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Abstract

The aim of this paper is to build a solution to the linear Schrédinger equation with a perturbed
quadratic hamiltonian. The solution is given in the sense of Sussmann [30] and the construction is based
on the bicharacteristics method. This is made possible under some assumptions on the hamiltonian and
the regularity of the perturbative noise. Moreover, dispersive estimates and a Avron-Herbst formula are
also given during the analysis of the Cauchy problem for nonlinear Schrodinger equations.
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1 Introduction

Let us introduce the following quadratic Hamiltonian perturbed by a real-valued noise term (w;);cr+ (con-
sidered as the time derivative of a real-valued function (w;);er+)

H(t,x, &) = Hi(x, &) + Halx, &)y, (1)
with 1
Hi(x, &) = 55 &+ (Mux)- &+ (Mpx) ¢+ Vi -x+ Vg - &,
Ho(x, &) = (Ma1x) - € + (Max) - + Vo1 -+ Vo - &,

where My, Mya, Moy, May € M4(R) are d x d real-valued matrices, with d € N. The vectors Vi1, Vi3, Va1,
Vs, are in R?. The goal of this paper is to build a solution to the following linear Schrédinger equation,
Vs € RT,

(2)

{ 0 (t, @) = Ha(x, —iV)p(t, @) + Holm, —iV)(t, )iy, Vt €]s, 00, V& € RE, )

U(s,x) = Ps(z) € L2

We obtain a quasi-explicit fundamental solution as well as some results concerning the existence and unique-
ness of solutions to nonlinear stochastic Schrédinger equations.

Model equations

Quadratic hamiltonian are used to model systems of particles in quantum mechanics [22] or the propagation
of electromagnetic plane waves in optics [1].

In [28, 29], a perturbed electrostatic field is introduced to investigate stochastic effects on two different
quantum systems. In both papers, the Schrodinger equation that is used to model the systems is the following

0 (t, z) = —%@%w(t, 2) =z (F(t) + B) b(t.2) + V(@)u(t,a), t eRT,x € R,
1/)(0755) = qu(x)v Vz € R,

(4)

where F' corresponds to the pulse of a laser field which is a smooth function and (Bt)teR+ is a white noise
corresponding to a noise source. In [29], where the dissociation of a diatomic molecule is considered, the
potential V' is a Morse potential such that V(z) = —D. (1 — (1 — e=**)?), where D, is the well depth and
£ is the length scale. We remark that, being given a small length scale £ < 1, the following approximation
holds

V(z) = =D, (1 — 2%0*) + o(¢?).

This approximation creates a harmonic well (the constant term can be eliminated by a gauge change). In
[28], the ionization of a Hydrogen atom under a laser field is studied. In this case, the potential V is a
non-singular Coulomb type potential given by

1
Va2 +a?’

with @ € R. Remarking that this potential is bounded, it can be treated like a perturbation to solve the
Cauchy problem for equation (4).

V(z)=—



Remark 1. [t is possible to apply an Avron-Herbst formula [5] to the solution of the equation (4) under some
assumptions on the potential V. This is done in section 5 where we investigate the existence and uniqueness
of global in time solutions for a class of stochastic nonlinear Schrédinger equations.

In [17, 27], the heating effects of fluctuations in the intensity of a quadratic potential are studied. In the
case of a Bose-Einstein condensate, the equation modeling this system is given by the following stochastic
Gross-Pitaevskii equation

(@) = %Aw(t,m) + %lw\zw(t, )(1+ By) + By (t, @), vt €RT, v € R,

(5)
¥(0,) = ¢o(), Vo € RY,

where (Bt)teRJr is a white noise and  is the intensity of the inter-atomic interaction in the condensate. This

equation as been studied by de Bouard and Fukuizumi [11, 12]. Furthermore, we remark that, in the case of a

rotating Bose-Einstein condensate [23], the hamiltonian associated to the linear part of the Gross-Pitaevskii

equation remains quadratic and thus is still related to our original problem (3). We could also consider a

perturbed electric field similar to the one in equation (4).

The bicharacteristics method

A classical construction for the solution of the Schrédinger equation (3) is to consider the following ansatz

a(t, s)

P it o)

[ esesen, )y, ()
Rd

and to build the amplitude a and the phase S. Assuming that a and S are sufficiently smooth and then
injecting the formal solution (6) into (3), we obtain the following system of equations

0:S(t, s, x,y) = H(t,z,VzS), ae ye R tels, 00, € RY,

7
>a(t,3), t €]s, 00 @)

yalt,s) = % <—AmS(t,s) - d

— S

Remark 2. We can see that the first equation of (7) is independent of the amplitude a. Furthermore, the
solution S of this equation is a quadratic function of  and y, implying that the amplitude function a(t, s)
does not depend on the spatial variable. Finally, the first equation of system (7) depends on the noise term
(i) er+- Since we consider non-differentiable functions (w¢)ier+ in this paper, we have to give a proper
definition of the solution of (7) and (6). We choose to use a definition similar to the one given by Sussmann
[30] to define the function (6) as a solution of equation (3) (see definition 2).

The first equation in (7) is a Hamilton-Jacobi equation. This kind of equation has been studied by
Hamilton [19] in optics by using the characteristics method following an analogy with the classical mechanics.
More recent results can be found in [3, 10, 18]. Following this approach, we prove that the solution S(¢, s, x, y)
of the first equation in (7) is the classical action associated to the path of a particle starting at time s and
position y and reaching a« at time ¢, where the evolution of the particle is defined by the Hamilton equations
associated to H [10]. The Hamilton equations are ordinary differential equations which give the evolution
of the position and the impulsion of a particle depending on the initial position and impulsion. Therefore,
finding a path connecting  and y leads to ensuring the existence and uniqueness of the solution of the
Hamilton equations and then to use a change of variables between the initial impulsion and the final position.



Obtaining the amplitude a is direct since we can integrate exactly the second equation of (7) with respect
to t, giving then the representation formula (6).

Such constructions were already investigated in [16, 21, 32]. However, in those previous works, the time-
dependent Hamiltonian was assumed to be at least bounded almost everywhere with respect to the time
variable. In [16], the following Hamiltonian is considered

H(t,x, —iV) = —%A + V(t,x), (8)

where V' is a real measurable potential function which is quadratically bounded and is C* with respect to x.

In this case, the construction slightly differs from the bicharacteristics method in order to have such general

assumptions on the potential. Moreover, this leads to a formulation slightly different from (6) since the phase

S will not be exactly quadratic anymore (thus, the amplitude will depend on the space variables). In order

;cio ﬁovegcome this difficulty, the author considers a sequence of oscillatory integrals {(En(t7 s))t6[575+T]}n N
efined as

1 .
En(t,5)0. (@) = 75 | oalt 5.2 5= )y,

(2mi(t — s))

where the amplitudes (a,)nen are solutions of a sequence of transport equations depending on S, and proves
that (En(t, 5))te[s,s+1] converges to a certain operator U(t, s) which is the exact propagator of equation (8).
In [32], the considered Hamiltonian corresponds to a Schrédinger operator with magnetic fields

H(t, @, —iV) = % (=iV — A(t,2))?, )

where the magnetic vector potential A(t,x) is assumed to be such that 9, A(t,x) € C'(RT x RY), Vj €
{1, ...,d}. The construction is similar to the one in [16]. Moreover, smoothing properties of the propagator
associated to the solution of the equation are proven and allow to consider perturbative terms. In [12], a
stochastic Hamiltonian is studied leading to the construction of the solution by using the bicharacteristics
method. The initial stochastic Hamiltonian considered is similar to (8) with V (¢,@) = 1|@|?(1 + ). Prior
to the construction, the noise is integrated by using the following gauge transformation

Y(t,x) « e CEDy(t, z),

where G(t,z) = %|@|*(t + w;). This gauge change modifies the initial Hamiltonian into a Hamiltonian of
the form (9), with A(t,z) = VG(t, x), and a construction similar to [32] is done. However, in general, such
gauge transformation can not be applied to a Hamiltonian of the form (1).

Here, we have to ensure that this classical construction still holds for the stochastic Hamiltonian (1) where
we do not suppose that the noise is bounded anywhere. The first step of this construction is to solve the
Hamilton equations which corresponds to a linear stochastic differential equation in our case. This type of
equation is well understood and does not present any difficulty. Moreover, this enables us to show that the
solutions of the Hamilton equations depend on the function (w;);egr+, thus integrating the noise term and
getting around the problem arising from its lack of smoothness. As stated in remark 2, we define the solution
in the sense of Sussmann [30]. Therefore, we have to ensure that the solution is continuous with respect to
(w¢)¢er+. To this end, we show that the classical action and the amplitude function verify such regularity
assumptions.

Main results

As stated in remark 2, we follow the idea of Sussmann [30] to define the solution of the stochastic Schrédinger
equation (3). This choice is motivated by the fact that we construct a semi-explicit solution. Our definition



uses an extra regularity of the function (w;);cr+ which is assumed to be in the v-Holder space, with v €]0, 1].

Definition 1. (y-Hélder function) Let I = [a,b], with a < b and v €]0,1]. We define the space of y-Hdlder
function, denoted CY(I,R), as the set of all continuous functions f € CO(I,R) such that
1f(t) = f(s)

fllgy = sup ————=— < o0.
|| HC’Y t,sel |t - S"Y
t#£s

It is endowed with the norm

1 llez = I llco + 1 Fl¢--

Furthermore, we extend the norm | - ||z, to the case v =0 by setting
[fllgo == sup |f(t) = f(s)]-
t,sel
t#s

We now give the definition of the solution of the stochastic problem (3).

Definition 2. Let T >0, s € RT, a € R and (wy)se(s,s+1) € C7([s,5 + T],R), v €]0,1]. The function 1, is
a weak solution to the problem (3) if there exists a neighborhood Q of (wy)iefs,s+1) in CY([s,s + T],R) such
that

o For every (Wy)es,s+1) € QNCH([s,s + T, R), ¥y is a weak solution of (3).

o The Ité map T : C¥([s,s + T],R) — C°([s,s + T], L*(R%)) defined by

I(w) = Yu,
18 continuous.

To obtain a solution of the form (6), we have to make the following assumptions on the Hamiltonian H
and the noise.

Assumption 1. We assume that (wi)ier+ 8 a y-Holder function, with v €]0,1], if not stated otherwise.
Moreover, concerning the Hamiltonian H defined by (1), we assume that one of the two assumptions below
1$ satisfied

o v €l1/2,1],
o M21 =0 and V22 =0.

Remark 3. As we can see in the previous assumptions, the type of perturbed Hamiltonian that can be taken
into account in this construction depends on the irreqularity of the noise. This fact can be seen in the proof
of proposition 8. Moreover, these assumptions includes the hamiltonian operators that are considered in [12].

