Chapter 3

Optimal Control of Evolution Equations with Bounded Control Operators

Jean-Pierre Raymond

Introduction to the optimal control of evolution equations

Distributed control of the heat equation
Existence of optimal controls
Characterization of optimal controls
Distributed control of the wave equation
A general control problem
Control of a first order hyperbolic system

Optimal control of evolution equations

Setting of the problem

We consider equations of the form
$(E) \quad y^{\prime}=A y+B u+f, \quad y(0)=y_{0}$.

Assumptions

Y and U are Hilbert spaces.
The unbounded operator $(A, D(A))$ is the infinitesimal generator of a strongly continuous semigroup on Y.
This semigroup will be denoted by $\left(e^{t A}\right)_{t \geq 0}$.
The operator B belongs to $\mathcal{L}(U ; Y)$.

The control problem
$(P) \inf \left\{J(y, u) \mid u \in L^{2}(0, T ; U),(y, u)\right.$ obeys $\left.(E)\right\}$,

$$
\begin{aligned}
& J(y, u) \\
& =\frac{1}{2} \int_{0}^{T}\left|C y(t)-z_{d}(t)\right|_{Z}^{2}+\frac{1}{2}\left|D y(T)-z_{T}\right|_{Z_{T}}^{2} \\
& +\frac{1}{2} \int_{0}^{T}|u(t)|_{U}^{2} .
\end{aligned}
$$

Assumption

Z and Z_{T} are Hilbert spaces.
The operator C belongs to $\mathcal{L}(Y ; Z)$, and the operator D belongs to $\mathcal{L}\left(Y ; Z_{T}\right)$. The function z_{d} belongs to $L^{2}(0, T ; Z)$ and $z_{T} \in Z_{T}$.

Optimal control

of the heat equation

The state equation

Let Ω be a bounded domain in \mathbb{R}^{N}, with a boundary Γ of class C^{2}. Let $T>0$, set $Q=\Omega \times(0, T)$ and $\Sigma=\Gamma \times(0, T)$. We consider the heat equation with a distributed control
$\begin{array}{ll}(H E) \quad & \frac{\partial y}{\partial t}-\Delta y=f+\chi_{\omega} u \text { in } Q, \\ & y=0 \quad \text { on } \Sigma, \quad y(x, 0)=y_{0} \quad \text { in } \Omega .\end{array}$

The control problem

$$
\begin{equation*}
\inf \left\{J(y, u) \mid u \in L^{2}(\omega \times(0, T))\right) \tag{P}
\end{equation*}
$$

(y, u) obeys $(H E)\}$,
where

$$
\begin{aligned}
& J(y, u)=\frac{1}{2} \int_{Q}\left|y-y_{d}\right|^{2} \\
& \quad+\frac{1}{2} \int_{\Omega}\left|y(T)-y_{d}(T)\right|^{2}+\frac{\beta}{2} \int_{\omega \times(0, T)} u^{2}
\end{aligned}
$$

$\beta>0$ and $y_{d} \in C\left([0, T] ; L^{2}(\Omega)\right)$.
Estimate for the state variable

$$
\begin{aligned}
& \|y\|_{C\left([0, T] ; L^{2}(\Omega)\right)} \\
& \leq C\left(\left\|y_{0}\right\|_{L^{2}(\Omega)}+\|f\|_{L^{2}(Q)}+\|u\|_{L^{2}(\omega \times(0, T))}\right)
\end{aligned}
$$

Existence of a unique optimal control

1. Set $F(u)=J(y(u), u)$. Let $\left(u_{n}\right)_{n}$ be a minimizing sequence in $L^{2}(\omega \times(0, T))$, that is

$$
\lim _{n \rightarrow \infty} F\left(u_{n}\right)=\inf _{u \in L^{2}(\omega \times(0, T))} F(u) .
$$

Let y_{n} the solution of $(H E)$ corresponding to u_{n}, suppose that $\left(u_{n}\right)_{n}$ is bounded in $L^{2}(\omega \times(0, T))$, and that

$$
u_{n} \rightharpoonup \bar{u} \quad \text { weakly in } L^{2}(\omega \times(0, T))
$$

2. Let $\bar{y}=y(\bar{u})$.

The operator

$$
\Lambda: u \longrightarrow y(u)
$$

is affine and continuous from $L^{2}(\omega \times(0, T))$ to $L^{2}(Q)$, and

$$
\Lambda_{T}: u \longrightarrow y(u)(T)
$$

is affine and continuous from $L^{2}(\omega \times(0, T))$ to $L^{2}(\Omega)$.

The sequence $\left(y_{n}\right)_{n}$ converges to \bar{y} for the weak topology of $L^{2}(Q)$, and $\left(y_{n}(T)\right)_{n}$ converges to $\bar{y}(T)$ for the weak topology of $L^{2}(\Omega)$.
3. Using the weakly lower semicontinuity of

$$
\begin{aligned}
& \|\cdot\|_{L^{2}(Q)}^{2},\|\cdot\|_{L^{2}(\Omega)}^{2},\|\cdot\|_{L^{2}(\omega \times(0, T))}^{2}, \text { we obtain } \\
& \int_{\omega \times(0, T)} \bar{u}^{2} \leq \liminf _{n \rightarrow \infty} \int_{\omega \times(0, T)} u_{n}^{2} \\
& \qquad \int_{Q}\left|\bar{y}-y_{d}\right|^{2} \leq \liminf _{n \rightarrow \infty} \int_{Q}\left|y_{n}-y_{d}\right|^{2}
\end{aligned}
$$

$$
\int_{\Omega}\left|\bar{y}(T)-y_{d}(T)\right|^{2} \leq \liminf _{n \rightarrow \infty} \int_{\Omega}\left|y_{n}(T)-y_{d}(T)\right|^{2}
$$

Combining these results, we have

$$
F(\bar{u}) \leq \liminf _{n \rightarrow \infty} F\left(u_{n}\right)=m .
$$

Thus \bar{u} is a solution to (P).

Uniqueness. Recall that the mappings

$$
u \longrightarrow y(u) \quad \text { and } \quad u \longrightarrow y(u)(T)
$$

are affine. Thus

$$
u \longrightarrow \frac{1}{2} \int_{Q}\left|y(u)-y_{d}\right|^{2}+\frac{1}{2} \int_{\Omega}\left|y(u)(T)-y_{d}(T)\right|^{2}
$$

is convex. The mapping

$$
u \longrightarrow \frac{\beta}{2} \int_{Q} \chi_{\omega} u^{2}
$$

is stricly convex. Thus the uniqueness follows from the strict convexity of F.

