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Abstract

We show that topological singularities of maps in BV (S2, S1) can be detected by its dis-
tributional Jacobian. As an application, we construct an optimal lifting and we compute its
total variation.

Résumé

On montre que le jacobien d’une fonction u ∈ BV (S2, S1) permet de localiser les singu-
larités topologiques de u. On applique ce résultat à la construction d’un relèvement optimal
et on calcule sa variation totale.
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1 Introduction

Let u ∈ BV (S2, S1), i.e. u = (u1, u2) ∈ L1(S2,R2), |u(x)| = 1 for a.e. x ∈ S2 and the derivative
of u (in the sense of the distributions) is a finite 2× 2−matrix Radon measure

∫

S2
|Du| = sup

{∫

S2

2∑

k=1

uk div ζk dH2 : ζk ∈ C1(S2,R2),
2∑

k=1

|ζk(x)|2 ≤ 1,∀x ∈ S2

}
< ∞ ,

where the norm in R2 is the Euclidean norm. Observe that the total variation of Du is independent
of the choice of the orthonormal frame (x, y) on S2; a frame (x, y) is always taken such that (x, y, e)
is direct, where e is the outward normal to the sphere S2.

We begin with the notion of minimal connection between point singularities of u. The concept of
a minimal connection associated to a function from R3 into S2 was originally introduced by Brezis,
Coron and Lieb [3]. Following the ideas in [3] and [6], Brezis, Mironescu and Ponce [4] studied the
topological singularities of functions g ∈ W 1,1(S2, S1). They show that the distributional Jacobian
of g describes the location and the topological charge of the singular set of g. More precisely, let
T (g) ∈ D′(S2,R) be defined as

T (g) = 2 det(∇g) = −(g ∧ gx)y + (g ∧ gy)x;

then there exist two sequences of points (pk), (nk) in S2 such that
∑

k

|pk − nk| < ∞ and T (g) = 2π
∑

k

(δpk
− δnk

).
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Our aim is to extend these notions for functions u ∈ BV (S2, S1). In this case, the difficulty of the
analysis of the singular set arises from the existence of more than one type of singularity: besides
the point singularities carrying a degree, the jump singularities of u should be taken into account.

We start by introducing some notation. Write the finite Radon 2× 2-matrix measure Du as

Du = Dau + Dcu + Dju,

where Dau,Dcu and Dju are the absolutely continuous part, the Cantor part and the jump part
of Du (see e.g. [1]). We recall that Dju can be written as

Dju = (u+ − u−)⊗ νuH1xS(u),

where S(u) denotes the set of jump points of u; S(u) is a countablyH1-rectifiable set on S2 oriented
by the Borel map νu : S(u) → S1. The Borel functions u+, u− : S(u) → S1 are the traces of u on
the jump set S(u) with respect to the orientation νu. Throughout the paper we identify u by its
precise representative that is defined H1-a.e. on S2 \ S(u).

We now introduce the distribution T (u) ∈ D′(S2,R) as

〈T (u), ζ〉 =
∫

S2
∇⊥ζ · (u ∧ (Dau + Dcu)) +

∫

S(u)

ρ(u+, u−) νu · ∇⊥ζ dH1, ∀ζ ∈ C1(S2,R). (1)

Here, ∇⊥ζ = (ζy,−ζx),
(

u1

u2

)
∧

(
a1 b1

a2 b2

)
= (u ∧ a, u ∧ b) = (u1a2 − u2a1, u1b2 − u2b1)

where a =
(

a1

a2

)
and b =

(
b1

b2

)
. The function ρ(·, ·) : S1×S1 → [−π, π] is the signed geodesic

distance on S1 defined as

ρ(ω1, ω2) =

{
Arg

(
ω1
ω2

)
if ω1

ω2
6= −1

Arg (ω1)−Arg (ω2) if ω1
ω2

= −1
, ∀ω1, ω2 ∈ S1

where Arg (ω) ∈ (−π, π] stands for the argument of the unit complex number ω ∈ S1. T (u)
represents the distributional determinant of the absolutely continuous part and the Cantor part of
Du which is adjusted on S(u) by the tangential derivative of ρ(u+, u−). The second term in the
RHS of (1) is motivated by the study of BV (S1, S1) functions (see [9]): we defined there a similar
quantity that represents a pseudo-degree for BV (S1, S1) functions.

Remark 1 i) The integrand in (1) is computed pointwise in any orthonormal frame (x, y) and the
corresponding quantity is frame-invariant.

ii) The 2-vector measure

µ = (µ1, µ2) = u ∧ (Dau + Dcu) = (u ∧ (Daux + Dcux), u ∧ (Dauy + Dcuy))

is well-defined since Dau + Dcu vanishes on sets which are σ-finite with respect to H1.
iii) Notice that the function ρ is antisymmetric, i.e.

ρ(ω1, ω2) = −ρ(ω2, ω1), ∀ω1, ω2 ∈ S1

and therefore, T (u) does not depend of the choice of the orientation νu on the jump set S(u). By
Lemma 5 (see below), we obtain

|〈T (u), ζ〉| ≤ |u|BV S1 , ∀ζ ∈ C1(S2,R) with |∇ζ| ≤ 1

where |u|BV S1 =
∫

S2

(
|Dau| + |Dcu|

)
+

∫

S(u)

dS1(u+, u−) dH1 and dS1 stands for the geodesic

distance on S1. Therefore, T (u) is indeed a distribution (of order 1) on S2.
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For a compact Riemannian manifold X with the induced distance d, define

Z(X) =

{
Λ ∈ [

C1(X)
]∗

: ∃(pk), (nk) ⊂ X,
∑

k

d(pk, nk) < ∞ and Λ = 2π
∑

k

(δpk
− δnk

)

}
.

Z(X) is the set of distributions that can be written as a countable sum of dipoles.

Remark 2 i) In general, Λ ∈ Z(X) is not a measure. In fact, it can be shown that Λ is a measure
if and only if Λ is a finite sum of dipoles (see Smets [11] and also Ponce [10]).

ii) Λ ∈ Z(X) has always infinitely many representations as a sum of dipoles and these repre-
sentations need not be equivalent modulo a permutation of points. For example, a dipole δp − δn

may be represented as δp − δn1 +
∑

k≥1

(δnk
− δnk+1) for any sequence (nk)k rapidly converging to n.

For each Λ ∈ Z(X), the length of a minimal connection between the singularities is defined as

‖Λ‖ = sup
ζ∈C1(X)

|∇ζ|≤1

〈Λ, ζ〉.

For example, when Λ = 2π

m∑

k=1

(δpk
− δnk

) is a finite sum of dipoles, Brezis, Coron and Lieb [3]

showed that

‖Λ‖ = 2π min
σ∈Sm

m∑

k=1

d(pk, nσ(k))

where Sm denotes the group of permutation of {1, 2, . . . , m}. In general, for an arbitrary Λ ∈ Z(X),
Bourgain, Brezis and Mironescu [2] proved the following characterization of the length of a minimal
connection:

‖Λ‖ = inf
(pk),(nk)

{
2π

∑

k

d(pk, nk) : Λ = 2π
∑

k

(δpk
− δnk

) and
∑

k

d(pk, nk) < ∞
}

. (2)

From (2), one can deduce that Z(X) is a complete metric space with respect to the distance
induced by ‖ · ‖ (see e.g. [10]).