Remark 4. An example of stochastic process satisfying the previous assumptions is the fractional brownian
motion BY with Hurst index H €)0,1[ [26]. Indeed, a trajectory (BE),cn+ is a (H — €)-Holder function for
€ > 0. Furthermore, we remark that, in the case where H = 1/2, this process corresponds to the brownian
motion whose time derivative is the white noise (By)ycr+. Thus, we can consider equations (4) and (5) by
using our approach.



Let us introduce now the propagator (U (t, s))ie[s,s+7], V¥s € C5°(RY),

w t 7 s,
Ut s)hs() = el [ esetem i yay, (10)

(2mi(t — )

where the amplitude function a,, and the classical action S,, are constructed by the previous strategy. We
introduce the X" functional spaces which arise naturally in the context of a quadratic Hamiltonian [9, 32].

Definition 3. We define the X" functional space, Vn € N, as

Sr=gpel’ Y |lz*05ele = llelsn <oop,

lo+B8|<n
with ¥° = L2,
Under these notations and assumptions 1, we can prove the following result.

Theorem 1. Let n € N. Then, there exists T > 0 such that, for any s € X", the function v, defined by
Yu(t, ) = Uy(t, s)s(x), Yt € [s,5 + T, V& € RY, (11)

where (Uy(t, 8))iefs,s+1 05 given by (10), is a solution in the sense of definition 2 to the problem (3). More-
over, 1, belongs to the functional space C°([s,s + T],%").

Remark 5. In theorem 1, the propagator (Uy(t, s))ie|s, s+ can be extended to t € [s, s + To], VI > 0, by
setting
Uu(t,s) = Uw(Sny Sn—1)Uw(Sny Sn—1)-..-Uw (51, S0),

where {s;}icqo,...,.n} 15 a subdivision of such that s, =t, so = s and |s; —s;_1| < T, Vj € {1,...,n}.

The particular form of the solution (6) allows us to prove dispersive estimates on the propagator (Uy (%, 5))te[s,s+7]-
This property has been used to prove the existence and uniqueness of a solution for nonlinear Schrédinger
equations with a potential at most quadratic [6, 7, 25|, a time-dependent potential at most quadratic [8], an
electromagnetic potential [24], a stochastic potential at most quadratic [12] or a quadratic potential and a
rotation term [2]. Furthermore, we can prove the existence and uniqueness of a solution for the following
nonlinear mild equation

P(t, @) = Uy(t, s)s(x 16/ (t, 7)1 (T, ) > (1, 2)dr, Vt € [s,00[, V& € RY, (12)

with 5 € R and o > 0. We obtain the following result.

Theorem 2. Suppose that the hamiltonian operators Hi(x, —iV) and Ha(x,—iV), given by (2), are sym-
metric operators on the Schwartz space S and that the Hamiltonian H satisfies assumptions 1.

o Let v, € L? and 0 < o < 2. Then, there exists a unique solution ) € C°([s,00[, L?) N L ([s, cof, L**+?)

to the problem (12), where r = %. In addition, if ¥, € X', then the solution 1) belongs to
CO([s, 00, 21).



o Letp, € Xl and 0 <o <0 ifd=1,20r0< 0 < % if d > 3. Then the problem (12) admits a
unique solution ¢ such that, ¥j € {1,..,d},

W, @, 0,00 € COs, s + T LP) N L ([s,5 + T, L*72),

where T > 0 depends on ||Ys||s: and r = %.

Remark 6. In the previous theorem, we remark that the upper bound for the value of o corresponds to the
L? (resp. H') critical index for the standard nonlinear Schridinger equation when 14 belongs to L? (resp.
HY).

Since the hamiltonian operator H in the previous statement is time-dependent, this implies a loss of a
priori estimates in X! for the solution of the nonlinear equation (12) by using quantities such as the natural
candidate for the energy

. 1 % . 6 2042
£t0) = [ R[50 @2 )00 + 5 lo@Pe | da (13)
which is conserved when the hamiltonian # is time-independent (i.e. 1 = 0) and Hy = [¢|>+(Mi2xz+V11)-
(see for instance [9]). Therefore, without further assumptions on the noise or the hamiltonian operator, the
question of the existence and uniqueness of global in time solutions in X! for H'-subcritical nonlinearities is
quite delicate. However, this problem can be partially addressed with the help of an Avron-Herbst formula
[5] under the following additional assumptions.

Assumption 2. The Hamiltonian H defined by (1) is such that
e My =0 and Moy =0,
o M1 is a skew-adjoint matriz.

Moreover, the coefficient B in equation (12) is positive.

This leads us to our last result.

Theorem 3. Let ¢, € X' and 0 < 0 < oo with o < % ford > 3. In addition, suppose that the assumptions
1 and 2 are verified, that the hamiltonian operators Hi(x,—iV) and Ho(x, —iV), given by Hamiltonians,
are symmetric operators on the Schwartz space S and that the Hamiltonian H. Then, there exists a unique

solution ¢ € C%([s, o0[, L) to the problem (12).

Structure of the paper

The paper is organized as follows. In section 2, we study the solutions of the Hamilton equations, also called
classical orbits, associated to the problem (3) for a continuous trajectory. Moreover, we prove the change of
variables between the initial impulsion and the final position. These solutions and the change of variables
lead to construct the classical action S, which is done in section 3. The classical action is shown to be a
solution of the Hamilton-Jacobi equation (33) associated to the hamiltonian H given by (1) for a C! trajectory.
Furthermore, we show that we can extend the classical action in the case of a -Holder trajectory thanks to
its continuity with respect to the trajectories. This leads, in section 4, to the construction of the propagator
(Uw(t, s))tefs,s+1) formulated in (10). By using definition 2, we construct the solution of the linear problem
(3). Finally, in section 5, we prove theorem 2 with the help of dispersive estimates and show that theorem 3
follows from an Avron-Herbst formula.



2 Classical orbits and changes of variables

We start by solving the Hamilton equations associated to the Hamiltonian H and prove some properties on
the classical orbits & and &.
First, we assume that the trajectories (w;);er+ are C'. The Hamilton equations are given by, Vs € R,

01y (t,5) = &, (t,8) + M11Zy (t,8) + Vig + Moy Ty (t, 8)tiy + Vagtiy, Vt € [s,00],
D€, (1, s) = —(Mig 4 M{y) &y (t,8) — My1€,,(t,5) — Vii — (Mag 4 M3y)& (t, s)uiy (14)
fMékléw(t, s)wy — Varuy, Vit € [s,00],

with the initial conditions -
Zyu(s,8) =y €R? and £,(s,5) =n € R

Denoting by &, (t,s,y,n) and €, (¢, s,y,n) these trajectories with the initial conditions y and 7, this system
can also be rewritten as

atX'w (t7 5 Y, ’I’]) = Mle(t7 5Y, 77) + MQXw(t7 5 Y, n)wt + Vl + V2wt7 (15)

with ( )
iw t,Sayﬂ? Mll 1 )
2 t787 5 = p= 5 My = * * 5
X (b 5:9,) ( E,(t.5,9,m) ) ! ( ~Mis — My —Mj

Moy 0 Via Vo
My = V= dVy, = .
2 ( —Myy — M3, —M3, ) ! < -V > and va ( -V )

Remark 7. From equation (15), we can see that classical flow x,, is an affine transformation in the phase
space R?1. Thus, the solution X, can be expressed thanks to the resolvent matriz e(t,s) associated to the
problem when Vi = Vo = 0. This resolvent matriz is given by

00 t
ts)=> Y My [ el
k=0 Ie{1,2}* s

where we set, YI € Z*, Yk € N,

t t T1 Thk—1
M; = Mjy,..Mj, and /w:ﬂdT:// / Wt ATy dry,
S S S S

with wf’l =t and w?’z =wl, Vt € [s,s+T]. Since (wy);er+ is assume to be C1, we can easily bound ¢ and,
hence, obtain directly the existence and uniqueness of a solution of (15)

It follows from Duhamel’s formula that x,, can also be formulated as the solution of the following integral
equation, Vs € RT, Vy,n € RY,

¢
Vie[s,s+T], Xut syn) = eM"‘(w‘_ws)xw(s,s,y,n) +/ eMz(wt_wT)Mlxw(ﬂs,y,n)dT
t s (16)
+ / eM2(wemwe) (V) 4 Vi, dr.
S



The last term of the right hand side of equation (16) can be expressed as

t 00 8k k1

_ , Mg (wy — ws)

/ M=)y dr = § 0 22 0]y (17)

e 2, dT 5.
|

: 2 k!

Hence, the existence and uniqueness of a solution x,, = (Z,&,,) of equation (15) follows from a standard
fixed point argument in C%([s, s+ 7T, R??), with T' > 0 sufficiently small, and thanks to a Gronwall inequality.
Furthermore, by using (16) and (17), it is quite straightforward to prove that the existence and uniqueness
of a solution x,, of (15) extends to the case of a continuous trajectory (wi)s;cp+ thanks to the following
definition [13, 30].

Definition 4. Let T > 0 and (wi)iefs,s+1) € C°. We define x,, as the solution of (15) if there exist a
neighborhood Q of (wy)ier+ i CO([s, s + T],R) and an application J : Q — C°([s, s + T],R??) such that

e 7 is continuous with respect to the norm

Hj(w)||C0([s,s+T],R2d) = sup |J(w,t)l
t€ls,s+T]

e For all (Wt)se[s,s+1) € QN CY, xg is a solution to the ordinary differential equation (15).
o We have J(w) = X,,-

To obtain the change of variable between the initial impulsion 7 and the final position &.,(¢,s,y,n),
we need to develop the classical orbits with respect to the time variable while working with trajectories in
C7, v €]0,1]. To this end, we state a new formulation of x, which is easier to manipulate. To prove the
continuity of the classical orbits with respect to the trajectories, we assume that the trajectories belong to

By (C°) == {v €C%[s,s +T],R); sup |v(t)| < W}7
te[s,s+T)

for a certain W > 0. This does not restrict the class of possible trajectories since they are always considered
as bounded.

Proposition 1. Let s > 0 and (w¢)ie[s,s+1] € CO. Then, there exists T > 0 sufficiently small and three unique
continuous mappings Zo,u(t,s), Z1.w(t, s), Eew(t,s) € CO[s,s + T], L(R??,R??)) such that, Vt € [s,s + T],
Va,n € RY,

Xw (t, s, Y, 'f}) = EO,w (t, S) ( ’fy] ) + El,w (t, S)Vl + Eg,u,(t, S)Vg. (18)

Moreover, let W > 0 and j € {0,1,2}, for all (wt)ie[s,s+17, (Wt)tels,s+1] € Bw (C%), we have the following
estimate

sup  [|Zj.w(ts 8) — Ej7, (8 8)ll cmarey < Ors,wllw — 0| o1 57y
te[s,s+T) | / B (RY,R%) ’ |C°([ ,s+T1]) (19)

Proof. Let {(w})er+ }eny C C' be a sequence which converges to (wy)ier+ in C°. We consider (w}');er+,
Vn € N, and the Picard sequence (X, ,n )ren given by

t t
Xk+1,w’L (t357y7n> = Xk,w" (tasay7n) + Ml / Xk,w” (Tasay,n)dT+M2 / Xk,w" (T’svyan)w:}d’r
s s

¢ ¢
—|—V1/ dT+V2/ wrdr, Yt € [s,s +T],

Yy
XO,w"<ta 879777) = ( n ) .



