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Abstract

In this paper, we consider a Lie time-splitting scheme for a nonlinear
partial differential equation driven by a random time-dependent dispersion
coefficient. Our main result is a uniform estimate of the error of the scheme
when the time step goes to 0. Moreover, we prove that the scheme satisfies
an asymptotic-preserving property. As an application, we study the order
of convergence of the scheme when the dispersion coefficient approximates
a (multi)fractional process.

1 Introduction
The study of partial differential equations (PDE) driven by random processes is
a subject of much interest because of their numerous applications, for instance
in nonlinear optics [1] or wave propagation in random media [16]. The driving
random processes can model random perturbations or physical quantities whose
we know only a statistical description. Besides applications, the asymptotic
analysis and numerical simulations of such equations are crucial questions. This
paper presents an analysis of a Lie time-splitting scheme for a class of random
nonlinear partial differential equations including Schrödinger equations.

The time-splitting schemes are often used for the simulation of nonlinear
evolution PDE because they are quite simple to implement. They consist of
splitting the problem into two partial problems which can be solved explic-
itly and constructing a numerical solution by combining the solutions of the
two partial problems. These methods are consistent for deterministic nonlin-
ear Schrödinger equations [6] and can take different forms (mainly the Lie and
Strang schemes). Indeed, in [6] the authors prove that the Lie scheme is of order
∗romain.duboscq@univ-lorraine.fr
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1 and the Strang scheme is of order 2 (in dimension 1 or 2). The Lie scheme has
also been studied for nonlinear Schrödinger equations with random white-noise
dispersion [25]. In this case, it is proven that the Lie scheme is consistent and
of order bounded below by 1/2.

The asymptotic-preserving property for a given numerical scheme is of great
importance for the asymptotic analysis and can be described as follows. Let
{uε}ε≥0 be the solutions of a family of problems such that limε→0 u

ε = u0,
and {uε,h}ε≥0 the family of numerical solutions approximating {uε}ε≥0 for a
time-step h > 0 and obtained from a numerical scheme. We say that the
given numerical scheme is asymptotic-preserving if uε,h approximates uε
independently of ε and limε→0 u

ε,h = u0,h. There exist a lot of works dealing
with Asymptotic-Preserving (AP) property in various problems (for instance
[4, 10, 11, 17, 21, 23]). In particular for time-splitting schemes for Schrödinger
and/or random equations, we mention for instance [2, 3, 7, 19, 25].

In this paper we consider a nonlinear PDE driven by a general random pro-
cess with continuous sample paths. We analyze a Lie time-splitting scheme for
this equation. We prove that the scheme converges and the uniform order of
convergence is bounded below in terms of the sample paths of the driving pro-
cess. The form of this lower bound and a continuity theorem are then used to
establish a general asymptotic-preserving property for the time-splitting scheme.
These results are then applied to nonlinear PDE driven by processes approxi-
mating fractional and multifractional processes. This generalizes results of [25]
dealing with processes approximating a Brownian motion.

In section 2, we introduce the setting and study the order of convergence of
the Lie time splitting scheme. Section 3 is dedicated to the proofs of the results
of Section 2. In section 4, we establish the AP property and study equations
driven by processes approximating (multi)fractional processes.

Notation
For a measurable space E and a normed space F , we denote by L2(E,F ) the
space of the square integrable functions from E to F . For the sake of clearness,
we denote by L2 the space L2(R,C). For every p ∈ N∗, we introduce Hp as
the Sobolev space of the square integrable functions from R to C such that the
first p derivatives are square integrable. We consider ‖ · ‖L2 , ‖ · ‖H1 , ‖ · ‖H2 ,
..., as their associated norms. For every function v ∈ L2, we denote the Fourier
transform of v by F(v) or Fx(v(x)): for every ξ ∈ R,

F(v)(ξ) = Fx(v(x))(ξ) =
1√
2π

∫
R
eixξv(x)dx.

For every function w ∈ L2, we denote the inverse Fourier transform of w by
F−1(w) or F−1ξ (w(ξ)).

Throughout the paper, all the random variables are defined on a probability
space (Ω, T ,P), the corresponding expectation being E.

Finally, when considering a Lipschitz function g, we designate by ‖g‖Lip its
Lipschitz constant.
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2 Main results

2.1 Nonlinear PDE with random dispersion
Let t0 and T such that 0 < t0 < T < ∞. We consider the following nonlinear
random PDE with random dispersion written in differential form:

u(t, x) = ut0(x) + i

∫ t

t0

P

(
i
∂

∂x

)
u(θ, x) ◦ dW (θ)

+

∫ t

t0

g(u(θ, x))dθ, (t, x) ∈ [t0, T ]× R. (1)

The function ut0 is the initial condition at t0. The function g is the nonlinear
function whose we precise the assumptions later. The notation W designates
a stochastic process, which can be eventually a deterministic function; P is a
polynomial with real coefficients and its degree is denoted by δP or δ when there
is no ambiguity. The symbol ◦ is explained below (Remark 1).

In order to deal with existence and uniqueness of the solution of (1) we
consider the corresponding linear problem

v(t, x) = ut0(x) + i

∫ t

t0

P

(
i
∂

∂x

)
v(θ, x) ◦ dW (θ), (t, x) ∈ [t0, T ]× R, (2)

whose we construct the unique solution as v : (t, x)→ X(t0, t)ut0(x) where

X(t0, t)ut0(x) = F−1
(
ξ → e−iP (ξ)(W (t)−W (t0))F(ut0)(ξ)

)
(x). (3)

Remark that for every k ∈ N, if ut0 ∈ Hk, then

‖X(t0, t)ut0‖Hk = ‖ut0‖Hk . (4)

Hence, Equation (1) is understood as the integral equation

u(t, x) = X(t0, t)ut0(x) +

∫ t

t0

X(θ, t)g(u(θ, x)) dθ, (t, x) ∈ [t0, T ]× R. (5)

We have the following preliminary result.

