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There are two ways of doing mathematics:
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o Comparisons and variational approaches in a more fluid world (“Analysis”).

Even probability theory does not escape such a dichotomy, and these two approaches can
work hand in hand.
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Even probability theory does not escape such a dichotomy, and these two approaches can
work hand in hand.

Example: Lindberg's proof of CLT

@ Proving the CLT for the “integrable case” of Gaussians is virtually trivial. Gaussian
calculus is exact.

o Lindberg's swapping trick: Sums of i.i.d with matching moments will necessarily give

the same result. )

Example 2: Wigner matrices

o Integrable case: Gaussian Unitary Ensemble (GUE). Using the rigid tool of
determinantal point processes, one can prove the semi-circular law, sine-kernel at the
edge and Tracy-Widom distribution for GUE.

@ Tao and Vu's fourth moment theorem: Local statistics match with GUE if four first
moments match.

In this talk, we will introduce an integrable process of weakly non-intersecting particles.
The integrability finds its source in representation theory and will only be hinted to.
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Analytic construction (1)

Consider two independent Brownian particles. The center of mass is a Brownian motion
and is used for centering. Conditioning the particles to never intersect tantamounts to

constructing Brownian motion conditioned to remain in Ry. This conditioning is singular
and gives the Bessel three process BES?.
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Analytic construction (3)
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Analytic construction (3)

Consider two independent Brownian particles. The center of mass is a Brownian motion
and is used for centering. Conditioning the particles to never intersect tantamounts to
constructing Brownian motion conditioned to remain in Ry. This conditioning is singular
and gives the Bessel three process BES?.

Approach using regular conditioning: W) BM with drift > 0 killed upon touching 0.

@ Infinitesimal generator with Dirichlet boundary conditions:
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@ Special harmonic function for %A — %;f:
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Notice that this normalisation gives analytic extension and symmetry.

@ The process conditioned to survive has generator:

1 1,

_ 1
6% = nu()™ (54 - o) hule) = 502 +

cosh(ux)

sinh () O

By letting x — 0, we recover the BES® = BM conditioned to stay positive.



Geometric construction via RMT (Random Matrix Theory)

Consider the 2 x 2 Hermitian Brownian motion:

B} B? + iBE)

CUE: = (B,? —iB}  -B}

Its spectrum is {A¢, —A;} where (A¢; ¢ > 0) £ BES?:

M

1 5 =

P(Ateday):zx e 2



Algebraic construction via Pitman (Rep. theory)

Theorem (Discrete Pitman(1975))
Let W a standard random walk on 7Z. Then:
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is Markov with transition kernel on N:
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Algebraic construction via Pitman (Rep. theory)

Theorem (Discrete Pitman(1975))
Let W a standard random walk on 7Z. Then:

Ap =W, —2 inf Wi
0<k<n

is Markov with transition kernel on N:

lax+2
1)==
Qa,z+1) =50

1 x
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After the diffusive scaling:
Theorem (Continuous Pitman(1975))
Let W a standard BM on R. Then Ay = Wy — 2info<s<; W is a BES®.

Comments
@ Very strong rigidity. No other coefficient but 2 works.
@ The Pitman transform is of representation theoretic significance.

@ The transition probabilities reflect structure constants of the representation theory of
5[2.

v




Representation theoretic explanation (1):

There is a representation-theoretic story to give here (2 = a(a)).

Consider the Lie algebra sl>. For any n € N, highest weight, there is an irreducible
representation V' (n) of dimension n + 1.

V(n) ~ B(n) a crystal = a combinatorial object that can be realized as paths thanks to
the Littelmann path model.

Figure: slo path crystal with Figure: sly path crystal with highest weight
highest weight n = 4 n=4
A7 AL




Representation theoretic explanation (2)

The Pitman transform
P:m—n(t) — QOinf 7(s)

<s<t

has a special interpretation in the context of the Littelmann path model: It gives the
dominant path in a crystal.

Let V(1) = C? be the standard representation of slo.

@ Looking at the standard random walk B,, can be seen as following a weight vector in
V(1)®".

o Looking at its Pitman transform X,, means following a highest weight in a
decomposition of V(1)®™ into irreducibles. The transition probabilities are given by
the Clebsch-Gordan rule:

Vin)@V()~Vin+1l)aV(n-1)

Conclusion: Pitman's theorem is about the Markov property of a highest weight
process and transition probabilities are expressed in terms of structure constants.
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The exponential potential (1)

In order to have a weak repulsion from zero, an idea is to consider W a BM “slowly
killed” when being negative. The framework of submarkovian generators fits the bill.

o Infinitesimal generator:
1 —2z
£ = 583—##(%—26 2

@ Special harmonic function for £():

P, (W(“) survives)

o (1)
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The exponential potential (2)
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The exponential potential (3)
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This normalisation gives analytic extension and symmetry (2z — t «— t changes u
to —pu).
@ The process conditioned to survive has generator:

1

o = oy (142

1 1
51 ) u(e) = 02 + 0. Tog @),

The limit ;x — 0 makes sense.