Optimality conditions

Derivative of the state variable

Equation satisfied by $z_{\lambda}=y(u+\lambda v)-y(u)$

$$
\begin{aligned}
& \frac{\partial z}{\partial t}-\Delta z=\lambda \chi_{\omega} v \quad \text { in } Q \\
& z=0 \quad \text { on } \Sigma, \quad z(x, 0)=0 \quad \text { in } \Omega .
\end{aligned}
$$

From the estimate for $(H E)$ it follows that

$$
\left\|z_{\lambda}\right\|_{C\left([0, T] ; L^{2}(\Omega)\right)} \leq C|\lambda|\|v\|_{L^{2}(\omega \times(0, T))}
$$

Thus

$$
y(u+\lambda v) \quad \xrightarrow{C\left([0, T] ; L^{2}(\Omega)\right)} y(u)
$$

$$
F^{\prime}(u) v=\lim _{\lambda \backslash 0} \frac{F(u+\lambda v)-F(u)}{\lambda}
$$

By a classical calculation we have

$$
\begin{aligned}
& F^{\prime}(u) v=\int_{Q}\left(y(u)-y_{d}\right) z(v) \\
& +\int_{\Omega}\left(y(u)(T)-y_{d}(T)\right) z(v)(T)+\beta \int_{\omega \times(0, T)} u v
\end{aligned}
$$

where $z(v)$ is the solution of

$$
\begin{aligned}
& \frac{\partial z}{\partial t}-\Delta z=\chi_{\omega} v \quad \text { in } Q \\
& z=0 \quad \text { on } \Sigma, \quad z(x, 0)=0 \quad \text { in } \Omega .
\end{aligned}
$$

Identification of $F^{\prime}(u)$
We look for q such that
$\int_{Q}\left(y(u)-y_{d}\right) z(v)+\int_{\Omega}\left[\left(y(u)-y_{d}\right) z(v)\right](T)=\int_{\omega \times(0, T)} q v$.

Let p be a regular function defined on \bar{Q} and write an integration by parts between $z(v)$ and p :

$$
\begin{aligned}
& \int_{\omega \times(0, T)} v p=\int_{Q}\left(z_{t}-\Delta z\right) p \\
& =\int_{Q} z\left(-p_{t}-\Delta p\right)+\int_{\Omega} z(T) p(T)-\int_{\Sigma} \frac{\partial z}{\partial n} p
\end{aligned}
$$

Identification with

$$
\int_{Q}\left(y(u)-y_{d}\right) z+\int_{\Omega}\left[\left(y(u)-y_{d}\right) z\right](T)=\int_{\omega \times(0, T)} q v
$$

We set

$$
\begin{aligned}
& -\frac{\partial p}{\partial t}-\Delta p=y(u)-y_{d} \quad \text { in } Q \\
& p=0 \quad \text { on } \Sigma, \quad p(x, T)=\left(y(u)-y_{d}\right)(T) \quad \text { in } \Omega
\end{aligned}
$$

and we have

$$
F^{\prime}(u) v=\int_{\omega \times(0, T)}(p+\beta u) v
$$

if the above calculation are justified.

The adjoint equation

Let $g \in L^{2}(Q), p_{T} \in L^{2}(\Omega)$. The terminal boundary value problem
$(A E) \quad-\frac{\partial p}{\partial t}-\Delta p=g \quad$ in Q,

$$
p=0 \quad \text { on } \Sigma, \quad p(x, T)=p_{T} \quad \text { in } \Omega,
$$

is well posed.

$$
\|p\|_{C\left([0, T] ; L^{2}(\Omega)\right)} \leq C\left(\|g\|_{L^{2}(Q)}+\left\|p_{T}\right\|_{L^{2}(\Omega)}\right)
$$

Proof. A weak solution in $L^{2}\left(0, T ; L^{2}(\Omega)\right)$ to $(A E)$ is a function $p \in L^{2}\left(0, T ; L^{2}(\Omega)\right)$ such that, for all $z \in H^{2} \cap H_{0}^{1}(\Omega)$, the mapping

$$
t \longmapsto\langle p(t), z\rangle
$$

belongs to $H^{1}(0, T)$ and obeys

$$
\begin{aligned}
& -\frac{d}{d t}\langle p(t), z\rangle=\left\langle y(t), A^{*} z\right\rangle+\langle g(t), z\rangle \\
& \langle p(T), z\rangle=\left\langle p_{T}, z\right\rangle
\end{aligned}
$$

The function p is a weak solution to $(A E)$ if and only if the function q defined by

$$
q(x, t)=p(x, T-t)
$$

is the solution to the equation

$$
\begin{aligned}
& \frac{\partial q}{\partial t}-\Delta q=\tilde{g} \quad \text { in } Q \\
& q=0 \quad \text { on } \Sigma, \quad q(x, 0)=p_{T} \quad \text { in } \Omega
\end{aligned}
$$

where $\tilde{g}(x, t)=g(x, T-t)$.

Integration by parts between z and p

Theorem. Suppose that $\phi \in L^{2}(Q), g \in L^{2}(Q)$, and $p_{T} \in L^{2}(\Omega)$. Then the solution z of equation
$\frac{\partial z}{\partial t}-\Delta z=\phi \quad$ in $Q, \quad z=0 \quad$ on $\Sigma, \quad z(x, 0)=0 \quad$ in Ω,
and the solution p of (AE) satisfy the following formula

$$
\int_{Q} \phi p=\int_{Q} z g+\int_{\Omega} z(T) p_{T}
$$

Proof. If $p_{T} \in H_{0}^{1}(\Omega)$, due to a Theorem of Chapter 2, z and p belong to $\left.L^{2}(0, T ; D(A))\right) \cap H^{1}\left(0, T ; L^{2}(\Omega)\right)$. In that case, with the Green formula we have

$$
\int_{\Omega}-\Delta z(t) p(t) d x=\int_{\Omega}-\Delta p(t) z(t) d x
$$

for almost every $t \in[0, T]$, and

$$
\int_{0}^{T} \int_{\Omega} \frac{\partial z}{\partial t} p=-\int_{0}^{T} \int_{\Omega} \frac{\partial p}{\partial t} z+\int_{\Omega} z(T) p_{T}
$$

Thus the IBP formula is established in the case when $p_{T} \in H_{0}^{1}(\Omega)$. If $\left(p_{T n}\right)_{n}$ is a sequence in $H_{0}^{1}(\Omega)$ converging to p_{T} in $L^{2}(\Omega)$, due to the ' $C\left([0, T] ; L^{2}(\Omega)\right)$-estimate', $\left(p_{n}\right)_{n}$ - where p_{n} is the solution to (AE) corresponding to $p_{T n}$ - converges to p (the solution of (AE) associated with p_{T}) in $C\left([0, T] ; L^{2}(\Omega)\right)$ when n tends to infinity. Thus, in the case when $p_{T} \in L^{2}(\Omega)$, the IBP formula can be deduced by passing to the limit in the formula satisfied by p_{n}.

