
Chapter 3

Optimal Control of Evolution Equations

with Bounded Control Operators

Jean-Pierre Raymond

– Typeset by FoilTEX – 1



Introduction to the optimal control of evolution
equations

Distributed control of the heat equation

Existence of optimal controls

Characterization of optimal controls

Distributed control of the wave equation

A general control problem

Control of a first order hyperbolic system

– Typeset by FoilTEX – 2



Optimal control of evolution
equations
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Setting of the problem

We consider equations of the form

(E) y′ = Ay +Bu+ f, y(0) = y0.

Assumptions

Y and U are Hilbert spaces.

The unbounded operator (A,D(A)) is the infinitesimal

generator of a strongly continuous semigroup on Y .

This semigroup will be denoted by (etA)t≥0.

The operator B belongs to L(U ;Y ).
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The control problem

(P ) inf{J(y, u) | u ∈ L2(0, T ;U), (y, u) obeys (E)},

J(y, u)

=
1
2

∫ T

0

|Cy(t)− zd(t)|2Z +
1
2
|Dy(T )− zT |2ZT

+
1
2

∫ T

0

|u(t)|2U .

Assumption
Z and ZT are Hilbert spaces.

The operator C belongs to L(Y ;Z), and the operator

D belongs to L(Y ;ZT ). The function zd belongs to

L2(0, T ;Z) and zT ∈ ZT .
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Optimal control

of the heat equation
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The state equation

Let Ω be a bounded domain in RN , with a boundary

Γ of class C2. Let T > 0, set Q = Ω × (0, T ) and

Σ = Γ× (0, T ). We consider the heat equation with a

distributed control

(HE)
∂y

∂t
−∆y = f + χωu in Q,

y = 0 on Σ, y(x, 0) = y0 in Ω.
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u

y = 0 

Ω

Γ

ω
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The control problem

(P )
inf{J(y, u) | u ∈ L2(ω × (0, T ))),

(y, u) obeys (HE)},

where

J(y, u) =
1
2

∫
Q

|y − yd|2

+
1
2

∫
Ω

|y(T )− yd(T )|2 +
β

2

∫
ω×(0,T )

u2,

β > 0 and yd ∈ C([0, T ];L2(Ω)).

Estimate for the state variable

‖y‖C([0,T ];L2(Ω))

≤ C(‖y0‖L2(Ω) + ‖f‖L2(Q) + ‖u‖L2(ω×(0,T ))).
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Existence of a unique optimal control

1. Set F (u) = J(y(u), u). Let (un)n be a minimizing

sequence in L2(ω × (0, T )), that is

limn→∞F (un) = infu∈L2(ω×(0,T ))F (u).

Let yn the solution of (HE) corresponding to un,

suppose that (un)n is bounded in L2(ω × (0, T )), and

that

un ⇀ ū weakly in L2(ω × (0, T )).
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2. Let ȳ = y(ū).

The operator

Λ : u −→ y(u)

is affine and continuous from L2(ω× (0, T )) to L2(Q),
and

ΛT : u −→ y(u)(T )

is affine and continuous from L2(ω× (0, T )) to L2(Ω).

The sequence (yn)n converges to ȳ for the weak

topology of L2(Q), and (yn(T ))n converges to ȳ(T )
for the weak topology of L2(Ω).
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3. Using the weakly lower semicontinuity of

‖ · ‖2
L2(Q)

, ‖ · ‖2
L2(Ω)

, ‖ · ‖2
L2(ω×(0,T ))

, we obtain∫
ω×(0,T )

ū2 ≤ liminfn→∞

∫
ω×(0,T )

u2
n,

∫
Q

|ȳ − yd|2 ≤ liminfn→∞

∫
Q

|yn − yd|2,

and∫
Ω

|ȳ(T )− yd(T )|2 ≤ liminfn→∞

∫
Ω

|yn(T )− yd(T )|2.

Combining these results, we have

F (ū) ≤ liminfn→∞F (un) = m.

Thus ū is a solution to (P ).
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Uniqueness. Recall that the mappings

u −→ y(u) and u −→ y(u)(T )

are affine. Thus

u −→ 1
2

∫
Q

|y(u)− yd|2 +
1
2

∫
Ω

|y(u)(T )− yd(T )|2

is convex. The mapping

u −→ β

2

∫
Q

χωu
2

is stricly convex. Thus the uniqueness follows from the

strict convexity of F .
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Optimality conditions
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Derivative of the state variable

Equation satisfied by zλ = y(u+ λv)− y(u)

∂z

∂t
−∆z = λχωv in Q,

z = 0 on Σ, z(x, 0) = 0 in Ω.