Theorem 1. If ut0 ∈ L2 and g is Lipschitz, then there exists a unique solution
u with sample paths in C([t0, T ], L2) to Equation (5). Moreover, if there exists
k ∈ N such that ut0 ∈ Hk, g is k times differentiable and its derivatives up to
the order k are bounded, then there exists a (deterministic) constant C∞,k > 0,
independent of W , such that

max
t∈[t0,T ]

‖u(t, ·)‖Hk ≤ C∞,k <∞ and max
t∈[t0,T ]

‖g(u(t, ·))‖Hk ≤ C∞,k <∞

The constant C∞,k depends only on ‖u0‖Hk .
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The proof is postponed to Section 3. We define the family of operators
{S(t0, t)}t∈[t0,T ] such that (t, x) 7→ S(t0, t)ut0(x) is the unique solution to Equa-
tion (5).

Remark 1. If W is a Brownian motion, the solution obtained in Theorem 1 is
the Stratonovich solution. This is why we use the notation ◦ in (1).

2.2 Time-splitting scheme
From now on we assume that T = 1 and we fix an initial condition u0 ∈ L2.
Throughout this section, u denotes the solution u : (t, x) 7→ S(0, t)u0(x) to
Equation (5) when t0 = 0 and with the initial condition u0. This section is
devoted to introduce a time-splitting scheme to approximate u.

For t0 ∈ [0, 1] and ut0 ∈ L2, we introduce the problem

w(t, x) = ut0(x) +

∫ t

t0

g(w(θ, x)) dθ, (t, x) ∈ [t0, 1]× R. (6)

If g is a Lipschitz function, the unique solution w of (6) is given by Theorem 1
(with W ≡ 0). We then define the family of operators Y = {Y (t)}t≥0 such that
for every (t, x) ∈ [t0, 1]×R, w(t, x) = Y (t− t0)ut0 . We define the (Lie) splitting
operator by

Z(t0, t) := Y (t− t0)X(t0, t). (7)

For every k ∈ N and h ∈ (0, 1], we set Sk,h := S((k − 1)h, kh) Zk,h := Z((k −
1)h, kh). For every n ∈ N, we set

un,h := Zn,h · · ·Z1,hu0.

We aim to prove that {un,h}n∈{1,...,N} approximates {u(nh, ·)}n∈{1,...,N} in some
sense for h→ 0.

For every 0 ≤ t0 < t ≤ 1 we define

IW (t0, t) :=

∫ t

t0

(
|W (t)−W (θ)|+

∫ θ

t0

|W (θ)−W (σ)|dσ

)
dθ. (8)

Our main result is the following.

Theorem 2. We assume that u0 ∈ Hδ, W admits finite first-order moments, g
is δ times differentiable, its derivatives up to the order δ+2 are bounded. There
exists a constant C which depends only on g and ||u0||Hδ , such that for every
h ∈ (0, 1],

E
[

max
n∈{1,...,N}

||un,h − u(nh, ·)||L2

]
≤ C

N∑
n=1

E [IW ((n− 1)h, nh)] . (9)

Remark 2 (Fundamental remark). Notice that the constant C appearing in
Theorem 2 is independent of the process W . This is a key point of the result.
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We can easily deduce the following corollary about processes with stationary
increments.

Corollary 1. Under the assumptions of Theorem 2, if W has stationary incre-
ments, then (9) can be written as

E
[

max
n∈{1,...,N}

||un,h − u(nh, ·)||L2

]
≤ CN

∫ h

0

E [|W (θ)|] dθ. (10)

We refer the reader to Section 4 for applications of Corollary 1 to equations
driven by Brownian motions and (multi-)fractional processes.

3 Proofs

3.1 Proof of Theorem 1
Throughout this section, we consider a continuous sample path W of a given
stochastic process. Notice that all the constants appearing in this proof
are independent of W , even though the other quantities do depend on W .
For the sake of simplicity, we assume that t0 = 0 and T = 1.

Let Γ be the application from C([0, 1], L2) to itself such that for every U ∈
C([0, 1], L2),

Γ(U)(t, x) = X(0, t)u0(x) +

∫ t

0

X(s, t)g(U(s, ·))(x)ds.

We define the sequence {Uj}j∈N ∈
(
C([0, 1], L2)

)N by U0 := u0 and Uj+1 :=
Γ(Uj) for all j > 0. Using a classical fixed-point procedure, we get the following
result.

Lemma 1. There exists a unique solution u ∈ C([0, 1], L2) to (5).

Proof. Obviously, for every U and V in C([0, 1], L2) and every t ∈ [0, 1],

sup
t′∈[0,t]

‖Γ(U(t′))− Γ(V (t′))‖L2 ≤ ‖g‖Lip
∫ t

0

sup
t′∈[0,θ]

‖U(t′)− V (t′)‖L2dθ (11)

Moreover, we have

sup
t′∈[0,t]

‖Γ(U(t′))‖L2 ≤ ‖u0‖L2 + ‖g‖Lip
∫ t

0

sup
t′∈[0,θ]

‖U(t′)‖L2dθ

and thus

sup
t∈[0,1]

‖Γ(U(t))‖L2 ≤ ‖u0‖L2 exp(‖g‖Lip). (12)

We deduce from (11) and (12) that the sequence {Uj}j∈N is a Cauchy sequence
in C([0, 1], L2). Then there exists a solution u to (5). The uniqueness is a direct
consequence of (11).
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We now prove the estimates on the Hk-norm of the solution u. Let us first
give the following useful lemma.

Lemma 2. Let n ≥ 1, ψ ∈ Cn(R,R2) and φ ∈ Cn(R2,R). There exists a
constant C > 0 such that for every x ∈ R,∣∣∣(φ ◦ ψ)

(n)
(x)
∣∣∣ ≤ C n∑

k=1

‖∇kφ‖∞
∑

1≤l1≤..≤lk
l1+...+lk=n

k∏
r=1

∥∥∥ψ(lr)(x)
∥∥∥ (13)

Remark 3. In the previous result, remark that
n∑
k=1

‖∇kφ‖∞
∑

1≤l1≤..≤lk
l1+...+lk=n

k∏
r=1

∥∥∥ψ(lr)(x)
∥∥∥ = ‖∇φ‖∞

∥∥∥ψ(n)(x)
∥∥∥

+

n∑
k=2

‖∇kφ‖∞
∑

1≤l1≤..≤lk<n
l1+...+lk=n

k∏
r=1

∥∥∥ψ(lr)(x)
∥∥∥

The proof of Lemma 2 is a direct consequence of Lemma 13 stated in the
appendix. We now establish the following lemma.