Our first theorem states that T (u) is a countable sum of dipoles. It is the extension to the BV
case of the result in [4] mentioned in the beginning.

Theorem 1 For every u ∈ BV (S2; S1), we have T (u) ∈ Z(S2), i.e. there exist (pk), (nk) in S2

such that ∑

k

|pk − nk| < ∞ and T (u) = 2π
∑

k

(δpk
− δnk

).

The proof relies on the fact that the derivative (in the sense of distributions) of the characteristic
function of a bounded measurable set in R can be written as a sum of differences between Dirac
masses:

Lemma 1 Let I ⊂ R be a compact interval and f : I → 2πZ be an integrable function. Define

〈df

dt
, ζ〉 := −

∫

I

f(t) ζ ′(t) dt , ∀ζ ∈ C1(I).

Then
df

dt
∈ Z(I) and ‖df

dt
‖ =

∫

I

|f | dt.
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The same property is valid for the distributional tangential derivative of an integrable function
taking values in 2πZ and defined on a C1 1-graph (see Remark 3). Since every countably H1-
rectifiable set S ⊂ S2 can be covered H1-a.e. by a sequence of C1 1-graphs, it makes sense to
define for every Λ ∈ Z(S2) the set

J (Λ) =



(f, S, ν) :

S is a countably H1- rectifiable set in S2, ν is an orientation on S,

f ∈ L1(S, 2πZ) is such that
∫

S

f ν · ∇⊥ζ dH1 = 〈Λ, ζ〉, ∀ζ ∈ C1(S2)



 .

We have the following reformulation of (2):

Lemma 2 For every Λ ∈ Z(S2), we have

‖Λ‖ = min
(f,S,ν)∈J (Λ)

∫

S

|f | dH1.

It is known that the infimum in (2) is not achieved in general (see [10]); the advantage of the
above formula is that the minimum is always attained. It means that the length of Λ represents
the minimal mass that an H1-integrable function with values into 2πZ could carry between the
dipoles of Λ.

In the sequel we are concerned with the lifting of u ∈ BV (S2, S1). We call BV lifting of u
every function ϕ ∈ BV (S2,R) such that

u = eiϕ a.e. on S2.

The existence of a BV lifting for functions u ∈ BV (S2, S1) was initially shown by Giaquinta, Mod-
ica and Souček [8]. Later, Dávila and Ignat [5] proved the existence of a lifting ϕ ∈ BV ∩ L∞(S2,R)
such that ∫

S2
|Dϕ| ≤ 2

∫

S2
|Du|; (3)

moreover, the constant 2 in (3) is the best constant (see Example 1 and Proposition 3 below).
We give the following characterization for a lifting of u:

Lemma 3 Let u ∈ BV (S2, S1). For every lifting ϕ ∈ BV (S2,R) of u, there exists (f, S, ν) ∈
J (T (u)) such that

Dϕ = u ∧ (Dau + Dcu) + ρ(u+, u−)νuH1xS(u)− fνH1xS. (4)

Conversely, for every triple (f, S, ν) ∈ J (T (u)) there exists a lifting ϕ ∈ BV (S2,R) of u such that
(4) holds.

In this framework, it is natural to investigate the quantity

E(u) = inf
{ ∫

S2
|Dϕ| : ϕ ∈ BV (S2,R), eiϕ = u a.e. on S2

}
. (5)

The infimum from above is achieved and it is equal to the relaxed energy

Erel(u) = inf
{

lim inf
k→∞

∫

S2
|∇uk| dH2 : uk ∈ C∞(S2, S1), uk → u a.e. on S2

}
(6)

(see Remark 4). A lifting ϕ ∈ BV (S2,R) of u is called optimal if

E(u) =
∫

S2
|Dϕ|.
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An optimal lifting need not be unique (see Proposition 3). Remark also that for u ∈ BV (S2, S1),
there could be no optimal BV lifting of u that belongs to L∞ (see Example 3).

Our aim is to compute the total variation E(u) of an optimal lifting and to construct an optimal
lifting. Theorem 2 establishes the formula for E(u) using the distribution T (u).

Theorem 2 For every u ∈ BV (S2, S1), we have

E(u) =
∫

S2
(|Dau|+ |Dcu|) + min

(f,S,ν)∈J (T (u))

∫

S∪S(u)

∣∣∣fν χS − ρ(u+, u−)νu χS(u)

∣∣∣ dH1. (7)

We refer the reader to [8] for related results in terms of cartesian currents.
As a consequence of Theorem 2, we recover the result of Brezis, Mironescu and Ponce [4] about

the total variation of an optimal BV lifting for functions g ∈ W 1,1(S2, S1): the gap

E(g)−
∫

S2
|∇g|dH2

is equal to the length of a minimal connection connecting the topological singularities of g.

Corollary 1 For every g ∈ W 1,1(S2, S1), we have

E(g) =
∫

S2
|∇g| dH2 + ‖T (g)‖.

From (7), we deduce an estimate for E(u) (which is a weaker form of inequality (3)):

Corollary 2 For every u ∈ BV (S2, S1), we have

E(u) ≤ 2|u|BV S1 .

In the spirit of [4], we have the following interpretation of ‖T (u)‖ as a distance:

Theorem 3 For every u ∈ BV (S2, S1), we have

‖T (u)‖ = min
ψ∈BV (S2,R)

∫

S2

∣∣∣u ∧ (Dau + Dcu) + ρ(u+, u−)νuH1xS(u)−Dψ
∣∣∣. (8)

Moreover, there is at least one minimizer ψ ∈ BV (S2,R) of (8) that is a lifting of u.

Remark that in general, ‖T (u)‖ is not the distance of the measure

u ∧ (Dau + Dcu) + ρ(u+, u−)νuH1xS(u)

to the class of gradient maps. In Example 4, we construct a function u ∈ BV (S2, S1) such that

‖T (u)‖ < inf
ψ∈C∞(S2,R)

∫

S2

∣∣∣u ∧ (Dau + Dcu) + ρ(u+, u−)νuH1xS(u)−Dψ
∣∣∣.

In Section 2, we present the proofs of Lemmas 1, 2 and 3, Theorems 1, 2 and 3 and Corollaries
1 and 2. Some examples and interesting properties of T (u) are given in Section 3. Among other
things, we show that T : BV (S2, S1) → Z(S2) is discontinuous and we analyze some algebraic
properties of T (u). We also discuss the meaning of the point singularities of T (u) and about their
location on S2.

