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Abstract

We show that topological singularities of maps in BV (5%, S') can be detected by its dis-
tributional Jacobian. As an application, we construct an optimal lifting and we compute its
total variation.

Résumé

On montre que le jacobien d’une fonction u € BV(S2, S1) permet de localiser les singu-
larités topologiques de u. On applique ce résultat a la construction d’un relévement optimal
et on calcule sa variation totale.
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1 Introduction

Let u € BV(S?%,S1), i.e. u= (u1,u2) € L*(S? R?), |u(x)] = 1 for a.e. z € S? and the derivative
of u (in the sense of the distributions) is a finite 2 x 2—matrix Radon measure

2 2
/ |Du| = Sup{/ > updiv(pdH? : G € CHS?R?), D [Ge(@)]? < LVa e 52} < 00,
S2 S2 k=1

k=1

where the norm in R? is the Euclidean norm. Observe that the total variation of Du is independent
of the choice of the orthonormal frame (x,y) on S?; a frame (z,y) is always taken such that (z, vy, €)
is direct, where e is the outward normal to the sphere S2.

We begin with the notion of minimal connection between point singularities of u. The concept of
a minimal connection associated to a function from R? into S? was originally introduced by Brezis,
Coron and Lieb [3]. Following the ideas in [3] and [6], Brezis, Mironescu and Ponce [4] studied the
topological singularities of functions g € W11(S2, S1). They show that the distributional Jacobian
of g describes the location and the topological charge of the singular set of g. More precisely, let
T(g) € D'(S?,R) be defined as

T(g) =2det(Vg) = —(g A ga)y + (9 A gy)as

then there exist two sequences of points (py), (nx) in S? such that

Z lpk —ng| < oo and T(g) = 2772(5pk — Ony)-
k k



Our aim is to extend these notions for functions v € BV (52, S'). In this case, the difficulty of the

analysis of the singular set arises from the existence of more than one type of singularity: besides

the point singularities carrying a degree, the jump singularities of u should be taken into account.
We start by introducing some notation. Write the finite Radon 2 x 2-matrix measure Du as

Du = D% + D + D,

where D%, D°u and D’u are the absolutely continuous part, the Cantor part and the jump part
of Du (see e.g. [1]). We recall that D’u can be written as

Diu=(ut —u") @ v, H' S(u),

where S(u) denotes the set of jump points of u; S(u) is a countably H!-rectifiable set on S? oriented
by the Borel map v, : S(u) — S!. The Borel functions u™,u~ : S(u) — S! are the traces of u on
the jump set S(u) with respect to the orientation 1,,. Throughout the paper we identify u by its
precise representative that is defined H!-a.e. on S?\ S(u).

We now introduce the distribution T'(u) € D'(S%,R) as

(T(u),¢) = /S ng.(uA(D“u+DCu))+/S( )p(uiu*)uu.vLCdHl, V¢ e CY(SER). (1)

Herea Vl( = (C:ya _Cw)a
( e ) A ( a by ) = (uAa,uANb) = (uraz — ugay, u1ba — usby)

U2 az by

where a = ( Zl > and b= < Zl ) . The function p(-,-) : S* x S* — [—7, 7] is the signed geodesic
2 2

distance on S' defined as

Arg (&2 if < £ -1
plwr,wa) = '8 (“’2> it S 7 , Ywi,we € St
Arg (w1) — Arg (wo) if 2L = —1

2

where Arg (w) € (—m, 7] stands for the argument of the unit complex number w € S'. T(u)
represents the distributional determinant of the absolutely continuous part and the Cantor part of
Du which is adjusted on S(u) by the tangential derivative of p(u™,u ™). The second term in the
RHS of (1) is motivated by the study of BV (S!, S1) functions (see [9]): we defined there a similar
quantity that represents a pseudo-degree for BV (S1,S1) functions.

Remark 1 i) The integrand in (1) is computed pointwise in any orthonormal frame (z,y) and the
corresponding quantity is frame-invariant.
ii) The 2-vector measure

= (p1, p2) =u A (D + DU) = (u A (D%uy + Dy ), u A (D%uy + Duy))

is well-defined since D%u + D°u vanishes on sets which are o-finite with respect to H!.
iii) Notice that the function p is antisymmetric, i.e.

p(wi,wa) = —p(wa,w1), Ywi,ws € S

and therefore, T'(u) does not depend of the choice of the orientation v, on the jump set S(u). By
Lemma 5 (see below), we obtain

(T(w), Q)] < |ulpy s1, V¢ € CH(S?,R) with [V¢] <1
where |u|gy 51 = / (\D“u| + |Dcu|) +/ dgi(ut,u”)dH! and dg: stands for the geodesic
52 S(w)

distance on S*. Therefore, T'(u) is indeed a distribution (of order 1) on S2.



For a compact Riemannian manifold X with the induced distance d, define

Z(X) = {A € [C’l(X)]* 2 A(pr), (nk) C X, Zd(pk,nk) <ooand A = QWZ(épk - 5nk)}

k k

Z(X) is the set of distributions that can be written as a countable sum of dipoles.

Remark 2 i) In general, A € Z(X) is not a measure. In fact, it can be shown that A is a measure
if and only if A is a finite sum of dipoles (see Smets [11] and also Ponce [10]).

ii) A € Z(X) has always infinitely many representations as a sum of dipoles and these repre-
sentations need not be equivalent modulo a permutation of points. For example, a dipole 6, — 6,
may be represented as d, — dp, + Z(§nk -4

k>1

nii1) for any sequence (ny ) rapidly converging to n.