Theorem. (i) If (\bar{y}, \bar{u}) is the solution to (P) then $\bar{u}=-\left.\frac{1}{\beta} p\right|_{\omega \times(0, T)}$, where p is the solution to the adjoint equation corresponding to \bar{y} :

$$
\begin{aligned}
& -\frac{\partial p}{\partial t}-\Delta p=\bar{y}-y_{d} \quad \text { in } Q \\
& p=0 \quad \text { on } \Sigma, \quad p(x, 0)=\bar{y}(T)-y_{d}(T) \quad \text { in } \Omega
\end{aligned}
$$

(ii) Conversely, if a pair $(\tilde{y}, \tilde{p}) \in C\left([0, T] ; L^{2}(\Omega)\right) \times$ $C\left([0, T] ; L^{2}(\Omega)\right)$ obeys the system

$$
\begin{aligned}
& \frac{\partial \tilde{y}}{\partial t}-\Delta \tilde{y}=f-\frac{1}{\beta} \chi_{\omega} \tilde{p} \quad \text { in } Q \\
& \tilde{y}=0 \quad \text { on } \Sigma, \quad \tilde{y}(x, 0)=\bar{y}_{0} \quad \text { in } \Omega \\
& -\frac{\partial \tilde{p}}{\partial t}-\Delta \tilde{p}=\tilde{y}-y_{d} \quad \text { in } Q \\
& p=0 \quad \text { on } \Sigma, \quad \tilde{p}(T)=\tilde{y}(T)-y_{d}(T) \quad \text { in } \Omega,
\end{aligned}
$$

then the pair $\left(\tilde{y},-\frac{1}{\beta} \tilde{p}\right)$ is the optimal solution to problem (P).

Proof. (i) The necessary optimality condition is already proved.
(ii) The sufficient optimality condition can be proved with a theorem stated in Chapter 1.

Optimal control of the wave equation

The state equation

The assumptions on $\Omega, \Gamma, \omega, T, Q, \Sigma$ are the ones of the previous section. We consider
(WE)

$$
\begin{aligned}
& y^{\prime \prime}-\Delta y=f+\chi_{\omega} u \quad \text { in } Q, \quad y=0 \text { on } \Sigma \\
& y(x, 0)=y_{0} \quad \text { and } \quad y^{\prime}(x, 0)=y_{1} \quad \text { in } \Omega
\end{aligned}
$$

with $\left(y_{0}, y_{1}\right) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega), f \in L^{2}(Q)$, and $u \in$ $L^{2}(\omega \times(0, T))$.

The operator

$$
\left(f+\chi_{\omega} u, y_{0}, y_{1}\right) \mapsto y\left(f+\chi_{\omega} u, y_{0}, y_{1}\right)
$$

is linear and continuous from $L^{2}(Q) \times H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ into $C\left([0, T] ; H_{0}^{1}(\Omega)\right) \cap C^{1}\left([0, T] ; L^{2}(\Omega)\right)$.

The family of control problems
$\left(P_{i}\right) \quad \inf \left\{J_{i}(y, u) \mid(y, u)\right.$ obeys $\left.(W E), u \in L^{2}\right\}$,
with, for $i=1, \ldots, 3$, the functionals J_{i} are defined by

$$
\begin{aligned}
& J_{1}(y, u) \\
& =\frac{1}{2} \int_{Q}\left|y-y_{d}\right|^{2}+\frac{1}{2} \int_{\Omega}\left|y(T)-y_{d}(T)\right|^{2}+\frac{\beta}{2} \int_{\omega \times(0, T)} u^{2}, \\
& J_{2}(y, u)=\frac{1}{2} \int_{\Omega}\left|\nabla y(T)-\nabla y_{d}(T)\right|^{2}+\frac{\beta}{2} \int_{\omega \times(0, T)} u^{2} \\
& J_{3}(y, u)=\frac{1}{2} \int_{\Omega}\left|y^{\prime}(T)-y_{d}^{\prime}(T)\right|^{2}+\frac{\beta}{2} \int_{\omega \times(0, T)} u^{2}
\end{aligned}
$$

where the function $\quad y_{d} \in C\left([0, T] ; H_{0}^{1}(\Omega)\right) \cap$ $C^{1}\left([0, T] ; L^{2}(\Omega)\right)$.

Theorem. Assume that $f \in L^{2}(Q), y_{0} \in H_{0}^{1}(\Omega), y_{1} \in$ $L^{2}(\Omega)$, and $y_{d} \in C\left([0, T] ; H_{0}^{1}(\Omega)\right) \cap C^{1}\left([0, T] ; L^{2}(\Omega)\right)$. For $i=1, \ldots, 3$, problem $\left(P_{i}\right)$ admits a unique solution $\left(\bar{y}_{i}, \bar{u}_{i}\right)$.

Existence of a unique optimal control

1. Set $F(u)=J(y(u), u)$. Let $\left(u_{n}\right)_{n}$ be a minimizing sequence in $L^{2}(\omega \times(0, T))$, that is

$$
\lim _{n \rightarrow \infty} F\left(u_{n}\right)=\inf _{u \in L^{2}(\omega \times(0, T))} F(u) .
$$

We suppose that

$$
u_{n} \rightharpoonup \bar{u} \quad \text { weakly in } L^{2}(\omega \times(0, T)) .
$$

Let y_{n} the solution of $(W E)$ corresponding to u_{n}, suppose that $\left(u_{n}\right)_{n}$ is bounded in $L^{2}(\omega \times(0, T))$, and that

$$
u_{n} \rightharpoonup \bar{u} \quad \text { weakly in } L^{2}(\omega \times(0, T)) .
$$

Passage to the limit in the equation.