All the results included here can be easily adapted for functions in BV (Ω, S1) where Ω is a
more general simply connected Riemannian manifold of dimension 2.
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2 Remarks and proofs of the main results

We start by proving Lemma 1:

Proof of Lemma 1. Firstly, let us suppose that f = 2πχA where A ⊂ I is an open set. Write
A =

⋃

j∈N
(aj , bj) as a countable reunion of disjoint intervals. It is clear that

〈dχA

dt
, ζ〉 =

∑

j∈N
(ζ(aj)− ζ(bj)), ∀ζ ∈ C1(I)

and
∑

j∈N
(bj − aj) = H1(A). Thus 2π

dχA

dt
∈ Z(I) and

‖df

dt
‖ = 2π sup

ζ∈C1(I)

|ζ′|≤1

∫

I

χA ζ ′ dt = 2π sup
ψ∈C(I)

|ψ|≤1

∫

I

χA ψ dt = 2πH1(A).

Moreover, let A ⊂ I be a Lebesgue measurable set and f = 2πχA. Using the regularity of the
Lebesgue measure, there exists a decreasing sequence of open sets A ⊂ Ak+1 ⊂ Ak ⊂ I, k ∈ N such

that lim
k→∞

H1(Ak) = H1(A). Observe that
dχAk

dt
→ dχA

dt
in

[
C1(I)

]∗. Since Z(I) is a complete

metric space, we conclude that 2π
dχA

dt
∈ Z(I) and ‖2π

dχA

dt
‖ = 2πH1(A). In the general case of

an integrable function f : I → 2πZ, write

f = 2π
∑

k∈Z
k χEk

in L1, (9)

where Ek = {x ∈ I : f(x) = 2πk}. Notice that 2π
d (k χEk

)
dt

∈ Z(I) and the series
∑

k∈Z
2π

d (k χEk
)

dt

converges absolutely; indeed, we have

∑

k∈Z
‖2π

d (k χEk
)

dt
‖ = 2π

∑

k∈Z
|k|H1(Ek) =

∫

I

|f |dt < ∞.

By (9), we conclude that
df

dt
∈ Z(I) and

‖df

dt
‖ = sup

ζ∈C1(I)

|ζ′|≤1

∫

I

f ζ ′ dt = sup
ψ∈C(I)

|ψ|≤1

∫

I

f ψ dt =
∫

I

|f | dt.

¤

Remark 3 The conclusion of Lemma 1 is also true for H1-integrable functions with values in
2πZ that are defined on C1 1-graphs. For simplicity, we restrict to C1 1-graphs in S2, i.e. for an
orthonormal frame (x, y) on S2, we consider the set

Γ = {(x, y) : φ(x) = y}

where φ is a C1 function. Suppose c : [0, 1] → Γ is a parameterization of Γ and set τ(c(t)) =
c′(t)
|c′(t)|

the tangent unit vector to the curve Γ at c(t), ∀t ∈ (0, 1). Let f : Γ → 2πZ be an H1-integrable
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function on Γ. Define

〈∂f

∂τ
, ζ〉 := −

∫ 1

0

f ◦ c(t) (ζ ◦ c)′(t) dt , ∀ζ ∈ C1(Γ).

By Lemma 1, we have

∂f

∂τ
∈ Z(Γ) and ‖∂f

∂τ
‖ =

∫ 1

0

|f |(c(t)) |c′(t)| dt.

Before proving Lemma 3, we give the following result:

Lemma 4 For every u ∈ BV (S2, S1), we have

u ∧ (Dau + Dcu) =
1
i
ū(Dau + Dcu)

and |u ∧ (Dau + Dcu)| = |Dau|+ |Dcu|.

Proof. Write u = (u1, u2) = u1 + i u2. We can consider the 2× 2 matrix of real measures Du as a
2-vector of complex measures, i.e. Du = Du1 + i Du2. Since u2

1 +u2
2 = 1, it results D(u2

1 +u2
2) = 0.

By the chain rule (see e.g. [1]), we obtain

u1(Dau1 + Dcu1) + u2(Dau2 + Dcu2) = 0,

i.e. the real part of the C2-measure ū(Dau + Dcu) vanishes. Therefore,

u ∧ (Dau + Dcu) =
1
i
ū(Dau + Dcu).

Hence, using the fact that the absolutely continuous part and the Cantor part of Du are mutually
singular, we conclude that

|u ∧ (Dau + Dcu)| = |u|(|Dau|+ |Dcu|) = |Dau|+ |Dcu|.
¤

Proof of Lemma 3. Let ϕ ∈ BV (S2,R) be a lifting of u. Write

Dϕ = Daϕ + Dcϕ + (ϕ+ − ϕ−)νϕH1xS(ϕ).

By the chain rule and Lemma 4, we obtain

Daϕ + Dcϕ =
1
i
ū(Dau + Dcu) = u ∧ (Dau + Dcu).

Since u = eiϕ a.e. on S2, we have that S(u) ⊂ S(ϕ) and by changing the orientation νϕ, we may
assume 




νϕ = νu

eiϕ+ = u+

eiϕ− = u−
H1-a.e. on S(u).

Therefore,

ϕ+ − ϕ− ≡ ρ(u+, u−) (mod 2π) H1-a.e. on S(u)

and ϕ+ − ϕ− ≡ 0 (mod 2π) H1-a.e. on S(ϕ) \ S(u).
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Hence, there exists fϕ : S(ϕ) → 2πZ a measurable function such that

Dϕ = u ∧ (Dau + Dcu) + ρ(u+, u−)νuH1xS(u)− fϕνϕH1xS(ϕ). (10)

Observe that fϕ is an H1-integrable function since

|ρ(u+, u−)| = dS1(u+, u−) ≤ π

2
|u+ − u−|.

Since Dϕ is a measure, we have
curl Dϕ = 0 in D′,

i.e. for every ζ ∈ C1(S2,R), ∫

S2
∇⊥ζ Dϕ = 0.

By (10), it yields

〈T (u), ζ〉 =
∫

S(ϕ)

fϕ∇⊥ζ · νϕ dH1, ∀ζ ∈ C1(S2)

and therefore, (fϕ, S(ϕ), νϕ) ∈ J (T (u)).
Conversely, take (f, S, ν) ∈ J (T (u)). Without loss of generality, we may consider S = {f 6= 0}.

Consider the finite Radon R2-valued measure

µ = u ∧ (Dau + Dcu) + ρ(u+, u−)νuH1xS(u)− f νH1xS.

We check that curl µ = 0 in D′(S2). Indeed, for every ζ ∈ C1(S2,R),

−〈curl µ, ζ〉 =
∫

S2
∇⊥ζ dµ = 〈T (u), ζ〉 −

∫

S

f ∇⊥ζ · ν dH1 = 0.

By the BV version of Poincare’s lemma, there exists ϕ ∈ BV (S2,R) such that Dϕ = µ in
D′(S2,R2). Here, S ∪ S(u) is the jump set of ϕ. On the set S ∪ S(u), we choose an orienta-
tion νϕ such that νϕ = νu on S(u). We have





Daϕ + Dcϕ = u ∧ (Dau + Dcu) = 1
i ū(Dau + Dcu)

ϕ+ − ϕ− ≡ ρ(u+, u−) (mod 2π) H1- a.e. on S(u)
ϕ+ − ϕ− ≡ 0 (mod 2π) H1- a.e. on S \ S(u)

.