For each A € Z(X), the length of a minimal connection between the singularities is defined as

[All= sup (A,Q).
ceCH(x)
v¢I<t

m

For example, when A = 27 Z((Spk — dp, ) is a finite sum of dipoles, Brezis, Coron and Lieb [3]
k=1

showed that

Al =27 Jnin Zd(kana(k))
m

where S,,, denotes the group of permutation of {1,2, ..., m}. In general, for an arbitrary A € Z(X),
Bourgain, Brezis and Mironescu [2] proved the following characterization of the length of a minimal
connection:

Al = inf ){ZWZd(pk,nk) t A=21 (6p, — 6n,) and Y d(pk,ni) < oo}. (2)
k k k

Pr), (K

From (2), one can deduce that Z(X) is a complete metric space with respect to the distance
induced by || - || (see e.g. [10]).

Our first theorem states that T'(u) is a countable sum of dipoles. It is the extension to the BV
case of the result in [4] mentioned in the beginning.

Theorem 1 For every u € BV (5%, 81), we have T(u) € Z(5?), i.e. there exist (py), (ng) in S?

such that
Z lpr —nk| < oo and T(u)=2m Z((Spk — Opy,)-
k k

The proof relies on the fact that the derivative (in the sense of distributions) of the characteristic
function of a bounded measurable set in R can be written as a sum of differences between Dirac
masses:

Lemma 1 Let I C R be a compact interval and f : I — 277 be an integrable function. Define

(0= [ rocma, vee o,

Then
df

df B
ez i |5 = / £l dt.



The same property is valid for the distributional tangential derivative of an integrable function
taking values in 277 and defined on a C! 1-graph (see Remark 3). Since every countably H!-
rectifiable set S C S? can be covered H'-a.e. by a sequence of C' l-graphs, it makes sense to
define for every A € Z(S?) the set

S is a countably H'- rectifiable set in S?, v is an orientation on S,

T =SV 15 907 s such that /fu VA dH! = (A, ¢), V¢ € CY(S?)

We have the following reformulation of (2):

Lemma 2 For every A € Z(S?), we have

A= _min l/UMHI

v)ET (A)

It is known that the infimum in (2) is not achieved in general (see [10]); the advantage of the
above formula is that the minimum is always attained. It means that the length of A represents
the minimal mass that an H!-integrable function with values into 27Z could carry between the
dipoles of A.

In the sequel we are concerned with the lifting of u € BV (S?%,S!). We call BV lifting of u
every function ¢ € BV (S?,R) such that

u=e"? ae. onS>.

The existence of a BV lifting for functions u € BV (52, S!) was initially shown by Giaquinta, Mod-
ica and Soucek [8]. Later, Déavila and Ignat [5] proved the existence of a lifting ¢ € BV N L*°(S?,R)

such that
/|D@<2/|Dm, 3)

moreover, the constant 2 in (3) is the best constant (see Example 1 and Proposition 3 below).
We give the following characterization for a lifting of u:

Lemma 3 Let u € BV (S?%,SY). For every lifting ¢ € BV (S% R) of u, there exists (f,S,v) €
J(T(u)) such that

Dy = u A (Du+ D) + p(u™, u” v, H'LS(u) — frHLS. (4)

Conversely, for every triple (f,S,v) € J(T(u)) there exists a lifting ¢ € BV (S?,R) of u such that
(4) holds.

In this framework, it is natural to investigate the quantity

E(u) = inf {/ |Dy| : ¢ € BV(S%,R), ¢¥ = u a.e. on 52}. (5)
SQ
The infimum from above is achieved and it is equal to the relaxed energy
Eiq1(u) = inf { liminf [ |Vug|dH? : up € C(S? S), up — u a.e. on 5’2} (6)
—)OO 2

(see Remark 4). A lifting ¢ € BV (S?,R) of u is called optimal if

:/NDw
S2



An optimal lifting need not be unique (see Proposition 3). Remark also that for u € BV(S?,S1),
there could be no optimal BV lifting of w that belongs to L> (see Example 3).

Our aim is to compute the total variation E(u) of an optimal lifting and to construct an optimal
lifting. Theorem 2 establishes the formula for E(u) using the distribution 7'(u).

Theorem 2 For every u € BV (S?,S1), we have

E(u):/ (ID%| + [D°ul) +  min /
g2 (f,8:»)ed(T(w) Jsus(u)

We refer the reader to [8] for related results in terms of cartesian currents.
As a consequence of Theorem 2, we recover the result of Brezis, Mironescu and Ponce [4] about
the total variation of an optimal BV lifting for functions g € W11(S2%, S1): the gap

frxs —plut,u vy xsy [ dH' . (7)

E(g) - /S Vgl an?

is equal to the length of a minimal connection connecting the topological singularities of g.

Corollary 1 For every g € WH(5% S1), we have

Blo) = [ | IVald? + [T(o)].
From (7), we deduce an estimate for E(u) (which is a weaker form of inequality (3)):

Corollary 2 For every u € BV (S?,81), we have
B(u) < 2fulpy s1.
In the spirit of [4], we have the following interpretation of |T'(u)| as a distance:

Theorem 3 For every u € BV (S?%,S1), we have

7= _win, [
YEBV(S2,R) J g2

Moreover, there is at least one minimizer ¢ € BV (S%,R) of (8) that is a lifting of u.

u A (D% + Du) + p(ut,u™ v, H'LS(u) — D). (8)

Remark that in general, ||T(u)| is not the distance of the measure
u A (D + D) + p(u™, u™ v, H'LS (u)

to the class of gradient maps. In Example 4, we construct a function u € BV (52, S') such that

IT@W)] <  inf /
PpeC>(S2,R) Jg2

In Section 2, we present the proofs of Lemmas 1, 2 and 3, Theorems 1, 2 and 3 and Corollaries
1 and 2. Some examples and interesting properties of T'(u) are given in Section 3. Among other
things, we show that T : BV (S?,S') — Z(S?) is discontinuous and we analyze some algebraic
properties of T'(u). We also discuss the meaning of the point singularities of T'(u) and about their
location on S2.