From the estimate for (HE) it follows that

‖zλ‖C([0,T ];L2(Ω)) ≤ C|λ|‖v‖L2(ω×(0,T )).

Thus

y(u+ λv)
C([0,T ];L2(Ω))−→ y(u).
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F ′(u)v = limλ↘0
F (u+ λv)− F (u)

λ
.

By a classical calculation we have

F ′(u)v =
∫

Q

(y(u)− yd)z(v)

+
∫

Ω

(y(u)(T )− yd(T ))z(v)(T ) + β

∫
ω×(0,T )

uv,

where z(v) is the solution of

∂z

∂t
−∆z = χωv in Q,

z = 0 on Σ, z(x, 0) = 0 in Ω.

– Typeset by FoilTEX – 16



Identification of F ′(u)

We look for q such that

∫
Q

(y(u)−yd)z(v)+
∫

Ω

[(y(u)−yd)z(v)](T ) =
∫

ω×(0,T )

q v.

Let p be a regular function defined on Q and write an

integration by parts between z(v) and p:

∫
ω×(0,T )

v p =
∫

Q

(zt −∆z)p

=
∫

Q

z(−pt −∆p) +
∫

Ω

z(T )p(T )−
∫

Σ

∂z

∂n
p
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Identification with∫
Q

(y(u)− yd)z +
∫

Ω

[(y(u)− yd)z](T ) =
∫

ω×(0,T )

q v.

We set

−∂p
∂t

−∆p = y(u)− yd in Q,

p = 0 on Σ, p(x, T ) = (y(u)− yd)(T ) in Ω,

and we have

F ′(u)v =
∫

ω×(0,T )

(p+ βu)v,

if the above calculation are justified.
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The adjoint equation

Let g ∈ L2(Q), pT ∈ L2(Ω). The terminal boundary

value problem

(AE)
−∂p
∂t

−∆p = g in Q,

p = 0 on Σ, p(x, T ) = pT in Ω,

is well posed.

‖p‖C([0,T ];L2(Ω)) ≤ C(‖g‖L2(Q) + ‖pT‖L2(Ω)).
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Proof. A weak solution in L2(0, T ;L2(Ω)) to (AE)
is a function p ∈ L2(0, T ;L2(Ω)) such that, for all

z ∈ H2 ∩H1
0(Ω), the mapping

t 7−→ 〈p(t), z〉

belongs to H1(0, T ) and obeys

− d

dt
〈p(t), z〉 = 〈y(t), A∗z〉+ 〈g(t), z〉,

〈p(T ), z〉 = 〈pT , z〉.
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The function p is a weak solution to (AE) if and only

if the function q defined by

q(x, t) = p(x, T − t)

is the solution to the equation

∂q

∂t
−∆q = g̃ in Q,

q = 0 on Σ, q(x, 0) = pT in Ω,

where g̃(x, t) = g(x, T − t).
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Integration by parts between z and p

Theorem. Suppose that φ ∈ L2(Q), g ∈ L2(Q), and

pT ∈ L2(Ω). Then the solution z of equation

∂z

∂t
−∆z = φ in Q, z = 0 on Σ, z(x, 0) = 0 in Ω,

and the solution p of (AE) satisfy the following formula∫
Q

φ p =
∫

Q

z g +
∫

Ω

z(T )pT .
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Proof. If pT ∈ H1
0(Ω), due to a Theorem of Chapter 2,

z and p belong to L2(0, T ;D(A))) ∩H1(0, T ;L2(Ω)).
In that case, with the Green formula we have∫