We now show that
D(u e−iϕ) = 0.

By the chain rule, we get

D(e−iϕ) = −ie−iϕ(Daϕ + Dcϕ) + (e−iϕ+ − e−iϕ−)⊗ νuH1xS(u)

= −e−iϕū(Dau + Dcu) + (e−iϕ+ − e−iϕ−)⊗ νuH1xS(u).

Remark that the space BV (S2,C)∩L∞ is an algebra. Differentiating the product u e−iϕ, we obtain

D(u e−iϕ) = e−iϕ(Dau + Dcu)− u e−iϕū(Dau + Dcu) + (u+ e−iϕ+ − u− e−iϕ−)⊗ νuH1xS(u) = 0.

Thus, up to an additive constant, ϕ is a BV lifting of u and (4) is fulfilled. ¤
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Proof of Theorem 1. Let ϕ ∈ BV (S2,R) be a lifting of u. By Lemma 3, there exists (f, S, ν) ∈
J (T (u)) such that (4) holds. Denote by τ : S → S1 the tangent vector in H1-a.e. point of S such
that (ν, τ, e) is direct. By (4),

〈T (u), ζ〉 =
∫

S

f ∇⊥ζ · ν dH1

=
∫

S

f
∂ζ

∂τ
dH1

=
∑

k∈N

∫

Ik

χSf
∂ζ

∂τ
dH1, ∀ζ ∈ C1(S2)

where {Ik}k∈N is a family of disjoint compact C1 1-graphs that covers H1-almost all of the count-
ably rectifiable set S, i.e.

H1

(
S \

⋃

k∈N
Ik

)
= 0.

According to Lemma 1 and Remark 3, we conclude T (u) ∈ Z(S2) and ‖T (u)‖ ≤
∫

S

|f | dH1. ¤
Before proving Theorem 2, let us make some remarks about E(u) and Erel(u) for u ∈ BV (S2, S1)

(see also [4]):

Remark 4 i) E(u) < ∞ and Erel(u) < ∞ (the existence of a BV lifting of u was shown in [5] and
[8]);

ii) The infimum in (5) is achieved; indeed, let ϕk ∈ BV (S2,R), eiϕk = u a.e. on S2, be such
that

lim
k→∞

∫

S2
|Dϕk| = E(u) < ∞.

By Poincaré’s inequality, there exists a universal constant C > 0 such that
∫

S2

∣∣∣ϕk −
∫

S2
− ϕk

∣∣∣ dH2 ≤ C

∫

S2
|Dϕk|, ∀k ∈ N

(where
∫

S2
− stands for the average). Therefore, by subtracting a suitable integer multiple of 2π, we

may assume that (ϕk)k∈N is bounded in BV (S2,R). After passing to a subsequence if necessary,
we may assume that ϕk → ϕ a.e. and L1 for some ϕ ∈ BV (S2,R). It follows that ϕ is a lifting of
u on S2 and

E(u) = lim
k→∞

∫

S2
|Dϕk| ≥

∫

S2
|Dϕ| ≥ E(u);

iii) The infimum in (6) is also achieved; take um
k ∈ C∞(S2, S1) such that for each k ∈ N,

um
k → u a.e. on S2 and

∫

S2
|∇um

k | dH2 ↘ ak ∈ R as m →∞

and lim
k→∞

ak = Erel(u). Subtracting a subsequence, we may assume that for each k ∈ N,

∫

S2
|um

k − u| dH2 <
1
k

and
∫

S2
|∇um

k | dH2 − ak <
1
k

, ∀m ≥ 1.

Therefore, uk
k → u in L1 and

lim
k→∞

∫

S2
|∇uk

k| dH2 = Erel(u).
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iv) E(u) = Erel(u). For “≤”, take uk ∈ C∞(S2, S1), ∀k ∈ N such that uk → u a.e. on S2

and sup
k∈N

∫

S2
|∇uk| dH2 < ∞. Since S2 is simply connected, there exists ϕk ∈ C∞(S2,R) such that

eiϕk = uk. Moreover,
∫

S2
|∇ϕk| dH2 =

∫

S2
|∇uk|dH2. Using the same argument as in ii), we may

assume that ϕk → ϕ a.e. and L1 for some ϕ ∈ BV (S2,R). Therefore, eiϕ = u a.e. on S2 and

E(u) ≤
∫

S2
|Dϕ| ≤ lim inf

k→∞

∫

S2
|∇ϕk| dH2 = lim inf

k→∞

∫

S2
|∇uk| dH2.

For “≥”, consider a BV lifting ϕ of u and take an approximating sequence ϕk ∈ C∞(S2,R) such

that ϕk → ϕ a.e. and |Dϕ|(S2) = lim
k→∞

∫

S2
|∇ϕk| dH2. With uk = eiϕk ∈ C∞(S2, S1), we have

uk → u a.e. on S2 and

Erel(u) ≤ lim
k→∞

∫

S2
|∇uk| dH2 = lim

k→∞

∫

S2
|∇ϕk| dH2 =

∫

S2
|Dϕ|.

¤

Proof of Theorem 2. For “≤”, take (f, S, ν) ∈ J (T (u)). By Lemma 3, there exists a lifting
ϕ ∈ BV (S2,R) of u such that (4) holds. It follows that

E(u) ≤
∫

S2
|Dϕ| =

∫

S2
(|Dau|+ |Dcu|) +

∫

S∪S(u)

∣∣∣fνχS − ρ(u+, u−)νuχS(u)

∣∣∣ dH1.

Let us prove now “≥”. By Remark 4, there is an optimal BV lifting ϕ of u, i.e. E(u) =
∫

S2
|Dϕ|.

By Lemma 3, there exists (f, S, ν) ∈ J (T (u)) such that (4) holds. It results that

E(u) =
∫

S2
|Dϕ| =

∫

S2
(|Dau|+ |Dcu|) +

∫

S∪S(u)

∣∣∣fνχS − ρ(u+, u−)νuχS(u)

∣∣∣ dH1.

From here, we also deduce that the minimum inside the RHS of (7) is achieved. ¤

Remark 5 (Construction of an optimal lifting) Take (f, S, ν) ∈ J (T (u)) that achieves the
minimum

min
(f,S,ν)∈J (T (u))

∫

S∪S(u)

∣∣∣fν χS − ρ(u+, u−)νu χS(u)

∣∣∣ dH1. (11)

By Lemma 3, there exists a lifting ϕ ∈ BV (S2,R) of u such that (4) holds. Then
∫

S2
|Dϕ| =

∫

S2
(|Dau|+ |Dcu|) +

∫

S∪S(u)

∣∣∣fνχS − ρ(u+, u−)νuχS(u)

∣∣∣ dH1 = E(u)

and therefore, ϕ is an optimal lifting of u. ¤

Proof of Lemma 2. For “≤”, it is easy to see that if (f, S, ν) ∈ J (Λ) then for every ζ ∈ C1(S2)
with |∇ζ| ≤ 1,

〈Λ, ζ〉 =
∫

S

f ν · ∇⊥ζ dH1 ≤
∫

S

|f | dH1.

