ε(1− |vε|2)2
)1/2 (∫

R2\B(x0,ρ)
|uε|4

)1/2

+ Cρ2| ln ε|2

≤ 1
ε2

∫

R2

η̃4
ε(1− |v̂ε|2)2 + Cρ| ln ε|2. (2.20)
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Finally, we obtain in the same way,

∣∣T̃ε(vε)− T̃ε(ṽε)
∣∣ ≤ ∣∣T̃ε(vε)− T̃ε(v̂ε)

∣∣ +
∣∣T̃ε(v̂ε)− T̃ε(ṽε)

∣∣ (2.21)

≤ C| ln ε|2
( ∫

B(x0,ρ)
(1 + |x|2)η̃2

ε + |1−m−2
ε |

∫

R2

(1 + |x|2)η̃2
ε |v̂ε|2

)

≤ Cρ2| ln ε|2. (2.22)

From (2.18), (2.19), (2.20) and (2.21), we conclude that (2.15) holds.
Since v̂ε = vε in R2 \B(x0, ρ), we get from (2.14) and (2.15) that

F̃ε(vε, B(x0, ρ)) ≤ F̃ε(v̂ε, B(x0, ρ)) + Cρ| ln ε|2.

By (2.13), we have Ẽε(v̂ε, B(x0, ρ)) ≤ C and therefore,

∣∣R̃ε(v̂ε, B(x0, ρ))
∣∣ ≤ CΩ

∫

B(x0,ρ)
|∇v̂ε| ≤ CΩρ‖∇v̂ε‖L2(B(x0,ρ)) = O(ρ| ln ε|). (2.23)

Hence, F̃ε(v̂ε, B(x0, ρ)) ≤ C and we conclude that

F̃ε(vε, B(x0, ρ)) ≤ Cβ.

As for (2.23), using (2.16) we easily derive that |R̃ε(vε, B(x0, ρ))| = O(ρ| ln ε|2) and we finally get that
Ẽε(vε, B(x0, ρ)) ≤ Cβ which clearly implies (2.10) since η̃2

ε → a+ uniformly as ε → 0 (see [14]).
We deduce from (2.10) that

∫ ρ

2ργ

(∫

∂B(x0,s)
|∇vε|2 +

1
2ε2

(1− |vε|2)2
)

ds ≤ Cβ,R.

Since
∫ ρ
2ργ

ds
s| ln s|1/2 ≥ Cγ | ln ε|1/2, we derive that for small ε there exists s0 ∈ [2ργ , ρ] such that

∫

∂B(x0,s0)
|∇vε|2 +

1
2ε2

(1− |vε|2)2 ≤ Cβ,R

s0| ln s0|1/2
.

Repeating the arguments used to prove (2.10), we find that
∫

B(x0,s0)
|∇vε|2 +

1
2ε2

(1− |vε|2)2 ≤ Cβ,R

| ln s0|1/2
.

In particular, we have
1
ε2

∫

B(x0,2ργ)
(1− |vε|2)2 = o(1)

and the conclusion follows by Proposition 2.2. ¥

We now obtain as in [9] Proposition IV.3 the following result which gives us an estimate of the
contribution in the energy of any vortex.
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Proposition 2.4. Let 0 < R <
√

a0 and 2
3 < α < 1. Let x0 ∈ BΛ

R and assume that |vε(x0)| < 1
2 . Then

there exists a positive constant CR,α (which only depends on R, α and ω1) such that
∫

B(x0,εα)
|∇vε|2 ≥ CR,α| ln ε|.

Proof. Let NR,α and x1, . . . , xNε ∈ B(x0, ε
α) be as in Proposition 2.3. We set

δα =
α1/2 − α

3(NR,α + 1)

and for k = 0, . . . , 3NR,α + 2, we consider

αk = α1/2 − kδα , Ik = [εαk , εαk+1 ] and Ck = B(x0, ε
αk+1) \B(x0, ε

αk).

Then there is some k0 ∈ {1, . . . , 3NR,α + 1} such that

Ck0 ∩
(
∪Nε

j=1B(xj , λRε)
)

= ∅. (2.24)

Indeed, since Nε ≤ NR,α and 2λRε < |Ik| for small ε, the union of Nε intervals of length 2λRε

Nε⋃

j=1

(|xi − x0| − λRε, |xi − x0|+ λRε
)

cannot intersect all the intervals Ik of disjoint interior, for 1 ≤ k ≤ 3NR,α + 1. From (2.24) we deduce
that

|vε(x)| ≥ 1
2

for any x ∈ Ck0 .

Therefore, for every ρ ∈ Ik0 ,

dk0 = deg
(

vε

|vε| , ∂B(x0, ρ)
)

is well defined and does not depend on ρ. We claim that

dk0 6= 0. (2.25)

By contradiction, we suppose that dk0 = 0. According to (1.14), it results that
∫

BΛ√
a0+R
2

|∇vε|2 +
1

2ε2
(1− |vε|2)2 ≤ CR| ln ε|.

Using the same argument as in Step 2 of the proof of Lemma 2.1, there is a constant CR,α such that
∫

∂B(x0,ρ0)
|∇vε|2 +

1
2ε2

(1− |vε|2)2 ≤ CR,α

ρ0
for some ρ0 ∈ Ik0 .

According to Lemma 2.2 (with β = αk0+1 and γ = αk0−1

αk0
), we should have |vε(x0)| ≥ 1

2 which is a
contradiction.
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By (2.25), we obtain for every ρ ∈ Ik0 ,

1 ≤ |dk0 | =
1
2π

∣∣∣∣∣
∫

∂B(x0,ρ)

1
|vε|2

(
vε ∧ ∂vε

∂τ

)
∣∣∣∣∣ ≤ C

∫

∂B(x0,ρ)
|∇vε|

(we use that |vε| ≥ 1
2 in Ck0). Then Cauchy-Schwarz inequality yields

∫

∂B(x0,ρ)
|∇vε|2 ≥ C

ρ
for any ρ ∈ Ik0

and the conclusion follows integrating on Ik0 . ¥

2.2 Proofs of Theorem 2.1 and Proposition 2.1

The part 1) in Theorem 2.1 follows directly from Lemma 2.3 below.

Lemma 2.3. There exists a constant εR > 0 such that for any 0 < ε < εR,

|vε| ≥ 1
2

in BΛ
R \BΛ√

a0
5

.

Proof. First, we fix some α ∈ (2
3 , 1). We proceed by contradiction. Suppose that there is some

x0 ∈ BΛ
R \ BΛ√

a0
5

such that |vε(x0)| < 1/2. Then for any ε sufficiently small, we have B(x0, ε
α) ⊂

Dε \ {|x|Λ < 2| ln ε|−1/6} and therefore, by (1.15), we get that
∫

B(x0,εα)
|∇vε|2 ≤ CR Eε(vε,Dε \ {|x|Λ < 2| ln ε|−1/6}) ≤ CR ln | ln ε|

which contradicts Proposition 2.4 for ε small enough. ¥

Proof of 2) in Theorem 2.1. We fix some 2
3 < α < 1. As in the proof of Proposition 2.3, we consider a

finite family of points {xj}j∈J satisfying

xj ∈ BΛ√
a0
2

B

(
xi,

λ0ε

4

)
∩B

(
xj ,

λ0ε

4

)
= ∅ for i 6= j ,

BΛ√
a0
2

⊂
⋃

j∈J
B (xj , λ0ε) ,

where λ0 := λ√
a0
2

(defined in Proposition 2.2 with R =
√

a0

2 ) and we denote by Jε the set of indices

j ∈ J such that B(xj , λ0ε) contains at least one point yj verifying

|vε(yj)| < 1
2

. (2.26)
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Obviously, B(xj , λ0ε) is a bad disc for every j ∈ Jε. Applying Lemma 2.3 (with R = 3
√

a0

4 ), we infer
that there exists ε0 such that for any 0 < ε < ε0,

B(xj , λ0ε) ⊂ BΛ√
a0
4

for any j ∈ Jε. (2.27)

Then it remains to prove that Card(Jε) is bounded independently of ε. Using Proposition 2.4 (with
R =

√
a0

2 ), we derive that for any j ∈ Jε and any point yj satisfying (2.26) in the ball B(xj , λ0ε),
∫

B(xj ,2εα)
|∇vε|2 ≥

∫

B(yj ,εα)
|∇vε|2 ≥ Cα| ln ε| (2.28)

for some positive constant Cα which only depends on α. We set for ε small enough

W =
⋃

j∈Jε

B(xj , 2εα) ⊂ BΛ√
a0
3

.

We claim that there is a positive integer Mα independent of ε such that any y ∈ W belongs to at
most Mα balls in the collection {B(xj , 2εα)}j∈Jε . Indeed, for each y ∈ W , consider the subset Ky ⊂ Jε

defined by
Ky =

{
j ∈ Jε : y ∈ B(xj , 2εα)

}
.