Ω

−∆z(t)p(t) dx =
∫

Ω

−∆p(t)z(t) dx

for almost every t ∈ [0, T ], and∫ T

0

∫
Ω

∂z

∂t
p = −

∫ T

0

∫
Ω

∂p

∂t
z +

∫
Ω

z(T )pT .
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Thus the IBP formula is established in the case

when pT ∈ H1
0(Ω). If (pTn)n is a sequence in

H1
0(Ω) converging to pT in L2(Ω), due to the

’C([0, T ];L2(Ω))-estimate’, (pn)n - where pn is the

solution to (AE) corresponding to pTn - converges

to p (the solution of (AE) associated with pT ) in

C([0, T ];L2(Ω)) when n tends to infinity. Thus, in

the case when pT ∈ L2(Ω), the IBP formula can be

deduced by passing to the limit in the formula satisfied

by pn.
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Theorem. (i) If (ȳ, ū) is the solution to (P ) then

ū = −1
βp|ω×(0,T ), where p is the solution to the adjoint

equation corresponding to ȳ:

−∂p
∂t

−∆p = ȳ − yd in Q,

p = 0 on Σ, p(x, 0) = ȳ(T )− yd(T ) in Ω.
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(ii) Conversely, if a pair (ỹ, p̃) ∈ C([0, T ];L2(Ω)) ×
C([0, T ];L2(Ω)) obeys the system

∂ỹ

∂t
−∆ỹ = f − 1

β
χωp̃ in Q,

ỹ = 0 on Σ, ỹ(x, 0) = ȳ0 in Ω,

−∂p̃
∂t

−∆p̃ = ỹ − yd in Q,

p = 0 on Σ, p̃(T ) = ỹ(T )− yd(T ) in Ω,

then the pair (ỹ,−1
β p̃) is the optimal solution to problem

(P ).

Proof. (i) The necessary optimality condition is already

proved.

(ii) The sufficient optimality condition can be proved

with a theorem stated in Chapter 1.
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Optimal control of

the wave equation
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The state equation

The assumptions on Ω, Γ, ω, T , Q, Σ are the ones of

the previous section. We consider

(WE)
y′′ −∆y = f + χωu in Q, y = 0 on Σ,

y(x, 0) = y0 and y′(x, 0) = y1 in Ω,

with (y0, y1) ∈ H1
0(Ω) × L2(Ω), f ∈ L2(Q), and u ∈

L2(ω × (0, T )).

The operator

(f + χωu, y0, y1) 7→ y(f + χωu, y0, y1)

is linear and continuous from L2(Q)×H1
0(Ω)×L2(Ω)

into C([0, T ];H1
0(Ω)) ∩ C1([0, T ];L2(Ω)).
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The family of control problems

(Pi) inf{Ji(y, u) | (y, u) obeys (WE), u ∈ L2},

with, for i = 1, . . . , 3, the functionals Ji are defined by

J1(y, u)

=
1
2

∫
Q

|y − yd|2 +
1
2

∫
Ω

|y(T )− yd(T )|2 +
β

2

∫
ω×(0,T )

u2,

J2(y, u) =
1
2

∫
Ω

|∇y(T )−∇yd(T )|2 +
β

2

∫
ω×(0,T )

u2,

J3(y, u) =
1
2

∫
Ω

∣∣∣y′(T )− y′d(T )
∣∣∣2 +

β

2

∫
ω×(0,T )

u2,

where the function yd ∈ C([0, T ];H1
0(Ω)) ∩

C1([0, T ];L2(Ω)).
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Theorem. Assume that f ∈ L2(Q), y0 ∈ H1
0(Ω), y1 ∈

L2(Ω), and yd ∈ C([0, T ];H1
0(Ω)) ∩C1([0, T ];L2(Ω)).

For i = 1, . . . , 3, problem (Pi) admits a unique solution

(ȳi, ūi).
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Existence of a unique optimal control

1. Set F (u) = J(y(u), u). Let (un)n be a minimizing

sequence in L2(ω × (0, T )), that is

limn→∞F (un) = infu∈L2(ω×(0,T ))F (u).

We suppose that

un ⇀ ū weakly in L2(ω × (0, T )).

Let yn the solution of (WE) corresponding to un,

suppose that (un)n is bounded in L2(ω × (0, T )), and

that

un ⇀ ū weakly in L2(ω × (0, T )).
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Passage to the limit in the equation.

Let ȳ = y(ū). The operator

Λ : u −→
(
y(u), y(u)(T ), y(u)′(T )

)
is affine and continuous from L2(ω×(0, T )) to L2(Q)×
H1

0(Ω)× L2(Ω).