For “≥”, we use characterization (2) of the distribution Λ ∈ Z(S2). We denote by dS2 the
geodesic distance on S2. Let Λ = 2π

∑

k

(δpk
− δnk

) where (pk)k∈N, (nk)k∈N belong to S2 such that
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∑

k

dS2(pk, nk) < ∞. For every k ∈ N, consider
_

nkpk a geodesic arc on S2 oriented from nk to pk.

Take νk the normal vector to
_

nkpk in the frame (x, y). Set S =
⋃

k

_
nkpk. Since

∑

k

dS2(pk, nk) < ∞,

there exist an orientation ν : S → S1 on S and an H1-integrable function f : S → 2πZ such that

fνχS =
∑

k

2πνkχ _
nkpk

in L1(S,R2). (12)

Then
∫

S

fν · ∇⊥ζ dH1 = 2π
∑

k

∫
_

nkpk

νk · ∇⊥ζ dH1 = 2π
∑

k

(ζ(pk)− ζ(nk)) = 〈Λ, ζ〉, ∀ζ ∈ C1(S2).

It follows that (f, S, ν) ∈ J (Λ) and by (12),
∫

S

|f | dH1 ≤
∑

k

2πdS2(nk, pk).

Minimizing after all suitable pairs (pk, nk)k∈N, it follows

‖Λ‖ = inf
(f,S,ν)∈J (Λ)

∫

S

|f | dH1. (13)

We now show that the infimum in (13) is indeed achieved. By a dipole construction (see [2],
Lemma 16), there exists u ∈ W 1,1(S2, S1) such that Λ = T (u). We choose (fk, Sk, νk) ∈ J (T (u))
such that

‖T (u)‖ = lim
k

∫

Sk

|fk| dH1.

By Lemma 3, we construct a lifting ϕk ∈ BV (S2,R) of u such that

Dϕk = u ∧ (Dau + Dcu) + ρ(u+, u−)νuH1xS(u)− fk νkH1xSk.

Remark that
∫

S2
|Dϕk| ≤

∫

S2
(|Dau|+ |Dcu|) +

∫

S(u)

|ρ(u+, u−)| dH1 +
∫

Sk

|fk|dH1.

Subtracting a suitable number in 2πZ, we may assume that (ϕk)k is a bounded sequence in
BV (S2,R). Up to a subsequence, we find ϕ ∈ BV (S2,R) such that

ϕk → ϕ a.e. in S2 and Dϕk
∗
⇀ Dϕ in the measure sense.

Therefore, ϕ is a BV lifting of u and by Lemma 3, there exists (f, S, ν) ∈ J (T (u)) such that

Dϕ = u ∧ (Dau + Dcu) + ρ(u+, u−)νuH1xS(u)− f νH1xS.

We conclude
∫

S

|f | dH1 =
∫

S2

∣∣∣u ∧ (Dau + Dcu) + ρ(u+, u−)νuH1xS(u)−Dϕ
∣∣∣

≤ lim inf
k

∫

S2

∣∣∣u ∧ (Dau + Dcu) + ρ(u+, u−)νuH1xS(u)−Dϕk

∣∣∣

= lim
k

∫

Sk

|fk|dH1

= ‖T (u)‖. ¤
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Proof of Theorem 3. Let ψ ∈ BV (S2,R) and ζ ∈ C1(S2) be such that |∇ζ| ≤ 1. Then
∫

S2

∣∣∣u ∧ (Dau + Dcu) + ρ(u+, u−)νuH1xS(u)−Dψ
∣∣∣ ≥ 〈T (u), ζ〉 −

∫

S2
Dψ · ∇⊥ζ = 〈T (u), ζ〉.

By taking the supremum over ζ, we obtain
∫

S2

∣∣∣u ∧ (Dau + Dcu) + ρ(u+, u−)νuH1xS(u)−Dψ
∣∣∣ ≥ ‖T (u)‖.

We now show that there is a lifting ϕ ∈ BV (S2,R) of u such that the minimum in (8) is achieved.
By Lemma 2, choose (f, S, ν) ∈ J (T (u)) such that

‖T (u)‖ =
∫

S

|f |dH1.

Using Lemma 3, we construct a lifting ϕ ∈ BV (S2,R) such that (4) holds. Thus,

‖T (u)‖ =
∫

S

|f |dH1 =
∫

S2

∣∣∣u ∧ (Dau + Dcu) + ρ(u+, u−)νuH1xS(u)−Dϕ
∣∣∣.

¤
Proof of Corollary 1. The result is a straightforward consequence of Theorem 2 and Lemma 2.
¤

In order to prove Corollary 2, we need the following estimation of ‖T (u)‖ in terms of the
seminorm |u|BV S1 :

Lemma 5 We have ‖T (u)‖ ≤ |u|BV S1 , ∀u ∈ BV (S2, S1).

Proof. By Lemma 4, it results that for every ζ ∈ C1(S2) with |∇ζ| ≤ 1,

|〈T (u), ζ〉| ≤
∫

S2
|u ∧ (Dau + Dcu)|+

∫

S(u)

|ρ(u+, u−)|dH1

=
∫

S2
(|Dau|+ |Dcu|) +

∫

S(u)

dS1(u+, u−) dH1;

therefore
‖T (u)‖ ≤ |u|BV S1 .

¤
Proof of Corollary 2. By Theorem 2, Lemmas 2 and 5, we conclude that

E(u) ≤
∫

S2
(|Dau|+ |Dcu|) +

∫

S(u)

|ρ(u+, u−)|dH1 + min
(f,S,ν)∈J (T (u))

∫

S

|f | dH1

= |u|BV S1 + ‖T (u)‖
≤ 2|u|BV S1 .

¤
Let |u|BV =

∫

S2
|Du| =

∫

S2
(|Dau|+ |Dcu|) +

∫

S(u)

|u+ − u−| dH1; we deduce that

|u|BV ≤ |u|BV S1 ≤ π

2
|u|BV , ∀u ∈ BV (S2, S1).

Therefore, Corollary 2 is a weaker estimate of E(u) than inequality (3) obtained in [5].
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3 Some other properties of the distribution T

We start by observing that T : BV (S2, S1) → D′(S2,R) is not continuous, i.e. there exists a
sequence of functions uk ∈ BV (S2, S1) such that uk → u strongly in BV (S2, S1) and T (uk)9 T (u)
in D′(S2,R). The reason for that is the discontinuity of the function ρ that enters in the definition
of T .

Proposition 1 The map T : BV (S2, S1) → D′(S2,R) is discontinuous.

Proof. Write
S2 = {(cos θ sin α, sin θ sin α, cosα) : α ∈ [0, π], θ ∈ (0, 2π]} .