We have for every j ∈ Ky,

xj ∈ B(y, 2εα) ⊂ B(y, εα′) ⊂ BΛ√
a0
2

with α′ =
1
2
(α +

2
3
). (2.29)

Since the family of discs {B(xj , λ0ε)}j∈Ky is a subcover of B(y, εα′) satisfying (2.8) and (2.9), we
conclude from Remark 2.3 that

Card(Ky) ≤ Mα

with Mα = N√
a0
2

,α′ . From (2.28), we infer that

∫

BΛ√
a0
2

|∇vε|2 ≥
∫

W
|∇vε|2 ≥ 1

Mα

∑

j∈Jε

∫

B(xj ,2εα)
|∇vε|2 ≥ CαCard(Jε)| ln ε|. (2.30)

On the other hand, we know by (1.14),
∫

BΛ√
a0
2

|∇vε|2 ≤ C

∫

BΛ√
a0
2

a(x)|∇vε|2 ≤ C| ln ε| (2.31)

for a constant C independent of ε. Matching (2.30) and (2.31), we conclude that Card(Jε) is uniformly
bounded. ¥

In the following, we will prove Proposition 2.1. We proceed exactly as in [20], using Theorem 2.1
and an adaptation of Theorem V.1 in [3]. Before starting our proof, we need to recall the following
result obtained in [14] by a method due to Sandier [18] and Sandier and Serfaty [19]:
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Proposition 2.5. ([14]) There exists a positive constant K0 such that for ε sufficiently small, there
exist νε ∈ (1, 2) and a finite collection of disjoint balls

{
Bi

}
i∈Iε

:=
{
B(pi, ri)

}
i∈Iε

satisfying:

(i) for every i ∈ Iε, Bi ⊂⊂ Dε =
{
x ∈ R2, a(x) > νε| ln ε|−3/2

}
,

(ii)
{
x ∈ Dε, |vε(x)| < 1− | ln ε|−5

} ⊂ ∪i∈IεBi,

(iii)
∑

i∈Iε

ri ≤ | ln ε|−10,

(iv)
1
2

∫

Bi

a(x)|∇vε|2 ≥ πa(pi)|di|
(| ln ε| − K0 ln | ln ε|),

where di = deg
(

vε

|vε| , ∂Bi

)
for every i ∈ Iε.

Proof of Proposition 2.1. By Theorem 2.1, we have for ε small enough,

∪j∈JεB(xε
j , λ0ε) ⊂ BΛ√

a0
3

.

From (iii) in Proposition 2.5, there exists a radius rε ∈ (
√

a0

3 ,
√

a0

2 ] such that

B̄i ∩ ∂BΛ
rε

= ∅ for every i ∈ Iε. (2.32)

Hence we have
|vε| ≥ 1− | ln ε|−5 on ∂BΛ

rε
.

The existence of a subset J̃ε ⊂ Jε satisfying (i)-(v) can now be proved identically as Proposition 3.2
in [20] and it remains to prove (2.1). From the proof of Theorem 2.1, we know (by construction) that
each disc B(xε

k, λ0ε), k ∈ Jε, contains at least one point yk such that |vε(yk)| < 1
2 . Therefore each disc

B(xε
j , ρ), j ∈ J̃ε, contains at least one of the yk’s with |xε

j − yk| < λ0ε. Assume now that Dj = 0. By
Lemma 2.2 with γ = µ−1/2, it would lead to |vε| ≥ 1

2 in B(xε
j , ρ

γ) and then |vε(yk)| ≥ 1
2 for ε small

enough, contradiction. We also find a bound on the degrees Dj :

|Dj | = 1
2π

∣∣∣∣∣
∫

∂B(xε
j ,ρ)

1
|vε|2

(
vε ∧ ∂vε

∂τ

)
∣∣∣∣∣ ≤ C‖∇vε‖L2(∂B(xε

j ,ρ))
√

ρ ≤ C

by (iv) in Proposition 2.1. ¥

3 Some lower energy estimates

In this section, we obtain various lower energy estimates for vε in terms of the vortex structure
defined in Section 2, Proposition 2.1. We start by proving a lower bound on the kinetic energy away
from the vortices which brings out the interaction between vortices. The method that we use is based
on the techniques developped in [3], [8] and [20]. As in the previous section, the main difficulty is due to
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the degenerate behavior near the boundary of D of the weight function a(x). To avoid this problem, we
shall establish our estimates in BΛ

R for an arbitrary radius R ∈ [
√

a0/2,
√

a0 ). To emphasize the possible
dependence on R in the “error term”, we will denote by OR(1) (respectively oR(1)) any quantity which
remains uniformly bounded in ε for fixed R (respectively any quantity which tends to 0 as ε → 0 for
fixed R). In the sequel, we also write J̃ε = {1, . . . , nε}.

Proposition 3.1. For any R ∈ [
√

a0

2 ,
√

a0 ), let Θρ = BΛ
R \ ∪nε

j=1B(xε
j , ρ). We have

1
2

∫

Θρ

a(x)|∇vε|2 ≥ π

nε∑

j=1

D2
j a(xε

j)| ln ρ|+ WR,ε

(
(xε

1, D1), . . . , (xε
nε

, Dnε)
)

+ OR(1) (3.1)

where

WR,ε

(
(xε

1, D1), . . . , (xε
nε

, Dnε)
)

= −π
∑

i 6=j

DiDj a(xε
j) ln |xε

i − xε
j | − π

nε∑

j=1

DjΨR,ε(xε
j)

and ΨR,ε is the unique solution of




div
(

1
a
∇ΨR,ε

)
= −

nε∑

j=1

Dj a(xε
j)∇

(
1
a

)
· ∇(

ln |x− xε
j |

)
in BΛ

R,

ΨR,ε = −
nε∑

j=1

Dj a(xε
j) ln |x− xε

j | on ∂BΛ
R.

(3.2)

Moreover, if ρ
|xε

i−xε
j | → 0 as ε → 0 for any i 6= j then the term OR(1) in (3.1) is in fact oR(1).

Remark 3.1. We point out that the dependence on R in the interaction term WR,ε only appears in
the function ΨR,ε. Moreover, for ΨR,ε to be well defined, 1/a(x) has to be bounded inside BΛ

R so that
we can not pass to the limit R → √

a0 in (3.1) without an a priori deterioration of the error term.

Proof of Proposition 3.1. We consider the solution Φρ of the linear problem





div
(

1
a
∇Φρ

)
= 0 in Θρ,

Φρ = 0 on ∂BΛ
R,

Φρ = const. on ∂B(xε
j , ρ),

∫

∂B(xε
j ,ρ)

1
a

∂Φρ

∂ν
= 2πDj for j = 1, . . . , nε,

and ΦR,ε the solution of 



div
(

1
a
∇ΦR,ε

)
= 2π

nε∑

j=1

Dj δxε
j

in BΛ
R

ΦR,ε = 0 on ∂BΛ
R

(3.3)
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For x ∈ Θρ, we set wε(x) = vε(x)
|vε(x)| and

S =
(
−wε ∧ ∂wε

∂x2
+

1
a

∂Φρ

∂x1
, wε ∧ ∂wε

∂x1
+

1
a

∂Φρ

∂x2

)
.

We easily check that divS = 0 in Θρ and
∫
∂BΛ

R
S · ν =

∫
∂B(xε

j ,ρ) S · ν = 0. By Lemma I.1 in [8], there

exists H ∈ C1(Θρ) such that S = ∇⊥H and hence we can write the Hodge-de Rham type decomposition

wε ∧∇wε =
1
a
∇⊥Φρ +∇H.

Consequently,
∫

Θρ

a(x)|∇wε|2 =
∫

Θρ

1
a(x)

|∇Φρ|2 + 2
∫

Θρ

∇⊥Φρ · ∇H +
∫

Θρ

a(x)|∇H|2

≥
∫

Θρ

1
a(x)

|∇Φρ|2 + 2
∫

Θρ

∇⊥Φρ · ∇H.

We observe that the last term is in fact equal to zero since it is the integral of a Jacobian and Φρ is
constant on ∂Θρ. Hence ∫

Θρ

a(x)|∇wε|2 ≥
∫

Θρ

1
a(x)

|∇Φρ|2.

Since |∇vε|2 ≥ |vε|2|∇wε|2 in Θρ, we derive that
∫

Θρ

a(x)|∇vε|2 ≥
∫

Θρ

1
a(x)

|∇Φρ|2 + T1 + 2T2

with
T1 =

∫

Θρ

(|vε|2 − 1
) 1

a(x)
|∇Φρ|2 and T2 =

∫

Θρ

(|vε|2 − 1
)∇Φ⊥ρ · ∇H.

Arguing as in [3] (see Step 4 in the proof of Theorem 6), it turns out that T1 = oR(1) and T2 = oR(1)
and therefore ∫

Θρ

a(x)|∇vε|2 ≥
∫

Θρ

1
a(x)

|∇Φρ|2 + oR(1). (3.4)

On the other hand, integrating by parts we obtain

∫

Θρ

1
a(x)

|∇Φρ|2 =
∫

∂Θρ

1
a(x)

∂Φρ

∂ν
Φρ = −2π

nε∑

j=1

Dj Φρ(zj)

for any point zj ∈ ∂B(xε
j , ρ). Since nε and each Dj remain uniformly bounded in ε by Proposition 2.1,

we may rewrite this equality as

∫

Θρ

1
a(x)

|∇Φρ|2 = −2π

nε∑

j=1

Dj ΦR,ε(zj) + O
(‖ΦR,ε − Φρ‖L∞(Θρ)

)
. (3.5)
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Using an adaptation of Lemma I.4 in [8] (see e.g. [6], Lemma 3.5), we derive that

‖ΦR,ε − Φρ‖L∞(Θρ) ≤
nε∑

j=1

(
sup

∂B(xε
j ,ρ)

ΦR,ε − inf
∂B(xε

j ,ρ)
ΦR,ε

)
. (3.6)

To estimate the right-hand-side term in (3.6), we introduce for x ∈ BΛ
R,

ΨR,ε(x) = ΦR,ε(x)−
nε∑

j=1

Dj a(xε
j) ln |x− xε

j |.

