L3 SID

Algèbre - TD1 - Espaces vectoriels sur $\mathbb R$

- 1. Exprimer $v=(1,-2,5)\in\mathbb{R}^3$ comme combinaison linéaire des 3 vecteurs $u_1=(1,1,1),$ $u_2=(1,2,3),$ $u_3=(2,-1,1).$
- 2. Exprimer $v = (2, -5, 3) \in \mathbb{R}^3$ comme combinaison linéaire des 3 vecteurs $u_1 = (1, -3, 2)$, $u_2 = (2, -4, -1)$, $u_3 = (1, -5, 7)$.
- 3. Exprimer la matrice M comme combinaison linéaire des matrices A, B et C:

$$M = \begin{pmatrix} 4 & 7 \\ 7 & 9 \end{pmatrix}, \quad A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 1 \\ 4 & 5 \end{pmatrix}.$$

- 4. Dire si W, ensemble des triplets (a,b,c) de \mathbb{R}^3 vérifiant les conditions suivantes, est un sous-espace vectoriel de \mathbb{R}^3 :
 - i) $a \ge 0$, ii) $a^2 + b^2 + c^2 \le 1$, iii) a = 3b, iv) ab = 0.
- 5. Montrer que les vecteurs $u_1 = (1, 1, 1)$, $u_2 = (1, 2, 3)$ et $u_3 = (1, 5, 8)$ engendrent \mathbb{R}^3 .
- 6. Trouver les conditions sur a, b et c pour que $v = (a, b, c) \in \mathbb{R}^3$ appartienne à $W = \text{Vect}(u_1, u_2, u_3)$, avec $u_1 = (1, 2, 0)$, $u_2 = (-1, 1, 2)$ et $u_3 = (3, 0, -4)$.
- 7. Déterminer si les familles suivantes de vecteurs de \mathbb{R}^3 sont ou non linéairement dépendantes :
 - (a) $u_1 = (1, 1, 2), u_2 = (2, 3, 1), u_3 = (4, 5, 5);$
 - (b) $u_1 = (1, 2, 5), u_2 = (1, 3, 1), u_3 = (2, 5, 7), u_4 = (3, 1, 4);$
 - (c) $u_1 = (1, 2, 5), u_2 = (2, 5, 1), u_3 = (1, 5, 2);$
 - (d) $u_1 = (1, 2, 3), u_2 = (0, 0, 0), u_3 = (1, 5, 6).$
- 8. Soient u, v, w trois vecteurs linéairement indépendants. Montrer que les vecteurs a=u+v, b=u-v, c=u-2v+w sont aussi linéairement indépendants.
- 9. Déterminer si les familles suivantes de vecteurs forment des bases de \mathbb{R}^3 :
 - (a) $u_1 = (1, 1, 1), u_2 = (1, 0, 1);$
 - (b) $u_1 = (1, 2, 3), u_2 = (1, 3, 5), u_3 = (1, 0, 1), u_4 = (2, 3, 0);$
 - (c) $u_1 = (1, 1, 1), u_2 = (1, 2, 3), u_3 = (2, -1, 1);$
 - (d) $u_1 = (1, 1, 2), u_2 = (1, 2, 5), u_3 = (5, 3, 4).$
- 10. Déterminer si les vecteurs (1, 1, 1, 1), (1, 2, 3, 2), (2, 5, 6, 4) et (2, 6, 8, 5) forment une base de \mathbb{R}^4 . Si la réponse est négative, trouver la dimension du sous-espace qu'ils engendrent.
- 11. Compléter la famille $\{u_1, u_2\}$ pour former une base de \mathbb{R}^4 avec $u_1 = (1, 1, 1, 1)$ et $u_2 = (2, 2, 3, 4)$.
- 12. Trouver une base et la dimension des sous-espaces vectoriels W de \mathbb{R}^3 suivants :
 - (a) $W = \{(a, b, c) \in \mathbb{R}^3 : a + b + c = 0\};$
 - (b) $W = \{(a, b, c) \in \mathbb{R}^3 : a = b = c\}.$
- 13. Soit F le sous-espace engendré par les vecteurs