All the results included here can be easily adapted for functions in BV (€, S') where Q is a
more general simply connected Riemannian manifold of dimension 2.

u A (D% + Du) + p(ut, u™ v, H'LS(u) — D).




2 Remarks and proofs of the main results

We start by proving Lemma 1:

Proof of Lemma 1. Firstly, let us suppose that f = 27y 4 where A C I is an open set. Write
A= U (aj,b;) as a countable reunion of disjoint intervals. It is clear that

JEN
(4 ¢y = (clag) — ), ¥ € A
jeN
and Z(bj —a;) = H'(A). Thus 27rdstA € Z(I) and
jeN

|| H =27 sup /XAC'dt:27T sup /XA1/Jdt:27TH1(A).
ceci(r) peon) 1
[¢/]<1 [p]<1

Moreover, let A C I be a Lebesgue measurable set and f = 27y 4. Using the regularity of the
Lebesgue measure, there exists a decreasing sequence of open sets A C Ax41 C A C I, k € N such

that lim H'(A) = H'(A). Observe that dxa, — dxa in [Cl(l)]*. Since Z(I) is a complete

dt dt
d dxa
metric space, we conclude that 271'% € Z(I) and ||27r H = 21H*(A). In the general case of
an integrable function f : I — 27Z, write
f=2rY kxg, in L, (9)
kEZ

where Ey, = {x € I : f(x) = 2nk}. Notice that 27 € Z(I) and the series Z 27

kEZ

dt dt

converges absolutely; indeed, we have

d(k
> lon EXEL) —or 3 prip () = [ 171 < .

kEZ kEZ

d
By (9), we conclude that d—{ € Z(I) and

1551 = sup /fC’dt: sup /fwdt=/|f|dt~
cecr(n Jr1 peo() JI I

I¢’[<1 ly|<1
O
Remark 3 The conclusion of Lemma 1 is also true for H!-integrable functions with values in

277 that are defined on C! 1-graphs. For simplicity, we restrict to C' 1-graphs in S2, i.e. for an
orthonormal frame (z,y) on S?, we consider the set

I'=A{(z,y) : ¢(z) =y}

d(t)
|(2)]

the tangent unit vector to the curve I' at c(t), V¢t € (0,1). Let f : I' — 27Z be an H!-integrable

where ¢ is a C! function. Suppose ¢ : [0,1] — T is a parameterization of I and set 7(c(t)) =




function on I'. Define

of

1
G0 [ Foeti oy, v e C').

By Lemma 1, we have

Feam aa 150 = [isemew)a

Before proving Lemma 3, we give the following result:
Lemma 4 For every u € BV (S?%,S'), we have

1
u A (D% + D) = ;ﬂ(Dau + D)
and |u A (D% + D)| = |D%u| + | D ul.

Proof. Write u = (u1, us) = uj +ius. We can consider the 2 x 2 matrix of real measures Du as a
2-vector of complex measures, i.e. Du = Duj+i Dus. Since u? +u3 = 1, it results D(u? +u3) = 0.
By the chain rule (see e.g. [1]), we obtain

u1(D%uy + Duy) + uz(D%uz + Dus) = 0,

i.e. the real part of the C%-measure %(D%u + D°u) vanishes. Therefore,

u A (D% + D) =

S| =

a(D%u + Du).

Hence, using the fact that the absolutely continuous part and the Cantor part of Du are mutually
singular, we conclude that

Ju A (D*u+ D°w)| = |ul(|D*u] + |D°ul) = |D*u| + | D%

Proof of Lemma 3. Let ¢ € BV (S?%,R) be a lifting of u. Write
Dy =D + D%+ (9" — o7y, H'LS(p).
By the chain rule and Lemma 4, we obtain
1
D% + D% = —u(Du + Du) = u A (D% + D).
i

Since u = ¥ a.e. on S?, we have that S(u) C S(p) and by changing the orientation v,, we may
assume

Vo =1y
et =ut H'-ae. on S(u).
e =y~

Therefore,

ot —¢  =put,u”) (mod 2m) H'-a.e. on S(u)
and ¢t —¢~ =0 (mod 27m) H'-a.e. on S(p)\ S(u).



Hence, there exists f, : S(¢) — 2nZ a measurable function such that
Dy =u A (D" + D) + p(u™,u™ v, H' S (u) — for, H' S(p). (10)
Observe that f, is an H!-integrable function since
ol u7)] = ds (u* ™) < Gut —u”

Since Dy is a measure, we have
curl Dp =0 in D',
i.e. for every ¢ € C1(S% R),
/ V¢ Dy =0.
S2
By (10), it yields

(T(u),¢) = fo V¢ v, dHY, V¢ e C1(S?)
S(¢)

and therefore, (f,, S(¢),v,) € T(T(u)).
Conversely, take (f,S,v) € J(T(u)). Without loss of generality, we may consider S = {f # 0}.
Consider the finite Radon R2-valued measure

p=uA (D4 D) + plu™,u” v, H'LS(u) — frHILS.

We check that curl u = 0 in D’(S?). Indeed, for every ¢ € C1(S? R),
~eurln¢) = [ VECdu= (10,0~ [ 1V-¢-vant <o,
52 S

By the BV version of Poincare’s lemma, there exists ¢ € BV(S? R) such that Dy = p in
D'(S?,R?). Here, S U S(u) is the jump set of ¢. On the set S U S(u), we choose an orienta-
tion v, such that v, = v, on S(u). We have

Dp+ D = u A (D + D) = ta(D% + D°u)
ot —p~ =put,u”) (mod 27) H!- ae. on S(u).
T —¢~ =0 (mod2m) H'- ae. on S\ S(u)

‘We now show that _
D(ue™*) = 0.