Since ΦR,ε solves (3.3), we deduce that ΨR,ε may be characterized as the solution of equation (3.2).
By elliptic regularity, we infer that ‖ΨR,ε‖W 2,p(BΛ

R) ≤ CR,p for any 1 ≤ p < 2 (here we used that
{xε

j}nε
j=1 ⊂ BΛ√

a0
4

by Theorem 2.1). In particular, ΨR,ε is uniformly bounded with respect to ε in

C0,1/2(BΛ
R) and hence

sup
∂B(xε

j ,ρ)
ΨR,ε − inf

∂B(xε
j ,ρ)

ΨR,ε ≤ CR
√

ρ = oR(1).

Since |xε
j − xε

i | ≥ 8ρ, we derive from (2.1),

sup
∂B(xε

j ,ρ)

( nε∑

i=1

Di a(xε
i ) ln |x− xε

i |
)
− inf

∂B(xε
j ,ρ)

( nε∑

i=1

Di a(xε
i ) ln |x− xε

i |
)
≤

≤ ρ

nε∑

i=1, i 6=j

a(xε
i ) sup

∂B(xε
j ,ρ)

|Di|
|x− xε

i |
≤ O(1),

(respectively ≤ o(1) if ρ
|xε

i−xε
j | → 0 as ε → 0 for any i 6= j). Coming back to (3.6), we obtain that

‖ΦR,ε −Φρ‖L∞(Θρ) ≤ OR(1) (respectively ≤ oR(1) if ρ
|xε

i−xε
j | → 0 as ε → 0 for any i 6= j). Inserting this

estimate in (3.5), we get that
∫

Θρ

1
a(x)

|∇Φρ|2 = − 2π

nε∑

j=1

Dj ΦR,ε(zj) + OR(1) (3.7)

= − 2π

nε∑

j=1

Dj ΨR,ε(zj)− 2π
∑

i6=j

DiDj a(xε
i ) ln |zj − xε

i |

+ 2π

nε∑

j=1

D2
j a(xε

j)| ln ρ|+ OR(1)

(respectively +oR(1) as ε → 0). Since ΨR,ε is uniformly bounded with respect to ε in C0,1/2(BΛ
R), we

have |ΨR,ε(zj)−ΨR,ε(xε
j)| ≤ CR

√
ρ = oR(1). Moreover, using (2.1) and |xε

j − xε
i | ≥ 8ρ, we derive that

∣∣∣∣
∑

i6=j

DiDj a(xε
i )(ln |zj − xε

i | − ln |xε
j − xε

i |)
∣∣∣∣ ≤

∑

i6=j

|Di| |Dj | ln
∣∣∣∣1 +

zj − xε
j

xε
j − xε

i

∣∣∣∣

≤
∑

i6=j

|Di| |Dj | ρ

|xε
j − xε

i |
≤ O(1)
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(respectively ≤ o(1) as ε → 0). Hence (3.7) yields
∫

Θρ

1
a(x)

|∇Φρ|2 = − 2π

nε∑

j=1

Dj ΨR,ε(xε
j)− 2π

∑

i6=j

DiDj a(xε
i ) ln |xε

j − xε
i |

+ 2π

nε∑

j=1

D2
j a(xε

j)| ln ρ|+ OR(1)

(respectively +oR(1) as ε → 0). Combining this estimate with (3.4), we obtain the announced result.¥

Estimating the contribution in the energy of each vortex, we may easily deduce the following lower
bounds for Eε(vε):

Lemma 3.1. For any R ∈ [
√

a0

2 ,
√

a0 ), we have

Eε(vε, B
Λ
R) ≥ π

nε∑

j=1

D2
j a(xε

j)| ln ρ|+ π

nε∑

j=1

|Dj | a(xε
j) ln

ρ

ε
+ WR,ε + OR(1) (3.8)

and

Eε(vε, B
Λ
R) ≥ π

nε∑

j=1

|Dj | a(xε
j) ln

ρ

ε
+ O(1). (3.9)

Proof. In view of Proposition 3.1, it suffices to show that

Eε(vε, B(xε
j , ρ)) ≥ π|Dj | a(xε

j) ln
ρ

ε
+ O(1) for j = 1, . . . , nε,

which is equivalent to

1
2

∫

B(xε
j ,ρ)

|∇vε|2 +
a(xε

j)
2ε2

(1− |vε|2)2 ≥ π|Dj | ln
ρ

ε
+ O(1) for j = 1, . . . , nε (3.10)

(we used that |a(x)− a(xε
j)| ≤ Cρ for x ∈ B(xε

j , ρ) and Eε(vε, B
Λ
R) ≤ CR| ln ε|). Setting

v̂(y) = vε(ρy + xε
j) for y ∈ B(0, 1) and ε̂ =

ε

ρ
√

a(xε
j)

,

we infer from Proposition 2.1 that v̂ ≥ 1− 2
| ln ε| on ∂B(0, 1),

∫

∂B(0,1)

|∇v̂|2
2

+
1

4ε̂2
(1− |v̂|2)2 = ρ

∫

∂B(xε
j ,ρ)

|∇vε|2
2

+
a(xε

j)
4ε2

(1− |vε|2)2 ≤ C (3.11)

and
1
2

∫

B(0,1)
|∇v̂|2 +

1
2ε̂2

(1− |v̂|2)2 =
1
2

∫

B(xε
j ,ρ)

|∇vε|2 +
a(xε

j)
2ε2

(1− |vε|2)2.

As in the proof of Lemma VI.1 in [3], (3.11) yields for ε small enough,

1
2

∫

B(0,1)
|∇v̂|2 +

1
2ε̂2

(1− |v̂|2)2 ≥ π|Dj | | ln ε̂|+ O(1) = π|Dj | ln
ρ

ε
+ O(1)
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and hence (3.10) holds. ¥

As in [14], we may compute an asymptotic expansion of Rε(vε,Dε) in terms of vortices which leads,
in view of Lemma 3.1, to lower expansions of Fε(vε,Dε):

Lemma 3.2. For any R ∈ [
√

a0

2 ,
√

a0 ), we have

Fε(vε,Dε) ≥ π

nε∑

j=1

D2
j a(xε

j)| ln ρ|+ π

nε∑

j=1

|Dj | a(xε
j) ln

ρ

ε
− πΩ

1 + Λ2

nε∑

j=1

a2(xε
j)Dj + WR,ε + OR(1) (3.12)

and

Fε(vε,Dε) ≥ π

nε∑

j=1

|Dj | a(xε
j) ln

ρ

ε
− πΩ

1 + Λ2

nε∑

j=1

a2(xε
j) Dj + O(1). (3.13)

Proof. We consider the family of balls {Bi}i∈Iε given in Proposition 2.5. As in the proof of Proposi-
tion 2.1, we can find rε ∈ [R, (R +

√
a0 )/2] such that (2.32) holds. Setting

I+
R =

{
i ∈ Iε, |pi|Λ > rε and di ≥ 0

}
and I−R =

{
i ∈ Iε, |pi|Λ > rε and di < 0

}
, (3.14)

we have Bi ⊂ Dε \ B
Λ
rε

for any i ∈ I+
R ∪ I−R . By Theorem 2.1, Proposition 2.1 and Proposition 2.5, we

infer that for ε small enough,

|vε| ≥ 1
2

in Ξε := Dε \
( ⋃

i∈I+
R∪I−R

Bi ∪
nε⋃

j=1

B(xε
j , ρ)

)
.

Arguing exactly as in [14], we obtain that

Rε(vε, Ξε) =
−πΩ

1 + Λ2

nε∑

j=1

a2(xε
j) Dj − πΩ

1 + Λ2

∑

i∈I+
R∪I−R

(
a2(pi)− ν2

ε | ln ε|−3
)
di + oR(1). (3.15)

We recall that we have showed in [14] that Rε(vε,∪i∈I+
R∪I−R

Bi) = o(1). In the same way, we may prove
that Rε(vε,∪nε

j=1B(xε
j , ρ)) = o(1). From (iv) in Proposition 2.5 and (3.15), we deduce that

Fε(vε,Dε) ≥ Eε(vε,Dε \ ∪i∈I+
R∪I−R

Bi) +
∑

i∈I+
R∪I−R

1
2

∫

Bi

a(x)|∇vε|2 +Rε(vε, Ξε) + oR(1)

≥ Eε(vε, B
Λ
R)− πΩ

1 + Λ2

nε∑

j=1

a2(xε
j) Dj + π

∑

i∈I+
R∪I−R

a(pi)|di|
(| ln ε| − K0 ln | ln ε|)

− πΩ
1 + Λ2

∑

i∈I+
R∪I−R

(
a2(pi)− ν2

ε | ln ε|−3
)
di + oR(1). (3.16)

Since pi 6∈ B
Λ
rε

for i ∈ I+
R ∪ I−R , we have a(pi) ¿ a0 and we deduce that for ε small enough,

π
∑

i∈I+
R∪I−R

a(pi)|di|
(| ln ε| − K0 ln | ln ε|)− πΩ

1 + Λ2

∑

i∈I+
R∪I−R

(
a2(pi)− ν2

ε | ln ε|−3
)
di ≥ 0
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which leads to

Fε(vε,Dε) ≥ Eε(vε, B
Λ
R)− πΩ

1 + Λ2

nε∑

j=1

a2(xε
j) Dj + oR(1). (3.17)

Combining (3.8) and (3.17), we obtain (3.12). Similarly, the inequality (3.17) applied with R =
√

a0/2,
and (3.9) yield (3.13). ¥

4 Proof of Theorem 1.1

In this section, we are going to prove Theorem 1.1 in terms of the map vε. We start by proving that
vortices must be of degree one. This yields a fundamental improvement of the estimates obtained in
the previous section.