In the spherical coordinates (α, θ) ∈ [0, π]× [0, 2π], consider the BV functions ϕ and u defined as

ϕ(α, θ) =





−2θ if θ ∈ (0, π
2 ), α ∈ (0, π

2 )
−π if θ ∈ (π

2 , 3π
2 ), α ∈ (0, π

2 )
2(θ − 2π) if θ ∈ ( 3π

2 , 2π), α ∈ (0, π
2 )

0 if θ ∈ (0, 2π), α ∈ (π
2 , π)

and u = ei ϕ. (14)

We have that the jump set of u and ϕ is concentrated on the equator {α = π
2 } of the sphere S2,

i.e.
S(ϕ) = S(u) = {α =

π

2
}.

On the equator we choose the orientation given by the normal vector ~α oriented from the north to
the south; so (~α, ~θ,~e) is direct. We show that

T (u) = 2π(δp − δn) (15)

where n = (π
2 , 3π

2 ) and p = (π
2 , π

2 ) in the frame (α, θ). Indeed, we remark that

ϕ+ − ϕ− = ρ(u+, u−) + 2πχ_
np

on S(u);

by Lemma 3, we obtain

Dϕ = u ∧∇uH2 + ρ(u+, u−)~αH1xS(u) + 2π~αH1x_
np

and it yields

〈T (u), ζ〉 = −2π

∫
_
np

~α · ∇⊥ζ dH1 = −2π

∫ n

p

∂ζ

∂θ
dH1 = 2π(ζ(p)− ζ(n)), ∀ζ ∈ C1(S2,R).

Construct the approximation sequence ϕε ∈ BV (S2,R), ε ∈ (0, 1) defined (in the spherical
coordinates) as

ϕε(α, θ) =





−2θ if θ ∈ (0, π−ε
2 ), α ∈ (0, π

2 )
−π + ε if θ ∈ (π−ε

2 , 3π+ε
2 ), α ∈ (0, π

2 )
2(θ − 2π) if θ ∈ ( 3π+ε

2 , 2π), α ∈ (0, π
2 )

0 if θ ∈ (0, 2π), α ∈ (π
2 , π)

.

and set uε = ei ϕε . An easy computation shows that ϕε → ϕ strongly in BV ; therefore, uε → u
strongly in BV as ε → 0. As before, we have

S(ϕε) = S(uε) = {α =
π

2
} and ϕ+

ε − ϕ−ε = ρ(u+
ε , u−ε ) on {α =

π

2
}.
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It follows that T (uε) = 0 and we conclude

T (uε) 9 T (u) in D′(S2,R).

¤
As Brezis, Mironescu and Ponce proved in [4], if we restrict ourselves to W 1,1(S2, S1), then

the map T
∣∣
W 1,1(S2,S1)

: W 1,1(S2, S1) → Z(S2) is continuous, i.e. if g, gk ∈ W 1,1(S2, S1) such that
gk → g in W 1,1 then ‖T (gk) − T (g)‖ → 0 as k → ∞. It is natural to ask if one could change the
antisymmetric function ρ in order that the corresponding map T become continuous. The answer
is negative:

Proposition 2 There is no antisymmetric function γ : S1 × S1 → R such that the map Tγ :
BV (S2, S1) → Z(S2) given for every u ∈ BV (S2, S1) as

〈Tγ(u), ζ〉 =
∫

S2
∇⊥ζ · (u ∧ (Dau + Dcu)) +

∫

S(u)

γ(u+, u−) νu · ∇⊥ζ dH1, ∀ζ ∈ C1(S2,R)

is well-defined and continuous.

Proof. By contradiction, suppose that there exists such a function γ. First we show that

γ(ω1, ω2) ≡ Arg (ω1)−Arg (ω2) (mod 2π), ∀ω1, ω2 ∈ S1. (16)

Indeed, fix ω1, ω2 ∈ S1. Take f : [0, 2π] → R the linear function satisfying f(0) = Arg (ω1) and
f(2π) = Arg (ω2); define u ∈ BV (S2, S1) as

u(α, θ) = eif(θ), ∀α ∈ (0, π), θ ∈ (0, 2π).

Consider the lifting ϕ ∈ BV (S2,R) of u given by

ϕ(α, θ) = f(θ), ∀α ∈ (0, π), θ ∈ (0, 2π).

If ω1 6= ω2, the jump set of u and ϕ is concentrated on the meridian {θ = 0} orientated counter-
clockwise by the unit vector ~θ. We have that

Dϕ = u ∧∇uH2 + (Arg (ω1)−Arg (ω2))~θH1x{θ = 0}.

Since curl Dϕ = 0 in D′, it yields
∫

S2
u ∧∇u · ∇⊥ζ dH2 = −

∫

{θ=0}
(Arg (ω1)−Arg (ω2))~θ · ∇⊥ζ dH1

= (Arg (ω1)−Arg (ω2))
∫ n

p

∂ζ

∂α
dH1

= (Arg (ω2)−Arg (ω1))(ζ(p)− ζ(n)), ∀ζ ∈ C1(S2)

where p = (0, 0) and n = (π, 0) (in the spherical coordinates) are the north and the south pole of
S2. We obtain that

〈Tγ(u), ζ〉 =
∫

S2
∇⊥ζ · (u ∧∇u) dH2 + γ(ω1, ω2)

∫

{θ=0}
~θ · ∇⊥ζ dH1

= (Arg (ω2)−Arg (ω1) + γ(ω1, ω2))(ζ(p)− ζ(n)), ∀ζ ∈ C1(S2,R).
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From the definition we know that Tγ(u) ∈ Z(S2) and therefore, (16) holds. If ω1 = ω2, by the
antisymmetry of γ, we have γ(ω1, ω2) = 0 and so, (16) is obvious.

Second we prove that the continuity of Tγ implies that γ is continuous on S1 × S1. Indeed, let
(ωε

1)ε and (ωε
2)ε be two sequences in S1 such that ωε

1 → ω1 and ωε
2 → ω2. We want that

γ(ωε
1, ω

ε
2) → γ(ω1, ω2). (17)

Take β ∈ [0, 2π) such that eiβ is different from ω1 and ω2. For each ω ∈ S1 denote by argβ(ω) ∈
(β − 2π, β] the argument of ω, i.e.

ei argβ(ω) = ω. (18)

As above, define fε : [0, 2π] → R as the linear function satisfying fε(0) = argβ(ωε
1) and fε(2π) =

argβ(ωε
2) and consider uε ∈ BV (S2, S1) such that

uε(α, θ) = eifε(θ), ∀α ∈ (0, π), θ ∈ (0, 2π).

It’s easy to check that uε → u strongly in BV , where u(α, θ) = eif(θ) and f is the linear function
satisfying f(0) = argβ(ω1) and f(2π) = argβ(ω2). As before, we obtain

Tγ(uε) = (argβ(ωε
2)− argβ(ωε

1) + γ(ωε
1, ω

ε
2))(δp − δn)

and Tγ(u) = (argβ(ω2)− argβ(ω1) + γ(ω1, ω2))(δp − δn).

Since Tγ and argβ are continuous on BV (S2, S1), respectively on S1 \ {eiβ}, we deduce that (17)
holds.