Lemma 3. Let u0 ∈ Hn, n ≥ 1. Then there exists a deterministic constant
Cn = C(g, ‖u0‖Hn) depending only on ‖u0‖Hnand g such that the solution u of
(5) satisfies

sup
t∈[0,1]

‖u(t)‖Hn ≤ Cn. (14)

The proof of Lemma 3 is a direct consequence of Lemma 4 stated just below.

Lemma 4. Let u0 ∈ Hn, n ≥ 1. Then there exists a deterministic constant
Cn = C(g, ‖u0‖Hn) depending only on ‖u0‖Hnand g such that for every j ≥ 1,
Uj satisfies

sup
t∈[0,1]

‖Uj(t)‖Hn ≤ Cn. (15)

Proof. We prove by induction that for all n ∈ N and j ∈ N,

‖Uj+1(t)‖Hn ≤ ‖u0‖Hn + cn

∫ t

0

‖Uj(s)‖Hnds (16)

where cn depends on g and ‖u0‖Hn so that the proof can be concluded by
Gronwall’s lemma. Inequality (16) is obvious for all j ∈ N and n = 1. We
suppose that (16) is true up to the rank n ≥ 2 and we consider u0 ∈ Hn+1.
Because of Lemma 2 and Remark 3 there exists C > 0 such that for all j ∈ N,∣∣∂n+1

x g(Uj)
∣∣ ≤ C

n+1∑
k=1

‖∇kg‖∞
∑

1≤l1≤..≤lk<n
l1+...+lk=n+1

k∏
r=1

∣∣∂lrx Uj∣∣
≤ C‖∇g‖∞

∣∣∂n+1
x Uj

∣∣+ C

n+1∑
k=2

‖∇kg‖∞
∑

1≤l1≤..≤lk<n
l1+...+lk=n+1

k∏
r=1

∣∣∂lrx Uj∣∣
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Using the Sobolev inequality ‖φ‖L∞ ≤ C‖φ‖H1 , we get∥∥∂n+1
x g(Uj)

∥∥
L2

≤ C‖∇g‖∞
∥∥∂n+1

x Uj
∥∥
L2 + C

n+1∑
k=2

‖∇kg‖∞
∑

1≤l1≤..≤lk≤n
l1+...+lk=n+1

∥∥∥∥∥
k∏
r=1

∂lrx Uj

∥∥∥∥∥
L2

≤ C‖∇g‖∞
∥∥∂n+1

x Uj
∥∥
L2 + C

n+1∑
k=2

‖∇kg‖∞
∑

1≤l1≤..≤lk≤n
l1+...+lk=n+1

∥∥∂l1x Uj∥∥L2

k∏
r=2

∥∥∂lrx Uj∥∥L∞

≤ C‖∇g‖∞
∥∥∂n+1

x Uj
∥∥
L2 + C

n+1∑
k=2

‖∇kg‖∞
∑

1≤l1≤..≤lk≤n
l1+...+lk=n+1

‖Uj‖Hl1
k∏
r=2

‖Uj‖Hlr+1

In the last sum on the set {1 ≤ l1 ≤ .. ≤ lk ≤ n; l1 + ... + lk = n + 1}, at
most one index from {l1, l2 + 1, ..., lk + 1} can be equal to n+ 1. Moreover, by
assumption, we have max

θ∈[0,1]
‖Uj( θ)‖Hl ≤ Cl for every l ∈ {0, ..., n}. We then get

that for all t,∥∥∂n+1
x Uj+1(t)

∥∥
L2 ≤

∥∥∂n+1
x u0

∥∥
L2 +K

∫ t

0

‖Uj( θ)‖Hn+1dθ,

where K depends on g and ‖u0‖Hn+1 . Using (16), this prove by induction that

‖Uj+1(t)‖Hn+1 ≤ ‖u0‖Hn+1 + cn+1

∫ t

0

‖Uj( θ)‖Hn+1dθ,

where cn+1 depends on g and ‖u0‖Hn+1 . This concludes the proof.

3.2 Preliminary results
We now state some lemmas for the proof of Theorem 2. The first lemma deals
with the boundedness of the splitting operators {Z(t0, t)}t∈[t0,1] in Hk for t0 ∈
[0, 1[ under some assumptions on g.

Lemma 5. Let v0 ∈ L2. If there exists k ∈ N such that v0 ∈ Hk, g is k times
differentiable and its derivatives up to the order k are bounded, then there exists
a (deterministic) constant C∞,k > 0 such that for every (t0, t) ∈ [0, 1]2 satisfying
t0 < t we have

max
θ∈[t0,t]

‖Z(t0, θ)v0‖Hk ≤ C∞,k and max
θ∈[t0,t]

‖g(Z(t0, θ)v0)‖Hk ≤ C∞,k

The constant C∞,k depends only on ‖u0‖Hk .

Proof. We follow the same lines as the proof of Lemma 3 (and Lemma 4).

The two following Lemmas provide useful estimates on the operators X and
Z. Lemma 6 essentially states the continuity of {X(t0, t)}t∈[t0,1] for t0 ∈ [0, 1[.
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Lemma 6. Let v0 ∈ Hδ. There exists a constant CP only depending on P such
that for every (t0, t) ∈ [0, 1]2 satisfying t0 < t we have

||X(t0, t)v0 − v0||L2 ≤ CP |W (t)−W (t0)|‖v0‖Hδ .

Proof. Using the estimate | exp(ix)− 1|2 ≤ x2 , we get

||X(t0, t)v0 − v0||2L2

=

∫ +∞

−∞

∣∣∣F(v0)(θ) exp
(
− i(W (t)−W (t0))P (θ)

)
−F(v0)(θ)

∣∣∣2 dθ
≤ (W (t)−W (t0))2

∫ +∞

−∞
|P (θ)F(v0)(θ)|2 dθ

≤ C2
P (W (t)−W (t0))2||v0||2Hδ

where, for instance, C2
P = δ

∑δ
j=0 p

2
j .

Finally, the Lemma stated below proves the Lipschitz property of the oper-
ators Z(t0, t) (for t0 < t) from L2 to itself.