4.1 Vortices have degree one

Lemma 4.1. Whenever ε is small enough, Dj = +1 for j = 1, . . . , nε.

Proof. By the results in [14], we have Fε(vε,Dε) ≤ o(1). According to (3.13), it yields

π

nε∑

j=1

|Dj | a(xε
j) ln

ρ

ε
− πa0Ω

1 + Λ2

∑

Dj>0

a(xε
j) Dj ≤ π

nε∑

j=1

|Dj | a(xε
j) ln

ρ

ε
− πΩ

1 + Λ2

nε∑

j=1

a2(xε
j) Dj ≤ O(1).

From (1.7), we derive that

nε∑

j=1

|Dj | a(xε
j) ln

ρ

ε
≤

∑

Dj>0

Dj a(xε
j)| ln ε|+ o(| ln ε|).

Since ρ ≥ εµ, it leads to (we recall that Dj 6= 0)

(1− µ)
∑

Dj<0

|Dj | a(xε
j)| ln ε| ≤ µ

∑

Dj>0

|Dj | a(xε
j)| ln ε|+ o(| ln ε|).

By Theorem 2.1, a(xε
j) ≥ a0/2 and consequently,

∑

Dj<0

|Dj | ≤ 2µ

1− µ

∑

Dj>0

|Dj |+ o(1) ≤ Cµ

1− µ
+ o(1).

Choosing µ sufficiently small, it yields Dj > 0 for j = 1, . . . , nε whenever ε is small enough. Since
|xε

j | ≤ C and Dj > 0, we may now assert that

−π
∑

i6=j

DiDj a(xε
j) ln |xε

i − xε
j | ≥ O(1)
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and thus W√
a0
2

,ε
≥ −π

∑nε
j=1 DjΨ√

a0
2

,ε
(xε

j) = O(1). Hence the inequality (3.12) (applied with R =
√

a0/2) together with Fε(vε,Dε) ≤ o(1) leads us to

π

nε∑

j=1

D2
j a(xε

j)| ln ρ|+ π

nε∑

j=1

Dj a(xε
j) ln

ρ

ε
− πΩ

1 + Λ2

nε∑

j=1

a2(xε
j) Dj ≤ O(1).

As previously, we derive from (1.7),
∑nε

j=1(D
2
j −Dj) a(xε

j)| ln ρ| ≤ o(| ln ε|). Since ρ ≤ εµ and a(xε
j) ≥

a0/2, we conclude that
µa0

2

nε∑

j=1

(D2
j −Dj) ≤ o(1)

which yields Dj = +1 whenever ε is small enough. ¥

As a direct consequence of Lemma 4.1, we obtain the following improvement of Lemma 3.2:

Corollary 4.1. For any R ∈ [
√

a0

2 ,
√

a0 ), we have

F̃ε(vε) ≥ π

nε∑

j=1

a(xε
j)| ln ε| − πΩ

1 + Λ2

nε∑

j=1

a2(xε
j) + WR,ε

(
(xε

1, +1), . . . , (xε
nε

,+1)
)

+ OR(1).

Proof. It follows directly from (3.12) and Lemma 4.1 that for any R ∈ [
√

a0

2 ,
√

a0 ),

Fε(vε,Dε) ≥ π

nε∑

j=1

a(xε
j)| ln ε| − πΩ

1 + Λ2

nε∑

j=1

a2(xε
j) + WR,ε

(
(xε

1,+1), . . . , (xε
nε

, +1)
)

+ OR(1).

On the other hand, we have proved in [14], that |Fε(vε,Dε)− F̃ε(vε,Dε)| = o(1) and F̃ε(vε,R2 \ Dε) ≥
o(1). Hence we have F̃ε(vε) ≥ Fε(vε,Dε) + o(1) and the conclusion follows. ¥

4.2 The subcritical case

We are now able to prove (i) in Theorem 1.1. By the results in [14], it suffices to show the following
proposition.

Proposition 4.1. Assume that (1.7) holds with ω1 < 0. Then for ε sufficiently small, we have that

|vε| → 1 in L∞loc(D) as ε → 0. (4.1)

Moreover,
F̃ε(vε) = o(1) and Ẽε(vε) = o(1). (4.2)

.
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Proof. We fix some
√

a0

2 < R0 <
√

a0 . In [14], we have proved that F̃ε(vε) ≤ o(1) so that Corollary 4.1
applied with R =

√
a0

2 leads to

π

nε∑

j=1

a(xε
j)| ln ε| − πa0Ω

1 + Λ2

nε∑

j=1

a(xε
j) ≤ π

nε∑

j=1

a(xε
j)| ln ε| − πΩ

1 + Λ2

nε∑

j=1

a2(xε
j) ≤ O(1).

Since a(xε
j) ≥ a0/2 and ω1 < 0, we deduce that

a0|ω1|nε

2
ln | ln ε| ≤ −ω1

nε∑

j=1

a(xε
j) ln | ln ε| ≤ O(1)

and then nε ≤ o(1) which implies that nε ≡ 0 whenever ε is small enough. Using the notation (3.14),
we derive from (3.16) that

Fε(vε,Dε) ≥ π
∑

i∈I+
R0
∪I−R0

a(pi)|di|
(| ln ε| − K0 ln | ln ε|)− πΩ

1 + Λ2

∑

i∈I+
R0
∪I−R0

(
a2(pi)− ν2

ε | ln ε|−3
)
di

By the results in [14], we have Fε(vε,Dε) ≤ O(| ln ε|−1). Since a(pi) ¿ a0 for i ∈ I+
R0
∪ I−R0

, we infer
that exists c > 0 independent of ε such that

c
∑

i∈I+
R0
∪I−R0

a(pi)|di|| ln ε| ≤π
∑

i∈I+
R0
∪I−R0

a(pi)|di|
(| ln ε| − K0 ln | ln ε|)

− πΩ
1 + Λ2

∑

i∈I+
R0
∪I−R0

(
a2(pi)− ν2

ε | ln ε|−3
)
di ≤ O(| ln ε|−1).

Since a(x) ≥ | ln ε|−3/2 in Dε, we finally obtain
∑

i∈I+
R0
∪I−R0

|di| ≤ O(| ln ε|−1/2).

Hence
∑

i∈I+
R0
∪I−R0

|di| = 0 for ε sufficiently small and we conclude from (3.15),

Rε(vε,Dε \ ∪i∈I+
R0
∪I−R0

Bi) = o(1).

By [14], we also have Rε(vε,∪i∈I+
R0
∪I−R0

Bi) = o(1) so that Rε(vε,Dε) = o(1). Consequently,

Eε(vε,Dε) = Fε(vε,Dε) + o(1) ≤ o(1).

Then the rest of the proof follows as in [14]. ¥



R. Ignat & V. Millot 26

4.3 The supercritical case

In this section, we will prove (ii) in Theorem 1.1. Writing

Ω =
1 + Λ2

a0

(| ln ε|+ ω(ε) ln | ln ε|), (4.3)

we assume that
(d− 1) + δ ≤ ω(ε) ≤ d− δ (4.4)

for some integer d ≥ 1 and some positive number δ ¿ 1 independent of ε. We start by proving that, in
this regime, vε has vortices :

Proposition 4.2. Assume that (4.4) holds. Then, for ε sufficiently small, vε has exactly d vortices of
degree one, i.e. nε ≡ d, and

F̃ε(vε) = −πa0dω(ε) ln | ln ε|+ πa0

2
(d2 − d) ln | ln ε|+ O(1). (4.5)

Proof. Step 1. We start by proving that nε ≥ 1 for ε sufficiently small. By Theorem 5.1 in Section 5
(with d = 1), there exists ũε ∈ H such that ‖ũε‖L2(R2) = 1 and

Fε(ũε) ≤ Fε(η̃εe
iΩS)− πa0ω(ε) ln | ln ε|+ O(1).

By the minimizing property of uε and (1.9), we have

Fε(uε) = Fε(ηεe
iΩS) + F̃ε(vε) + T̃ε(vε) ≤ Fε(ũε)

and since |T̃ε(vε)| = o(1) (see [14]), we deduce that

F̃ε(vε) ≤ −πa0ω(ε) ln | ln ε|+ O(1).