Pitman-type construction of Whittaker process

Theorem (Matsumoto-Yor(2000))

Let W) a Brownian motion with drift u. Then:

(1) _ i) oW
A =W +log(/ e s ds)
0

is Markov with inf. generator

1 (1 d? PR
i (qa 27y ) v




Pitman-type construction of Whittaker process

Theorem (Matsumoto-Yor(2000))

Let W) a Brownian motion with drift u. Then:

f ()
A — W 4 10g (/ —aw# ds)
0

is Markov with inf. generator

By Brownian rescaling and the Laplace method:
t 27W§H) h—0
W + hlog / e 2 ds | 2w — 2 inf wi
0 <

is Markov with inf. generator

S (1d oz p? (1 d 2
7/)}:,}; (772 — 20 — %) Vi, ,ighul (77 - ‘LL) hy



Geometric construction

Such process appears in a curved version of the Hermitian Brownian motion. Consider, a
left-invariant SDE on the lower triangular 2 x 2 matrices driven by W:

dWOL) 0
dB, (WY = B, (W t
(W) =BV Tog _aw

where o stands for the Stratononich integral.

Its solution is:

w )
Bt(W(W):( e 0 >

(1) _ (1) _ww)
eV fOtZe W ds e W

(n)
. eV 0
- (k) (n)
2eM e W
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Analytic construction (1)

Consider the Weyl chamber C = {x € R" | 1 > x2 > -+ > x,} and let W be a BM
with drift © € C killed upon touching 0C.

@ Infinitesimal generator with Dirichlet boundary conditions:
1
L8 = SA+ (V)
@ Special harmonic function for £():

P, (W(“)survives)



Analytic construction (2)

Consider the Weyl chamber C = {x € R" | 1 > x2 > -+ > x,} and let W be a BM
with drift © € C killed upon touching 0C.

@ Infinitesimal generator with Dirichlet boundary conditions:

1 tuwy (1 1, .
L(M):§A+<u7v>:e (b,m) (iA_§H/1H2> e (1)

e Special harmonic function for 2 A — 1||u/|*:
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Analytic construction (2)

Consider the Weyl chamber C = {x € R" | 1 > x2 > -+ > x,} and let W be a BM
with drift © € C killed upon touching 0C.

@ Infinitesimal generator with Dirichlet boundary conditions:

1 tuwy (1 1, .
L(M):§A+<u7v>:e (b,m) (iA_§H/1H2> e (1)

e Special harmonic function for 2 A — 1||u/|*:

el thm det (eti®i)™

)]P’z (W(“)survives) m — A Jhg=1

(@) = I1 [Lic; (i — 1)

i<j (,“"i — Hj

Notice that we have analytic extension to p € C™ and symmetry in the variables
(it s fin),
@ Process conditioned to survive has generator:

_ 1 1 1
6% = (o) (38 Il ) hute) = A + (Viogh,. V)

As p— 0, hu(z) = A(z) =11
of Dyson's Brownian motion.

i<j(@i —x;) (Not obvious!). And G#=9 is the generator



Geometric construction via RMT

Consider the n x n Hermitian Brownian motion - marginally distributed as vtGU E:

B! B2 +iB? ... B™+iB"
QUE, — B2 —iB}? B2 ... B4 iB2"
BI™ —iB!™ B +iBM™ ... B

Its spectrum {Af > A7 > --- > AP} is a Markovian diffusion called Dyson’s Brownian

motion with generator:

71 1 On,
G=5A+(ViegA, V) = 2A+;Aﬁz\j

Moreover (GUE density):




Via a Pitman-type construction

Partially due to O'Connell-Yor for type A, and to Biane, Bougerol and O'Connell for
general Lie type. In type A:

@ There is a (deterministic) Pitman transform that folds paths in R"™ into the cone C:
Pwo : CO ([03 tLRn) - CO ([Oa t]v C)

o Coincides with the original Pitman transform for n = 2.
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Via a Pitman-type construction

Partially due to O'Connell-Yor for type A, and to Biane, Bougerol and O'Connell for
general Lie type. In type A:

@ There is a (deterministic) Pitman transform that folds paths in R"™ into the cone C:
Pwo : CO ([03 tLRn) - CO ([Oa t]v C)
o Coincides with the original Pitman transform for n = 2.

@ Such transform is of representation-theoretic significance: It is the highest weight
transform in the continuous Littelmann path model.

o If W is a Brownian motion in R™ with drift z then:
(Pwo (W(‘”) (t);t > 0)

is the Markovian diffusion given by Brownian motion conditioned to remain in C - as
in the “Analytic” construction.
~~ "Algebraic” construction of non-intersecting particles.
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(Blackboard explanation of LPP in an n x M box)

When expliciting the first coordinate of the Pitman transform on R™:

(PuoW), (t) = sup Z W* (ts, tic1)
O=to<t1<-<tn=t %
which is interpreted as a semi-discrete LPP obtained from the diffusive rescaling as
M — oo.
Since Py, W is distributed as Dyson’s Brownian motion, the above quantity is distributed
as /1 times the largest eigenvalue of a GUE matrix (Baryshnikov and Tracy-Widom).