By the chain rule, we get
D(e™ ") = —ie (D" + D) + (eﬂ'“"Jr — e )@ v, H'LS(u)
= —e u(D% + D°u) + (eii‘p+ —e % ) @ v, H'LS(u).
Remark that the space BV (92, C)NL™ is an algebra. Differentiating the product u e =%, we obtain
D(ue ") = e (D" + D) — ue™ "?u(D + Du) + (u™ e _ e ) @ v, H'LS(u) = 0.

Thus, up to an additive constant, ¢ is a BV lifting of u and (4) is fulfilled. O



Proof of Theorem 1. Let ¢ € BV (S% R) be a lifting of u. By Lemma 3, there exists (f,S,v) €
J(T(u)) such that (4) holds. Denote by 7: S — S! the tangent vector in H!-a.e. point of S such
that (v, 7,e) is direct. By (4),

(T(u).¢) = /S SV van!

:/f%dHl

=> xSf dH1 V¢ e C'(S?)
keN v 1k

where {I; }ren is a family of disjoint compact C'! 1-graphs that covers H!-almost all of the count-

ably rectifiable set 5, i.e.
! (S\ U Ik> =0.

keN

According to Lemma 1 and Remark 3, we conclude T'(u) € Z(S?) and ||T(u)| < / |flart. O

s
Before proving Theorem 2, let us make some remarks about E(u) and E,¢ (u) for u € BV (5%, S1)
(see also [4]):

Remark 4 i) E(u) < 0o and Eye(u) < oo (the existence of a BV lifting of u was shown in [5] and

[8]);
ii) The infimum in (5) is achieved; indeed, let v, € BV(S?, R), e?* = u a.e. on S?, be such

that
lim / |Doi| = E(u) < o0
k—oo [g2

By Poincaré’s inequality, there exists a universal constant C' > 0 such that

J.

(where ][ stands for the average). Therefore, by subtracting a suitable integer multiple of 27, we
5'2

@k—][ @k‘d'H2§C/ |Dygl|, Vk € N
S2 S2

may assume that (¢g)gen is bounded in BV (S?,R). After passing to a subsequence if necessary,
we may assume that ¢, — ¢ a.e. and L! for some ¢ € BV(S?,R). It follows that ¢ is a lifting of
w on S? and

B(u) = lim/ \sz/ \Dg| > E(u):
k—oo g2 g2

iii) The infimum in (6) is also achieved; take u}* € C°°(S?, S') such that for each k € N,
uf® — u a.e. on S? and / |Vu' | dH? N\, ax € R as m — oo
S2

and lim ap = Eyq(u). Subtracting a subsequence, we may assume that for each k € N,

k—o0
m 2 1 m 2 1
lup' —u]dH* < — and [Vui'|dH® —ax < —, ¥Ym > 1.
S2 k S2 k

Therefore, u’,j — u in L' and

lim |Vuf|dH? = Ere(u).
k—oo S2



iv) E(u) = Eyel(u). For “<”, take uy € C*°(S?,5%),Vk € N such that uy — u a.e. on S?

and sup/ |Vuy| dH? < oo. Since S? is simply connected, there exists ), € C°°(S? R) such that
keN.J g2

e'* = y;,. Moreover, / |Ver|dH? = / |Vuy| dH?. Using the same argument as in ii), we may
52 52

assume that ¢ — ¢ a.e. and L! for some ¢ € BV (S?,R). Therefore, e!¥ = u a.e. on S? and
E(u) < / |Dy| < 1iminf/ |Vr| dH? = liminf/ |V | dH2.
S2 k—oo Jg2 k—oo Jg2

For “>", consider a BV lifting ¢ of u and take an approximating sequence @3 € C*(S? R) such
that ¢ — ¢ a.e. and |Dyp|(S?) = klim / |Vor|dH?. With uy = e+ € C>(S%,S'), we have
— 00 S2

up — u a.e. on 5% and

Fra(u) < Jim |Vug|dH? = hm/ |Vr| dH? = /|Dcp|.
52 S2

O

Proof of Theorem 2. For “<”, take (f,S,v) € J(T(u)). By Lemma 3, there exists a lifting
¢ € BV(S?,R) of u such that (4) holds. It follows that

/IDsDI / (ID%u| + | D)) + /
SUS (u)

Let us prove now “>”. By Remark 4, there is an optimal BV lifting ¢ of u, i.e. E(u / |De|.
By Lemma 3, there exists (f,S,v) € J(T(u)) such that (4) holds. It results that

/|Dso| / (ID"u| + | D)) + /
SUS (u)

From here, we also deduce that the minimum inside the RHS of (7) is achieved. g

dHt.

fl/XS - P('LL+, u_)VuXS(u)

dH'.

frxs — p(u™, u” )vux s

Remark 5 (Construction of an optimal lifting) Take (f,S,v) € J(T(u)) that achieves the
minimum

+

fVXS —p(U aui)l/u XS (u) dHl (11)

min /
(fvS’V)GJ(T(u)) SUS(U)
By Lemma 3, there exists a lifting ¢ € BV (S?,R) of u such that (4) holds. Then

/\Dw / (ID%u| + | D°u)) + /
SUS (u)

and therefore, ¢ is an optimal lifting of w. O

dH' = E(u)

fVXS - p(qua ui)VuXS(u)

Proof of Lemma 2. For “<” it is easy to see that if (f,S,v) € J(A) then for every ¢ € C1(5?)
with [V(| < 1,

<A,g>:/sfy.ngdH1g/s|f|dH1.