From here, it turns out by Corollary 4.1 applied with R =
√

a0

2 (recall that W√
a0
2

,ε
≥ O(1)),

−πa0ω(ε) ln | ln ε|+ O(1) ≥ F̃ε(vε) ≥ π

nε∑

j=1

a(xε
j)| ln ε| − πΩ

1 + Λ2

nε∑

j=1

a2(xε
j) + O(1)

≥ π

nε∑

j=1

a(xε
j)

(
−ω(ε) ln | ln ε|+ Ω|xε

j |2Λ
1 + Λ2

)
+ O(1)

≥ −πa0ω(ε)nε ln | ln ε|+ O(1).

Hence nε ≥ 1 + o(1) and the conclusion follows.

Step 2. Now we show that

F̃ε(vε) ≥ −πa0 nεω(ε) ln | ln ε|+ πa0

2
(n2

ε − nε) ln | ln ε|+ O(1). (4.6)
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In the case nε = 1, we have already proved the result in the previous step. Then we may assume that
nε ≥ 2. Since ‖Ψ√

a0
2

,ε
‖∞ = O(1), we get from Corollary 4.1 applied with R =

√
a0

2 ,

F̃ε(vε) ≥ π

nε∑

j=1

a(xε
j)

(
| ln ε| −

nε∑

i=1
i6=j

ln |xε
i − xε

j | −
Ωa(xε

j)
1 + Λ2

)
+ O(1)

≥ π

nε∑

j=1

a(xε
j)

(
− ω(ε) ln | ln ε| −

nε∑

i=1
i6=j

ln |xε
i − xε

j |+
Ω|xε

j |2Λ
1 + Λ2

)
+ O(1) (4.7)

Since F̃ε(vε) ≤ o(1), we derive that

−
∑

i 6=j

ln |xε
i − xε

j |+
Ω

1 + Λ2

nε∑

j=1

|xε
j |2Λ ≤ C ln | ln ε|.

On the other hand −∑
i6=j ln |xε

i − xε
j | ≥ O(1) so that |xε

j |2 ≤ C
(
ln | ln ε|)| ln ε|−1 and hence

π

nε∑

j=1

a(xε
j)

(
−ω(ε) ln | ln ε| −

nε∑

i=1
i6=j

ln |xε
i − xε

j |+
Ω|xε

j |2Λ
1 + Λ2

)
= (4.8)

= −πa0 nεω(ε) ln | ln ε| − πa0

∑

i6=j

ln |xε
i − xε

j |+
πa0Ω
1 + Λ2

nε∑

j=1

|xε
j |2Λ + o(1)

Setting r = maxj |xε
j |, we remark that

−
∑

i6=j

ln |xε
i − xε

j |+
Ω

1 + Λ2

nε∑

j=1

|xε
j |2Λ ≥ −(n2

ε − nε) ln 2r +
ΩΛ2r2

1 + Λ2
≥ n2

ε − nε

2
ln | ln ε|+ O(1). (4.9)

Combining (4.7), (4.8) and (4.9), we obtain (4.6).

Step 3. We start by proving that nε ≥ d. The case d = 1 is proved in Step 1 so that we may assume that
d ≥ 2. By Theorem 5.1 in Section 5, there exists for ε small enough, ũε ∈ H such that ‖ũε‖L2(R2) = 1
and

Fε(ũε) ≤ Fε(η̃εe
iΩS)− πa0 dω(ε) ln | ln ε|+ πa0

2
(d2 − d) ln | ln ε|+ O(1).

As in Step 1, Fε(uε) ≤ Fε(ũε) yields

F̃ε(vε) ≤ −πa0 dω(ε) ln | ln ε|+ πa0

2
(d2 − d) ln | ln ε|+ O(1) (4.10)

Matching (4.6) with (4.10), we deduce that

−ω(ε)nε +
n2

ε − nε

2
≤ −ω(ε)d +

d2 − d

2
+ o(1)

and it yields

ω(ε)(d− nε) ≤ (d− nε)(d + nε − 1)
2

+ o(1). (4.11)
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If assume that nε ≤ d− 1, it would lead to

(d− 1) + δ ≤ d + nε − 1
2

+ o(1) ≤ d− 1 + o(1)

which is impossible for ε small enough.
Assume now that nε ≥ d + 1. As previously we infer that (4.11) holds and therefore

d− δ ≥ d + nε − 1
2

+ o(1) ≥ d + o(1)

which is also impossible for ε small. Hence nε ≡ d whenever ε is small enough which leads to (4.5) by
(4.6) and (4.10). ¥

By Proposition 4.2, we may now assume that vε has exactly d vortices. We follow with a first
information on their location:

Lemma 4.2. We have

|xε
j | ≤ C| ln ε|−1/2 for j = 1, . . . , d and if d ≥ 2, |xε

i − xε
j | ≥ C| ln ε|−1/2 for i 6= j.

Proof. Matching (4.5) with (4.7) and (4.8) and using that nε = d, we deduce that

−πa0

∑

i6=j

ln |xε
i − xε

j |+
πa0Ω
1 + Λ2

d∑

j=1

|xε
j |2Λ ≤ πa0(d2 − d) ln

(| ln ε|1/2
)

+ O(1).

Hence
d∑

j=1


−

∑

i6=j

ln
(√

| ln ε| |xε
i − xε

j |
)

+
Ω|xε

j |2
2


 ≤ O(1)

and the conclusion follows. ¥

Since ρ
|xε

i−xε
j | = o(1) by Lemma 4.2, we may now improve the lower estimates obtained in Lemma 3.1

following the method in [20, 21], proof of Proposition 5.2.

Lemma 4.3. For any R ∈ [
√

a0

2 ,
√

a0 ), we have

Eε(vε, B
Λ
R) ≥ πa0

d∑

j=1

a(xε
j)| ln ε|+ WR,ε(xε

1, . . . , x
ε
d) +

πa0d

2
ln a0 + a0dγ0 + oR(1)

where γ0 is an absolute constant.

Proof. Since ρ
|xε

i−xε
j | = o(1) and Dj = 1, Proposition 3.1 yields

1
2

∫

Θρ

a(x)|∇vε|2 ≥ π
d∑

j=1

a(xε
j)| ln ρ|+ WR,ε(xε

1, . . . , x
ε
d) + oR(1) (4.12)
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and it remains to estimate Eε(vε, B(xε
j , ρ)) for j = 1, . . . , d. We proceed as follows. Since Dj = 1, we

may write on ∂B(xε
j , ρ) in polar coordinates with center xε

j ,

vε(x) = |vε(x)| ei(θ+ψj(θ)), θ ∈ [0, 2π]

where ψj ∈ H1([0, 2π],R) and ψj(0) = ψj(2π) = 0. Then in each disc B(xε
j , 2ρ), we consider the map

v̂ε defined by

v̂ε(x) =





vε(x) if x ∈ B(xε
j , ρ),

( r−ρ
ρ + 2ρ−r

ρ |vε(xε
j + ρ eiθ)|)exp i

(
θ + ψj(θ)2ρ−r

ρ + ψj(0)ρ−r
ρ

)
if x ∈ B(xε

j , 2ρ) \B(xε
j , ρ).

Then v̂ε = exp i(θ + ψj(0)) on ∂B(xε
j , 2ρ). Exactly as in the proof of Proposition 5.2 in [20, 21], we

prove that ∣∣Eε(v̂ε, B(xε
j , 2ρ) \B(xε

j , ρ))− πa(xε
j) ln 2

∣∣ = o(1). (4.13)

Since |a(x)− a(xε
j)| = O(ρ) in B(xε

j , 2ρ), we may write

Eε(v̂ε, B(xε
j , 2ρ)) =

a(xε
j)

2

∫

B(xε
j ,2ρ)

|∇v̂ε|2 +
a(xε

j)
2ε2

(1− |v̂ε|2)2 + o(1). (4.14)

Now we shall recall a result in [8]. For ε̃ > 0, we consider

I(ε̃) = Min
u∈C

1
2

∫

B(0,1)
|∇u|2 +

1
2ε̃2

(1− |u|2)2

where
C =

{
u ∈ H1(B(0, 1),C), u(x) =

x

|x| on ∂B(0, 1)
}

.

Then we have
lim
ε̃→0

(
I(ε̃) + π ln ε̃

)
= γ0. (4.15)

Since v̂ε(x) =
x−xε

j

|x−xε
j | e

iψj(0) on ∂B(xε
j , 2ρ), we obtain by scaling

1
2

∫

B(xε
j ,2ρ)

|∇v̂ε|2 +
a(xε

j)
2ε2

(1− |v̂ε|2)2 ≥ I


 ε

2ρ
√

a(xε
j)


 = π ln

ρ

ε
+ π ln 2 +

π

2
ln a(xε

j) + γ0 + o(1).

With (4.13) and (4.14), we derive that for j = 1, . . . , d,

Eε(vε, B(xε
j , ρ)) ≥ πa(xε

j) ln
ρ

ε
+

πa(xε
j)

2
ln a(xε

j) + a(xε
j)γ0 + o(1)

≥ πa(xε
j) ln

ρ

ε
+

πa0

2
ln a0 + a0γ0 + o(1).