$$u_1 = (1, -2, 5, -3), u_2 = (2, 3, 1, -4), u_3 = (3, 8, -3, -5).$$

- (a) Trouver une base et la dimension de F.
- (b) Compléter la base pour obtenir une base de \mathbb{R}^4 .
- 14. Soient V l'espace vectoriel des matrices 2×2 sur \mathbb{R} et W le sous-espace des matrices symétriques. Montrer, en cherchant une base de W, que $\dim(W) = 3$.
- 15. Trouver une base et la dimension de l'espace W des solutions du système linéaire

$$\begin{cases} x + 2y - 2z + 2s - t = 0 \\ x + 2y - z + 3s - 2t = 0 \\ 2x + 4y - 7z + s + t = 0. \end{cases}$$

- 16. Soit F le sous-espace vectoriel de \mathbb{R}^3 engendré par les vecteurs (2,3,-1) et (1,-1,-2). Soit G le sous-espace vectoriel de \mathbb{R}^3 engendré par les vecteurs (3,7,0) et (5,0,-7).
 - (a) Montrer que F = G.
 - (b) Trouver une équation de F.

Exercices d'entrainement

- 1. On considère l'espace vectoriel $E = \mathbb{R}^3$. Montrer que $v = (3, 7, -4) \in E$ est combinaison linéaire des 3 vecteurs $u_1 = (1, 2, 3), u_2 = (2, 3, 7), u_3 = (3, 5, 6)$.
- 2. Dire si W, ensemble des triplets (a, b, c) de \mathbb{R}^3 vérifiant les conditions suivantes, est un sous-espace vectoriel de \mathbb{R}^3 :

i)
$$a \le b \le c$$
, ii) $b = a^2$, iii) $a = 2b = 3c$.

- 3. Soient les vecteurs u = (1, 2, 3), v = (2, 3, 1) de \mathbb{R}^3 .
 - (a) Ecrire w = (1, 3, 8) comme combinaison linéaire de u et v.
 - (b) Ecrire w = (2, 4, 5) comme combinaison linéaire de u et v.
 - (c) Déterminer k pour que w=(1,k,-2) soit combinaison linéaire de u et v.
 - (d) Trouver les conditions sur a, b, c pour que w = (a, b, c) puisse s'écrire comme combinaison linéaire de u et v.
- 4. Dire si les vecteurs suivants de \mathbb{R}^4 sont linéairement indépendants
 - (a) (1, 2, -3, 1), (3, 7, 1, -2), (1, 3, 7, -4);
 - (b) (1,3,1,-2), (2,5,-1,3), (1,3,7,-2).
- 5. Trouver une base et la dimension de l'espace W des solutions du système linéaire

$$\begin{cases} x + 2y - z + 3s - 4t = 0 \\ 2x + 4y - 2z - s + 5t = 0 \\ 2x + 4y - 2z + 4s - 2t = 0. \end{cases}$$

- 6. Répondre par oui ou par non; si c'est non, exhiber un contre-exemple :
 - (a) si u_1 , u_2 et u_3 engendrent V, alors dim(V) = 3;
 - (b) si u_1 , u_2 et u_3 sont linéairement indépendants, alors u_1 , u_2 , u_3 et w sont liés;
 - (c) si u_1 , u_2 , u_3 et u_4 sont linéairement indépendants, alors dim $(V) \ge 4$;
 - (d) si u_1 , u_2 et u_3 engendrent V, alors w, u_1 , u_2 et u_3 engendrent V;
 - (e) si u_1 , u_2 , u_3 et u_4 sont linéairement indépendants, alors u_1 , u_2 et u_3 sont linéairement indépendants.