For “>”, we use characterization (2) of the distribution A € Z(S%). We denote by dg: the

geodesic distance on S2. Let A = 27 Z(dpk — 0p,, ) where (pg)ren, (nk)ken belong to S? such that
k

10



Z dgz2(pi,ni) < co. For every k € N, consider n;;)k a geodesic arc on S? oriented from ny to py.
k
Take v, the normal vector to nypy in the frame (z,y). Set S = U nEpr. Since Z ds2 (pr,nk) < o0,

k k
there exist an orientation v : § — S! on S and an H!'-integrable function f : S — 27Z such that
=) 2 ~ in L*(S,R?). 12
fixs = 2mn ~ in L1(S.R) (12)

k
Then

/waVLCdHl ﬂwZ/A v TECAMY =20 3 (Cp) — Clni)) = (A, €), VC € CL(S?).
k NkPk k
It follows that (f,S,v) € J(A) and by (12),
/S|f|d7'f1 < Zzﬂds2(nk7pk)-
k

Minimizing after all suitable pairs (pk, ni)ken, it follows

= in L
INE. /S flan (13)

fiS,v)eT (A)

We now show that the infimum in (13) is indeed achieved. By a dipole construction (see [2],
Lemma 16), there exists u € W11(S%, S1) such that A = T(u). We choose (fx, Sk, vr) € J(T(u))
such that

7)) =tim | [l
k Sk
By Lemma 3, we construct a lifting 5, € BV(S?,R) of u such that
Dy = u A (D% 4 D) + p(u™, u™ v, H'LS(u) — fr vp H'LS).

Remark that

[ pad < [ qptal+ah+ [ otatiaant + [ nja
52 52 S(u) Sk

Subtracting a suitable number in 277, we may assume that (pg)x is a bounded sequence in
BV (S?%,R). Up to a subsequence, we find ¢ € BV (5% R) such that

o) — ¢ ae. in S? and Dy = Dy in the measure sense.
Therefore, ¢ is a BV lifting of w and by Lemma 3, there exists (f,S,v) € J(T(u)) such that
Dy = u A (D" 4+ D) + p(u™,u™ v, H'LS(u) — fvHILS.

We conclude

/ |f|dH! = / ‘u A (D% + Du) + p(ut,u™ v, H*CS (u) — Dga‘
s 52

< liminf/
k §2

:lim/ | il dH*

= [T (). O

u A (D% + Du) + p(u™, u™ v, H' LS (u) — D(pk‘

11



Proof of Theorem 3. Let 1 € BV(S?,R) and ¢ € C'(S?) be such that |[V(| < 1. Then

J.

By taking the supremum over (, we obtain

J.

We now show that there is a lifting ¢ € BV (S?,R) of u such that the minimum in (8) is achieved.
By Lemma 2, choose (f,S,v) € J(T(u)) such that

u A (D% + D) + p(u™, u” v, H'LS(u) — DY| > (T (u),¢) — y Dy - V¢ = (T(u), ).

u A (D% + Du) + p(ut, u™ v, H'LS (u) — D’(/J‘ > || T (w)]|-

7= [ 1714
s
Using Lemma 3, we construct a lifting ¢ € BV (S?,R) such that (4) holds. Thus,
T (w)|| = / |f|dHE = / ’u A (D*u 4 Du) + p(u™, u™ v, H LS (u) — Dy|.
s 52

O

Proof of Corollary 1. The result is a straightforward consequence of Theorem 2 and Lemma 2.
0

In order to prove Corollary 2, we need the following estimation of ||T'(u)|| in terms of the
seminorm |u|gy g1:

Lemma 5 We have | T(u)| < |u|gys:, Yu € BV(S?,S1).

Proof. By Lemma 4, it results that for every ¢ € C'(5?) with |V(¢| < 1,

(T (), 0] < / fu A (D + Du)| + / ()| A
52 5(u)
=/ <|Dau\+|DCu\>+/ dsn (a0 ) dH;
S2 S(u)

therefore
[T < [ulpys:.

O
Proof of Corollary 2. By Theorem 2, Lemmas 2 and 5, we conclude that
Eu) < / D%u| + |Du —|—/ wt uT) | dHE + min / dH?
(< [ Lot [t @ ]
= lulpvsr + | T(u)]
< 2Julpysr.
O

Let |ulpy = / |Du| = / (|ID%u| + |DCul) —|—/ lut —u~” | dH'; we deduce that
52 52 S(u)

w
lulpy < |ulpy 51 < §|U|BV7VU € BV(S?,5%).

Therefore, Corollary 2 is a weaker estimate of F(u) than inequality (3) obtained in [5].

12



3 Some other properties of the distribution T

We start by observing that T : BV(S%,S') — D/(S% R) is not continuous, i.e. there exists a
sequence of functions uy € BV (S?,S1) such that uy — u strongly in BV (52, S%) and T'(ux) - T(u)
in D’(S?,R). The reason for that is the discontinuity of the function p that enters in the definition
of T.

Proposition 1 The map T : BV (S?,S') — D'(S%,R) is discontinuous.

Proof. Write
5% = {(cosfsina,sinfsina, cosa) : a € [0,7], 6 € (0,27]}.

In the spherical coordinates (a, ) € [0, 7] x [0, 27], consider the BV functions ¢ and u defined as

—920 if0e(0,5), ac(0,%)
_ if & 37 s ;
p(a,0) = " ) 96(9%7 7)€ (0.5) and u=c¢e"?. (14)
2(0—2m) if0e(3,2m),ae(0,5)
0 if 0 € (0,2m), a € (5,7)

We have that the jump set of u and ¢ is concentrated on the equator {o = 5} of the sphere 52,
i.e.

S(¢) = S(w) = {a= 7).