Combining this estimate with (4.12), we get the result. ¥

We are now able to give the asymptotic expansion of F̃ε(vε) which will allow us to locate precisely
the vortices. This concludes the proof of Theorem 1.1.
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Proposition 4.3. Setting x̃ε
j =

√
Ωxε

j for j = 1, . . . , d, as ε → 0 the x̃ε
j’s tend to minimize the

renormalized energy w : R2d → R given by

w(b1, . . . , bd) = −πa0

∑

i6=j

ln |bi − bj |+ πa0

1 + Λ2

d∑

j=1

|bj |2Λ.

Moreover, we have

F̃ε(vε) = −πa0dω(ε) ln | ln ε|+ πa0

2
(d2 − d) ln | ln ε|+ Min

b∈R2d
w(b) + QΛ,d + o(1) (4.16)

where QΛ,d =
πa0

2
(d2 − d) ln(1 + Λ2) + πa0d ln a0 − πa0d

2

2
ln a0 + a0dγ0 − πa0d

2`(Λ) and `(Λ) is given
by (A.2).

Proof. From Lemma 4.3 and (3.17), we infer that for any R ∈ [
√

a0

2 ,
√

a0 ),

Fε(vε,Dε) ≥ π

d∑

j=1

a(xε
j)| ln ε| − πΩ

1 + Λ2

d∑

j=1

a2(xε
j) + WR,ε +

πa0d

2
ln a0 + a0dγ0 + oR(1).

As in the proof of Corollary 4.1, this estimate implies

F̃ε(vε) ≥ π
d∑

j=1

a(xε
j)| ln ε| − πΩ

1 + Λ2

d∑

j=1

a2(xε
j) + WR,ε +

πa0d

2
ln a0 + a0dγ0 + oR(1).

Expanding Ω and a(xε
j), we derive that

F̃ε(vε) ≥ π

d∑

j=1

a(xε
j)

(
− ω(ε) ln | ln ε|+ Ω|xε

j |2Λ
1 + Λ2

)
+ WR,ε +

πa0d

2
ln a0 + a0dγ0 + oR(1)

and by Lemma 4.2, it yields

F̃ε(vε) ≥ −πa0dω(ε) ln | ln ε|+ πa0

1 + Λ2

d∑

j=1

Ω|xε
j |2Λ + WR,ε +

πa0d

2
ln a0 + a0dγ0 + oR(1). (4.17)

By Lemma 4.2, we also have

WR,ε = −πa0

∑

i6=j

ln |xε
i − xε

j | − π

d∑

j=1

ΨR,ε(xε
j) + o(1). (4.18)

Since Dj = 1 for all j, the function ΨR,ε satisfies the equation




div
(

1
a
∇ΨR,ε

)
= −

d∑

j=1

a(xε
j)∇

(
1
a

)
· ∇ (

ln |x− xε
j |

)
in BΛ

R,

ΨR,ε = −
d∑

j=1

a(xε
j) ln |x− xε

j | on ∂BΛ
R.

(4.19)
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We infer from Lemma 4.2 that for j = 1, . . . , d,

a(xε
j)∇

(
1
a

)
· ∇ (

ln |x− xε
j |

)
=
−2a0|x|2Λ
a2(x)|x|2 + f j

ε (x).

where f j
ε satisfies ‖f j

ε ‖Lp(BΛ
R) = oR(1) for any p ∈ [1, 2) and

∥∥a0 ln |x| − a(xε
j) ln |x−xε

j |
∥∥

C1(∂BΛ
R)

= o(1).
Letting ΨR to be the solution of the equation





div
(

1
a
∇ΨR

)
=

−2|x|2Λ
a2(x)|x|2 in BΛ

R,

ΨR = − ln |x| on ∂BΛ
R,

(4.20)

it follows by classical results that ‖ΨR,ε − a0dΨR‖L∞(BΛ
R) = oR(1). Hence we obtain from (4.18),

lim
ε→0

{
WR,ε(xε

1, . . . , x
ε
d) + πa0

∑

i6=j

ln |xε
i − xε

j |
}

= −πa0d
2ΨR(0). (4.21)

Combining (4.17) and (4.21), we are led to

lim inf
ε→0

{
F̃ε(vε) + πa0dω(ε) ln | ln ε|+ πa0

∑

i6=j

ln |xε
i − xε

j | −
πa0

1 + Λ2

d∑

j=1

Ω|xε
j |2Λ

}
≥

≥ πa0d

2
ln a0 + a0dγ0 − πa0d

2ΨR(0).

Setting x̃ε
j =

√
Ωxε

j , it yields

lim inf
ε→0

{
F̃ε(vε)+πa0dω(ε) ln | ln ε| − πa0

2
(d2 − d) ln | ln ε| − w(x̃ε

1, . . . , x̃
ε
d)

}
≥

≥ πa0

2
(d2 − d) ln(1 + Λ2) + πa0d ln a0 − πa0d

2

2
ln a0 + a0dγ0 − πa0d

2ΨR(0).

Since ΨR(0) → `(Λ) as R → √
a0 by Lemma A.1 in Appendix A, we conclude that

lim inf
ε→0

{
F̃ε(vε) + πa0ω(ε)d ln | ln ε| − πa0

2
(d2 − d) ln | ln ε| − w(x̃ε

1, . . . , x̃
ε
d)

}
≥ QΛ,d (4.22)

and hence

lim inf
ε→0

{
F̃ε(vε) + πa0ω(ε)d ln | ln ε| − πa0

2
(d2 − d) ln | ln ε|

}
≥ Min

b∈R2d
w(b) + QΛ,d. (4.23)

By Theorem 5.1 in Section 5, for any δ′ > 0, there exists ũε ∈ H such that ‖ũε‖L2(R2) = 1 and

lim sup
ε→0

{
Fε(ũε)− Fε(η̃εe

iΩS) + πa0dω(ε) ln | ln ε| − πa0

2
(d2 − d) ln | ln ε|

}
≤ Min

b∈R2d
w(b) + QΛ,d + δ′

As in the proof of Proposition 4.2, Fε(uε) ≤ Fε(ũε) implies

lim sup
ε→0

{
F̃ε(vε) + πa0dω(ε) ln | ln ε| − πa0

2
(d2 − d) ln | ln ε|

}
≤ Min

b∈R2d
w(b) + QΛ,d + δ′. (4.24)
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Matching (4.23) with (4.24), we conclude that

lim
ε→0

{
F̃ε(vε) + πa0dω(ε) ln | ln ε| − πa0

2
(d2 − d) ln | ln ε|

}
= Min

b∈R2d
w(b) + QΛ,d

since δ′ is arbitrarily small. Coming back to (4.22), we are led to

Min w(b) + QΛ,d − lim sup
ε→0

w(xε
1, . . . , x

ε
d) ≥ QΛ,d

and therefore lim
ε→0

w(x̃ε
1, . . . , x̃

ε
d) = Min

b∈R2d
w(b) which ends the proof. ¥

Remark 4.1. In the case d = 1, the expansion of the energy takes the simpler form

F̃ε(vε) = −πa0ω(ε) ln | ln ε|+ QΛ,1 + o(1)

and the renormalized energy w(·) reduces to w(b) = (πa0|b|2Λ)/(1 + Λ2). In particular, if xε denotes the
single vortex of vε, we have

√
Ω xε → 0 as ε goes to 0.

5 Upper bound of the energy

In this section, we give the construction of the test functions used in the previous sections. We
assume that (1.7) holds. Using notation (4.3), the result can be stated as follows:

Theorem 5.1. Let d ≥ 1 be an integer. For any δ > 0, there exists (ũε)ε>0 ⊂ H verifying ‖ũε‖L2(R2) = 1
and

lim sup
ε→0

{
Fε(ũε)− Fε(η̃εe

iΩS) + πa0ω(ε)d ln | ln ε| − πa0

2
(d2 − d) ln | ln ε|

}
≤ Min

b∈R2d
w(b) + QΛ,d + δ

where the constant QΛ,d is defined in Proposition 4.3.

The proof of Theorem 5.1 is based on a first construction given by the following proposition. Here,
some of the main ingredients are taken from André and Shafrir [5].

Proposition 5.1. Let d ≥ 1 be an integer. For any δ > 0, there exists (v̂ε)ε>0 such that η̃εv̂ε ∈ H and

lim sup
ε→0

{
F̃ε(v̂ε) + πa0ω(ε)d ln | ln ε| − πa0

2
(d2 − d) ln | ln ε|

}
≤ Min

b∈R2d
w(b) + QΛ,d + δ.