Observe now that the function

(ω1, ω2) 7→ γ(ω1, ω2)−Arg (ω1) + Arg (ω2)

is continuous on the connected set S1 \{−1}×S1 \{−1} and takes values in 2πZ. Therefore, there
exists k ∈ Z such that

γ(ω1, ω2) = Arg (ω1)−Arg (ω2)− 2πk in S1 \ {−1} × S1 \ {−1}.
In fact, k = 0 if one takes ω1 = ω2. But Arg (·) is not a continuous map on S1 which is a
contradiction with the continuity of γ on S1 × S1. ¤

The algebraic properties of T restricted to W 1,1(S2, S1) (see [4], Lemma 1) do not hold in
general for BV (S2, S1) functions.

Remark 6 a) There exists u ∈ BV (S2, S1) such that T (ū) 6= −T (u). Indeed, take the function u
defined in (14). A similar computation gives us that T (ū) = 0 6= −T (u).
b) The relation T (gh) = T (g)+T (h), ∀g, h ∈ W 1,1(S2, S1) need not hold for BV (S2, S1) functions.
As before, consider the function u in (14). Then T (−u) = 0. Since T (−1) = 0, we conclude
T (−u) 6= T (u) + T (−1). ¤

In the following we discuss the nature of the singularities of the distribution T (u). As it was
mentioned in the beginning, we deal with two types of singularity:
i) topological singularities carrying a degree which are created by the absolutely continuous part
and the Cantor part of the distributional determinant of u;
ii) point singularities coming from the jump part of the derivative Du.

We give some examples in order to point out these two different kind of singularity. In Ex-
ample 1, T (u) is a dipole made up by two vortices of degree 1 and −1; these two vortices are
generated by the absolutely continuous part of det(∇u) in a), respectively by the Cantor part of
the distributional Jacobian of u in b).
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Example 1 a) Let us analyze the function g ∈ W 1,1(S2, S1),

g(α, θ) = eiθ, ∀α ∈ (0, π), θ ∈ [0, 2π).

Denote p and n the north and respectively the south pole of the unit sphere. We consider the
lifting ϕ ∈ BV (S2,R) of u given by ϕ(α, θ) = θ for every α ∈ (0, π), θ ∈ (0, 2π). Then the jump
set of ϕ is concentrated on the meridian {θ = 0} oriented counterclockwise by the unit vector ~θ.
We have

Dϕ = g ∧∇gH2 − 2π~θH1x_
np.

Therefore, T (g) = 2π(δp − δn). The two poles are the vortices of the function g.
b) The same situation may occur for some purely Cantor functions. Let us consider the standard

Cantor function f : [0, 1] → [0, 1]; f is a continuous, nondecreasing function with f(0) = 0, f(1) = 1
and f ′(x) = 0 a.e. x ∈ (0, 1). Take v ∈ BV (S2, S1) defined as

v(α, θ) = e2πif(θ/2π), ∀α ∈ (0, π), θ ∈ [0, 2π).

The lifting ϕ ∈ BV (S2,R) given by ϕ(α, θ) = 2πf(θ/2π) for every α ∈ (0, π), θ ∈ (0, 2π) has the
jump set concentrated on the meridian {θ = 0} and

Dϕ = v ∧Dcv − 2π~θH1x_
np.

As before, we obtain that T (v) = 2π(δp − δn) where p and n are the poles of S2.

Remark also that for the two functions constructed in Example 1, the constant 2 in inequality
(3) is optimal and we have a specific structure for an optimal lifting:

Proposition 3 Let u ∈ BV (S2, S1) be one of the two functions defined in Example 1. Then for
every lifting ϕ ∈ BV (S2,R) of u we have

∫

S2
|Dϕ| ≥ 2

∫

S2
|Du|.

Moreover, the set of all optimal liftings of u is given by

{argβ(u) + 2πk : β ∈ [0, 2π), k ∈ Z}

where argβ(ω) ∈ (β − 2π, β] stands for the argument of ω ∈ S1 (as in (18)).

Proof. First remark that
∫

S2
|Du| = 2π2 and ‖T (u)‖ = 2πdS2(n, p) = 2π2

where n and p are the two poles of S2.
Let ϕ ∈ BV (S2,R) be a lifting of u. By Theorem 2 and Lemma 2, we obtain

∫

S2
|Dϕ| ≥ E(u) =

∫

S2
|Du|+ ‖T (u)‖ = 4π2 = 2

∫

S2
|Du|.

Take now ϕ ∈ BV (S2,R) an optimal lifting of u. By Lemma 3, there exists (f, S, ν) ∈ J (T (u))
that achieves the minimum in (11) and satisfies

Dϕ = u ∧Du− fνH1xS.
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That means
Djϕ = −fνH1xS and

∫

S

|f | = 2πdS2(n, p). (19)

We may assume here that S = {f 6= 0}. For every α ∈ (0, π) we denote Lα the latitude on S2

corresponding to α and ϕα : Lα → R the restriction of ϕ to Lα. Using the Characterization
Theorem of BV functions by sections and Theorem 3.108 in [1], it results that for a.e. α ∈ (0, π),
ϕα ∈ BV (Lα;R) and the discontinuity set of ϕα is S ∩ Lα. Remark that deg(u;Lα) = 1 for every
α ∈ (0, π). Thus, for a.e. α ∈ (0, π), ϕα will have at least one jump on Lα and the length of a jump
is not less than 2π. It yields H1(S) ≥ π and |f | ≥ 2π H1 − a.e. on S. By (19), we deduce that

|f | = 2π H1 − a.e. on S and H1(S) = π.

We know that ∫

S

f

2π
ν · ∇⊥ζ dH1 = ζ(p)− ζ(n), ∀ζ ∈ C1(S2).

By [7](Section 4.2.25), it results that S covers H1-almost all of a Lipschitz univalent path c between
the two poles. Since H1(S) = dS2(n, p) we deduce that S is a geodesic arc on S2 between n and p
and f

2π ν is the normal unit vector to the curve c. Take β ∈ [0, 2π) such that S = {θ = β} in the
spherical coordinates. We have that ϕ − argβ(u) : S2 \ S → 2πZ is continuous on the connected
set S2 \ S. Therefore, there exists k ∈ Z such that

ϕ = argβ(u) + 2πk

and the conclusion follows. ¤
The appearance of non-topological singularities in the writing of T (u) for u ∈ BV (S2, S1) was

already seen in the example (14); there the distribution T (u) is a dipole even if the function u does
not have any vortex. One should notice that the dipole (15) is created on the jump set of u by the
discontinuity of the chosen argument Arg . In Remark 7, we will see that a dipole could disappear
if we change the choice of the argument.

Remark 7 Let β ∈ [0, 2π). Define the antisymmetric function γβ(·, ·) : S1 × S1 → [−π, π] as

γβ(ω1, ω2) =

{
Arg

(
ω1
ω2

)
if ω1

ω2
6= −1

argβ(ω1)− argβ(ω2) if ω1
ω2

= −1
, ∀ω1, ω2 ∈ S1.