On the equator we choose the orientation given by the normal vector @ oriented from the north to
the south; so (@, 6, €) is direct. We show that

T(u) = 2m(0p — 0n) (15)
where n = (%, 2%) and p = (%, %) in the frame (a, ). Indeed, we remark that

+

AS)

—¢ =plut,u”) + 271)(;; on S(u);
by Lemma 3, we obtain
Dy =uAVuH? + p(ut,u”)aH' S (u) + 27a H Lnp
and it yields
(T(u),¢) = —2m /:Fp a-VHCdH! = 27 /pn %d%l =27(¢(p) — ¢(n)), V¢ € CH(S*,R).

Construct the approximation sequence ¢. € BV (S% R), ¢ € (0,1) defined (in the spherical
coordinates) as

—20 if0c(0,75%), a€(0,%)
e ifg e 71'—6,37T+E L€ 0’1

@5(0479): . (334_6 2 ) (71-2)~
2(0 —2m) if 0 € (°5=,27), a € (0, %)
0 if 0 € (0,27), a € (§,7)

and set u. = e'¥<. An easy computation shows that ¢. — ¢ strongly in BV; therefore, u. — u
strongly in BV as ¢ — 0. As before, we have

S(pe) = S(ue) ={a= g} and o — o7 = p(ul,uZ) on {a = g}

13



It follows that T'(ue) = 0 and we conclude
T(ue) - T(u) in D'(S% R).

O

As Brezis, Mironescu and Ponce proved in [4], if we restrict ourselves to W11(S2 S1), then

the map T|W1»1(52 51 Wh1(82, 81 — Z(S5?) is continuous, i.e. if g, gr € W11(S52, S1) such that

gr — g in Wb then ||T(gr) — T(g)|| — 0 as k — oo. It is natural to ask if one could change the

antisymmetric function p in order that the corresponding map 7" become continuous. The answer
is negative:

Proposition 2 There is no antisymmetric function v : S* x S' — R such that the map T, :
BV (S2,5%) — Z(S5?) given for every u € BV (S?,81) as

(T (u), )

/ vlg-(uA(Dau+Dcu))+/ y(ut,u") v, - VECAHY, V¢ € C1(S%R)
52 S(u)

1s well-defined and continuous.
Proof. By contradiction, suppose that there exists such a function . First we show that
Y(wr,ws) = Arg (wy) — Arg (w)  (mod 27), Vwi,ws € St (16)

Indeed, fix wy,ws € St. Take f : [0,27] — R the linear function satisfying f(0) = Arg (w;) and
f(2m) = Arg (w2); define u € BV (52, 5) as

u(a,0) = e @ Vo e (0,7),0 € (0,2m).
Consider the lifting ¢ € BV (S?,R) of u given by
o(a,0) = f(), Ya € (0,7),0 € (0,27).

If wy # way, the jump set of u and ¢ is concentrated on the meridian {# = 0} orientated counter-
clockwise by the unit vector . We have that

Dy = u A VuH? + (Arg (wy) — Arg (w2))d H' {0 = 0}.
Since curl Dy = 0 in D', it yields
/ uAVu-VHdH? = —/ (Arg (w1) — Arg (w2))d - V¢ dH?
52 {0=0}

= (Arg (wn) ~ Arg (w2) [ 9 a0

= (Arg (w2) — Arg (w1))(C(p) — {(n)), V¢ € C'(S?)

where p = (0,0) and n = (7,0) (in the spherical coordinates) are the north and the south pole of
S2. We obtain that

(T, (u),¢) = /S V¢ (u A Vu) dH? 4 y(wr, ws) /{9—0} g.-vi¢dn!

= (Arg (w2) — Arg (w1) + (w1, w2))(C(p) = ¢(n)), V¢ € C*(S*,R).

14



From the definition we know that 7%, (u) € Z(S?) and therefore, (16) holds. If wy = ws, by the
antisymmetry of v, we have y(w1,ws) = 0 and so, (16) is obvious.

Second we prove that the continuity of 7%, implies that v is continuous on S x S1. Indeed, let
(w$)e and (w§). be two sequences in ST such that w§ — w; and w§ — we. We want that

V(Wi w3) = (Wi, wa). (17)

Take (3 € [0,2m) such that e’ is different from w; and wy. For each w € S denote by arggy(w) €
(6 — 27, (] the argument of w, i.e. ‘
elares(w) — . (18)

As above, define f. : [0,27] — R as the linear function satisfying f.(0) = args(wi) and f.(27) =
args(ws) and consider u. € BV (52, 51) such that

u(a,8) = <@ va € (0,7),0 € (0,27).

It’s easy to check that u. — wu strongly in BV, where u(a, 6) = ¢f(9) and f is the linear function
satisfying f(0) = argg(w1) and f(27) = argg(wa). As before, we obtain

T, (ue) = (argg(ws) — argg(wi) + (Wi, w3))(0p — 0n)
and T, (u) = (argg(wz) — argg(wi) + (w1, w2))(p — ).

Since T, and argg are continuous on BV (52, S1), respectively on S*\ {¢*7}, we deduce that (17)
holds.
Observe now that the function

(w1, ws) — Y(w1,ws) — Arg (w1) + Arg (wo)

is continuous on the connected set S'\ {—1} x S\ {—1} and takes values in 27Z. Therefore, there
exists k € Z such that

Y(wr,ws) = Arg (wy) — Arg (wo) — 27k in ST\ {—1} x S\ {~1}.

In fact, k = 0 if one takes w; = wo. But Arg(-) is not a continuous map on S! which is a
contradiction with the continuity of v on S x S*. O

The algebraic properties of T restricted to W11(S2% S1) (see [4], Lemma 1) do not hold in
general for BV (52, S') functions.