Since, for T' > 0 sufficiently small, the Picard sequence (Xj ,n»)ken converge to the solution x,. of the
equation (15) in C%([s, s + T, R??), we deduce the following formulation

Xurltsym =3 % Mr/ ( > >y MJ/:dwavl

k=0 Ie{1,2}* k=0 Je{1,2}k x{—1}

t
+Z Z MK/S dW?’KVQ,

k=0 Ke{1,2}Fx{—2}

where we set, VI € Z*, Vk € N,

t t T1 Thk—1
n, __ n,I n,I n,I
Myp = My,..Mj, and / dw? —/ dw? 1/ dwy; 1/ dw)™",
S S S S

with w"" = wi ™" = t, wp® = w}"? = w}, Vt € [s,5 + T], and M_; = M_, = Id, the identity operator.
Introducing
t
St =3 Y MI/ LoEet=Y Y [
k=0T1¢e{1,2}* k=0 Je{1,2}kFx{—1} s

and g (¢, 5) Z Z Mg /t dwnk,

k=0 Ke{1,2}k x{—2}

and thanks to the formulation (16) and a Gronwall inequality, we obtain that, Vj € {0,1,2}, (Ej.uwn),, oy is @

Cauchy sequence in C°([s, s + T, £L(R?¢,R2?)). Therefore, there exist three continuous mapping Z ., =1,
and Z3 4, such that

Xwn (t7 $,Y, 77) n:zc EO,w(t7 S) < z > + El,w(t7 S)Vl + EQ,w (ta S)V27

in C%([s, s + T],R??), which leads to formula (18). We now prove that, Vj € {0,1,2}, E;,, is continuous
with respect to (w¢)ie[s,s+1] @-€. We prove (19). By using the integral formulation (16), (17) and a Grownall
inequality, we obtain that, for all (w;)ie(s s+1], (Wt)ies,s+1] € Bw (CY),

sup  [|Zw(t, 8) — Ea(t, )|l rare) < Crsw sup  |wy — Wy + ws — Ws| < O s wllw — @[ go,
tels,s+T) tels,s+T)

ending hence the proof. O

The following result provides an expansion of the applications =g ., 1,4, and Zg,, with respect to the
time variable. Moreover, we directly deduce an expansion of the classical orbits.

Proposition 2. Let s > 0. Then, there exists T > 0 sufficiently small such that the following expansions
hold, Vt € [s,s+ T,

E0,w(t,8) = Id+ My (t — s) + Ma(wy — ws) + (t — ) Ro 1 (¢, 5),
Erw(t,s) =1d(t — s) + (t — 8)* Ry (¢, ),
Eow(t,s) = Id(wy —ws) + (t — 5)%2Ra (1, 5),

10



where p; > 1, Vj € {0,1,2}, and, ¥j € {0,1,2}, R;., is an operator uniformly bounded with respect to
t €ls,s+T]. Let W > 0. Then, we have, for all (wi)ie[s,s+1), (W)tefs,s+1] € CT N Bw(C%), Vj € {0,1,2},

SuptE[S,S+T] (t — S)gj ||Rj’w (t, S) — Rj”’ﬂ)(ty S)”[,(le,R?d) S CT,S7W||w _ QI}||C'0([S7S+T]),
Moreover, we have
t
/ Z0.0(T, 8)rdr = Id(w; — wy) + (t — 8)% Ro 4 (t, 5),
St
/ E1(7, $)brdr = (t = )% Riu(t, ), (20)

t 2
/ Eo,w (T, s)wTdT:Idi(wt ws)

5 +(t— s)égf%g,w(t, s),

where g; > 1, Vj € {0,1,2}, and, Vj € {0,1,2}, ]N%];w is an operator uniformly bounded with respect to
t €|s,s+T). Let W > 0. Then, we have, for all (wy)ic(s,s+1] (We)es,s+1) € C7 N Bw (C?), Vj € {0,1,2},

SUPyefs,sir) (t = 5)% [ Ry (t, 8) = By (b, 9) || pzea reay < Orpsw | — @l go (s o)

Proof. The integral formulation (16) leads to, Vt € [s,s + T,

‘—'Ow(t S) _eM 2 (we— wg)_"_/ Mo (we— wT)M eMQ Wy — wg)dT

(21)
/ Mz (wi=ws) pp / My (wr—w.) (L, s)dudr.
By using the expansion
M2 (wemws) = Td 4+ My (wy —ws)+272(wt vl (22)

=2 J

and if v €]1/2, 1], (wt);cr+ being y-Holder, we have, on one hand,

. || Mo [ o gy ][ - (£ = 8)7072)

M (w, — w,)) ) ) e
o Mt — o) <9y j! ,

7]

j=2 L(R2d R2d) j=2
and, if M, = 0, we obtain, on the other hand,
o0
M (w
> M)
j=2 '

Therefore, in (22), the sum appearing in the right hand side is such that

oo i ;
M — J
ZM A ——
' ]! t—s
Jj=2 £(R2d R24)
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with ¢ > 1. Concerning the second term from the expansion (21), we have

t
/ eMa(we—wr) N Mol —w) g V(4 — )
S

t J j k k
M3 (wy — w,)? M3 (w, — wy) (23)
T g0 J
j+k>1

By using (21), (22) and finally (23), we obtain the first result for the mapping =g ,,. The expansions of the
mappings Z; ,, and =g ,, are obtained by using (16), (17) and similar expansions of the exponential matrices.
Concerning the second result, it is obtained similarly through integrations by parts. O

From Proposition 2, we have the following corollary.

Corollary 1. Let s > 0. Then, there exists T > 0 such that the classical orbits can be expanded as,
Yt € [s,s+ T,

Zuw(t, s, y,m) =y + (t—s)Viz+ (wy — ws)Vaa + (t — s)n + (M11(t — 8) + Moz (wy — ws)) y
+(t —s)roa(t,s)y + (t — s5)%ro2(t, 8)n+ (t — $)r1.1(t, 8) Vig + (t — 5)9r1,2(t, 5) Vo,
Eult,s,y,m) =m— (t = 5)Vir — (0 — ws)Var = (M2 + Mip)(t — 5) + (Maz + M3y) (we — ws)) y
—Moin(wy —ws) — Myyn(t — s) + (t = s)?r0,3(t, )y + (¢t = 5)°r0,4(t, 5)n
+(t —5)2r1 5(t,s) Vi1 + (t — 8)r1.4(t, s) Vo,
where 1o j,r1,; € LRY,RY) are uniformly bounded with respect to t € [s,s +T), Vj € {1,2,3,4}, and o > 1.

Our aim is now to obtain the following variables changes

(y,m) < (Zw(t,s,y,m),y) and (y,m) < (Tw(t s, y,m). M)
To this end, we prove that the applications

el,t,s,w : (y7 77) — (:Ew(t7 5,Y, ,’7)7 y)u
and

92,t,s,w : (ya 77) — (j:w (ta 5, Y, ,’7)7 ,’7)7
are diffeomorphisms from R? to itself.

We have a first result on the dependence of Z with respect to y and the dependence of € with respect to
7. The proof is a consequence of proposition 1 and corollary 1.

Lemma 1. Let s > 0. Then there exists T > 0 such that we have, for all t € [s,s + T},
ox o€

%(t, 8)=1+(t—s)"A1u(ts), %(tv s) =14 (t =) Az2u(t,s),
%(t, s) = (t—s)+ (t—5)2A3.,(t,s), %(t, 8) = (wr — ws) + (¢t — 8)?Asu(t, ),

where {AjaU’}je{l 23,4} C L(R? R are operators uniformly bounded with respect tot € [s,s+T). Let W > 0.
Then, we have, fO’f’ all (wt)te[s,s-i-T]v (’th)te[s,s-‘rT] € C"N Bw (CO)7 v.] € {la 27374};

SUP;efs,s47](t = 8) 71450 (t, 8) = Aj aw(t, )l craray < Crs,wllw — @[ o (s s17))-
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To obtain a similar result between the variables & and 7, we introduce a new variable ¢ := (¢ — s)n. The
application of Corollary 1 leads to the following result.

Lemma 2. Let s > 0. Then there exists T > 0 such that we have, for all t €]s,s+ T,
oz
¢

where 0 — 1 >0, and By, € L(R?,R?) is an operator uniformly bounded with respect to t € [s, s+ T].

Moreover, let W > 0. Then, for all (wi)iefs,s+17, (Wt)ies,s+1) € CT N Bw (C°), we have the following
imequality

(t,s) =14 (t — 8) 1 By(t, s),

sup  (t = )27 | Bu(t, s) = Ba(t, )| craray < Orswllw — @llgo (s i1y
tels,s+T)

We finally obtain the main result of this section.

Proposition 3. There exists T > 0 such that the families of C*°(R?¢,R24) mappings

Gl,t,s,w : (y7C(77)) - (iw(tvsvyan)ay)7

and
627t,s,w : (yaC(n)) — (iw(tasay7n)aC(n))a

are diffeomorphisms, Vt €]s,s + T).

Proof. Let us first remark that the applications are one-to-one since we have the uniqueness of the classical
orbits with respect to their initial conditions. For € > 0, we choose T > 0 such that, Vt € [s, s + T,

d
(t — )" Avw o (t s)| + (t = 5)[ Az ik (t,5)] + (£ — )27 [Bujk(t, s)] <e. (24)
j k=1

We now focus our attention on the map O ;5 ,, since the proof is similar for g ; 5 -
The jacobian matrix of the application ©1 s, has the following expression, V¢ €]s, s 4+ T7,

Dy cOrs — ( 1+ (t— s)lvAl,w(t, s) 14 (t— S)S_le(t, s) >
_ ( 1 é ) N ( (t — 5)7611,“,(15,5) (t— 5)9*013“)(1&,5) ) .

Since the previous matrix is a perturbation of an invertible matrix, we can use Neumann’s series to conclude
that 0y ¢©1 . is invertible, i.e.

(Dy.cO1.0) " :A}Enooio(_l)j< 1 (1) )‘1< (t—S)Vgle(t,s) (t—s)"’Ole(t,S) )J( } (1) )_1.