Lemma 7. Let v0, v1 ∈ L2. If there exists k ∈ N such that v0 and v1 ∈ Hk, g
is k times differentiable and its derivatives up to the order k are bounded, then
there exists a (deterministic) constant Cg > 0 such that for every (t0, t) ∈ [0, 1]2

satisfying t0 < t we have

‖Z(t0, t)v0 − Z(t0, t)v1‖L2 ≤ ‖v0 − v1‖L2 exp(Cg(t− t0)).

The constant Cg depends only on g.

Proof. Because of (4), it is enough to prove that there exists a (deterministic)
constant Cg > 0 such that for every (t0, t) ∈ [0, 1]2 satisfying t0 < t we have

‖Y (t− t0)v0 − Y (t− t0)v1‖L2 ≤ ‖v0 − v1‖L2 exp(Cg(t− t0)).

Since (6) and because g is Lipschitz, we have

‖Y (t− t0)v0 − Y (t− t0)v1‖L2

≤ ‖v0 − v1‖L2 +

∫ t

t0

‖g(Y (θ − t0)v0)− g(Y (θ − t0)v1)‖L2dθ

≤ ‖v0 − v1‖L2 + ‖g‖Lip
∫ t

t0

‖Y (θ − t0)v0 − Y (θ − t0)v1‖L2dθ.

We conclude by Gronwall’s lemma.

3.3 Proof of Theorem 2
To prove Theorem 2 we deal with the local error of the scheme (Lemma 8) and
then we prove the estimate of the global error.
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Lemma 8. Let v0 ∈ Hδ. There exists a (deterministic) constant C = C(g, ‖v0‖Hδ) >
0 depending only on g and ‖v0‖Hδ such that for every (t0, t) ∈ [0, 1]2 satisfying
t0 < t we have

‖S(t0, t)v0 − Y (t− t0)X(t0, t)v0‖L2 ≤ CIW (t0, t). (17)

Proof. Throughout the proof, the letter C stands for a deterministic constant,
can vary from line to line and depends only on P , g and ‖v0‖Hδ . First, we
remark that

Z(t0, t)v0 = Y (t−t0)X(t0, t)v0 = X(t0, t)v0+

∫ t

t0

g(Y (θ−t0)X(t0, t)v0)dθ. (18)

Thus, we have, using (5) and (18),

S(t0, t)v0 − Z(t0, t)v0 = R1(t0, t) +R2(t0, t) +R3(t0, t) (19)

where

R1(t0, t) =

∫ t

t0

X(θ, t){g(S(t0, θ)v0)− g(Z(t0, θ)v0)}dθ,

R2(t0, t) =

∫ t

t0

X(θ, t)g(Z(t0, θ)v0)− g(Z(t0, θ)v0)dθ,

R3(t0, t) =

∫ t

t0

(g(Z(t0, θ)v0)− g(Y (θ − t0)X(t0, t)v0)) dθ

=

∫ t

t0

(g(Y (θ − t0)X(t0, θ)v0)− g(Y (θ − t0)X(t0, t)v0)) dθ

Because of (4), we have

‖R1(t0, t)‖L2 ≤ ‖g‖Lip
∫ t

t0

||S(t0, θ)v0 − Z(t0, θ)v0||L2 dθ. (20)

Since Lemmas 6 and 5 we have

‖R2(t0, t)‖L2 ≤ C

∫ t

t0

|W (t)−W (θ)|‖g(Z(z0, z
′)v0)‖L2dθ

≤ C

(∫ t

t0

|W (t)−W (θ)|dθ
)

max
s∈[t0,t]

‖g(Z(t0, s)v0)‖L2 . (21)

From Lemmas 6 and 7 we obtain that

||R3(t0, t)||L2 ≤
∫ t

t0

||g(Z(t0, θ)v0)− g(Y (θ − t0)X(t0, t)v0)||L2 dθ

≤ C

∫ z

z0

||X(t0, θ)v0 −X(t0, t)v0||L2 dθ

≤ C

(∫ t

t0

|W (t)−W (θ)|dθ
)
. (22)
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Then, by (19), (20), (21) and (22), for every (t0, t) ∈ [0, 1]2 satisfying t0 < t we
get

‖S(t0, t)v0 − Z(t0, t)v0‖L2 ≤ C

∫ t

t0

|W (t)−W (θ)|dθ

+‖g‖Lip
∫ t

t0

‖S(t0, θ)v0 − Z(t0, θ)v0‖L2dθ.

We complete the proof by using the modified Gronwall lemma recalled below
(Lemma 9).

Lemma 9 (Modified Gronwall lemma). Let φ and f be two nonnegative func-
tions defined on an interval [a, b]. We assume that there exists a constant c > 0
such that for every t ∈ [a, b],

φ(t) ≤ f(t) + c

∫ t

a

φ(θ)dθ. (23)

Then, for every t ∈ [a, b],

φ(t) ≤ f(t) + cect
∫ t

a

e−cθf(θ)dθ. (24)

Remark 4. Remark that we do not assume f to be increasing.

Now we prove Theorem 2.

Proof. (Theorem 2) We write

uhn − u(nh, ·) =

n∑
j=1

(
Zn,h · · ·Zj,hSj−1,h · · ·S1,hu0 − Zn,h · · ·Zj+1,hSj,h · · ·Sh1 u0

)
.

From Lemma 7, there exists a (deterministic) constant Cg > 0 depending only
on g such that

||un,h − u(nh, ·)||L2 ≤
n∑
j=1

eCg(n−j)||(Zj,h − Sj,h)Sj−1,h · · ·S1,hu0||L2 .

By Lemmas 8 and 1, there exists a (deterministic) constant C(g, ‖u0‖Hδ) > 0
depending only on g and ‖u0‖Hδ such that

max
n∈{1,...,N}

||un,h − u(nh, ·)||L2 ≤ C(g, ‖u0‖Hδ)
N∑
j=1

IW ((j − 1)h, jh).