We may conclude that, for i = 1, . . . , 3, problem (Pi)
admits a unique solution (ȳi, ūi).
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Optimality conditions for (P1)
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J1(y, u)

=
1
2

∫
Q

|y − yd|2 +
1
2

∫
Ω

|y(T )− yd(T )|2 +
β

2

∫
ω×(0,T )

u2,

By a classical calculation we have

F ′(u)v =
∫

Q

(y(u)− yd)z(v)

+
∫

Ω

(y(u)(T )− yd(T ))z(v)(T ) + β

∫
ω×(0,T )

uv,

where z(v) is the solution of

z′′ −∆z = χωv in Q, z = 0 on Σ,

z(x, 0) = 0 and z′(x, 0) = 0 in Ω.
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Identification of F ′(u)

We look for q such that∫
Q

(y(u)−yd)z(v)+
∫

Ω

[(y(u)−yd)z(v)](T ) =
∫

ω×(0,T )

q v.

Let p be a regular function defined on Q and write an

integration by parts between z(v) and p:∫
ω×(0,T )

v p =
∫

Q

(z′′ −∆z)p

=
∫

Q

z(p′′ −∆p) +
∫

Ω

z′(T )p(T )

−
∫

Ω

z(T )p′(T )−
∫

Σ

∂z

∂n
p
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Identification with∫
Q

(y(u)− yd)z +
∫

Ω

[(y(u)− yd)z](T ) =
∫

ω×(0,T )

q v.

We set

p′′ −∆p = y(u)− yd in Q, p = 0 on Σ,

p(x, T ) = 0 and p′(x, T ) = (y(u)− yd)(T ) in Ω.

and we have

F ′(u)v =
∫

ω×(0,T )

(p+ βu)v,

if the above calculation are justified.
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Theorem. (i) If (ȳ, ū) is the solution to (P1) then

ū = −1
βp|ω×(0,T ), where p is the solution to:

p′′ −∆p = ȳ − yd in Q, p = 0 on Σ,

p(x, T ) = 0, p′(x, T ) = ȳ(T )− yd(T ) in Ω,

(ii) Conversely, if (ỹ, p̃) ∈ (C([0, T ];L2(Ω)))2 obeys:

ỹ′′ −∆ỹ = f − 1
β
χωp̃ in Q, ỹ = 0 on Σ,

ỹ(x, 0) = y0, ỹ′(x, 0) = y1, in Ω,

p̃′′ −∆p̃ = ỹ − yd in Q, p̃ = 0 on Σ,

p̃(T ) = 0, p̃′(T ) = y(T )− yd(T ) in Ω,

then the pair (ỹ,−1
β p̃) is the optimal solution to (P1).
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Optimality conditions for (P2)
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Recall that

J2(y, u) =
1
2

∫
Ω

|∇y(T )−∇yd(T )|2 +
β

2

∫
ω×(0,T )

u2 .

Theorem. (i) If (ȳ, ū) is the solution to (P2) then

ū = −1
βp|ω×(0,T ), where p is the solution to the adjoint

equation

p′′ −∆p = 0 in Q, p = 0 on Σ,

p(T ) = 0 and p′(T ) = −∆(ȳ(T )− yd(T )) in Ω.

(p, p′) ∈ C([0, T ];L2(Ω))× C([0, T ];H−1(Ω)).
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(ii) Conversely, if a pair (ỹ, p̃) ∈ C([0, T ];L2(Ω)) ×
C([0, T ];L2(Ω)) obeys the system

ỹ′′ −∆ỹ = f − 1
β
χωp̃ in Q, ỹ = 0 on Σ,

ỹ(x, 0) = y0, ỹ′(x, 0) = y1, in Ω,

p̃′′ −∆p̃ = 0 in Q, p̃ = 0 on Σ,

p̃(T ) = 0, p′(T ) = −∆(ỹ(T )− yd(T )) in Ω,

then the pair (ỹ,−1
β p̃) is the optimal solution to (P2).

– Typeset by FoilTEX – 40



Remark 1. We set

F2(u) = J2(y(u), u).

We have

F ′2(u)v =
∫

Ω

(
∇y(T )−∇yd(T )

)
·∇z(T )+β

∫
ω×(0,T )

u v ,

where z is the solution to

z′′ −∆z = χωv in Q, z = 0 on Σ,

z(x, 0) = 0, z′(x, 0) = 0, in Ω.
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Moreover∫
Ω

(
∇y(T )−∇yd(T )

)
· ∇z(T )

=
〈
z(T ), (−∆)(y(T )− yd(T ))

〉
H1

0(Ω),H−1(Ω)
.