Remark 6 a) There exists u € BV (52, S') such that T'(@) # —T'(u). Indeed, take the function u
defined in (14). A similar computation gives us that T'(2) = 0 # —T'(u).

b) The relation T'(gh) = T'(g)+T(h), Vg,h € Wt1(S52,S1) need not hold for BV (52, S!) functions.
As before, consider the function w in (14). Then T'(—u) = 0. Since T(—1) = 0, we conclude
T(—u) # T(u) +T(—1). O

In the following we discuss the nature of the singularities of the distribution T'(u). As it was
mentioned in the beginning, we deal with two types of singularity:

i) topological singularities carrying a degree which are created by the absolutely continuous part
and the Cantor part of the distributional determinant of u;
ii) point singularities coming from the jump part of the derivative Du.

We give some examples in order to point out these two different kind of singularity. In Ex-
ample 1, T'(u) is a dipole made up by two vortices of degree 1 and —1; these two vortices are
generated by the absolutely continuous part of det(Vu) in a), respectively by the Cantor part of
the distributional Jacobian of u in b).
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Example 1 a) Let us analyze the function g € W11(52% S,
gla,0) = e Yo € (0,7),0 € [0,27).

Denote p and n the north and respectively the south pole of the unit sphere. We consider the
lifting » € BV (S?,R) of u given by ¢(«a,6) = 0 for every a € (0,7),0 € (0,27). Then the jump
set of ¢ is concentrated on the meridian {# = 0} oriented counterclockwise by the unit vector g,
We have .

Do =gAVgH?* - 2W§H1an.

Therefore, T(g) = 2m(d, — 0,,). The two poles are the vortices of the function g.

b) The same situation may occur for some purely Cantor functions. Let us consider the standard
Cantor function f : [0,1] — [0, 1]; f is a continuous, nondecreasing function with f(0) =0, f(1) =1
and f’(z) =0 a.e. € (0,1). Take v € BV(S?,S!) defined as

v(a, ) = 27 O/2m) o e (0,7),6 € [0,27).

The lifting p € BV (5%, R) given by p(a,0) = 27 f(0/27) for every a € (0,7),0 € (0,27) has the
jump set concentrated on the meridian {§ = 0} and

Dy =vAD% — 271'57‘[&@.
As before, we obtain that T'(v) = 27(8, — d,) where p and n are the poles of S2.

Remark also that for the two functions constructed in Example 1, the constant 2 in inequality
(3) is optimal and we have a specific structure for an optimal lifting:

Proposition 3 Let u € BV (S?,S) be one of the two functions defined in Example 1. Then for
every lifting o € BV (S? R) of u we have

/ |Dy| > 2/ | Du.
S2 S2

Moreover, the set of all optimal liftings of u is given by

{argg(u) + 27k : B €[0,27), k € Z}
where argg(w) € (8 — 2w, 3] stands for the argument of w € S* (as in (18)).
Proof. First remark that

|Du| = 27% and ||T(u)|| = 27dg:(n,p) = 272
S2

where n and p are the two poles of S2.
Let ¢ € BV(S?,R) be a lifting of u. By Theorem 2 and Lemma 2, we obtain

/ Dyl > E(u) = / |Du| + ||T(u)]| = 4n* = 2 / |Dul.
S2 S2 S2

Take now ¢ € BV (S?,R) an optimal lifting of u. By Lemma 3, there exists (f,S,v) € J(T(u))
that achieves the minimum in (11) and satisfies

Dy =u A Du— fuH'.S.
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That means
Dip=—fvH'S and /|f| = 271dg2 (n,p). (19)
S

We may assume here that S = {f # 0}. For every a € (0,7) we denote L, the latitude on S?
corresponding to a and ¢, : Ly, — R the restriction of ¢ to L,. Using the Characterization
Theorem of BV functions by sections and Theorem 3.108 in [1], it results that for a.e. a € (0, 7),
Yo € BV (L4;R) and the discontinuity set of ¢, is S N L,. Remark that deg(u; L,) = 1 for every
a € (0,7). Thus, for a.e. a € (0,7), v, will have at least one jump on L, and the length of a jump
is not less than 27. It yields H!(S) > 7 and |f| > 27 H! — a.e. on S. By (19), we deduce that

If|=2r H' —ae. on § and H'(S)=r.

We know that f
/S Ly vcan =)~ <), Yo e 01(s?).

By [7](Section 4.2.25), it results that S covers H!-almost all of a Lipschitz univalent path ¢ between
the two poles. Since H(S) = dg=(n,p) we deduce that S is a geodesic arc on S? between n and p
and %V is the normal unit vector to the curve c¢. Take § € [0, 27) such that S = {0 = (8} in the
spherical coordinates. We have that ¢ — argg(u) : S$2\ S — 277 is continuous on the connected
set S%\ S. Therefore, there exists k € Z such that

¢ = argg(u) + 21k

and the conclusion follows. O

The appearance of non-topological singularities in the writing of T'(u) for u € BV (S?, S1) was
already seen in the example (14); there the distribution T'(u) is a dipole even if the function u does
not have any vortex. One should notice that the dipole (15) is created on the jump set of u by the
discontinuity of the chosen argument Arg. In Remark 7, we will see that a dipole could disappear
if we change the choice of the argument.