This concludes the proof.
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4 An application: asymptotic-preserving prop-
erty

4.1 General setting and notation
This section is devoted to establish the so-called asymptotic-preserving property
of the Lie scheme. From now on, the process W driving Equation (1) may
vary. We then introduce new notations to take account of the dependence
of all quantities with respect to the process. For a given stochastic process
W whose sample paths are continuous on [0, 1] and (t0, t) ∈ [0, 1]2 satisfying
t0 < t, we define the operators SW (t0, t), XW (t0, t) and YW (t0, t) such that
for all ut0 ∈ L2 the functions SW (t0, ·)ut0 , XW (t0, ·)ut0 and YW (t0, ·)ut0 are
respectively solutions of (1), (2) and (6). We let ZW (t0, t) = YW (t0, t)XW (t0, t).
For all N ∈ N∗ and k ∈ {1, ..., N}, denoting h := 1/N , we define Sk,hW :=

SW ((k − 1)h, kh) and Zk,hW := ZW ((k − 1)h, kh). For every n ∈ {1, ..., N} and
an initial condition u0 ∈ Hδ, we set un,hW := Zn,hW · · ·Z1,h

W u0. We denote by
uW the solution of Equation (1) with t0 = 0 and driven by W and we set
u·,hW := {un,hW }n∈{1,...,N}.

We consider a family of continuous processes {W ε}ε>0 and another contin-
uous process W 0 such that the solution uW ε converges to uW 0 as ε → 0. We
established and proved in the previous sections that the schemes u·,hW ε and u·,hW 0

converge respectively to W ε and W 0 as the time step h goes to 0. Under suit-
able assumptions on the sequence of processes {W ε}ε>0 we prove in this section
that

• the scheme u·,hW ε converges (in some sense) to uW ε uniformly with respect
to ε > 0 when h→ 0,

• and the scheme u·,hW ε converges (in some sense) to u·,hW 0 as ε→ 0 for every
h > 0.

This implies that the limit ε → 0 does not affect the convergence of the time-
splitting scheme. This is the so-called Asymptotic-Preserving (AP) prop-
erty, which is usually represented by the diagram

u·,hW ε

ε→0−→ u·,hW 0

↓ h→0 ↓ h→0

uW ε
ε→0−→ uW 0

(25)

Notice that AP property has been studied in various problems (for instance
[4, 10, 11, 17, 21, 23]) and in particular for time-splitting schemes for Schrödinger
and/or random equations (for instance [2, 3, 7, 19, 25]).

4.2 Main results
We establish and prove the main results of this section. The first one concerns
the convergence of uW ε when ε→ 0.

11



Theorem 3. Let u0 ∈ Hδ. The mapping

C([0, 1],R) → C([0, 1], L2)

w 7−→ uw

is Lipschitz. As a consequence, when ε→ 0, if W ε converges in distribution to
W 0 in C([0, 1],R), then uW ε converges in distribution to uW 0 in C([0, 1], L2).

Proof. Let w1 and w2 in C([0, 1],R). We have

uw1
(t, x)− uw2

(t, x) = Xw1
(0, t)u0(x)−Xw2

(0, t)u0(x)

+

∫ t

0

(Xw1(θ, t)−Xw2(θ, t))g(uw1(θ, x)) dθ

+

∫ t

0

Xw2(θ, t)(g(uw1(θ, x))− g(uw2(θ, x))) dθ.

We then deduce that there exists a constant C > 0 which only depends on g
and ||u0||Hδ such that

||uw1(t)− uw2(t)||L2 ≤ C||w1 − w2||∞ + ‖∇g‖∞
∫ t

0

||uw1(θ)− uw2(θ)||L2dθ.

By Gronwall’s lemma,

sup
t∈[0,1]

||uw1
(t)− uw2

(t)||L2 ≤ C exp(‖∇g‖∞)||w1 − w2||∞,

which concludes the proof.

The second main result of this section deals with the convergence of u·,hW ε as
ε→ 0.

Theorem 4. Let u0 ∈ Hδ, N ∈ N∗ and h = 1/N . The mapping

C([0, 1],R) → (L2)N+1

w 7−→ {uj,hw }j=0,...,N

is Lipschitz. As a consequence, when ε→ 0, if W ε converges in distribution to
W 0 in C([0, 1],R), then {uj,hW ε}j=0,...,N converges in distribution to {uj,hW 0}j=0,...,N

in (L2)N+1 as ε→ 0.

Proof. By induction, it is enough to show that there exists C > 0 such for all
j = 1, ..., N and (w1, w2) in C([0, 1],R)2,

‖uj,hw1
− uj,hw2

‖L2 ≤ C‖uj−1,hw1
− uj−1,hw2

‖L2 + C‖w1 − w2‖∞. (26)

Throughout this proof, C stands for a positive constant which depends on
‖u0‖Hδ , g and N and can vary from line to line. We have, using (18),

uj,hw1
− uj,hw2

= Xj,h
w1
uj−1,hw1

−Xj,h
w2
uj−1,hw2

+

∫ jh

(j−1)h

(
g
(
Y (θ − (j − 1)h)Xj,h

w1
uj−1,hw1

)
−g
(
Y (θ − (j − 1)h)Xj,h

w2
uj−1,hw2

))
dθ.

12



Taking the L2−norm and because g is Lipschitz, we get

‖uj,hw1
− uj,hw2

‖L2 ≤ ‖Xj,h
w1
uj−1,hw1

−Xj,h
w2
uj−1,hw2

‖L2

+

∫ jh

(j−1)h

∥∥∥∥g(Y (θ − (j − 1)h)Xj,h
w1
uj−1,hw1

)
−g
(
Y (θ − (j − 1)h)Xj,h

w2
uj−1,hw2

)∥∥∥∥
L2

dθ.

≤ C‖Xj,h
w1
uj−1,hw1

−Xj,h
w2
uj−1,hw2

‖L2 .

Because of Lemmas 3 and 6, we obtain

‖uj,hw1
− uj,hw2

‖L2 ≤ C‖Xj,h
w1

(uj−1,hw1
− uj−1,hw2

)‖L2 + C‖Xj,h
w1
uj−1,hw2

−Xj,h
w2
uj−1,hw2

‖L2

≤ C‖uj−1,hw1
− uj−1,hw2

‖L2 + C‖w1 − w2‖∞.

This concludes the proof.

From now on, we consider that {W ε}ε>0 and W 0 satisfy the following as-
sumptions.