This is why we have

p′(x, T ) = −∆(ȳ(T )− yd(T ))

in the adjoint equation.
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Remark 2. If ỹ ∈ C([0, T ];H1
0(Ω)), then ∆ỹ(T )

belongs to H−1(Ω). Thus the adjoint equation is

stated with p′(T ) in H−1(Ω). We are going to prove

that the wave equation is well posed with an initial

condition in L2(Ω)×H−1(Ω).

Let us recall a result from chapter 2. Set Y =
H1

0(Ω)× L2(Ω) and endow Y with the inner product(
u, v

)
Y

=
∫

Ω

∇u1 · ∇v1 +
∫

Ω

u2 v2,

where u = (u1, u2) and v = (v1, v2). Set D(A) =
(H2(Ω) ∩H1

0(Ω))×H1
0(Ω) and

Ay = A

(
y1
y2

)
=

(
y2

∆y1

)
, and y0 =

(
z0
z1

)
.
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In chapter 2 we have proved that (A,D(A)) and

(−A,D(A)) are m-dissipative in Y .

Now we set Ŷ = L2(Ω) × H−1(Ω). We equip Ŷ

with the inner product(
u, v

)
bY =

∫
Ω

u1 · v1 +
〈
(−∆)−1u2, v2

〉
H1

0(Ω),H−1(Ω)
,

where u = (u1, u2) and v = (v1, v2). Set D(Â) =
H1

0(Ω)× L2(Ω) and

Ây = Â

(
y1
y2

)
=

(
y2

∆y1

)
.

We can prove that (Â,D(Â)) and (−Â,D(Â)) are

m-dissipative in Ŷ .
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Optimality conditions for (P3)
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The functional is

J3(y, u) =
1
2

∫
Ω

∣∣∣y′(T )− y′d(T )
∣∣∣2 +

β

2

∫
ω×(0,T )

u2 .

Theorem. (i) If (ȳ, ū) is the solution to (P3) then

ū = −1
βp|ω×(0,T ), where p is the solution to the adjoint

p′′ −∆p = 0 in Q, p = 0 on Σ,

p(T ) = (ȳ′ − y′d)(T ) and p′(T ) = 0 in Ω.
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(ii) Conversely, if a pair (ỹ, p̃) ∈ C([0, T ];L2(Ω))×
C([0, T ];L2(Ω)) obeys the system

ỹ′′ −∆ỹ = f − 1
β
χωp̃ in Q, ỹ = 0 on Σ,

ỹ(x, 0) = y0, ỹ′(x, 0) = y1, in Ω,

p̃′′ −∆p̃ = 0 in Q, p̃ = 0 on Σ,

p̃(T ) = (ỹ′ − y′d)(T ), p̃′(T ) = 0 in Ω,

then the pair (ỹ,−1
β p̃) is the optimal solution to (P3).
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Optimal control of

evolution equations
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The state equation

(SE) y′ = Ay +Bu+ f, y(0) = y0.

Assumptions

Y and U are Hilbert spaces.

The unbounded operator (A,D(A)) is the infinitesimal

generator of a strongly continuous semigroup on Z.

This semigroup will be denoted by (etA)t≥0.

The operator B belongs to L(U ;Y ).

The control problem

(P )
inf{J(y, u) | u ∈ L2(0, T ;U), (y, u) obeys (SE)},
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with

J(y, u) =
1
2

∫ T

0

|Cy(t)− zd(t)|2Z

+
1
2
|Dy(T )− zT |2ZT

+
1
2

∫ T

0

|u(t)|2U .

Assumption
Z and ZT are Hilbert spaces.

The operator C belongs to L(Y ;Z), and the operator

D belongs to L(Y ;ZT ). The function zd belongs to

L2(0, T ;Z) and zT ∈ ZT .
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Existence of a unique optimal control

If the assumptions on B, C, D are satisfied. Problem

(P ) admits a unique solution (y, u).