Proof. Step 1. Let σ > 0 and κ > 0 be two small parameters that we will choose later. We consider the
function aσ : D → R given by

aσ(x) =





a(x) if |x|Λ ≤
√

a0 − σ,

−2
√

a0 − σ |x|Λ + 2a0 − σ otherwise
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It turns out that aσ ∈ C1(D), aσ ≥ a and aσ ≥ Cσ2 in D for some positive constant C. Since aσ does
not vanish in D, we may define Φσ : D → R the solution of the equation





div(
1
aσ
∇Φσ) = 2πd δ0 in D,

Φσ = 0 on ∂D.
(5.1)

By the results in Chap. I of [8], we may find a map vσ
0 ∈ C2(D \ {0}, S1) satisfying

vσ
0 ∧∇vσ

0 =
1
aσ
∇⊥Φσ in D \ {0}. (5.2)

Set Θκ,ε = D \B(0, κ−1Ω−1/2). By (5.1) and (5.2), we have for ε small enough,
∫

Θκ,ε

aσ|∇vσ
0 |2 =

∫

Θκ,ε

1
aσ
|∇Φσ|2 = −

∫

∂B(0,κ−1Ω−1/2)

1
a

∂Φσ

∂ν
Φσ

= −
∫

∂B(0,κ−1Ω−1/2)

a2
0d

2

a

(∂Ψσ

∂ν
+

1
|x|

)(
Ψσ + ln |x|) (5.3)

where Ψσ(x) = (a0d)−1Φσ(x) − ln |x|. Notice that Ψσ ∈ C1,α(D) for any 0 < α < 1, since it satisfies
the equation 




div
( 1
aσ
∇Ψσ

)
= fσ(x) in D,

Ψσ = − ln |x| on ∂D
(5.4)

with

fσ(x) = −∇( 1
aσ(x)

) · x

|x|2 =





−2|x|2Λ
a2

σ(x)|x|2 if |x| ≤ √
a0 − σ,

−2
√

a0 − σ |x|Λ
a2

σ(x)|x|2 otherwise.

From (5.3), we derive that

lim sup
ε→0

{
1
2

∫

Θκ,ε

a|∇vσ
0 |2 − πa0d

2 ln(κΩ1/2)

}
≤ lim

ε→0

{
1
2

∫

Θκ,ε

aσ|∇vσ
0 |2 − πa0d

2 ln(κΩ1/2)

}

≤ −πa0d
2Ψσ(0).

By Lemma A.1 in Appendix A, Ψσ(0) → `(Λ) as σ → 0 where the constant `(Λ) is defined in (A.2).
Consequently, we may choose σ small such that

lim sup
ε→0

{
1
2

∫

Θκ,ε

a|∇vσ
0 |2 − πa0d

2 ln(κΩ1/2)

}
≤ −πa0d

2`(Λ) +
δ

2
. (5.5)

In R2 \B(0, κ−1Ω−1/2), we define

v̂ε(x) =





vσ
0 (x) if x ∈ Θκ,

vσ
0

(√a0 x

|x|Λ
)

if x ∈ R2 \ D.
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By the results in [14], we have ‖η̃2
ε‖L∞(R2\Dε) = o(1). Since v̂ε does not depend on ε in R2 \ Dε and

|v̂ε| = 1 in R2 \ Dε, we derive that
lim
ε→0

Ẽε(v̂ε,R2 \ Dε) = 0. (5.6)

We also proved in [14], ∥∥∥∥
a− η̃2

ε

η̃2
ε

∥∥∥∥
L∞(Dε)

≤ Cε1/3 (5.7)

and hence (5.5) remains valid if one replaces a by η̃2
ε in the left hand side. Since vσ

0 is S1-valued, we
deduce that

lim sup
ε→0

{
Ẽε(v̂ε,R2 \B(0, κ−1Ω−1/2))− πa0d

2 ln(κΩ1/2)
}
≤ −πa0d

2`(Λ) +
δ

2
. (5.8)

Step 2. We are going to extend v̂ε to B(0, κ−1Ω−1/2). As in [8], we may write in a neighborhood of 0
(using polar coordinates),

vσ
0 (x) = exp

(
i(dθ + ψσ(x))

)

where ψσ is a smooth function in that neighborhood. Let (b1, . . . , bd) ∈ R2d be a minimizing configura-
tion for w(·), i.e.,

w(b1, . . . , bd) = Min
b∈R2d

w(b) (5.9)

(note that we necesarily have bi 6= bj for i 6= j). We choose κ sufficiently small such that max |bj | ≤ 1/4κ

and we set b
(ε)
j = Ω−1/2 bj . Following the proof of Lemma 2.6 in [5], we write

eiψσ(0)
d∏

j=1

x− b
(ε)
j

|x− b
(ε)
j |

= exp
(
i(dθ + φε(x))

)
for x ∈ Aκ,ε = B(0, κ−1Ω−1/2) \B(0, (2κ)−1Ω−1/2)

where φε is a smooth function satisfying |∇φε(x)| ≤ Cσ κ2Ω1/2) and |φε(x)−ψσ(0)| = Cσ κ2 for x ∈ Aκ,ε.
We define in Aκ,ε,

v̂ε(x) = exp
(
i(dθ + ψ̂ε(x))

)

with
ψ̂ε(x) =

(
2− 2κΩ1/2|x|)φε(x) +

(
2κΩ1/2|x| − 1

)
ψσ(x).

As in [5], we get that (using (5.7))

lim sup
ε→0

{
Ẽε(v̂ε, Aκ,ε)− πa0d

2 ln 2
}
≤ lim sup

ε→0

{
1
2

∫

Aκ,ε

aσ|∇v̂ε|2 − πa0d
2 ln 2

}
≤ Cσ κ2. (5.10)

Next we define v̂ε in Ξκ,ε = B(0, (2κ)−1Ω−1/2) \ ∪d
j=1B(b(ε)

j , 2κΩ−1/2) by

v̂ε(x) = eiψσ(0)
d∏

j=1

x− b
(ε)
j

|x− b
(ε)
j |

.
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Once more as in [5], we have (using (5.7))

lim sup
ε→0

Ẽε(v̂ε, Ξκ,ε) ≤ lim sup
ε→0

1
2

∫

Ξκ,ε

aσ|∇v̂ε|2 ≤ πa0(d2 + d) ln
1
2κ

− πa0

∑

i6=j

ln |bi − bj |+ Cσ κ. (5.11)

Finally, in each B
(ε)
j := B(b(ε)

j , 2κΩ−1/2), we set

v̂ε(x) = eiψσ(0)w̃j
ε

(
x− b

(ε)
j

2κΩ−1/2

)
(5.12)

where w̃j
ε realizes

Min

{
1
2

∫

B(0,1)
|∇v|2 +

1
2ε̂2

(1− |v|2)2 , v(y) =
d∏

i=1

2κy + bj − bi

|2κy + bj − bi| on ∂B(0, 1)

}
(5.13)

with
ε̂ =

ε

2κ
√

a0 Ω−1/2
.

As in the proof of Lemma 2.3 in [5], we derive

lim
ε→0

{
1
2

∫

B(0,1)
|∇w̃j

ε|2 +
1

2ε̂2
(1− |w̃j

ε|2)2 − π| ln ε̂|
}

= γ0 + X(κ)

where γ0 is defined in (4.15) and X(κ) denotes a quantity satisfying X(κ) → 0 as κ → 0. By scaling,
we obtain

lim
ε→0

{
1
2

∫

B
(ε)
j

|∇v̂ε|2 +
a0

2ε2
(1− |v̂ε|2)2 − π ln

2κΩ−1/2

ε

}
=

π

2
ln a0 + γ0 + X(κ).

Notice that in B
(ε)
j ,

aσ(x) = a(x) ≤ a0 − (| ln ε|+ ω1 ln | ln ε|)−1 min
y∈B(bj ,2κ)

a0|y|2Λ
1 + Λ2

and consequently,

lim sup
ε→0

{
1
2

∫

B
(ε)
j

aσ|∇v̂ε|2 +
a0aσ

2ε2
(1− |v̂ε|2)2 − πa0 ln

2κΩ−1/2

ε

}
≤

≤ πa0

2
ln a0 + a0γ0 − πa0|bj |2Λ

1 + Λ2
+ X(κ).

By (5.7), it yields

lim sup
ε→0

{
Ẽε(v̂ε, B

(ε)
j )− πa0 ln

2κΩ−1/2

ε

}
≤ πa0

2
ln a0 + a0γ0 − πa0|bj |2Λ

1 + Λ2
+ X(κ). (5.14)
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Combining (5.8), (5.10), (5.11) and (5.14), we conclude that for κ small enough,

lim sup
ε→0

{
Ẽε(v̂ε)− πa0d| ln ε|−πa0

2
(d2 − d) ln | ln ε|

}
≤ (5.15)

≤ −πa0

∑

i 6=j

ln |bi − bj | − πa0

1 + Λ2

d∑

j=1

|bj |2Λ + QΛ,d + δ.

Step 3. Now it remains to estimate R̃ε(v̂ε). Cauchy-Schwartz inequality yields

|R̃ε(v̂ε,R2 \ Dε)| ≤ CΩ

(∫

R2\Dε

|x|2η̃2
ε

)1/2 (Ẽε(v̂ε,R2 \ Dε)
)1/2

. (5.16)

By the results in [14], Ω2
∫
R2\Dε

|x|2η̃2
ε → 0 as ε → 0 and according to (5.6), it leads to

lim
ε→0

∣∣R̃ε(v̂ε)− R̃ε(v̂ε,Dε)
∣∣ = 0. (5.17)

By the results in Chap. IX in [8], for ε̂ sufficiently small and each j = 1, . . . , d, there exists exactly one
disc D̂j

ε ⊂ B(0, 1) with diam(D̂j
ε) ≤ Cε̂ such that |w̃j

ε| ≥ 1/2 in B(0, 1) \ D̂j
ε. By scaling, we infer that

exist exactly d discs D1
ε , . . . , D

d
ε with Dj

ε ⊂ B
(ε)
j and diam(Dj

ε) ≤ Cε such that

|v̂ε| ≥ 1
2

in Dε \ ∪d
j=1D

j
ε.