• Assumption (A1). As ε→ 0, W ε converges in distribution to W 0 in the
space C([0, 1],R).

• Assumption (A2). There exist three constants K > 0, γ ≥ 1 and β ≥ 1
such that for all t1 and t2 ∈ [0, 1] and ε > 0,

E [(W ε(t1)−W ε(t2))γ ] ≤ K|t1 − t2|β . (27)

We state the last main result of this section.

Theorem 5. We assume that u0 ∈ Hδ, g is δ times differentiable, its derivatives
up to the order δ are bounded. Then there exists a constant C which depends
only on g and ||u0||Hδ , such that for every h ∈ (0, 1] and every ε ≥ 0,

E
[

max
n∈{1,...,N}

‖un,hW ε − uW ε(nh, ·)‖L2

]
≤ Chβ/γ . (28)

This implies (25) and then the AP property.

Proof. By Theorem 2 and Remark 2, there exists a constant C which depends
only on g and ||u0||Hδ , such that for every h ∈ (0, 1] and every ε ≥ 0,

E
[

max
n∈{1,...,N}

‖un,hW ε − uW ε(nh, ·)‖L2

]
≤ C

N∑
n=1

E [IW ε((n− 1)h, nh)] .(29)

13



By Hölder’s inequality and (27), we have

IW ε((n− 1)h, nh) ≤
∫ nh

(n−1)h
E[|W ε(nh)−W ε(θ)|γ ]1/γdθ

+

∫ nh

(n−1)h

(∫ θ

(n−1)h
E[|W ε(θ)−W ε(σ)|γ ]1/γdσ

)
dθ

≤ 2h1+β/γ .

Combining the last inequality with (29) we conclude the proof.

The remaining part of the section is devoted to apply Theorem 5 to differ-
ent frameworks. From now on, we assume that u0 ∈ Hδ, g is δ times
differentiable, its derivatives up to the order δ are bounded.

4.3 Diffusion approximation
In this subsection we improve results from [25]. For all ε > 0, consider the
solution uε : [0, 1]× R→ C of the equation

∂uε

∂t
(t, x) =

i

ε
m

(
t

ε2

)
P

(
i
∂

∂x

)
uε(t, x) + g(uε(t, x)),

uε(t = 0, x) = u0(x), (t, x) ∈ [0, 1]× R,

(30)

wherem is a continuous, centered and mixing process [16]. Let B be a Brownian
motion and c0 be a positive constant defined by

c20 = 2

∫ ∞
0

E[m(0)m(θ)]dθ.

For every t ≥ 0 we set

Sε(t) =
1

ε

∫ t

0

m

(
θ

ε2

)
dθ.

It well-known that {Sε(t)}t∈[0,1] converges in distribution to c0B in C([0, 1]) as
ε→ 0 (the functional Donsker theorem, see [16] for instance). As a consequence,
by Theorem 3, uε converges in distribution to u in the space C([0, 1], L2) as
ε→ 0, where u is the solution of

u(t, x) = u0(x) + ic0

∫ t

0

P

(
i
∂

∂x

)
u(θ, x) ◦ dB(θ)

+

∫ t

0

g(u(θ, x))dθ, (t, x) ∈ [0, 1]× R. (31)

For every N ∈ N∗ (with h = 1/N), let {un,h,ε}0≤n≤N be the Lie scheme as-
sociated to uε and {un,h}0≤n≤N be the Lie scheme associated to u. We now
establish the AP property in this framework.
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Theorem 6. For all N ∈ N∗, {un,h,ε}0≤n≤N converges in distribution to
{un,h}0≤n≤N in (L2)N+1 as ε → 0. Moreover, there exists a constant C which
depends only on g and ||u0||Hδ , such that for every h ∈ (0, 1] and every ε > 0,

E
[

max
n∈{1,...,N}

‖un,h,ε − uε(nh, ·)‖L2

]
≤ Ch1/2 (32)

and

E
[

max
n∈{1,...,N}

‖un,h − u(nh, ·)‖L2

]
≤ Ch1/2. (33)

A weaker form of this result has been proven in [25]. More precisely, it has
been shown that, for P (ξ) = ξ2, there exists a constant C which depends only
on g and ||u0||H2 (because δ = 2 in this case), such that for every h ∈ (0, 1] and
every ε > 0,

max
n∈{1,...,N}

E
[
‖un,h,ε − uε(nh, ·)‖L2

]
≤ C(h1/2 + ε). (34)

The improvement comes from the general formulation of the error estimate in
Theorem 2 and in particular from a more subtle use of Gronwall’s lemmas in
its proof.

Proof. The convergence of {un,h,ε}0≤n≤N to {un,h}0≤n≤N is a direct conse-
quence of Theorem 4 and the functional Donsker theorem. To prove (32) and
(33), we show Assumptions (A1) and (A2). For all s < t ∈ [0, 1],

E
[
(Sε(t)− Sε(s))2

]
≤ 1

ε2

∫ t

s

dθ

∫ t

s

dσ

∣∣∣∣E [m( θ

ε2

)
m
( σ
ε2

)]∣∣∣∣
≤ (t− s)

∫ ∞
0

dσ |E [m (σ)m (0)]| .

Hence, Assumptions (A1) and (A2) are satisfied ending hence the proof.

4.4 Approximation by a fractional Brownian motion
A fractional Brownian motion BH = {BH(t)}t≥0 (see [29]) with Hurst index
H ∈ (0, 1) is a Gaussian process with mean 0 and satisfying for all t and s ≥ 0,

E[BH(t)BH(s)] =
1

2
(t2H + s2H − |t− s|2H).

Notice that a fractional Brownian motion with H = 1/2 is a Brownian motion.
The class of fractional Brownian motions is important in applications of

stochastic processes because it satisfies the invariance principle stated below.
Let H ∈ (0, 1) and m be a stationary Gaussian process with mean 0. For

every ε ∈ (0, 1) we define Sε = {Sε(t)}t≥0 such that for every t ≥ 0,

Sε(t) = ε2H
∫ t/ε2

0

m(s)ds.

We assume that one of the three following properties holds
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• If H ∈ (1/2, 1), there exists σH > 0 such that E[m(0)m(t)] ∼ σHt2H−2 as
t→∞.