In view of (24), the series clearly converges. Hence, we deduce that the application ©1 ¢ s, is a diffeomorphism
from R2%. O
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Thanks to the diffeomorphism ©1 ; s ,,, the variables ¢ and 7 can be defined as
Vte[s,s+T), Ve,y eRY, ¢ =C, (s, ),

1 -
vt €]S7S+T}7 Vm,y 6 Rd? 77 = ﬁ?l}(t’ s’ m7y) = t C'U)(t7 S7m, y)'
—s
Furthermore, we remark that the function 7,, verifies
Zw(t, s, Y, M, s,2,y)) = (25)

We now state some properties of 7.
Proposition 4. The function 1 is linear with respect to the space variables x and y. Furthermore, it satisfies

the following inequality, ¥(aq, as) € N x N¢ such that |ag + az| < 1, Vt €]s,s +T], ¢,y € R?,

— C s, w —|a1ta —|la1t+a
1051 0y, (L, 5,2, y)| < % (|V12| + [ Vao| + || Tlortezl |yt oleat 2‘) : (26)

t—s
We also have the following expansion: Vt €]s,s +T), ¢,y € R,

— r—Y Wy — Ws
t = — M- Vo) — (M A%
Mot s,2,y) = ——— = ——— (Ma1y + Vaz) = (Muy + Vi) (27)
+r(t7s7w’y)7

where r is a linear function with respect to x and y and such that, ¥(ay, ) € N x N with |a; + az| < 1,
02057 (1. 5,2.9)| — 0.
Proof. From corollary 1 and equation (25), we obtain, Vt €]s, s + T,
=y + (t—s)Vig + (w —ws) Vo + (t = )0, (¢, 5, 2, y) + (Mia(t — 5) + Mo (wy —ws)) y
+(t = 5)%ro,1(t, )y + (t — 5)°r0,2(L, )My (8, 5,2, y) + (= 8)°r1,1 (L, ) Viz + (8 — 5)9r12(L, ) Vao.

(28)
Therefore, for T' > 0 sufficiently small, we have
_ _ (- Wy — Ws
No(t,s,2,y) =(1 = (t = ) 1roa(t,s) ( . 73 - zi o Moy — M11y>
— (1 — (t — 8)9717"0’2(@ S))il <V12 + w; — s V22>
-5
— (1= (t =) Troa(t;8)) Mt = 8)¢ 7 [roa(t,8)y +r1,1(t,8) Vi +712(t,5) Vo]
which leads to (26). Concerning the estimate (27), we make use again (28) and then (26). O
Combining Lemma 2 and proposition 3, we deduce the following result.
Proposition 5. For allt € [s,s + T, we have
0 ¢
a—i(t, 8) =14 (t—5)27 Dy (1, 5), %(t, §) = —1+4 (t — )2 Dy, (t, 5),
¢ ¢
GVCH (t,s) = —(t—s)+ (t —5)?Dsul(t,s), BViQ (t,5) = —(w; — ws) + (t — 8)27 Dy (2, 5), (29)
(t— s)a—é(t §) =1+ (t —5)° ' D5 (t, s)
Oz ) 5,w\lyo),
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where {Dj,w}je{1 5 C LR RY) are operators uniformly bounded with respect to t € [s, s+ T).
Moreover, let W > 0. Then, we have the following estimates: for all (w¢)ie[s,s+17> (Wt)te[s,s+1) € C7 N
Bw(CY), V) € {1, .5},

SUPses o) (t = 8)2 [ Djw(t, 8) = Dja(t, 8)|| cma ray < Orswllw — @l go s oy y)-

Proof. Thanks to (25), we have
ai(t7 57 y’ ﬁw (t’ S’ m? y))

=1
ox
e 0 (t,5.2.9) _ 9 s
i:w tvsvy?ﬁw t’87x7y @w w
= t t - 1.
aw ac (785w7y) 8w(757w7y)
The application of lemma 2 shows that
5C
(14 (1= )27 Bult, ) 32 15,2, 9) = 1.

We can invert (1 + (t — s)271B,(t,s)) by proposition 3 and deduce (by using a Neumann’s series) the first
equality of (29). Thanks to the equality (25), we obtain

0Zy,

a¢

ag_c—w(t s,x,y) +
ay ) ,y

(t5.2,9) 2 1, 52.) =0

Applying lemmas 1 and 2 lead to
—1 a&w
1+ (t - s)’YALw(t, S) + (1 + (t - s)g Bw(tv 8)) 8y (tv S, a:,y) = 07

and to the second equality of (29) (by computing the Neumann’s series of (1 + (¢t — 5)¢7 1B, (¢,5))71).
Concerning the third and fourth equalities of (29), the proof is similar to the second one. We differentiate
(25) with respect to Via and Vay and then use the expansion of (1 + (¢ — s)¢B,(t,s))~!. Finally, the last
equality of (29) is proved by remarking that
3 € ¢

t—s) = (¢ = 2wy DU (¢ s, y),

( S) aw(’5’$7y) 8n(’s7m’y) 8$(7S7m y)
which concludes the first part of this proposition.

Finally, the estimates of the operators Dj 4, j € {1,...,5}, with respect to the trajectory (w¢)ie(s s+1] are

proved by using lemmas 1 and 2. O

We now prove the continuity of the function % with respect to (w;);e[s,s4+1) thanks to the previous result.

Corollary 2. Let W > 0. We have, for all (wt)ie[s,s+17, (Wt)tefs,s+1] € CT N Bw (C%), Vt €]s,s + T,

_ _ Cr,s,w ~
N (t, s, 2, y) — Nt s, 2, y)| < ﬁHw = Wl o[ sy (I Viz| + [Vao| + [x] + |y]).
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Proof. We remark that, since the function 7 is linear with respect to the space variables x, y, V12 and Voo,
Yt € [s,s+ T, we have

8ﬁ7v 877’71) aﬁw 6ﬁ1l}
V1 (t,8)Via + (t — 9) Vs (t,8)Vag + (t 5)—&c (t,s)x+ (t —s) oy (t,s)y.

Thanks to proposition 5, this leads to: Vt € [s,s + T],

(t - S)ﬁw(t’ S, xvy) = (t - 8)

(t - S)ﬁw(t7 s,w,y) =T —Yy— (t - S)V12 - (wt - ws)v22
+ (t — S)g_l (Dl,w(t; S)IE + D27w(t, s)y + (t — S)D37wV12 + D47w (t, S)Vgg) y

showing finally the continuity of the operators {Dj@}j e{1,....4} in proposition 5. O

3 The classical action

Let us assume that (w)e[s,s+1) € C!. Then, we define the classical action S as: Vs € RT, Vt € [s,s + T,
Yy, m € RY,

t t
S(t, 5 X+ 5,9.1) 1= / B, 5,9,1) - BT, 5, 4,71) — / H(r,Zw(r, 5,9, 7). &0 (1.5, y,m))dr. (30)

Here, we denote by x,,(+, s,y,n) the classical orbits as a function of the time variable ¢ € [s, s + T]. In this
section, our aim is to prove that the classical action is a solution of the Hamilton-Jacobi equation in (7) with
the associated hamiltonian H (see proposition 6). Then, in proposition 7, we obtain a formulation of the
action where the singular terms are explicit when ¢ — s. In addition, we prove that the action is continuous
with respect to the trajectory (w¢)ic(s,s+1)- These results are used in the next section to prove that the
propagator given by (10) is continuous with respect to the time variable ¢ and the trajectory.

First, we have the following result concerning the differentiation of the classical action with respect to the
classical orbits.

Lemma 3. Let us assume that (wy)ie(s,s4+7) € C*. Then, we have, VX' (t) = (&' (1), £ (1)) € Cl([s, s+T],R2),

DXS(ta S, Xw('a 5Y, T’))(X/) = Ew(ta 5Y, T’) ' :i/(t) -n- .’f},(S).
Proof. The proof is straightforward by using an integration by part and the Hamilton equations (14). O

Combining the previous result and proposition 3, we can prove that, by considering the function n =
M, (t, s, ,y) as an initial data, the classical action becomes a solution of the Hamilton-Jacobi equation from
(7). Furthermore, it is a generating function of the diffeomorphism ©1 ;s ..

Proposition 6. Let us assume that (w;)ie(s,s+1] € C! and let us consider the classical action as the integral
of the lagrangian L, associated to the hamiltonian H, all along the unique path & starting at y at time s and
reaching  at time t given by the Hamilton equations (14), i.e. ¥t €]s,s + T, Va,y € R?,

t t
Sw(t7 S7w7y) = / at:i:w(’]—7 s?y7 ,’7”11)) .E’u}(T’ S7y’ T_Iw)dT_ / H(T7 j'LU(/]—’ S7y’ ﬁw)7£w(7—7 S?y’ ﬁw))dT' (31)
S S
Then, Sy, is a generating function of the diffeomorphism ©1 4 s, i.e. Vt €]s,s + T, Y,y € R?,

0S5 - _ 0Sy _
— . — = — . 2
Pa (t,s,z,y) =&,(t,s,9,m,) and oy (t,s,2,y) Ny(t, s,2,y) (32)
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Furthermore, S,, also satisfies the Hamilton-Jacobi equation: ¥t €]s,s + T], Vx,y € R?,

9wy s z,y)+H (t,w, Ouy g o, y)) —o. (33)

ot ox
Proof. We differentiate the classical action S,, with respect to @ (respectively y) by using the lemma 3. With
the help of equation (25) and the fact that the initial position is & (s, s,y, 7, (t, s, @, y)) = y, we obtain the
first (respectively the second) equation of (32).
Let us now prove that the classical action is solution to the Hamilton-Jacobi equation. We have, Vi €
|s,s + 1T, Vx,y € R?,

an('?sayaT]) at,'—,’ ) ]

0SSy _ _
8t5w(t>3,337y) = 7(75,57Xw('75,ya77w)) +DXS(t737Xw('aSay7nw)) ( an

ot
By using (25), we obtain, Vt €]s, s + T], Vx,y € R?,

616511) (ta S, &, y) = at:iw(tv s, Y, ﬁw) . Ew(ta $Y, ﬁ) - H<t7 Q_Zw(t, Yy, 7_7)7 £w(t7 Y, ﬁ))

0%y, _ _ - _
W(tv 5Y, nw)atnw(t7 S, &, y) ! Sw(t7 5Y, nw)

= —H(t, jw(tv Y, ﬁ)aéw(ta Sayy’f’))

Finally, replacing &, (, s, y, 7, (t, 5,2, y)) = ‘9;; (t,s,x,y) in the previous equation, we deduce (33). O

+

Before extending the classical action to the case where (w¢)ie[s,s41) € C7, We state the following lemma
regarding the dependence of the action with respect to Vi1, V12, Vo1 and Vas. The proof follows directly
from lemma 3.

Lemma 4. Let us assume that (w)ie[s,s+1) € C!. Then, we have, Vt €]s, s + T], Vx,y € RY,
0S4y b 0S4y b

m(ta&%'y) = _/g £w(T7S7y7ﬁw)dTa m(t757$,y) = _L £w<7—7s7ya,’7’w)w7d7-7

0S4y 9S8y

OV

We can now show that the classical action can be extended to the case where the trajectories are ~-
Holder. The following result is proved by using the continuity of x,, and n,, with respect to the trajectories
(wt)te[s,s+1)- Moreover, we show a semi-explicit formulation of the action.