Let $\bar{y}=y(\bar{u})$. The operator

$$
\Lambda: u \longrightarrow\left(y(u), y(u)(T), y(u)^{\prime}(T)\right)
$$

is affine and continuous from $L^{2}(\omega \times(0, T))$ to $L^{2}(Q) \times$ $H_{0}^{1}(\Omega) \times L^{2}(\Omega)$.

We may conclude that, for $i=1, \ldots, 3$, problem $\left(P_{i}\right)$ admits a unique solution $\left(\bar{y}_{i}, \bar{u}_{i}\right)$.

Optimality conditions for $\left(P_{1}\right)$

$$
\begin{aligned}
& J_{1}(y, u) \\
& =\frac{1}{2} \int_{Q}\left|y-y_{d}\right|^{2}+\frac{1}{2} \int_{\Omega}\left|y(T)-y_{d}(T)\right|^{2}+\frac{\beta}{2} \int_{\omega \times(0, T)} u^{2}
\end{aligned}
$$

By a classical calculation we have

$$
\begin{aligned}
& F^{\prime}(u) v=\int_{Q}\left(y(u)-y_{d}\right) z(v) \\
& +\int_{\Omega}\left(y(u)(T)-y_{d}(T)\right) z(v)(T)+\beta \int_{\omega \times(0, T)} u v
\end{aligned}
$$

where $z(v)$ is the solution of

$$
\begin{aligned}
& z^{\prime \prime}-\Delta z=\chi_{\omega} v \quad \text { in } Q, \quad z=0 \quad \text { on } \Sigma, \\
& z(x, 0)=0 \text { and } z^{\prime}(x, 0)=0 \quad \text { in } \Omega .
\end{aligned}
$$

Identification of $F^{\prime}(u)$
We look for q such that
$\int_{Q}\left(y(u)-y_{d}\right) z(v)+\int_{\Omega}\left[\left(y(u)-y_{d}\right) z(v)\right](T)=\int_{\omega \times(0, T)} q v$.
Let p be a regular function defined on \bar{Q} and write an integration by parts between $z(v)$ and p :

$$
\begin{aligned}
& \int_{\omega \times(0, T)} v p=\int_{Q}\left(z^{\prime \prime}-\Delta z\right) p \\
& =\int_{Q} z\left(p^{\prime \prime}-\Delta p\right)+\int_{\Omega} z^{\prime}(T) p(T) \\
& -\int_{\Omega} z(T) p^{\prime}(T)-\int_{\Sigma} \frac{\partial z}{\partial n} p
\end{aligned}
$$

Identification with

$$
\int_{Q}\left(y(u)-y_{d}\right) z+\int_{\Omega}\left[\left(y(u)-y_{d}\right) z\right](T)=\int_{\omega \times(0, T)} q v
$$

We set

$$
\begin{aligned}
& p^{\prime \prime}-\Delta p=y(u)-y_{d} \quad \text { in } Q, \quad p=0 \quad \text { on } \Sigma \\
& p(x, T)=0 \text { and } p^{\prime}(x, T)=\left(y(u)-y_{d}\right)(T) \quad \text { in } \Omega
\end{aligned}
$$

and we have

$$
F^{\prime}(u) v=\int_{\omega \times(0, T)}(p+\beta u) v
$$

if the above calculation are justified.

Theorem. (i) If (\bar{y}, \bar{u}) is the solution to $\left(P_{1}\right)$ then $\bar{u}=-\left.\frac{1}{\beta} p\right|_{\omega \times(0, T)}$, where p is the solution to:

$$
\begin{aligned}
& p^{\prime \prime}-\Delta p=\bar{y}-y_{d} \quad \text { in } Q, \quad p=0 \quad \text { on } \Sigma \\
& p(x, T)=0, \quad p^{\prime}(x, T)=\bar{y}(T)-y_{d}(T) \quad \text { in } \Omega
\end{aligned}
$$

(ii) Conversely, if $(\tilde{y}, \tilde{p}) \in\left(C\left([0, T] ; L^{2}(\Omega)\right)\right)^{2}$ obeys:

$$
\begin{aligned}
& \tilde{y}^{\prime \prime}-\Delta \tilde{y}=f-\frac{1}{\beta} \chi_{\omega} \tilde{p} \quad \text { in } Q, \quad \tilde{y}=0 \quad \text { on } \Sigma, \\
& \tilde{y}(x, 0)=y_{0}, \quad \tilde{y}^{\prime}(x, 0)=y_{1}, \quad \text { in } \Omega \\
& \tilde{p}^{\prime \prime}-\Delta \tilde{p}=\tilde{y}-y_{d} \quad \text { in } Q, \quad \tilde{p}=0 \quad \text { on } \Sigma, \\
& \tilde{p}(T)=0, \quad \tilde{p}^{\prime}(T)=y(T)-y_{d}(T) \quad \text { in } \Omega,
\end{aligned}
$$

then the pair $\left(\tilde{y},-\frac{1}{\beta} \tilde{p}\right)$ is the optimal solution to $\left(P_{1}\right)$.

Optimality conditions for $\left(P_{2}\right)$

Recall that

$$
J_{2}(y, u)=\frac{1}{2} \int_{\Omega}\left|\nabla y(T)-\nabla y_{d}(T)\right|^{2}+\frac{\beta}{2} \int_{\omega \times(0, T)} u^{2} .
$$

Theorem. (i) If (\bar{y}, \bar{u}) is the solution to $\left(P_{2}\right)$ then $\bar{u}=-\left.\frac{1}{\beta} p\right|_{\omega \times(0, T)}$, where p is the solution to the adjoint equation

$$
\begin{aligned}
& p^{\prime \prime}-\Delta p=0 \quad \text { in } Q, \quad p=0 \quad \text { on } \Sigma, \\
& p(T)=0 \text { and } p^{\prime}(T)=-\Delta\left(\bar{y}(T)-y_{d}(T)\right) \quad \text { in } \Omega . \\
& \quad\left(p, p^{\prime}\right) \in C\left([0, T] ; L^{2}(\Omega)\right) \times C\left([0, T] ; H^{-1}(\Omega)\right) .
\end{aligned}
$$

