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Hand-in your solutions until 19.11.2014, in Martina Dal Borgo’s mailbox on K floor.
Exercise 1
In a three-period binomial model, consider an American Put option with payoff Xn = (1

2
− Sn)+, n =

0, 1, 2, 3. We assume that u = 2, d = r = 1
2

and the initial price of the underlying asset is S0 = 1.

i) Represent the asset prices and the values of the payoff of the American Put on the binomial tree.
Compute the arbitrage price process using the Snell envelope. What is the minimal capital require-
ment throughout which is necessary to perfectly hedge the American option?

Exercise 2
As we have seen in the last exercise sheet, in an arbitrage free T -period binomial model with r ≥ 0, the
prices of a European Call and an American Call option are the same at each time t = 0, . . . , T . The same
does not hold in the case of a Put option ( as you can see from Exercise 4 Sheet 6). Therefore we want now
to study, qualitatively, the graph of the price of a European Put option (as a function of the underlying
asset), and compare it with the one of an American Put.
Let PE and PA be the prices of a European, resp. an American Put option with strike K, on the underlying
S. Setting S0 = x, you know that

PE(x) = EQ
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)+
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and
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, or (3)PA
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Assume d < 1.

The function x → PE(x) is continuous (being linear combination of continuous functions (2)). Prove
that

i) it is convex and decreasing for all x ≥ 0;

ii) using the representation (2) that

PE(0) =
K

(1 + r)T
, PE(x) = 0 ∀x ∈

[
K

dT
,+∞

[
;

iii) there exists x̄ ∈ ]0, K[ (assume after having proved that it exists that is unique), such that

PE(x) < (K − x)+ for x ∈ [0, x̄[ and PE(x) > (K − x)+ for x ∈]x̄, K/dT [.
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Hint:

• For the point iii) consider the convex (as a sum of convex functions) continuous function

g(x) := PE(x)− (K − x), x ∈ [0, K].

• Remember that the max of two convex functions and the positive weighted sum of convex functions
is again a convex function.

The function x → PA(x) is continuous (being recursively defined as the composition of continuous
functions (4)).The facts that the price function is also convex and monotone decreasing follow from (3)
since the functions

x→ EQ

[
(K − x

∏τ
k=1 ξk)

+

(1 + r)τ

]
are convex and decreasing and their least upper bound, when τ varies, preserves such properties. Prove
that

i) using the representation (3) that

PA(0) = K, PA(x) = 0 ∀x ∈
[
K

dT
,+∞

[
;

ii) there exists x∗ ∈ ]0, K[, such that

PA(x) = (K − x)+ for x ∈ [0, x∗] and PA(x) > (K − x)+ for x ∈]x∗, K/dT [.

Hint: For the point ii) consider the convex (as a sum of convex functions) continuous function

f(x) := PA(x)− (K − x)+, x ∈ [0, K].
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