(34)

t t
(t,s,x,y) = 7/ Ty (T,8,Y,M,)dT  and (t,s,x,y) = 7/ Ty (T, 8,Y, M, )W dT.

Proposition 7. Let W > 0. For all (a1,a2) € N% x N4 with |y + as| < 2, and for all (Wt )refs,s+175
(Wt)tefs,s+1) €CT N Bw (C°), we have the following estimate, Vt €]s, s + T],

|03 0y Sw(t, s, 2,y) — 050y S (t, 5,2, y)|
(35)
< CT,S,W

T [Friestasl y |y[2rlertes).

l[w = wl|go s, sy (1 + |2

Moreover, for any (wi)ie[s,s+1) € C7, the following formulation of the action S, holds

|(E—y|2 Wy — Ws
Sw ta ) &y = -
(bs@Y) =50 ~ 30—y

+Tw(t7 S7m7y)’ (36)

1
(Voo + M3y + Mo1z) - ( —y) — §(V12 + Mjyy + Mnz) - (x — y)
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where T, is a quadratic function with respect to ® and y and such that, ¥(ay,as) € N x N¢ verifying
| + az| <2,
|8§16§‘2rw(t,s,w,y)| —is 0,

and, fOT’ all (wt)te[s7s+T], (wt)te[s,s-‘rT] eC’n BW(CO),
1052 052 (ru(t, s, ®,y) = ru(t,s, 2, y))]
< Orswllw = @l o gy (1 + @710 F02l 4y 2rlontasd),
Proof. Let us assume that the trajectory (y}t)te[s’SJrT] is in C'. First, we remark that if x = y = V,;, = 0,

Vi, k € {1,2}, then Sy (¢, s,0,0) = 0. Since £ and 7 are linear with respect to  and y, we obtain an expansion
of the action with respect to these variables: Vt €]s, s + T, V&, y € R?,

1 1
Sw(t,s,x,y) = Sw(t,s,0,0) +/ OySw(t,s,0,wy) - yde +/ Oz Sw(t, s,tx,y) - xde. (37)
0 0
By using proposition 6, we have: for all (w;)e(s,s4+7) and (@) efs,s+1) € C',

1
0

1
+ / B0t 5,3, 1 (t, 5,12, 7)) — Ea(t, 5,9, T (t, 5, 12, 9) | [l de
0

1
+ / |£ﬁ)(t’ 5Y, ﬁw(tv S, LT, y) - ﬁvj}(tv S, LT, y))‘|w|dL
0
Thanks to proposition 1 and corollary 2, we deduce the estimate, Vt €]s, s + T, Va,y € R4,
|S’w(t7 S, T, y) - Sﬁ)(t7 S, &, y)‘ < |Sw(t7 S, 07 0) - Sﬁl(t7 S, 07 O)‘

Crs

PR |w = @llgos,s477) (1 + z* + [y[*).

Concerning the first term appearing in the right hand side of the previous estimate, we use an expansion
similar to (37) with respect to the variables Vi, j,k € {1,2}, that is

2 1
Su(t,5,0,0) = > / N, Siew(t, 5,0V ) - Virde, (38)
0

Jik=1

where Sjj . is the classical action with € =y = Vg,, = 0if m+2({ —1) < k+ 2(j —1). Then lemma 4
enables us to deduce that

1 t 1 t
Sw(t,S,0,0) = —/ / ii!llﬁw(T,S, LV11) 'Vlld’TdL—/ / 512,71,(7, S, LV12) ‘V12d’7'db
0 s 0 s

1 gt 1 gt
- / / o1, (T, 8,tVa1) - Vor drde — / / ézz,w(ﬂ $,tVag) - Vogui - drdu,
0 s 0 s
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where & ., (resp. ;) is the classical position (resp. momentum) with @ =y = Vg, = 0if m+2(0—1) <
k+2(j —1). Furthermore, with the help of proposition 2, we have the following development of the integrals

involving &
1 gt t 0 1
/0 /‘3 3_3117w(T,S,LV11)deL=/ Eo7w(7',8)d7'( 7 (£ 5,0,0) ) . ( 0 )
/tE TSdT( Y12 ><1>
-5V 0
t
« [z () (o). @

1t t
_ . — . 1
/0 /g CL’QLw(T,S,LVQl)U}-,—deL—/S Hoﬂu(T,s)wTdT( 7. t 5,0,0) ) ( 0 )
1
0

t
_ . Voo
=2 wl\T, Td
+/s 2,u(T, $)w T( V21> (
J— 2 5,
_ wwg +(t — 5)R3 w(t, 5), (10)

and

where ]:2371,} is an operator uniformly bounded with respect to t €]s, s + T] and continuous with respect to w
(as in proposition 2). We can proceed in the same way for of the integrals involving € and obtain

/01 /:élz,w(f,s,bvu)dm: /: Zo,u(T, s)dT< ﬁw(t,g,0,0) ) ' ( ? )
+/:El,w(7,s)d7< %‘gu >( 0 )
+/Stu2w(rs)dr<_‘<?;>.<(l)>’ "

bt . K . 0 0
/0 /S EZQ’w(T,S,LVQQ)wTdeL:/S Eo,w(T, s)wTdT( 7 (£,5,0,0) )( 1 )
t 1
—_ . =Vao 0
= 2 .
+/S Eo,w (T, S)’U)Td’l'( 0 ) ( 1 )

= (wy — ws )M, (t,8,0,0) + (t — 8)R47w(t, s), (42)

and

where R4’w is an operator uniformly bounded with respect to t €]s, s + T] and continuous with respect to w
(as in proposition 2). Thus, with corollary 2, this yield the estimate

Crsw
‘Sw(tasaoao) - Sﬁ)(t787070)‘ S 7”1’” wHCO ([s,s+T7)"

Therefore, we obtain the estimate (35) when «; = as = 0. By considering a sequence of trajectories
((w})tels,s+1])nen converging towards (w¢)ie[s,s+1], We extend the classical action to the case of a y-Holder

19



trajectory. The estimate (35) for |a; + as| < 2 is deduced from proposition 1, corollary 2, proposition 5 and
finally proposition 6.

Applying (37), we can now develop the classical action. We restrict our expansion to the singular or
time-independent terms and include the remaining terms in a function r,,. The singularities arise when ¢ — s
and are related to the function 7. It follows from proposition 4 that 7,,(¢, s, 0, 0) is of order O((t—s)~7) when
Va3 # 0 and order O(1) when Vs = 0. By using the relation (38) and its development given by the integrals
(39), (40), (41) and (42), we first remark that S, (¢,s,0,0) is not singular since, thanks to proposition 2,
each integrals of the form fst Ejw(T, s)dr, for j € {0,1,2}, is of order O(t — s). Hence, S,,(¢,,0,0) can be
immediately included in r,,. For the two remaining terms we have, on one hand, thanks to corollary 1 and
proposition 4,

1 1
/ &t 5,9, 1, (t, s, 12, y)) - xdL = / N (t, 5,12, Y) - — (W — ws) Mo, (t, 5,12, y) - zdt
0 0

1
_/ (t_S)Miklﬁw(t’SaLway)'de+Tw<t7S7w7y)
0

P22y w—wy
2t —s) 2(t — s)

+Tw(tﬂ S, &, y)v

1
(My1x 4+ Vo) - — §(M11w +Vi) - x

and, on the other hand, by using proposition 4,

1 2
- ‘y| Wy — Ws
- T]w(tv S, 07 Ly) : ydL = +
/0 2( —5)

1
M. Vo) - (M Vig)- w(t, S, T, Y).
r—s) T2 (Ma1y + Va2) y+2( 1y + Vi2) -y +ru(t s, z,y)
This therefore ends the proof. O

4 Construction of the propagator
Let us now consider the operator U,, defined by: Vi € C5°(R?), Vt €]s, s + T1,

Ut 5pbol@) = el [ cisettoaly )y (43)

We first prove an explicit formula for the amplitude function a,, by solving the equation

Oray(t, s) = % (—AmSw(t,s) + d) a(t,s), Yt €]s,s + T,

t—s (44)

a(s,s) = 1.
In addition, we prove that the family of operators (Uw(t,s))se[s,s+7) is an isometric propagator which is
strongly continuous in L?(R%) and that the operator U(t,s) is continuous with respect to the trajectory
(wt)te[s,s+17- Finally, the propagator (Uy(t, s))ie[s,s+7] is also proven to be linear in the functional spaces
X" neN.

We first solve equation (44). The following lemma gives a partial formulation of the amplitude function
.
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Lemma 5. We have, for allt € [s,s + T],

aw(t, s) = exp (; /: {“’;_Z’ TH(May) + Tr(Mi1) — Agro(T, s)] dT) .

Furthermore, a, (-, s) is a continuous function.

Proof. Using (36), we obtain, Vt €]s, s + T1,

d Wy — Wy
—AgSu(t;s) + — = ﬁTr(Mgl) + Tr(My) — Agru(t, s).
Therefore, integrating equation (44) with respect to the time variable, we deduce the expected result. O

Let us now prove that the family of operators (Uy(t, s))te]s,s+1) is continuous from L2 to itself. To this
end, we use the following theorem [4, 15].

Theorem 4. Consider the following oscillatory integral
Yo € C°(RY), Yo >0, Z,ah(x) = / eV @Y oy dy,
Rd

where f is a real-valued smooth function in R4 xR%. We also suppose that there exist two constants Cy,Cy > 0
such that, ¥(aq, as) € N4 x N werifying |aq| + |as| > 2,

Va,y € R,

0*f(x,y)
- —— > o Hog < .
det ( 95,99, )‘ >Cy  and |00y f(zm,y)| < Cy (45)

Then, there exists a constant C(Cq,C3) > 0, which is independent of f, such that
Vo >0, ||IZop(@)|rz < Co?|lp| Lz,
To apply theorem 4 to the integral (43), we set
fl@,y) = (t = s)Su(t, s, 2,y)

and
1
v =
t—s
By using proposition 7, one gets
0%S, on
t— t,s)=(t—s)z—=—-1—-(t—9s)E,(t,s).
(t = 5) g (h9) = (£ = 5) 5 (t=)Eut.s)

This proves that, for T > 0 small enough, there exists a constant C; > 0 such that, for all ¢ €]s, s + T7,
2

det ((t —5) 81‘;; (t, s)>’ > C.

Hence, the first assumption of (45) is fulfilled. Concerning the second hypothesis, we simply remark that:
V(ay,az) € N4 x N? such that |aq| + |az| > 2,

(t — 5)0g' 0y Su(t,s) = 0.

By applying theorem 4 to (43), we obtain that the propagator (U(t, s))¢c|s s+ is @ bounded linear operator
from L? to itself and that U, (-, s) € L>([s, s + T), L?).
Let us now show the following useful result which follows a similar proof as in [12, 16, 32].