(ii) Conversely, if a pair $(\tilde{y}, \tilde{p}) \in C\left([0, T] ; L^{2}(\Omega)\right) \times$ $C\left([0, T] ; L^{2}(\Omega)\right)$ obeys the system

$$
\begin{aligned}
& \tilde{y}^{\prime \prime}-\Delta \tilde{y}=f-\frac{1}{\beta} \chi_{\omega} \tilde{p} \quad \text { in } Q, \quad \tilde{y}=0 \quad \text { on } \Sigma, \\
& \tilde{y}(x, 0)=y_{0}, \quad \tilde{y}^{\prime}(x, 0)=y_{1}, \quad \text { in } \Omega \\
& \tilde{p}^{\prime \prime}-\Delta \tilde{p}=0 \quad \text { in } Q, \quad \tilde{p}=0 \quad \text { on } \Sigma, \\
& \tilde{p}(T)=0, \quad p^{\prime}(T)=-\Delta\left(\tilde{y}(T)-y_{d}(T)\right) \quad \text { in } \Omega,
\end{aligned}
$$

then the pair $\left(\tilde{y},-\frac{1}{\beta} \tilde{p}\right)$ is the optimal solution to $\left(P_{2}\right)$.

Remark 1. We set

$$
F_{2}(u)=J_{2}(y(u), u)
$$

We have

$$
F_{2}^{\prime}(u) v=\int_{\Omega}\left(\nabla y(T)-\nabla y_{d}(T)\right) \cdot \nabla z(T)+\beta \int_{\omega \times(0, T)} u v,
$$

where z is the solution to

$$
\begin{aligned}
& z^{\prime \prime}-\Delta z=\chi_{\omega} v \quad \text { in } Q, \quad z=0 \quad \text { on } \Sigma, \\
& z(x, 0)=0, \quad z^{\prime}(x, 0)=0, \quad \text { in } \Omega .
\end{aligned}
$$

Moreover

$$
\begin{aligned}
& \int_{\Omega}\left(\nabla y(T)-\nabla y_{d}(T)\right) \cdot \nabla z(T) \\
& =\left\langle z(T),(-\Delta)\left(y(T)-y_{d}(T)\right)\right\rangle_{H_{0}^{1}(\Omega), H^{-1}(\Omega)}
\end{aligned}
$$

This is why we have

$$
p^{\prime}(x, T)=-\Delta\left(\bar{y}(T)-y_{d}(T)\right)
$$

in the adjoint equation.

Remark 2. If $\tilde{y} \in C\left([0, T] ; H_{0}^{1}(\Omega)\right)$, then $\Delta \tilde{y}(T)$ belongs to $H^{-1}(\Omega)$. Thus the adjoint equation is stated with $p^{\prime}(T)$ in $H^{-1}(\Omega)$. We are going to prove that the wave equation is well posed with an initial condition in $L^{2}(\Omega) \times H^{-1}(\Omega)$.

Let us recall a result from chapter 2. Set $Y=$ $H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ and endow Y with the inner product

$$
(u, v)_{Y}=\int_{\Omega} \nabla u_{1} \cdot \nabla v_{1}+\int_{\Omega} u_{2} v_{2},
$$

where $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$. Set $D(A)=$ $\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \times H_{0}^{1}(\Omega)$ and

$$
A y=A\binom{y_{1}}{y_{2}}=\binom{y_{2}}{\Delta y_{1}}, \quad \text { and } \quad y_{0}=\binom{z_{0}}{z_{1}} .
$$

In chapter 2 we have proved that $(A, D(A)$) and $(-A, D(A))$ are m -dissipative in Y.

Now we set $\widehat{Y}=L^{2}(\Omega) \times H^{-1}(\Omega)$. We equip \widehat{Y} with the inner product

$$
(u, v)_{\widehat{Y}}=\int_{\Omega} u_{1} \cdot v_{1}+\left\langle(-\Delta)^{-1} u_{2}, v_{2}\right\rangle_{H_{0}^{1}(\Omega), H^{-1}(\Omega)},
$$

where $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$. Set $D(\widehat{A})=$ $H_{0}^{1}(\Omega) \times L^{2}(\Omega)$ and

$$
\widehat{A} y=\widehat{A}\binom{y_{1}}{y_{2}}=\binom{y_{2}}{\Delta y_{1}} .
$$

We can prove that $(\widehat{A}, D(\widehat{A}))$ and $(-\widehat{A}, D(\widehat{A}))$ are m-dissipative in \widehat{Y}.

Optimality conditions for $\left(P_{3}\right)$

The functional is

$$
J_{3}(y, u)=\frac{1}{2} \int_{\Omega}\left|y^{\prime}(T)-y_{d}^{\prime}(T)\right|^{2}+\frac{\beta}{2} \int_{\omega \times(0, T)} u^{2}
$$

Theorem. (i) If (\bar{y}, \bar{u}) is the solution to $\left(P_{3}\right)$ then $\bar{u}=-\left.\frac{1}{\beta} p\right|_{\omega \times(0, T)}$, where p is the solution to the adjoint

$$
\begin{aligned}
& p^{\prime \prime}-\Delta p=0 \quad \text { in } Q, \quad p=0 \quad \text { on } \Sigma, \\
& p(T)=\left(\bar{y}^{\prime}-y_{d}^{\prime}\right)(T) \text { and } p^{\prime}(T)=0 \quad \text { in } \Omega .
\end{aligned}
$$

(ii) Conversely, if a pair $(\tilde{y}, \tilde{p}) \in C\left([0, T] ; L^{2}(\Omega)\right) \times$ $C\left([0, T] ; L^{2}(\Omega)\right)$ obeys the system

$$
\begin{aligned}
& \tilde{y}^{\prime \prime}-\Delta \tilde{y}=f-\frac{1}{\beta} \chi_{\omega} \tilde{p} \quad \text { in } Q, \quad \tilde{y}=0 \quad \text { on } \Sigma, \\
& \tilde{y}(x, 0)=y_{0}, \quad \tilde{y}^{\prime}(x, 0)=y_{1}, \quad \text { in } \Omega, \\
& \tilde{p}^{\prime \prime}-\Delta \tilde{p}=0 \quad \text { in } Q, \quad \tilde{p}=0 \quad \text { on } \Sigma, \\
& \tilde{p}(T)=\left(\tilde{y}^{\prime}-y_{d}^{\prime}\right)(T), \quad \tilde{p}^{\prime}(T)=0 \quad \text { in } \Omega,
\end{aligned}
$$

then the pair $\left(\tilde{y},-\frac{1}{\beta} \tilde{p}\right)$ is the optimal solution to $\left(P_{3}\right)$.