• If H ∈ (0, 1/2), there exists σH < 0 such that E[m(0)m(t)] ∼ σHt2H−2 as
t→∞ and

∫∞
0

E[m(0)m(t)]dt = 0.

• If H = 1/2,
∫∞
0
|E[m(0)m(t)]|dt <∞ and

∫∞
0

E[m(0)m(t)]dt > 0.

We have the following result (invariance principle, see [29]).

Lemma 10. As ε → 0, Sε converges in distribution in C([0,∞)) to cHBH
where BH is a fractional Brownian motion with Hurst index H and cH is a
positive constant defined by c2H = 2

∫∞
0

E[m(0)m(t)]dt if H = 1/2 and by c2H =
σH/H(2H − 1) if H 6= 1/2.

For all ε > 0, consider the solution uε : [0, 1]× R→ C of the equation
∂uε

∂t
(t, x) =

i

ε2−2H
m

(
t

ε2

)
P

(
i
∂

∂x

)
uε(t, x) + g(uε(t, x)),

uε(t = 0, x) = u0(x), (t, x) ∈ [0, 1]× R

(35)

wherem is defined just above. Thanks to Lemma 10 and Lemma 3, uε converges
in distribution to u : [0, 1]× R→ C in the space C([0, 1], L2) as ε→ 0, where u
is the solution of

u(t, x) = u0(x) + icH

∫ t

0

P

(
i
∂

∂x

)
u(θ, x) ◦ dBH(θ)

+

∫ t

0

g(u(θ, x))dθ, (t, x) ∈ [0, 1]× R. (36)

In the equation above, cH is the constant defined in Lemma 10, BH is a fractional
Brownian motion with Hurst index H. For every N ∈ N (with h = 1/N), let
{un,h,ε}1≤n≤N be the Lie scheme associated to uε and {un,h}1≤n≤N be the Lie
scheme associated to u. We establish the AP property.

Theorem 7. For every N ∈ N∗, {un,h,ε}1≤n≤N converges in distribution to
{un,h}1≤n≤N as ε→ 0. Moreover, there exists a constant C which depends only
on g and ||u0||Hδ , such that for every h ∈ (0, 1] and every ε > 0,

E
[

max
n∈{1,...,N}

‖un,h,ε − uε(nh, ·)‖L2

]
≤ ChH ,

and

E
[

max
n∈{1,...,N}

‖un,h − u(nh, ·)‖L2

]
≤ ChH .
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Proof. By Lemma 10 and Theorem 4, we get the convergence of {un,h,ε}1≤n≤N
as ε→ 0. By Lemma 10 again, Sε satisfies Assumptions (A1). Moreover, there
exists C > 0 such that for all t and s,

E[(Sε(t)− Sε(s))2] ≤ C|t− s|2H .

Then, Sε satisfies assumptions (A1) and (A2), which concludes the proof by
Theorem 5.

Notice that, if H = 1/2, then Theorem 7 is Theorem 6 in the Gaussian case.

4.5 Approximation in a long-range random medium
Recently, long-range random media have attracted a lot of attention in applica-
tions to wave propagation ([18, 27] for instance). A fractional Brownian motion
with Hurst index H > 1/2 is a basic model for long-range dependence. Nev-
ertheless, this model is Gaussian and we also need non-Gaussian models. A
natural generalization of fractional Brownian motions is the class of Hermite
processes. Let K ∈ N∗ and H = (2 − γK)/2 ∈ (1/2, 1). We define the K-th
Hermite process of index H for every t > 0 by

BH,K(t) =

∫
RK
GH,K(t, x1, ..., xK)

K∏
k=1

B̃(dxk)

with

GH,K(t, x1, ..., xK) =

(
e−it

∑K
j=1 xj − 1

)
C(H)

∑K
j=1 xj

K∏
k=1

xk
|xk|(H−1)/K+3/2

where C(H) a normalizing constant, B̃(dx) is the Fourier transform of a Brow-
nian measure and the multiple stochastic integral is in the sense of [12].

Notice that for K = 1, BH,K = BH,1 is a fractional Brownian motion with
Hurst index H > 1/2. More generally, for every K, BH,K is centered and admits
the same covariance as a fractional Brownian motion, that is, for all t and s ≥ 0,

E[BH,K(t)BH,K(s)] =
1

2
(t2H + s2H − |t− s|2H).

Moreover, BH,K is Gaussian if and only if K = 1.
As the class of fractional Brownian motions, Hermite processes are important

in applications of stochastic processes because they satisfy the invariance prin-
ciple [13, 31, 32]. Let m be a continuous Gaussian process, centered, stationary,
satisfying E

[
m(0)2

]
= 1 and such that

E [m(0)m(t)] ∼ cmt−γ

as t → ∞, where 1 < γ < 1/K and cm > 0. For every ε ∈ (0, 1) we define
Sε = {Sε(t)}t≥0 for every t ≥ 0 by

Sε(t) = ε−γK
∫ t

0

Φ
(
m
( s
ε2

))
ds
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where Φ is a continuous function in L2(e−x
2/2dx) with Hermite index equal to

K ∈ N∗. This means that if we denote the k-th Hermite coefficient of Φ by

Φk =

∫ ∞
−∞

Pk(x)Φ(x)
e−x

2/2

k!
√

2π
dx

where Pk is the k-th Hermite polynomial, then we have

Φ =

∞∑
k=K

ΦkPk

with ΦK 6= 0. The invariance principle for Hermite processes can be stated as
below.

Lemma 11. As ε→ 0, Sε converges in distribution to cH,KBH,K in C([0,∞)),
where c2H,K = cKmΦ2

K/(K!)2.

For every ε > 0, we consider the solution uε of the equation
∂uε

∂t
(t, x) =

i

εγK
m

(
t

ε2

)
P

(
i
∂

∂x

)
uε(t, x) + g(uε(t, x)),

uε(t = 0, x) = u0(x), (t, x) ∈ [0, 1]× R,

(37)

wherem is defined just above. Thanks to Lemma 11 and Lemma 3, uε converges
in distribution to u : [0, 1]× R→ C in the space C([0, 1], L2) as ε→ 0, where u
is the solution of

u(t, x) = u0(x) + icH,K

∫ t

0

P

(
i
∂

∂x

)
u(θ, x) ◦ dBH,K(θ)

+

∫ t

0

g(u(θ, x))dθ, (t, x) ∈ [0, 1]× R, (38)

with the constant cH,K defined as in Lemma 11, BH,K is aK-th Hermite process
of order K. For every N ∈ N∗ (with h = 1/N), let {un,h,ε}1≤n≤N be the Lie
scheme associated to uε and {un,h}1≤n≤N be the Lie scheme associated to u.
We now establish the AP property.