We derive from (5.14) that

∣∣R̃ε(v̂ε,∪d
j=1D

j
ε)

∣∣ ≤ CΩ ε
d∑

j=1

(Ẽε(v̂ε, B
(ε)
j )

)1/2−→
ε→0

0,

and by (5.17), it leads to limε→0

∣∣R̃ε(v̂ε)− R̃ε(v̂ε,Dε \ ∪d
j=1D

j
ε)

∣∣ = 0. From (5.7), we infer that

lim
ε→0

∣∣R̃ε(v̂ε,Dε \ ∪d
j=1D

j
ε)−Rε(v̂ε,Dε \ ∪d

j=1D
j
ε)

∣∣ = 0

and hence
lim
ε→0

∣∣R̃ε(v̂ε)−Rε(v̂ε,Dε \ ∪d
j=1D

j
ε)

∣∣ = 0. (5.18)

To compute Rε(v̂ε,D \ ∪d
j=1D

j
ε), we proceed as in [14] (here we use that Ẽε(v̂ε) ≤ C| ln ε| by (5.15)). It

yields

lim
ε→0

(
Rε(v̂ε,Dε \ ∪d

j=1D
j
ε) +

πΩ
1 + Λ2

d∑

j=1

a2(b(ε)
j )

)
= 0

since deg(v̂ε/|v̂ε|, ∂Dj
ε) = +1 for j = 1, . . . , d. Expanding a2(b(ε)

j ) and Ω, we deduce from (5.18) that

lim
ε→0

(
R̃ε(v̂ε) + πa0d | ln ε|+ πa0ω(ε)d ln | ln ε|

)
=

2πa0

1 + Λ2

d∑

j=1

|bj |2Λ. (5.19)
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Combining (5.9), (5.15) and (5.19), we obtain the announced result. ¥

Proof of Theorem 5.1. We consider the map v̂ε given in Proposition 5.1 and we set

ṽε = m−1
ε v̂ε and ũε = η̃εe

iΩS ṽε with mε = ‖η̃εv̂ε‖L2(R2).

We are going to prove that the map ũε satisfies the required property. By Lemma 3.2 in [14], we have

Fε(ũε) = F (η̃εe
iΩS) + F̃ε(ṽε) + T̃ε(ṽε).

In view of Proposition 5.1, it suffices to prove that
∣∣F̃ε(ṽε)− F̃ε(v̂ε)

∣∣ → 0 and T̃ε(ṽε) → 0 as ε → 0. We
first estimate mε. Since |v̂ε| = 1 in R2 \ ∪d

j=1B
(ε)
j and ‖η̃ε‖L2(R2) = 1, we have

m2
ε =

∫

R2

η̃2
ε +

∫

∪d
j=1B

(ε)
j

η̃2
ε(|v̂ε|2 − 1) = 1 +

∫

∪d
j=1B

(ε)
j

η̃2
ε(|v̂ε|2 − 1).

Using Cauchy-Schwarz inequality, we derive from (5.12), (5.13) and Theorem III.2 in [8] that

∣∣
∫

∪d
j=1B

(ε)
j

η̃2
ε(|v̂ε|2 − 1)

∣∣ ≤ C| ln ε|−1/2

( ∫

∪d
j=1B

(ε)
j

(|v̂ε|2 − 1)2
)1/2

≤ Cε| ln ε|−1/2 (5.20)

and thus
m2

ε = 1 + O(ε| ln ε|−1/2). (5.21)

Using |v̂ε| = 1 in R2 \ ∪d
j=1B

(ε)
j , |∇S| ≤ C|x|, |kε| ≤ C| ln ε|, (5.20) and (5.21), we derive that

∣∣T̃ε(ṽε)
∣∣ ≤ C| ln ε|2

(
|1−m−2

ε |
∫

R2

(1 + |x|2)η̃2
ε +

∫

∪d
j=1B

(ε)
j

η̃2
ε

(|1−m−2
ε ||v̂ε|2 + (1− |v̂ε|2)

))

≤ Cε| ln ε|3/2.

Now we may estimate using (5.15), (5.19) and (5.21),
∫

R2

η̃2
ε |∇ṽε|2 = m−2

ε

∫

R2

η̃2
ε |∇v̂ε|2 =

∫

R2

η̃2
ε |∇v̂ε|2 + O(ε| ln ε|1/2), (5.22)

and
R̃ε(ṽε) = m−2

ε R̃ε(v̂ε) = R̃ε(v̂ε) + O(ε| ln ε|1/2). (5.23)

We write

1
ε2

∫

R2

η̃4
ε(1− |ṽε|2)2 =

1
ε2

∫

R2

η̃4
ε(1− |v̂ε|2)2 +

2(1−m−2
ε )

ε2

∫

∪d
j=1B

(ε)
j

η̃4
ε(1− |v̂ε|2)|v̂ε|2

+
(1−m−2

ε )2

ε2

∫

R2

η̃4
ε |v̂ε|4. (5.24)

We infer from (5.15) and (5.21) that

(1−m−2
ε )2

ε2

∫

R2

η̃4
ε |v̂ε|4 ≤ C| ln ε|−1, (5.25)
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and from (5.20) and (5.21),

|1−m−2
ε |

ε2

∫

∪d
j=1B

(ε)
j

η̃4
ε |v̂ε|2

∣∣1− |v̂ε|2
∣∣ ≤ C| ln ε|−1. (5.26)

Combining (5.22), (5.23), (5.24), (5.25) and (5.26), we finally obtain that F̃ε(ṽε) = F̃ε(v̂ε) + o(1) and
the proof is complete. ¥

A Appendix

In this appendix, we prove that the functions ΨR and Ψσ defined by (4.20) and respectively (5.4)
converge to the same limiting function as R → √

a0 and σ → 0.

Lemma A.1. For any 0 < R <
√

a0 , respectively any σ > 0, let ΨR be the solution of equation (4.20),
respectively Ψσ the solution of (5.4). Then ΨR → Ψ? as R → √

a0 , respectively Ψσ → Ψ? as σ → 0, in
C1

loc(D) where Ψ? is the unique solution in C0(D) of




div
(1
a
∇Ψ?

)
=

−2|x|2Λ
a2(x)|x|2 in D,

Ψ? = − ln |x| on ∂D.
(A.1)

In particular,
lim

R→√a0

ΨR(0) = lim
σ→0

Ψσ(0) = Ψ?(0) =: `(Λ). (A.2)

Proof. Step 1: Uniqueness of Ψ?. Assume that (A.1) admits two solutions Ψ1
? and Ψ2

? in C0(D). Then
the difference Ψ1

? − Ψ2
? satisfies div( 1

a∇(Ψ1
? − Ψ2

?)) = 0 in D and Ψ1
? − Ψ2

? = 0 on ∂D. By elliptic
regularity, we infer that Ψ1

? − Ψ2
? ∈ C2(D) ∩ C0(D). Hence it follows Ψ1

? − Ψ2
? ≡ 0 by the classical

maximum principle.
Step 2: Existence of Ψ?. We set for y ∈ D,

ΥR(y) = ΨR

(
Ry√
a0

)
− ζ(y) + ln(R/

√
a0 )

where ζ is the solution of 



∆ζ = 0 in D,

ζ = − ln |y| on ∂D.

Since ΨR solves (4.20), we deduce that ΥR is the unique solution of



−div

(
1

aR(y)
∇ΥR

)
=

f(y)
a2

R(y)
in D,

ΥR = 0 on ∂D.
(A.3)
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where aR(y) = a2
0/R2 − |y|2Λ and

f(y) =
2|y|2Λ
|y|2 + 2(y1,Λ2y2) · ∇ζ(y).

We easily check that y 7→ KaR(y), respectively y 7→ −KaR(y), defines a supersolution, resp. a subso-
lution, of (A.3) whenever the constant K satisfies K ≥ ‖f‖L∞(D)/(Λ2a0). Hence

|ΥR| ≤ CaR in D (A.4)

for a constant C independent of R. By elliptic regularity, we deduce that ΥR remains bounded in
W 2,p

loc (D) as R → √
a0 for any 1 ≤ p < ∞. Therefore, from any sequence Rn → √

a0, we may extract a
subsequence, still denoted by (Rn), such that ΥRn → Υ? in C1

loc(D) where Υ? satisfies

−div
(

1
a(y)

∇Υ?

)
=

f

a2(y)
in D.

We infer from (A.4) that |Υ?(y)| ≤ Ca(y) for any y ∈ D and hence Υ? ∈ C0(D) with Υ?|∂D = 0.
Consequently, the function Ψ? := Υ? + ζ defines a solution of (A.1) which is continuous in D.

Step 3. By the uniqueness of Ψ?, we have that ΥR → Ψ? − ζ in C1
loc(D) as R → √

a0 which clearly
implies ΨR → Ψ? in C1

loc(D) as R → √
a0 . To prove that Ψσ → Ψ? in C1

loc(D) as σ → 0, we may
proceed as in Step 2. Indeed, we may show as in Step 2, that |Ψσ − ζ| ≤ Caσ in D for a constant C

independent of σ. ¥
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