Optimal control of evolution equations

The state equation

$(S E) \quad y^{\prime}=A y+B u+f, \quad y(0)=y_{0}$.

Assumptions

Y and U are Hilbert spaces.
The unbounded operator $(A, D(A))$ is the infinitesimal generator of a strongly continuous semigroup on Z. This semigroup will be denoted by $\left(e^{t A}\right)_{t \geq 0}$.
The operator B belongs to $\mathcal{L}(U ; Y)$.
The control problem
(P)

$$
\inf \left\{J(y, u) \mid u \in L^{2}(0, T ; U),(y, u) \text { obeys }(S E)\right\}
$$

with

$$
\begin{aligned}
& J(y, u)=\frac{1}{2} \int_{0}^{T}\left|C y(t)-z_{d}(t)\right|_{Z}^{2} \\
& +\frac{1}{2}\left|D y(T)-z_{T}\right|_{Z_{T}}^{2}+\frac{1}{2} \int_{0}^{T}|u(t)|_{U}^{2} .
\end{aligned}
$$

Assumption

Z and Z_{T} are Hilbert spaces.
The operator C belongs to $\mathcal{L}(Y ; Z)$, and the operator D belongs to $\mathcal{L}\left(Y ; Z_{T}\right)$. The function z_{d} belongs to $L^{2}(0, T ; Z)$ and $z_{T} \in Z_{T}$.

Existence of a unique optimal control

If the assumptions on B, C, D are satisfied. Problem (P) admits a unique solution (y, u).

The proof is based on the existence of a minimizing sequence $\left(u_{n}\right)_{n}$, bounded in $L^{2}(0, T ; U)$, and on the fact that the operator

$$
\Lambda: u \longrightarrow\left(C y(u)-z_{d}, D y(u)(T)-z_{T}\right)
$$

is affine and continuous from $L^{2}(0, T ; U)$ to $L^{2}(0, T ; Z) \times Z_{T}$.

Optimality conditions

The adjoint equation for (P) will be of the form
$(A E) \quad-p^{\prime}=A^{*} p+g, \quad p(T)=p_{T}$.
From chapter 2, we know that $\left(A^{*}, D\left(A^{*}\right)\right.$) is the infinitesimal generator of a strongly continuous semigroup on Y^{\prime}. Thus (AE) is well posed if $p_{T} \in Y^{\prime}$ and if $g \in L^{1}\left(0, T ; Y^{\prime}\right)$. For simplicity we identify Y and Y^{\prime}.

Integration by parts formula

We state an integration by parts formula between the adjoint state p and the solution z to the equation
$(L E) \quad z^{\prime}=A z+f, \quad z(0)=0$.

Theorem. For every $f \in L^{2}(0, T ; Y)$, and every $\left(g, p_{T}\right) \in L^{2}(0, T ; Y) \times Y$, the solution z to equation (LE) and the solution p to equation (AE) satisfy the following formula

$$
\begin{aligned}
& \int_{0}^{T}(f(t), p(t))_{Y} d t \\
& =\int_{0}^{T}(z(t), g(t))_{Y} d t+\left(z(T), p_{T}\right)_{Y}-\left(z_{0}, p(0)\right)_{Y}
\end{aligned}
$$

Proof. Suppose that f and g belong to $C^{1}([0, T] ; Y)$ and that p_{T} belongs to $D\left(A^{*}\right)$. In this case we can write

$$
\begin{aligned}
& \int_{0}^{T}(f(t), p(t))_{Y} d t=\int_{0}^{T}\left(z^{\prime}(t)-A z(t), p(t)\right)_{Y} d t \\
& =\int_{0}^{T}-\left(z(t), p^{\prime}(t)\right)_{Y} d t+\left(z(T), p_{T}\right)_{Y} \\
& -\left(z_{0}, p(0)\right)_{Y}-\int_{0}^{T}(A z(t), p(t))_{Y} d t \\
& =\int_{0}^{T}(z(t), g(t))_{Y} d t+\left(z(T), p_{T}\right)_{Y}-\left(z_{0}, p(0)\right)_{Y} .
\end{aligned}
$$

Thus, the IBP formula can be deduced from this case by using density arguments.

Optimality conditions

Theorem. If (\bar{y}, \bar{u}) is the solution to (P) then $\bar{u}=$ $-B^{*} p$, where p is the solution to equation
$-p^{\prime}=A^{*} p+C^{*}\left(C \bar{y}-z_{d}\right), \quad p(T)=D^{*}\left(D \bar{y}(T)-z_{T}\right)$.
Conversely, if a pair $(\tilde{y}, \tilde{p}) \in C([0, T] ; Y) \times C([0, T] ; Y)$ obeys the system

$$
\begin{aligned}
& \tilde{y}^{\prime}=A \tilde{y}-B B^{*} \tilde{p}+f, \quad \tilde{y}(0)=y_{0} \\
& -\tilde{p}^{\prime}=A^{*} \tilde{p}+C^{*}\left(C \tilde{y}-z_{d}\right) \\
& \tilde{p}(T)=D^{*}\left(D \tilde{y}(T)-z_{T}\right)
\end{aligned}
$$

then the pair $\left(\tilde{y},-B^{*} \tilde{p}\right)$ is the optimal solution to problem (P).

Proof. Let (\bar{y}, \bar{u}) be the optimal solution to problem (P). Set $F(u)=J(y(u), u)$. For every $u \in L^{2}(0, T ; U)$, we have

$$
\begin{aligned}
& F^{\prime}(\bar{u}) u=\int_{0}^{T}\left(C \bar{y}(t)-z_{d}, C z(t)\right)_{Z} \\
& +\left(D \bar{y}(T)-z_{T}, D z(T)\right)_{Z_{T}}+\int_{0}^{T}(\bar{u}(t), u(t))_{U} \\
& =\int_{0}^{T}\left(C^{*}\left(C \bar{y}(t)-z_{d}\right), z(t)\right)_{Y} \\
& +\left(D^{*}\left(D \bar{y}(T)-z_{T}\right), z(T)\right)_{Y}+\int_{0}^{T}(\bar{u}(t), u(t))_{U}
\end{aligned}
$$

where z is the solution to

$$
z^{\prime}=A z+B u, \quad z(0)=0
$$

Applying the IBP formula to p and z, we obtain

$$
\begin{aligned}
& F^{\prime}(\bar{u}) u=\int_{0}^{T}(p(t), B u(t))_{Y}+\int_{0}^{T}(\bar{u}(t), u(t))_{U} \\
& =\int_{0}^{T}\left(B^{*} p(t)+\bar{u}(t), u(t)\right)_{U}
\end{aligned}
$$

The first part of the Theorem is established. The second part follows from the sufficient optimality condition stated in Chapter 1.