Application to Last Passage Percolation

(Blackboard explanation of LPP in an n x M box)

When expliciting the first coordinate of the Pitman transform on R™:

n

(PuwoW), (t) = sup D> W (tistio)

0=to<t1<-<tn=t;_]

which is interpreted as a semi-discrete LPP obtained from the diffusive rescaling as
M — oo.

Since Py, W is distributed as Dyson’s Brownian motion, the above quantity is distributed
as /1 times the largest eigenvalue of a GUE matrix (Baryshnikov and Tracy-Widom).

Random matrix theory gives the weak convergence:

(Puo), (1) = 2/ s
Vins

TW3
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Analytic construction (1)

Following naively the one dimensional logic, we will add the exponential potential for
each wall in the Weyl chamber

C={zeR"|z1>x2> > Tn}

hence the Toda potential

n—1
Vie)= 3 e torie)
i=1

o Infinitesimal generator of W) “slowly killed” BM:
w _ L
L =cA+ (1, V) = V(x)
@ Special harmonic function for £*);

P, (W(“ )survives>



Analytic construction (2)

Following naively the one dimensional logic, we will add the exponential potential for
each wall in the Weyl chamber

C={zeR"|z1>z2> > Tn}
hence the Toda potential

n—1
V(z):= Z e~ @it1—w4)
=1

@ Infinitesimal generator of w® “slowly killed" BM:

£ — %A +(u, V) = V(z) = e~ (w) (%A —V(z) - % ﬂHQ) el

e Special harmonic function for A — V(z) — 1| u[*:
Yu(x) = Hf(p,; — py)e TP, (W(Msurvives)
1<j
Following Jacquet, this is the Archimedean Whittaker function.
@ Process conditioned to survive is the Whittaker process. Generator:

6% — ()™ (5 = 5Il?) ule) = A + (VIog,.9)



Geometric construction - “Hypoelliptic BM on a lower triangular matrices”

Let W) be a Brownian motion with drift ;2 on R™. For notational reasons, we drop the

superscript (u) and put indices as exponents. Consider the SDE on lower triangular
matrices:

dwl 0 0 0

dt  dW? 0
dBt(W(M)) :Bt(W(H))O 0 it 0
dwr=t 0
0 0 dt dW/{

and its solution B; (W) is given by:

Al 0 0
Wt ft w2Z-w} ds eWE 0

wl rt _ s1 W2 —w}l WE [t WE-W2 wp
t s 3 s s t t
e fo e’ s1 1d31 fo e’ 52 2dsa f e



Via a Pitman-type construction

@ There is a geometric Pitman transform:
Tuwo : Co ([0, 2], R™) — Co ([0, 2], R")

which degenerates to Py, = limy,—0 hTwoh L. In fact:

(Tua W)y () = logdet (B (W22 2k i1

@ Such transform is of representation-theoretic significance: It is the highest weight
transform in the geometric Littelmann path model (constructed in chapter 4 of
thesis).
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Via a Pitman-type construction

@ There is a geometric Pitman transform:
Tuwo : Co ([0, 2], R™) — Co ([0, 2], R")

which degenerates to Py, = limy,—0 hTwoh L. In fact:

(TugW), (t) = logdet (B, (W)IZh 7k, )

i=n,...,

@ Such transform is of representation-theoretic significance: It is the highest weight
transform in the geometric Littelmann path model (constructed in chapter 4 of
thesis).

o (Givental in type A; chapter 5 of thesis for general Lie type) The Whittaker function
¥ (z) is a symmetric and entire function in p = (p1,..., tn).

@ (O'Connell 2009 in type A; chapter 6 of thesis for general Lie type)
If W) is a Brownian motion in R™ with drift x then:

(Tuo (W) @5t > 0)

is the Whittaker process - as in the “Analytic” construction.
~~ “Algebraic” construction of weakly non-intersecting particles.
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physics is clear.



Application to directed polymers

(Blackboard explanation of 1 4 1 directed polymer in an n x M box)
When expliciting the first coordinate of the geometric Pitman transform on R™:
(Two W), (t) = log / X W (tirti1)
O=tog<t1 < <tn=t

which is interpreted as a semi-discrete partition function obtained from the diffusive
rescaling as M — oo.

Since Tw, W is distributed as the Whittaker process, the relevance to mathematical
physics is clear.

Theorem (Borodin-Corwin-Ferrari)

There is a 3* > 0 and constants a; by such that for all0 < 3 < *:

£ (), 0

i
bins

n—oo

— TWs




Sommaire

© Conclusion and ouverture



Conclusion

What we did:

@ We presented the Whittaker process as n particles slowly killed with an exponential
potential and conditioned to survive.

o It degenerates via rescaling to Dyson’s Brownian motion, hence expected
random-matrix behaviors.

o It has a representation-theoretic (or Pitman-type) construction.
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