Consider now the distribution Tγβ
(u) ∈ D′(S2,R) given as in Proposition 2:

〈Tγβ
(u), ζ〉 =

∫

S2
∇⊥ζ · (u ∧ (Dau + Dcu)) +

∫

S(u)

γβ(u+, u−)νu · ∇⊥ζ dH1, ∀ζ ∈ C1(S2,R).

Observe that Tγβ
inherits the properties of T given in Theorems 1, 2 and 3. However, the structure

of the singularities of Tγβ
(u) may be different from T (u). Indeed, consider u ∈ BV (S2, S1) the

function constructed in (14). We saw that T (u) = 2π(δp−δn) where n = (π
2 , 3π

2 ) and p = (π
2 , π

2 ) (in
the spherical coordinates). The same computation gives us Tγπ/2(u) = 0. The difference between
T (u) and Tγπ/2(u) arises from the choice of the argument.

An interesting phenomenon is observed in Example 2 where the two types of singularity are
mixed: some topological vortices may be located on the jump set of u.
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Example 2 a) An example that points out the mixture of the two type of singularity is given by
functions with pseudo-vortices: define u ∈ BV (S2, S1) as

u(α, θ) = e3iθ/2, ∀α ∈ (0, π), θ ∈ (0, 2π).

The jump set of u is the meridian {θ = 0}. We have

T (u) = 2π(δp − δn) and Tγπ/2(u) = 4π(δp − δn).

The two poles p and n arise on the jump set of u and behave like some pseudo-vortices, i.e. after a
complete turn, the function u rotates 3/2 times around the poles (with different signs: ‘+’ around p
and ‘−’ around n). According to the choice of the argument in the definition of γβ , the distribution
Tγβ

(u) will count once or twice the dipole.
b) A piecewise constant function u ∈ BV (S2, S1) may create a dipole for T (u). Indeed, let us

define ϕ ∈ BV (S2,R) as

ϕ(α, θ) =





0 if θ ∈ (0, 2π/3), α ∈ (0, π)
2π/3 if θ ∈ (2π/3, 4π/3), α ∈ (0, π)
4π/3 if θ ∈ (4π/3, 2π), α ∈ (0, π)

and set u = eiϕ. The jump set of u and ϕ is the union of three meridians

S(u) = S(ϕ) = {θ = 0} ∪ {θ = 2π/3} ∪ {θ = 4π/3}.

We have
ϕ+ − ϕ− = ρ(u+, u−)− 2πχ{θ=0}.

We obtain T (u) = 2π(δp − δn) where p and n are the two poles of the unit sphere. For every
β ∈ [0, 2π), Tγβ

has the same behavior, i.e. Tγβ
(u) = 2π(δp − δn).

c) Let u ∈ BV (S2, S1) be the function defined above in b) and take g the function constructed
in Example 1 a). Set w = gu ∈ BV (S2, S1). We have S(w) = {θ = 0} ∪ {θ = 2π/3} ∪ {θ = 4π/3}.
We show that T (w) = 4π(δp − δn). Indeed, construct the lifting ψ ∈ BV (S2,R) of w as

ψ(α, θ) =





θ if θ ∈ (0, 2π/3), α ∈ (0, π)
θ + 2π/3 if θ ∈ (2π/3, 4π/3), α ∈ (0, π)
θ − 2π/3 if θ ∈ (4π/3, 2π), α ∈ (0, π)

.

Observe that
ψ+ − ψ− = ρ(w+, w−)− 2πχ{θ=0} − 2πχ{θ=4π/3} on S(w)

and conclude that T (w) = 4π(δp − δn). So, the north pole p and the south pole n which are the
vortices of g remain singularities for the function w; they appear now on the jump part of w. The
same behavior happens to Tγβ

for every β ∈ [0, 2π), i.e. Tγβ
(w) = 4π(δp − δn).

As we mentioned before, for every u ∈ BV (S2, S1) there exists a bounded lifting ϕ ∈ BV ∩
L∞(S2,R) (see [5]). The striking fact is that we can construct functions u ∈ BV (S2, S1) such that
no optimal lifting belongs to L∞. We give such an example in the following:

Example 3 On the interval (0, 2π) we consider

p1 = 1, nk = pk +
1
4k

and pk+1 = nk +
1
2k

, ∀k ≥ 1.
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Suppose that this configuration of points lies on the equator {π
2 }× [0, 2π] (in the spherical coordi-

nates) of S2 and we consider that each dipole (pk, nk) appears k times. Since
∑

k≥1

kdS2(pk, nk) < ∞,

set
Λ = 2π

∑

k≥1

k(δpk
− δnk

) ∈ Z(S2).

By [2] (Lemma 16),
T

(
W 1,1(S2, S1)

)
= Z(S2).

Thus, take g ∈ W 1,1(S2, S1) such that T (g) = Λ. Using (2), it follows that

‖T (g)‖ = 2π
∑

k≥1

kdS2(pk, nk).

Let ϕ ∈ BV (S2,R) be an optimal lifting of g. Then there is a triple (f, S, ν) ∈ J (T (g)) such that

Dϕ = g ∧∇gH2 − f νH1xS and
∫

S

|f | dH1 = ‖T (g)‖. (20)

We may assume that S = {f 6= 0}.
We know that

∫

S

fν · ∇⊥ζ dH1 = 2π
∑

k≥1

k(ζ(pk) − ζ(nk)), ∀ζ ∈ C1(S2). For each k ≥ 1, we

denote Vk = (0, π)× (pk − 1
8k

, nk +
1
8k

). Then

∫

S

fν · ∇⊥ζ dH1 = 2πk(ζ(pk)− ζ(nk)), ∀ζ ∈ C1(S2) with supp ζ ⊂ Vk.

By (20), it follows that ∫

S∩Vk

|f |dH1 = 2πk dS2(pk, nk).

Using the same argument as in the proof of Proposition 3, we deduce that for each k ∈ N,

S(ϕ) ∩ Vk = S ∩ Vk =
_

nkpk and |ϕ+ − ϕ−| = |f | = 2kπ H1-a.e. on
_

nkpk

where
_

nkpk is the geodesic arc connecting nk and pk. It yields that ϕ /∈ L∞. So, every optimal
BV lifting of g does not belong to L∞.

In the next example, we show that Theorem 3 fails if we minimize the energy in (8) just over
the class of gradient maps:

Example 4 Let u ∈ BV (S2, S1) be defined as

u(α, θ) = eiθ/3, ∀α ∈ (0, π), θ ∈ (0, 2π).

The jump set of u is the meridian {θ = 0} orientated counterclockwise and ρ(u+, u−) = −2π/3 on
S(u). We have that T (u) = 0. On the other hand, for every ψ ∈ C∞(S2,R), we have
∫

S2
|u ∧∇uH2 + ρ(u+, u−)νuH1xS(u)−∇ψH2| =

∫

S2
|u ∧∇u−∇ψ|dH2 +

∫

S(u)

|ρ(u+, u−)| dH1

≥
∫

S(u)

2π/3 dH1 = 2π2/3 > ‖T (u)‖.
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