Exercise

Let $L>0$ and a be a function in $H^{1}(0, L)$ such that $0<c_{1} \leq a(x)$ for all $x \in H^{1}(0, L)$. Consider the equation
(TE)

$$
\begin{aligned}
& y_{t}+a y_{x}=f+\chi_{\left(\ell_{1}, \ell_{2}\right)} u, \quad \text { in }(0, L) \times(0, T), \\
& y(0, t)=0, \quad \text { in }(0, T), \\
& y(x, 0)=y_{0}, \quad \text { in }(0, L),
\end{aligned}
$$

where $f \in L^{2}((0, L) \times(0, T)), \quad \chi_{\left(\ell_{1}, \ell_{2}\right)}$ is the characteristic function of $\left(\ell_{1}, \ell_{2}\right) \subset(0, L), \quad u \in$ $L^{2}\left(\left(\ell_{1}, \ell_{2}\right) \times(0, T)\right)$, and $y_{0} \in L^{2}(0, L)$.
Prove that (TE) admits a unique solution in $C\left([0, T] ; L^{2}(0, L)\right)$ (use the Hille-Yosida theorem).

Study the control problem

$$
\begin{equation*}
\inf \left\{J(y, u) \mid u \in L^{2}\left(0, T ; L^{2}\left(\ell_{1}, \ell_{2}\right)\right)\right. \tag{P}
\end{equation*}
$$

$$
(y, u) \text { satisfies }(T E)\}
$$

with

$$
J(y, u)=\frac{1}{2} \int_{0}^{L}\left(y(T)-y_{d}(T)\right)^{2}+\frac{1}{2} \int_{0}^{T} \int_{\ell_{1}}^{\ell_{2}} u^{2}
$$

where $y_{d} \in C\left([0, T] ; L^{2}(0, L)\right)$. Prove the existence of a unique solution. Write first order optimality conditions.

Optimal control of a first order hyperbolic system

The state equation

Consider the first order hyperbolic system

$$
\frac{\partial}{\partial t}\left[\begin{array}{c}
z_{1}(x, t) \\
z_{2}(x, t)
\end{array}\right]=\frac{\partial}{\partial x}\left[\begin{array}{c}
m_{1} z_{1} \\
-m_{2} z_{2}
\end{array}\right]-\left[\begin{array}{c}
a_{11} z_{1}+a_{12} z_{2}+b_{1} u_{1} \\
a_{21} z_{1}+a_{22} z_{2}+b_{2} u_{2}
\end{array}\right]
$$

in $(0, \ell) \times(0, T)$, with the initial condition

$$
z_{1}(x, 0)=z_{01}(x), \quad z_{2}(x, 0)=z_{02}(x) \quad \text { in } \quad(0, \ell)
$$

and the boundary conditions

$$
z_{1}(\ell, t)=0, \quad z_{2}(0, t)=0 \quad \text { in } \quad(0, T) .
$$

We refer to this system as the system ($H E$). This kind of systems intervenes in heat exchangers [9].

We suppose that the constant coefficients $m_{1}>0$, $m_{2}>0$, and that $a_{11}, a_{12}, a_{21}, a_{22}, b_{1}, b_{2}$ are regular.

State equation

We set $Y=L^{2}(0, \ell) \times L^{2}(0, \ell)$, and we define the unbounded operator A in Y by

$$
D(A)=\left\{z \in H^{1}(0, \ell) \times H^{1}(0, \ell) \mid z_{1}(\ell)=0, z_{2}(0)=0\right\}
$$

and

$$
A z=\left[\begin{array}{c}
m_{1} \frac{d z_{1}}{d x} \\
-m_{2} \frac{d z_{2}}{d x}
\end{array}\right]
$$

We define the operator $L \in \mathcal{L}(Y)$ by

$$
L z=\left[\begin{array}{l}
-a_{11} z_{1}-a_{12} z_{2} \\
-a_{21} z_{1}-a_{22} z_{2}
\end{array}\right]
$$

Theorem. The operator $(A, D(A))$ is the infinitesimal generator of a strongly continuous semigroup of contractions on Y.

Proof. The theorem relies the Hille-Yosida theorem.
(i) The operator A is dissipative in Y :

$$
\begin{aligned}
& (A z, z)=\int_{0}^{\ell} m_{1} \frac{d z_{1}}{d x} z_{1}-\int_{0}^{\ell} m_{2} \frac{d z_{2}}{d x} z_{2} \\
& =-\frac{m_{1}}{2} z_{1}(0)^{2}-\frac{m_{2}}{2} z_{2}(\ell)^{2} \leq 0 .
\end{aligned}
$$

(ii) For $\lambda>0, f \in L^{2}(0, \ell), g \in L^{2}(0, \ell)$, consider the equation

$$
z \in D(A), \quad \lambda\binom{z_{1}}{z_{2}}-A\binom{z_{1}}{z_{2}}=\binom{f}{g}
$$

that is

$$
\begin{array}{ll}
\lambda z_{1}-m_{1} \frac{d z_{1}}{d x}=f & \text { in }(0, \ell), \\
\lambda z_{2}+m_{2} \frac{d z_{2}}{d x}=g \quad & \text { in }(0, \ell),
\end{array} \quad z_{2}(0)=0,
$$

This equation admits a unique solution $z \in D(A)$.

Theorem. The operator $(A+L, D(A))$ is the infinitesimal generator of a strongly continuous semigroup on Y.