21



Lemma 6. Consider the operator L., defined by: Yo € Cg°(R?)

aySw(ta S, &L, y)
(t — 5)|0ySu(t, s, x,y)|? Duey)-

Lyo(t,s, @, y) =

Its adjoint operator in L? is then given by

* aySw(t,s,w,y)
Luelt, s @.y) = a”'((ts>|aysw<t,s,m,y>|2¢(y) '

Moreover, we remark that

LweiSw(t,s,m,y) — (t i S) 6i$'w(t,s,m,y)' (46)

Let W > 0. Then, for all o € N?, (wt)tels,s+1], (Wt)iels,s+1)] € CT N Bw (C%) and for all R > 0, z,y € RY
such that |y| < R and || > R, with R > 0 large enough, we have the estimates

|0y (L3, = L) ot s, 2, 9)| < Cr gy gl (105 0] + 10y 0(y)]) 1w — @l o s (47)

and, Ym € N,
0y (L) oty s,2,9)| < Cr o wp 217" 22 51<mtaf 05 (y)l- (48)

Proof. The formulation of the adjoint operator L} and equation (46) are directly obtained.
Let us now consider (48). We have: V¢ € [s,s + T, Vz,y € R?,

d
(t = 5)0y, Su(t, s, @,y) = (t — 5)0y, Su(t,5,0,y) + Y _(t — 5)0z, Dy, Su(t, s)Ts
k=1

By using proposition 7, we prove that,

min (= )0,y (6 9)] ez = 1

and, Yy € R?,

sup |[|(t = )0y, Sw(t; s, 0,y)[| < Cr.sw (14 [yl)-
te(s,s+T)

This leads to the following inequality
|(t = $)0ySuw(t, s, @, y)| = |z| — Crow (1 +[yl).

For all R > 0, by taking |y| < R and |z| > R := 2C7 .w (1 + R), we obtain

x
|(t — 5)0ySw(t, s, x,y)| > % (49)

Moreover, we have, Vo € N,

" Oy S = a—p 98 -2
% (o)~ ) 2 Casty ™ 048 3 (0450l ™).
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and, for all 8 € N? such that 3 < a,
O (10,8u172) = > (=0MayS T TT oy (10ySul) -
Y<B, [v|[>1 [y1l+- A vm =17

By using (49), we deduce that

[e] aySw(tvsvway) _1
< = .
Oy ((t Oy Sults gl )| S Crewniale] (50)

Let us now set
OySw

(t = 5)|0ySw|*
From [32], we have the following result: Vm € N, the following equality holds

T:

(Ly)™ = Coproooip 810y S| 72" (9 Su)™ (952 Y) ... (957 ) 0,

Q0

where the summation on the multi-index (ap, ..., o) is such that
lao] +p —2m = —m,
la1] > 2, ..., |ap| > 2,

la1] + ...+ |ap| — p+ |8 = m.

This gives the inequality (48) by using (50).
We now prove the inequality (47). For all (wi)ie[s,s+17,(Wt)te[s,s+177 € C7 N Bw (C?), we have: Vo €
C°(R7), oS o
(1 L) e = =0, (G252 o) )
0y S
Dy. L 9y Swl? = 10, Sa|? .
Ty ((t—s)|5y5w|2|8y5@|2 (10y Swl* = [0y Sal*) ¢(y)

Moreover, we also have the following expression: Yo € N¢,

(51)

a OySw — 0y Sw _ 1 a—f _ 9B -2
% (T asaiteal®) = =9 2 sy O = 0yu) Oy (10,5417

The following inequality is a consequence of proposition 7

o [ OySw — 0ySu 1 .
Oy (@ZI_S)W)‘ < Crswrkal®l ™ 1w =Dlcos 477

The inequality (47) is obtained by using the previous estimate, (51) and proposition 7. O

Following the arguments from [16], we now prove the strong continuity of the family of operators (U, (t, 5))te[s,s+17]
at t =s.
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Proposition 8. Let 1), € L?. Then, we have
%1_% U (t, $)bs(x) —bs(x)||z2 = 0.
Proof. Let ¢, € C°(R?) and 9 € C5°(R?) a cut-off function, i.e.

_ 1, |z]<R-1
ﬂR(””)—{ 0, |z|>R

We set, Vt €]s,s + T] and Yz € R?, for R > 0 large enough,

Ut opbuta) = oelean [ esstoam o ap(e), )y

s [ e gty

2
= Il(t,S) +[2(t75)
Thanks to lemma 6 and taking R > 0 such that supp (i) C Bi(R%), we have, Vj € N,

(Qﬂj(qz(_t’j)))dm (t ;jS)J /]Rd (Lfv)jiﬁs(y)eis“’(t’s’m’y)(1 _ 193(:1:))dy‘

< CTszR(t_S)J 4/2 1+ ‘:I?| Z Haaws“LL

la|<j

(L, )] =

Consequently, this leads to the estimate: for j = [d/2] + 1

112t )22 < O gt = &) 22 ) TH21 0 Y (105 s,
ol <[d/2]+1

which yields || I1 (¢, $)|| 2 = 0.
—s

Concerning the integral I5(t, s), we use the stationary phase method [14]. We solve the following equation
with respect to the variable y
Oy Su(t, s, z,y) =0,

which is equivalent to
nw(t7 S7m) y) = 0' (52)

By using the diffeomorphism ©3 ., introduced in proposition 3, we can make a change of variables and
obtain the solution y = y,,(¢, s, x, 0) to the equation (52). The stationary phase method gives us the following
expansion

U (t: s)ba(@) = |det((t = )0y S(t. 5,2 yw))lil/z ot (aw(t, 5)Us(Yo) + (t = 8)g (72 53 f s)) ’

where, Vk € N, there exist K;, € N and C}, > 0 such that for all o € N9, |a| < k, and t €]s, s + T7,

9%q (t,s, tfs)‘ < Cray(t, s) ‘max sup |85w0( )|

BISKk ycRrd
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We remark that, by continuity, we have lim;_, 4 a,,(t,s) = 1 and, thanks to the partial formulation of the
action from proposition 7, Vk,j € {1, ...,d}, we obtain

hm(t — S)ayjayksw(tv Sawvgw) =1

t—s

We now prove that the function g, (¢, s, x,0) converges to x. This allows us to deduce the limit

lim wO(Qw(t7 S,$,O)) - 1/10(3’5)7

t—s

and also to show that S(¢,s,x,y,,) converges towards a constant when ¢ — s. From corollary 1, we have,
vt € [s,s +T), Vo € RY,

=Y, s,x,0)+ (M1(t — 8) + Moy (we —ws)) Y, (t, 8,2,0) + (t — 5)%r1(t, $)Y,, (¢, s, x,0), (53)

which yields the estimate, for T > 0 small enough, V¢t € [s,s + T,
[P0 (t, s, 2,0)] < Cp sl
By assumption 1 and by using (53), we deduce the following inequality, for 0 < e < 1/2,
G0 (t,5,2,0) — x| < Cp gt — ) (1 + ||).
Concerning the expansion of the action given in proposition 7, it follows that we have
1Sw (L, 8,2, Yy (L, 8,2,0))| < Crglt — 5)* (1 + |z|?).

This yields the limit }LH; Sw(t,s,x,y(t,s,x,0)) = 0, which is locally uniform with respect to «, ending hence
the proof. O]

We obtain the conservation of the L?-norm and the uniqueness of the solution to the problem (3) in the
L? space thanks to a classical regularization argument. The result is stated in the following proposition.

Proposition 9. Let v € L? and (wt)tels,s+1) € Ct. Then, for any solution v € L>([0,T], L?) of the
problem (3), we have, Vt € [s,s + T],
[t )| 22 = llvollL2 -

Following the argument from [32], the uniqueness of the solution to (3) leads to the property that a
solution ¢y (t,x) = U,(t, s)o(x) and a solution s (t, ®) = Uy(t — 7, 8)Uy(r, $)1ho(x), which are such that
1(ryx) = YPo(r,x) for all r € [s,s 4+ T), are equal for all ¢ > r + s. Therefore, we have, Vr € [s,s + T,
YVt e [s+r,s+T],

Uw(t -7 S)Uw(ra 5) - Uw(ta S)a

which allows us to conclude that, for (w;)ic[s,s+1] € Ch, (Uyl(t, 5))te[s,s+T] is a strongly continuous isometric
propagator of L2.

We now show the continuity of the operator U, with respect to the trajectory (w¢)ie[s,s47). This result
allows us to state that the propagator (Uy(t, s))te[s,s+1) can be extended to the case of a y-Holder trajectory
and that, by definition 2, U, (¢, s)1s(x) is a solution to the problem (3).
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Proposition 10. Let W > 0. For all (w¢)ie(s,s+1) and (W¢)iefs,s+1) € C7 N Bw (C°), we have: Vt €]s,s+T],
Vips € C5°(RY),

P 1Uw(t, $)¢s(®) = Us(t, $)tbs (@)l < Crosw ([¥sllwrs + llvhsl22) lw = @llex (s, 541 (54)
€ls,s

with j = [d/2] + 3.
Proof. We have, Vt €]s, s + T], Y € R?,

Uw(ta 5)7/}s(m) - Uﬂ;(t, S)'ll)s(ﬂ)) = O (t,S) Ao dt/gs / ws ZS (t,s,z, y)dy

(2mi(t —
ag t s) o
R o T / sy zsm,s,w,y) _ ezswa,s,w,y)) dy

= Il(t7 S) + Ig(t, 8).
For the integral I;(t, s), it follows from theorem 4 that, V¢t € [s,s + T,

Ay (t, 8) — agp(t,s)
(2mi(t — 5))4/2

,(/}S zS (t,s, :c,y)dy

< Crsw |aw(t,s) —ag(t, s)| Yol L2

L2

Let us now give an estimate of the right hand side of the previous inequality. We remark that
Gult,5) — aa(t, ) = e SRS T EEn )ir (o} - Busu oyt dnsalrir 1) (55)
The continuity of the amplitude function gives the following bound

HHCASu ) o (56)

Thanks to proposition 7, we also have

Ay Su(r,8) + ApSa(r,s) = Lr W T W T W p Y Agra(r )+ Agra(T ). (57)

T—S

Recalling that (w;)¢e(s,s4+7] and (Ws)ie[s,s+1) are y-Holder functions, we remark that

t
/ (—AgSw(T,s) + AgSa(T,s))dr| < Crswlt —s|7.