Remark 7 Let 3 € [0,27). Define the antisymmetric function y5(-,-) : $* x S* — [~7, 7] as

Arg (1) if e £ 1

] , Vw1, wo e st
argg(w) — argﬁ(wg) if i—; =-1

V(Wi wa) = {
Consider now the distribution T, (u) € D'(5?,R) given as in Proposition 2:

T, = [ VR A DRt D)+ [t TR, ¥ € O (S R),
S2 S(u)

Observe that T.,, inherits the properties of T" given in Theorems 1, 2 and 3. However, the structure
of the singularities of 7%, (u) may be different from 7'(u). Indeed, consider v € BV (52, S) the
function constructed in (14). We saw that 7'(u) = 27(6, —6,) where n = (%, 2F) and p = (3, %) (in
the spherical coordinates). The same computation gives us T, /2 (u) = 0. The difference between
T'(u) and T, _,,(u) arises from the choice of the argument.

An interesting phenomenon is observed in Example 2 where the two types of singularity are
mixed: some topological vortices may be located on the jump set of u.

17



Example 2 a) An example that points out the mixture of the two type of singularity is given by
functions with pseudo-vortices: define u € BV (S?,S!) as

u(a, 0) = 302 Yo € (0,7),0 € (0,27).
The jump set of u is the meridian {6 = 0}. We have

T(u) = 2m(d, — d,,) and T

Vr/2

(u) = 4m(0p — 0p).

The two poles p and n arise on the jump set of u and behave like some pseudo-vortices, i.e. after a
complete turn, the function u rotates 3/2 times around the poles (with different signs: ‘+’ around p
and ‘=’ around n). According to the choice of the argument in the definition of vz, the distribution
T, (u) will count once or twice the dipole.

b) A piecewise constant function u € BV (5%, S') may create a dipole for T'(u). Indeed, let us
define p € BV (S% R) as

0 if 6 € (0,27/3), a € (0, )
ola,0) =< 2n/3 if 0 e (2n/3,47/3), a € (0, )
4w/3 if 6 € (47/3,27), a € (0,7)

and set u = e, The jump set of u and ¢ is the union of three meridians
S(u)=S(p) ={0=0}yU{0 =27/3} U{0 = 4x/3}.

We have
et =7 =p(u’,uT) = 2mX(9—0}-
We obtain T'(u) = 27(6, — 6,) where p and n are the two poles of the unit sphere. For every
B € [0,2m), T, has the same behavior, i.e. T, (u) = 27(d, — dy).
c) Let u € BV(S?,S') be the function defined above in b) and take g the function constructed
in Example 1 a). Set w = gu € BV(S2,5%). We have S(w) = {6 =0} U {0 = 27/3} U {0 = 47/3}.
We show that T'(w) = 4w (8, — 0,,). Indeed, construct the lifting 1 € BV (5%, R) of w as

0 if 0 € (0,27/3), a € (0, )
Y(e,0) =<C0+2r/3 if6e (2n/3,47/3), a € (0,7) .
0—2n/3 it0 € (4n/3,27), a € (0, )

Observe that
Yt — T = pwT,wT) — 2mx{9—0} — 2T X {o=1r/3} ON S(w)
and conclude that T'(w) = 4w (6, — d,). So, the north pole p and the south pole n which are the

vortices of g remain singularities for the function w; they appear now on the jump part of w. The
same behavior happens to T, for every § € [0,27), i.e. T, (w) = 4m(dp — 0n).

As we mentioned before, for every u € BV (5%, S!) there exists a bounded lifting ¢ € BV N
L> (5% R) (see [5]). The striking fact is that we can construct functions u € BV (52, S') such that
no optimal lifting belongs to L>°. We give such an example in the following:

Example 3 On the interval (0,27) we consider

1 1
plzl,nk:pk+4—kandpkH:nk—i—Q—k,VkZl.
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Suppose that this configuration of points lies on the equator {7} x [0,27] (in the spherical coordi-

nates) of S? and we consider that each dipole (pg,n)) appears k times. Since Z kdsz(pr, ni) < 0o,
E>1
set

A =213 k(bp, — 0n,) € Z(S?).

k>1

By [2] (Lemma 16),
T (Wh(S?,8Y) = 2(5?).

Thus, take g € W1(S2%,S1) such that T'(g) = A. Using (2), it follows that

17| = 27 S kdg: (pr mi)-

k>1

Let ¢ € BV(S?,R) be an optimal lifting of g. Then there is a triple (f,S,v) € J(T(g)) such that
Dy =gAVgH? — fuH'LS and / F|dH! = IT(g)]]- (20)
s

We may assume that S = {f # 0}.

We know that / fv-V+¢dH! = 27er(§(pk) —((ng)), ¥¢ € C'(S?). For each k > 1, we
S E>1

1 1
ng + 7). Then

denote V, = (0 N —
enote Vi, = (0,7) x (pk — g, S

/ fv-VECAHY = 27k(C(pr) — C(nk)), ¥C € CH(S?) with supp ¢ C Vi.
s
By (20), it follows that
/ |f|dHY = 27k dg2 (pr, nk)-
SNV
Using the same argument as in the proof of Proposition 3, we deduce that for each k € N,
S(@)NVik=SNVi =nppr and o+ — ¢~ | = |f| = 2kx H'-a.e. on ngpp

where ng;\nk is the geodesic arc connecting ny and pg. It yields that ¢ ¢ L. So, every optimal
BYV lifting of g does not belong to L.

In the next example, we show that Theorem 3 fails if we minimize the energy in (8) just over
the class of gradient maps:

Example 4 Let u € BV(S?,S') be defined as
u(e, 0) = €3, Yo € (0,7),0 € (0,2n).

The jump set of u is the meridian {6 = 0} orientated counterclockwise and p(u™,u~) = —27/3 on
S(u). We have that T(u) = 0. On the other hand, for every 1 € C*°(S% R), we have

\u/\VuH2+p(u+,u7)uuH1\_S(u)fva2|:/ |qufv¢|dH2+/ lp(ut, u™) | dH!
S2 52 S(u)

> / 2 /3dH! = 272 /3 > | T(u)]|.
S(u)
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