Theorem. For all $z_{0}=\left(z_{10}, z_{20}\right) \in Y, u_{1} \in L^{2}((0, \ell) \times$ $(0, T)), u_{2} \in L^{2}((0, \ell) \times(0, T))$, the system $(H E)$ admits a unique weak solution in $L^{2}\left(0, T ; L^{2}(0, \ell)\right)$, this solution belongs to $C([0, T] ; Y)$ and satisfies

$$
\begin{aligned}
& \|z\|_{C([0, T] ; Y)} \\
& \leq C\left(\left\|z_{0}\right\|_{Y}+\left\|u_{1}\right\|_{L^{2}((0, \ell) \times(0, T))}+\left\|u_{2}\right\|_{L^{2}((0, \ell) \times(0, T))}\right) .
\end{aligned}
$$

The adjoint operator of $(A, D(A))$, with respect to the Y-topology, is defined by

$$
\begin{aligned}
& D\left(A^{*}\right)=\left\{(\phi, \psi) \in H^{1}(0, \ell) \times H^{1}(0, \ell)\right. \\
&\mid \phi(0)=0, \quad \psi(\ell)=0\}
\end{aligned}
$$

and

$$
\left(A^{*}+L^{*}\right)\left[\begin{array}{l}
\phi \\
\psi
\end{array}\right]=\left[\begin{array}{c}
-m_{1} \frac{d \phi}{d x}-a_{11} \phi-a_{21} \psi \\
m_{2} \frac{d \psi}{d x}-a_{12} \phi-a_{22} \psi
\end{array}\right]
$$

To study the system $(H E)$, we define the operator $B \in \mathcal{L}\left(\left(L^{2}(0, \ell)\right)^{2}\right)$ by

$$
B\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} u_{1} \\
b_{2} u_{2}
\end{array}\right]
$$

The (HE) is of the form

$$
z^{\prime}=(A+L) z+B u, \quad z(0)=z_{0}
$$

The control problem

We want to study the control problem

$$
\begin{align*}
& \inf \{J(z, u) \mid(z, u) \text { obeys }(H E), \tag{P}\\
& \left.u \in\left(L^{2}((0, \ell) \times(0, T))\right)^{2}\right\}
\end{align*}
$$

where
$J(z, u)=\frac{1}{2} \int_{0}^{\ell}\left|z(T)-z_{d}(T)\right|^{2}+\frac{\beta}{2} \int_{0}^{T} \int_{0}^{\ell}\left(u_{1}^{2}+u_{2}^{2}\right)$,
and $\beta>0$. We assume that $z_{d} \in C([0, T] ; Y)$.

Theorem. Problem (P) admits a unique solution (\bar{z}, \bar{u}). Moreover \bar{u} is characterized by

$$
\bar{u}_{1}(x, t)=-\frac{b_{1}}{\beta} \phi(x, t) \quad \text { and } \quad \bar{u}_{2}(x, t)=-\frac{b_{2}}{\beta} \psi(x, t),
$$

in $(0, T)$, where (ϕ, ψ) is the solution to the adjoint system

$$
-\frac{\partial}{\partial t}\left[\begin{array}{l}
\phi(x, t) \\
\psi(x, t)
\end{array}\right]=\frac{\partial}{\partial x}\left[\begin{array}{c}
-m_{1} \phi \\
m_{2} \psi
\end{array}\right]-\left[\begin{array}{c}
a_{11} \phi+a_{21} \psi \\
a_{12} \phi+a_{22} \psi
\end{array}\right]
$$

in $(0, \ell) \times(0, T)$, with the terminal condition

$$
\phi(T)=\bar{z}_{1}(T)-z_{d, 1}(T), \quad \psi(T)=\bar{z}_{2}(T)-z_{d, 2}(T)
$$

in $(0, \ell)$, and the boundary conditions

$$
\phi(0, t)=0, \quad \psi(\ell, t)=0 \quad \text { in } \quad(0, T) .
$$

Proof. (i) The existence of a unique solution to (P) is classical and is left as exercice.
(ii) The state equation is of the form

$$
z^{\prime}=(A+L) z+B u, \quad z(0)=z_{0}
$$

and the cost functional
$J(z, u)=\frac{1}{2}\left\|z(T)-z_{d}(T)\right\|_{L^{2}(0, \ell)}^{2}+\frac{\beta}{2} \int_{0}^{T}\|u(t)\|_{\left(L^{2}(0, \ell)\right)^{2}}^{2}$.
Thus the optimal control \bar{u} is characterized by

$$
\bar{u}(t)=-\frac{1}{\beta} B^{*} p(t)
$$

where p is the solution to

$$
-p^{\prime}=(A+L)^{*} p, \quad p(T)=\bar{z}(T)-z_{d}(T)
$$

Set

$$
p=\binom{\phi}{\psi} .
$$

We can verify that (ϕ, ψ) is the solution to the adjoint equation corresponding to \bar{z}.

We can prove that

$$
B^{*}(\phi(t), \psi(t))=\left(b_{1} \phi(x, t), b_{2} \psi(x, t)\right) .
$$

(iii) We can directly prove the optimality conditions for problem (P) by using the same method as for the heat and the wave equations. Setting $F(u)=J\left(z\left(z_{0}, u\right), u\right)$, where $z\left(z_{0}, u\right)$ is the solution to (HE), we have

$$
\begin{aligned}
& F^{\prime}(\bar{u}) u=\int_{0}^{\ell}\left(\bar{z}_{1}(T)-z_{d 1}(T)\right) w_{u 1}(T) \\
& +\int_{0}^{\ell}\left(\bar{z}_{2}(T)-z_{d 2}(T)\right) w_{u 2}(T)+\beta \int_{0}^{T}\left(\bar{u}_{1} u_{1}+\bar{u}_{2} u_{2}\right),
\end{aligned}
$$

where $w_{u}=z(0, u)$, and $z(0, u)$ is the solution to (HE) for $z_{0}=0$.

We can establish an integration by parts formula between w_{u} and the solution (ϕ, ψ) to (AE) to complete the proof.

References

[1] A. Bensoussan, G. Da Prato, M. C. Delfour, S. K. Mitter, Representation and Control of Infinite Dimensional Systems, Vol. 1, Birkhäuser, 1992.
[2] H. Brezis, Analyse Fonctionnelle, Theorie et Applications, Masson, Paris, 1983.
[3] T. Cazenave, A. Haraux, Introduction aux problèmes d'évolution semi-linéaires, Ellipses, 1990.
[4] R. Dautray, J.-L. Lions, Analyse mathématique et calcul numérique, Évolution : semi-groupe, variationnel, Vol. 8, Masson, Paris 1988.
[5] L. C. Evans, Partial Differential Equations, American Math. Soc., 1999.
[6] S. Kesavan, Topics in Functional Analysis and Applications, Wiley-Eastern, New Delhi, 1989.
[7] J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, 1971.
[8] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, 1983.
[9] C. Z. Xu, B. Chentouf, G. Sallet, On the stability of a symmetric hyperbolic linear system with nonsmooth coefficients, 37 th IEEE CDC, 1998, 45434544.