Since, Vt €]s,s + T,

t ~ ~
/U/T—wT_w5+wsd
s T—S

T‘ < CT||w = Dl ((s,5477)5

we deduce, by using (55), (56) and (57), the estimate

t
law(t, 8) — ag(t, 5)| < Cromw / (= A2 S (7, 5) + AnSi(r,5)) dr

< CT,&WHU] - w”CV([s,erT])-
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Concerning the integral I5(%, s), we use a cut-off function ¥g € C§°(R?), with R > 0 (that will be chosen
later), and we set, since supp(¢9) C B(0, R),

ap(t, s iSo (s ; St
I2(t, S) :(27Tz(t<_s)d/2/ ,(/}S(y)e Sw(t,s,z,y) (e Sw(t,s,x,y)—iSy(t,s,2,y) _ 1) ﬁR(w)ﬁé(y)dy
aw t s o St
(2771 =3 d/2 / Wsly (ts,m.y) _ oiSw(ts, ,y)) (1 — 9p(x)94(y)dy

—I21(t S) —+ 122(

For the integral I, it follows from proposition 7 that, Vo, f € N¢,

=y

5298 (eisw(t,s,m,'y)fism(t,s,m,y) ) ’193( )19 (y)’ < CT sW.R. R”w w”CO([s s1T))
< Crowr il llw—@llevs.s+1))
Considering the phase function (¢ — $)Sg(t, s, x,y) and applying theorem 4, this yields, V¢ € [s, s + T,
[L21 (¢, 8)]| > < OT,s,W,R,RT’Y”w - w||C’Y([s7s+T])||7//s||L2~
By using (47) for the integral I»(t, s), we obtain that, Vj € N,

ag(t, s) (t—s)

a(t5) = Gt S 8 [ (L) = (L) 0 )i 49 (1 = (@) 0y

w0 t7 t— I *\J i s, 1Sw(t,s, @
gt U [ wayiunty) (e55+oem - Seow ) (1 vp(a)) o)y,

Thanks to inequality (47), for R > 0 large enough, we have

j—1
(L) = (L)) s (y)(1 = Or(@))| = |(1 = Vr(=) Y (Ly) *HL; — L) (Lg) s (y)
k=0 (58)
< Crownrir(l+lz)” Z 10y Vs (YT [|w — @l v (s, 5417)-
| <j
Therefore, applying inequality (58) and lemma 6 leads to
To(t,8)| < Cp o wop (t = )77 ag(t,s) Y 110gs @)L (14 2) 7 + (1+|@]) 7 +2)
oo < R
XTI |w = Dl[e (fs,s+17)
By taking j = [d/2] + 3, we finally obtain the inequality
Maa(t5)li2 < oyt — 999214204, (1,) X1, 10504 (9) 1
X ([ +12) =273 22 + (1 + |2[) =27 | L2) T |lw — Dllev (s, 517
which ends the proof. O

We end this section by the following result that can be obtained in a similar way to [12, 32].
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Lemma 7. For every trajectory (wi)se(s,s+1) € C7, we have, Vt € [s,5s + T, « € Re, Vi€ {1,...,d},

o .
10, Uu(t,5) = —&, ;(t,5,0,0)U,, amj+z U (t, s)wkﬂ;:vﬂ(t,s)Uw(t,s)amk, (59)
k
and
4 0% s 0%y
x;Uy(t,s) = Ty i(t,s,0,0)U,(t,s) + T (¢, 8 U,y (t, 8) g + 1 t,8)Uy(t, )0, , 60
JUlt5) = @ 00,000t )+ 3 2L ) Uty 41522 1)U (60)

Proof. Tt follows from proposition 6 that, Vt €]s,s + T, Vj € {1,...,d},

0 .
(09) + A 529 22 0.9

=&, tsOO—i—Zk 8S(tswy)a§n (t,s).
k

58,
O, Sw(t,s,x,y) = €, ,(t,5,0,0) +Zyk(§
Yy

Therefore, using an integration by parts, we deduce equation (59). Equation (60) is obtained in a similar
way by using an expansion of & = & (t, s,y, 1, (¢, s, ,y)). O

If follows from the previous lemma that the propagator (Uy(t,s)):e[s,s+1) is linear from X", n € N, to
itself: ¥n € N, there exists a constant C' > 0 such that, Vis € X", Vt € [s,s + T,

U (t, 8)s||sn < Crow ||[¢ssn - (61)

By using (61) and a density argument, we can extend the sequential continuity of the Ité map Zy(w) =
Uy (t, 8)1)s from proposition 10 to any ¢, € £, n € N. This finally proves theorem 1 which is the main result
of the paper.

5 Applications: Strichartz estimates and an Avron-Herbst For-
mula

In this section, we begin by proving theorem 2 which states the existence and uniqueness of a solution to

the mild equation (12). We obtain the global in time existence of solutions for L?-subcritical nonlinearities

and local in time existence for H'-subcritical nonlinearities. Then, in the H'-subcritical case, we extend the

existence of solutions from local to global under certain assumptions on the initial data, the Hamiltonian H
and 8. This corresponds to the proof of theorem 3.

5.1 Strichartz estimates

Thanks to the results of section 4, we are able to state that ¢, the solution of problem (3), is represented by
using the propagator (Uy (t, s))te[s,s+1], Which is given by formula (10). This propagator is inhomogeneous,
strongly continuous and isometric in L?. Let us now recall the definition of an admissible pair (p, q).

Definition 5. Let p and q € RT. Then, (p,q) is called an admissible pair if

and 2 < p,q < oo with (p,q,d) # (2,00,2).
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The proof of theorem 2 is based on the following Strichartz estimates [9, 20].

Theorem 5. Let T > 0 and s € RY. Let us consider (X(t,s))te[s’erT] as an inhomogeneous, strongly
continuous and isometric propagator in L?. Furthermore, we assume that (X(t,s))te[s 4T satisfies the
following assumption: ¥t € [s,s + T, Vr € [s, ],

X(t,r)*X(t,s)=X(r,s), (63)

and, for 2 < p < oo, there exists a constant C > 0 such that, Vt €]s,s + T], Vipy € L¥',

C
”X(tv 5)¢s‘|LP <

- m”d’s”m'a (64)

where p’ is the conjugate exponent of p, i.e. 1/p+ 1/p’ = 1. Then, for all admissible pair (p,q), there exists
a constant Cy 4 > 0 such that

X 8)s Lo ((s,s411,00) < Crpallthsllze- (65)

Moreover, let (m,£) be an admissible pair, then there exists a constant Cy,q > 0 such that, for all g €
L ([s, 7], 1Y),

< Capgqllgl
Lr([s,s+T],L1)

L™ ([s,s+T),L* )" (66)

We can immediately see that the propagator (Uy(t,s))ic[s,s+7) fulfills (64). Equation (63) also holds
since, for all (w¢)¢e(s,s+1] € C!, we have

Ur(t,r)Uy(t,s) — Uy(r,s) = / d(i' (Ui (1,7)Uy(T, 8)) dT
/ Ur(r,m)iH* (1)U (7, s)dT

/cﬂTrm (P U (7, 8)dr

This proves the expected result assuming that H(t,z, —iV) is a self-adjoint operator in L2, Vt € [s, s + T.

By using the Strichartz estimates, we can now prove theorem 2 by Banach fixed point theorems and bounds
on the L2 and Y'-norms [2, 8, 12, 25]. Let us begin by defining the mapping I': V¢ € L™ ([s,s + T, L*),
(m, £) an admissible pair, Vt € [s,s + T, Vabs € L?,

D(6)(t ) = U (t, 8)ths(x +5/ (1), )27 (. @) dr. (67)

To begin with, we show the uniqueness of a fixed point to I' in order to obtain local in time solutions. Here,
we consider the cases of an initial data in L? and X!.
Let 9, € L? and introduce the functional space

Xy = {(b € CO([‘975 + T]7L2) N LT([SWS + T}7L20+2); ||¢||XZW < M} )

where

19llxa := sup (|6, )l|zz + 1Dl r((s,s47),12042) and M =201 p2042[[¢s| 2
t€ls,s+T)
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In the above relations, (r,20 + 2) is an admissible pair with o < 2. Moreover, in [31], Xj/ is proved to

be a closed subset of L"([s,s + T],L?>°*2). Let (p,q) be an admissible pair. We obtain, by applying the
L?([s,s + T], L?) norm to I" and using the Strichartz estimates from theorem 5, the following estimate

||F(¢)HL1’([S,S+T],L4) SCl,z),qHQbSHL2 + 027p7q|/8| H|¢|20¢HLW([s,s+T],Lf’)
20+1
<Clpqlltslz + CapqlBl H¢>||Lm'<2o+1>([s,s+T],Lf'<2a+1>) ’

20+2

Therefore, choosing (p,q) = (r,20 + 2), £/ = 325

the inequalities

and by using an Holder inequality, V¢ € X, we obtain

_ 2042 20+1
HF(QS)”L"‘([s,s+T],L2"+2) SOl,p,qnwsnL2 + C2,p,q|/B|T1 " |ﬂ| ||¢HLT—(~_[S,3+T]7L20+2)

_ 2042 o
<C1pgll¥slle + Cop gl BIT 777 |BIM27 L. (68)
Similarly we have: Vo1, 92 € Xy,
_ 2042 o
IT(¢1) — T(h2)llLr (15,5411, L20+2) < Cap gl BIT ™77 M?7 |1 — Gal| (15,517,127 +2)- (69)
Therefore, by choosing T' > 0 such that
Cop g BT 557 M* < 1/2, (70)

we prove that I' is a contractive application from X, to itself, which leads to the existence and uniqueness
of a solution in X, to the problem (12).
We now let 1, € X1, A similar result is obtained by considering the functional space (M > 0)

Y = {0, 00,0, 2;0 € CO[s,s + T|,L*) N L"([s,s + T), L**2), Vj € {1,...,d}; ||9[lv,, < M}
with
d
[8llvar = llllxa + D (1250l xus + 102, llx.0)
j=1
Following a proof analogous to the one found in [31] for the X, functional space, we note that Y, is a closed
subset of .
Y7202 = { ¢, 0p, 0,050 € L"([s,5 + T], L* ), Vj € {1,....d} },
endowed with the norm
d
Illgr20+2 = Bl Lr((sserrze+2) + D 100N L (ps,5477,L20+2) + 102, Bl (5,547, L27+2)-
j=1

Since the operators d,,; and x; do not commute with the propagator (Uy(t, s)) we use lemma 7 (and

theorem 5) to deduce that, V¢ € fﬂl’ggié,

t€(s,s+T]’

HUw(‘aS)zbsHYmZoH §C1’T,20+2||1/J5||21 and ‘

/. Uw (-, 7)o(7)dr

S

< Cz,r,20+2||¢||}~,r/,26+1 ()

V2042 2042

We remark that the constants in the two previous inequality are independent of 7" > 0 since the classical
orbits £ and & in Lemma 7 are bounded on any interval [s, s + Ty, Top > 0. We fix M = 2C1 ; 2042]|9s]|s1-
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Thanks to the inequalities (71) and a Banach fixed point theorem in Y, for T' > 0 sufficiently small, we
conclude the existence and uniqueness of a solution in Yjs to the problem (12).