Theorem 8. For every N ∈ N∗, {un,h,ε}1≤n≤N converges in distribution to
{un,h}1≤n≤N as ε→ 0. Moreover, there exists a constant C which depends only
on g and ||u0||Hδ , such that for every h ∈ (0, 1] and every ε > 0,

E
[

max
n∈{1,...,N}

‖un,h,ε − uε(nh, ·)‖L2

]
≤ ChH ,

and

E
[

max
n∈{1,...,N}

‖un,h − u(nh, ·)‖L2

]
≤ ChH .

Proof. The proof is similar to the proof of Theorem 7. It is a consequence of
Lemma 11 and Theorems 4 and 5.
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4.6 Generalization to multifractional media
Fractional Brownian motions with Hurst index H > 1/2 and Hermite processes
fit very well for modeling long-range media. Nevertheless, their range properties
are governed by the constant Hurst index, which implies a strong homogeneity.
To deal with less homogeneous media, multifractional processes have been in-
troduced [5, 28]. The main interest of multifractional processes lies in the fact
that they have a Hurst index varying along their trajectories. This implies more
flexibility in the choice of the models. Applications of multifractional models
to waves in random media have been studied recently [27]. In this subsection
we deal with the AP property of the Lie time-splitting scheme in the case of
convergence to multifractional processes. We restrict our study to a simple
Gaussian framework, but it can be easily generalized to non-Gaussian settings
as discussed at the end of this subsection.

Let a Gaussian field m = {m(t,H)}(t,H)∈R×(1/2,1). We assume that m is
centered and satisfies for every compact set K ⊂ (1/2, 1),

lim
|t1−t2|→∞

sup
(H1,H2)∈K2

∣∣R(H1, H2)

−|t1 − t2|2−H1−H2E[m(t1, H1)m(t2, H2)]
∣∣ = 0, (39)

where R : (1/2, 1)2 → (0,∞) is a continuous function. This is long-range
assumption in a multifractional setting. Let H : [0,∞) → [a, b] ⊂ (1/2, 1) be a
continuous function. We define Sε = {Sε(t)}t≥0 such that for every t ≥ 0,

Sε(t) =

∫ t/ε2

0

ε2H(ε2s)m(s,H(ε2s))ds =

∫ t

0

ε2H(s)−2m(s/ε2,H(s))ds.

The following result establish an invariance principle for Gaussian multifrac-
tional processes ([9], see [27, 26] for generalizations and applications).

Lemma 12. As ε→ 0, Sε converges in distribution to a process SH in C([0,∞)),
where SH is Gaussian, centered and satisfies for all t and s ≥ 0,

E [SH(t)SH(s)] =

∫ t

0

dθ

∫ s

0

dσR(H(θ),H(σ))|θ − σ|H(θ)+H(σ)−2.

A detailed study of SH can be found in [9]. In particular, it is proven that
SH satisfies the main properties of a multifractional process.

For every ε > 0, we consider the solution uε : [0, 1]×R→ C of the equation
∂uε

∂t
(t, x) =

i

ε2−2H(s)
m
( s
ε2
,H(s)

)
P

(
i
∂

∂x

)
uε(t, x) + g(uε(t, x)),

uε(t = 0, x) = u0(x), (t, x) ∈ [0, 1]× R.

(40)

wherem is defined just above. Because of Lemma 12 and Lemma 3, uε converges
in distribution to u : [0, 1]× R→ C in the space C([0, 1], L2) as ε→ 0, where u
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is the solution of

u(t, x) = u0(x) + i

∫ t

0

P

(
i
∂

∂x

)
u(θ, x) ◦ dSH(θ)

+

∫ t

0

g(u(θ, x))dθ, (t, x) ∈ [0, 1]× R. (41)

In the equation above, SH is the multifractional process defined in Lemma
12. For every N ∈ N∗ (with h = 1/N), let {un,h,ε}1≤n≤N be the Lie scheme
associated to uε and {un,h}1≤n≤N be the Lie scheme associated to u. We have
the following result.

Theorem 9. For every N ∈ N∗, {un,h,ε}1≤n≤N converges in distribution to
{un,h}1≤n≤N as ε→ 0. Moreover, there exists a constant C which depends only
on g and ||u0||Hδ , such that for every h ∈ (0, 1] and every ε > 0,

E
[

max
n∈{1,...,N}

‖un,h,ε − uε(nh, ·)‖L2

]
≤ ChminH

and

E
[

max
n∈{1,...,N}

‖un,h − u(nh, ·)‖L2

]
≤ ChminH.

Proof. From the covariance of SH, we can easily deduce that there exists C > 0
such that for all t and s,

E[(Sε(t)− Sε(s))2] ≤ C|t− s|2minH.

The remaining part of the proof is similar to the proof of Theorem 7.

To conclude this section, notice that we can also pursue the same study for
non-Gaussian multifractional models by using Hermite processes and replacing
Lemma 12 for suitable limit theorems (see [27, 26] for invariance principle for
non-Gaussian multifractional processes).

A Technical lemma
In this section we establish a technical lemma we use in the proof of Lemma 3.
It can be proven by induction.

Lemma 13. Let n ≥ 1, ψ = (ψ1, ψ2) ∈ Cn(R,R2) and φ ∈ Cn(R2,R). Then

(φ ◦ ψ)
(n)

=
∑
j,k≥0

1≤j+k≤n

∑
1≤l1≤...≤lk

1≤m1≤...≤mj
l1+...+m1+...=n

wl1,...,m1,...

(
φ(k,j) ◦ ψ

)( k∏
r=1

ψ
(lr)
1

)(
j∏
r=1

ψ
(mr)
2

)

(42)
where all the coefficients wl1,...,m1,... are integer.
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