We are now in position to prove the first part of theorem 2. Let ¢, € L?. With the help of the Strichartz
estimates from theorem 5, it follows from equation (12) that

11 Lo (s, s4T0],22) + N1Vl Lr (5,54 70), 22042 < 2C1 v |Vs|lL2 + 2024 o BIIY || Lo ([s,5410), L2 +2) (72)
where 0 = 2(;1711)' Since o < 2/d, we have 1/6 > 1/r and, thus,
] 2o (s.sm.zoo+2) < T 10 (o sme) L2o+2)- (73)

Therefore, by using the inequalities (72) and (73) and choosing Ty > 0 small enough, we are able to bound
the solution v by the L?-norm of 7, on any time interval of length Ty. This leads to the existence of global
in time solutions to the problem (12) in C°([s, oo[, L?) N L"([s, 0o[, L?°*2). Furthermore, if 15 € %!, we use
the following inequality

1V]lg002 + |05 2042 < 2C1 r2042]|Us|s1 + 2027 204+2|B]|1]| 57 r20125

and (73) to obtain a similar result in C%([s,o00[,X!). The second part of theorem 2 is shown by using the
inequality

-6
NP7l zms < CoT 6135 o a6l (74)
where 6 = % < 1, and applying a Banach fixed point theorem in Y}, in a similar way as for the first

part of the theorem. However, since we can not obtain the boundedness on any time interval in this case,
existence and uniqueness can only be established for local solutions.

5.2 An Avron-Herbst formula

We now intend to prove the existence and uniqueness of global solutions of equation (12) under the assump-
tions 1 and 2. The key to obtain this result is to exhibit uniform in time bounds on X! for the local solutions.
As we mentioned before, since the hamiltonian is time-dependent and irregular, it is not possible to achieve
such bounds by relying directly on the energy as in the deterministic case (i.e. with w; = 0). This problem
can be overcome by using an Avron-Herbst formula [5] to deduce a formulation of the solution of equation
(12) that involves the solution of a deterministic nonlinear Schrédinger equation for which the bounds easily
follow.
Let us begin with the following Avron-Herbst formula in the linear case.

Proposition 11. Let ¢, € L? and suppose that the assumptions 1 are verified. Moreover, set My = 0 and
Mass =0 in formula (2). Then there exists T > 0 such that

Uw(t, $)hs(x) = e But:)@tbu )y (¢ _ ) (2 — By (L, s)), VE € [s,s +T), V& € RY, (75)

where (V(t = 8)),e(5,547) i the propagator such that ¢(t,x) =V (t — s)ips(x) is the solution of the following

Schrodinger equation

i0pp(t, ) = —%Aﬂﬁ(tm’ﬂ) —i(Myx) - Vo(t,x) + (M) - x(t, ), VYt € [s,s + T], V& € RY,
¢($,$) = d)s(m)a

(76)
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the functions B, and A,, are solutions, in the sense of [13, 30], of the following system of stochastic differ-
ential equations

{ ang(t, S) = .Aw(t7 S) + Mlle(t, S) 4+ Vi + Voouiy, Vit € [8, s+ T],

* * . 77
8tAw(t, S) = —MllAw(t,S) — (M12 + M12) Bw(t,s) — V11 — V21’wt, YVt € [S,S + TL ( )

with the initial conditions By, (s,s) = Ay (s,s) =0, and the function by, is given by
t
1
bw(tv S) = _/ |:2|Aw(7_7 S)|2 - (MIQBw(Ta 8)) ' Bw(7—7 S) + Vll : Bw(Tv 8) + V22 : Aw(Tv S)w'r dr. (78)

Proof. Thanks to theorem 1, we know that ¥ (¢, @) = Uy,(t, s)s(x) is the solution of the linear Schrodinger
equation (3). Suppose that (w¢)sefs,s47] € C([s,5 + T],R). By setting

¢w(t, 513) _ ¢(t, T — Bw (t, S))ez’Aw(t,s).ac-i—ibw(2575)7 (79)
we obtain
1O (t, ) = (10, — 10 By (t,8) - V — [0 A (1, 8) - T + Osby (L, 5)]) G, & — By (t, 5))etAwts)@tibults)

and
—iVio(t, ) = (—iV 4+ Ay(t, 5)) O(t, & — By(t, s))etAuwts)@tibults)

Since 9 is the solution of equation (3), we deduce that ¢ is the solution of the following equation

10:0(t,x — By (t,s)) = 7:11(;3 —By(t,s), =iV + A, (t,s))o(t, x — By (t,s)), Vit €]s, 0], V& € R,
(25(5713 _ Bw(& s))eiAw(s,s)m—&-ibw(s,s) _ ,(/}S(:L,) c L27

where H,(x, &) = 21€1% + (My1z) - € + (Miox) - @, if the functions By, A, and b, are solutions of the
equations (77) and (78).

Since 1, is continuous with respect to (w¢)se[s,s+7], We can extend the relation (79) to the case where
(wt)tels,s+1) i @ y-Holder function which satisfies the assumptions 1. Furthermore, we can see that the
functions B,, and A, are exactly the classical orbits associated to the Hamiltonian operator H starting at
B, (s,8) = Ay(s,s) =0 (i.e. they are solutions of the Hamilton equations (14)). Therefore, there existence
and uniqueness, in the sense of [13, 30], follows directly. Concerning the function b,,, the only term that
poses a difficulty is the last one where the noise (u)se[s,s+7) appears. We can deal with it by means of an
integration by parts. That is, we have

t t
/Aw(ﬂs)wTdT:Aw(t,S)thr/ (M3 A (7, 5) + (Mig + M5)By (7, 8) + Vip) wedr
S t S
+/ V21w7'w7'd7-7

where the last term from the right hand side can be exactly integrated. This conclude the proof this propo-
sition. 0

Corollary 3. Let ¢, € L%. Under the same assumptions as those in proposition 11, we have, Vt € [s,s+ T
and VT € [t, 5],

Uw(t, T)eiAw(T,s)-w+ibw(T,s)ws (.’13 _ Bw (7_7 S)) _ eiAw(t,s)-m+ibw(t,s)V(t _ T)lZJg(.’B _ Bw (t, S)) (80)
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Proof. Since (V(t — 5))se[s,s4+1) 18 the propagator associated to equation (76), we have, V7 € [s, ],
V(T - S)V(T - s)*¢s(m) = 7/15(33)
Therefore, we obtain, with the help of proposition 11,

Uy (t, 7)etBw(ms)@tibu(m8)y) (2 — B, (7,8)) = Uy(t, 7)etw(79)@+bu (08 (1 — )V (1 — 5)*¢hs (2 — Buy(T, 5))
= Uu(t, s)V(T — s)"1s(x)
_ eiAw(t,s).z+ibw(t,s)V(t o 7')¢s (m . Bw (t, s))
O
We are now enable to link the solution of the equation (12) to the solution of the following deterministic

mild equation

o(t,x) =V (t— s)s(x) — iﬁ/ V(t —7)|é(7, 2)|*° (7, z)dr, Vt € [s,00[, V& € R (81)

This link stems from proposition 11 and the fact that the nonlinearity is gauge invariant, i.e. we have
flpet®) = f(p)e'® where f(¢0) = [1]??% and a € R. Indeed, let us consider the solution 1 of equation (12).
By replacing

b(t,®) =, — By (t, s))e ot @Hibults), (82)

in equation (12) and thanks to proposition 11 and corollary 3, we obtain

d’(tv T — Bw(ta 5)) - V(t - S)¢s(m - Bw(tv 5)) - ZB/ V(t - T)|¢(7_7 T — Bw(ta S))|20¢(T7 T — Bw(tv 5))d7_a

which permits us to identify the function ¢ as the solution of equation (81). Therefore, by using formula
(82), it suffices to prove that the X!-norm of ¢ remains bounded at any time in order to prove theorem 3.
The following proposition provides a positive answer to this last problem and concludes the proof of theorem
3.

Proposition 12. Let ¢, € X' and 0 < 0 < 00 if d=1,2 or 0 < 0 < % if d > 3. Suppose that My is

skew-adjoint and B > 0. Then equation (81) admits a unique solution ¢ in C°([s, o0, X1).

Proof. We only sketch the proof since most of the arguments that are used can be found in [2]. Our aim is
to derive an a priori estimate on the Y '-norm of ¢, the solution of the equation (81). To begin with, we
introduce the change of variables

X(t—s,@) =M= Viel[s s+ T,
and remark that, since M7, is skew-adjoint, the jacobian matrix Jy associated to X verifies
det(Jx) = eTr(Man)(t=s) — 1,
Furthermore, the Laplacian is invariant with respect to this change of variables since

Ax¢(ta X(t - S, .’B)) = eMll(tis)eMl*l(tis)Aqu(ta X(t - S, .’B)) = AXQS(tv X(t -5, .’13))
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Hence, the function ¢(t,x) = ¢(t, X (t — s, x)) satisfies the Schrodinger equation
1
Zat@(tvw) = —§A§0(t,$) + U(t - S,%)(P(t, 1}) + 6|30‘20<,0(t,$), \AS [57 5+ T]a Va € Rdv
p(s, @) = Ps(x),

where v(t — s,x) = (M12X(t — s,2)) - X (¢t — s,2). We now introduce the energy functional £ associated to
the equation (83)

(83)

B
20 + 2

.0 = [ (GIVetP + ot - sallptea) + 5 glolt. o) ) da. (s)

In general, this energy is not conserved since v is time-dependent and we obtain that

ig / Dt — s, 3)|o(t, ) 2da. (85)

However, we can still use it to bound the X'-norm of ¢, which directly implies the bound of the ¥'-norm of
¢. We start by controlling the L?-norm of V¢ with the help of £ and the L2-norm of xp. Since § > 0, we
have

1
IVt @)lli: <t ¢) + ’/Rd vt — s,2)|p(t, @) *de| < E(t, ) + Ctllmp(t, )7,

where C} = || Mia|e?IM11IT | Furthermore, by integrating in time (85), we deduce that
1
IVl < v+ [ [t = st Pawdr + Cilmatt 2l
¢
E(s,9s) + Cullzep(t, )| 72 + 02/ o (r, @) |17 dr, (86)

where Cy = 2|| M| || M1 ||e2M T and | (s, 15)| < +oo thanks to the Sobolev embedding ¥' ¢ H' ¢ L?*7+2,
Hence, to obtain a bound on the X'-norm of ¢, we only have to estimate uniformly in time the L2-norm of
xp. To do this, we compute

d *
Lllzett, o) =23 [ (w0 (1.2)) Volt.ahdo < lplt.2) 3 + | Volt,2)
which yields, by using (86),
d t
dlestalt <¢ (14 leptal + [ lest.o)lar).

This leads to a uniform bound in time of the L2-norm of x¢ with the help of a Gronwall inequality and,
thus, concludes our proof. O
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