The proof is based on the existence of a minimizing

sequence (un)n, bounded in L2(0, T ;U), and on the

fact that the operator

Λ : u −→
(
Cy(u)− zd, Dy(u)(T )− zT

)
is affine and continuous from L2(0, T ;U) to

L2(0, T ;Z)× ZT .
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Optimality conditions

The adjoint equation for (P ) will be of the form

(AE) −p′ = A∗p+ g, p(T ) = pT .

From chapter 2, we know that (A∗, D(A∗)) is

the infinitesimal generator of a strongly continuous

semigroup on Y ′. Thus (AE) is well posed if pT ∈ Y ′

and if g ∈ L1(0, T ;Y ′). For simplicity we identify Y

and Y ′.

Integration by parts formula

We state an integration by parts formula between the

adjoint state p and the solution z to the equation

(LE) z′ = Az + f, z(0) = 0.
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Theorem. For every f ∈ L2(0, T ;Y ), and every

(g, pT ) ∈ L2(0, T ;Y ) × Y , the solution z to equation

(LE) and the solution p to equation (AE) satisfy the

following formula∫ T

0

(
f(t), p(t)

)
Y
dt

=
∫ T

0

(
z(t), g(t)

)
Y
dt+

(
z(T ), pT

)
Y
−

(
z0, p(0)

)
Y
.
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Proof. Suppose that f and g belong to C1([0, T ];Y )
and that pT belongs to D(A∗). In this case we can

write∫ T

0

(
f(t), p(t)

)
Y
dt =

∫ T

0

(
z′(t)−Az(t), p(t)

)
Y
dt

=
∫ T

0

−
(
z(t), p′(t)

)
Y
dt+

(
z(T ), pT

)
Y

−
(
z0, p(0)

)
Y
−

∫ T

0

(
Az(t), p(t)

)
Y
dt

=
∫ T

0

(
z(t), g(t)

)
Y
dt+

(
z(T ), pT

)
Y
−

(
z0, p(0)

)
Y
.

Thus, the IBP formula can be deduced from this case

by using density arguments.
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Optimality conditions

Theorem. If (ȳ, ū) is the solution to (P ) then ū =
−B∗p, where p is the solution to equation

−p′ = A∗p+C∗(Cȳ−zd), p(T ) = D∗(Dȳ(T )−zT ).

Conversely, if a pair (ỹ, p̃) ∈ C([0, T ];Y )×C([0, T ];Y )
obeys the system

ỹ′ = Aỹ −BB∗p̃+ f, ỹ(0) = y0,

−p̃′ = A∗p̃+ C∗(Cỹ − zd),

p̃(T ) = D∗(Dỹ(T )− zT ),

then the pair (ỹ,−B∗p̃) is the optimal solution to

problem (P ).
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Proof. Let (ȳ, ū) be the optimal solution to

problem (P ). Set F (u) = J(y(u), u). For every

u ∈ L2(0, T ;U), we have

F ′(ū)u =
∫ T

0

(
Cȳ(t)− zd, Cz(t)

)
Z

+
(
Dȳ(T )− zT , Dz(T )

)
ZT

+
∫ T

0

(
ū(t), u(t)

)
U

=
∫ T

0

(
C∗(Cȳ(t)− zd), z(t)

)
Y

+
(
D∗(Dȳ(T )− zT ), z(T )

)
Y

+
∫ T

0

(ū(t), u(t))U ,

where z is the solution to

z′ = Az +Bu, z(0) = 0.
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Applying the IBP formula to p and z, we obtain

F ′(ū)u =
∫ T

0

(p(t), Bu(t))Y +
∫ T

0

(ū(t), u(t))U

=
∫ T

0

(B∗p(t) + ū(t), u(t))U .

The first part of the Theorem is established. The second

part follows from the sufficient optimality condition

stated in Chapter 1.
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Exercise

Let L > 0 and a be a function in H1(0, L) such that

0 < c1 ≤ a(x) for all x ∈ H1(0, L). Consider the

equation

(TE)
yt + ayx = f + χ(`1,`2)u, in (0, L)× (0, T ),
y(0, t) = 0, in (0, T ),
y(x, 0) = y0, in (0, L),

where f ∈ L2((0, L) × (0, T )), χ(`1,`2) is the

characteristic function of (`1, `2) ⊂ (0, L), u ∈
L2((`1, `2)× (0, T )), and y0 ∈ L2(0, L).
Prove that (TE) admits a unique solution in

C([0, T ];L2(0, L)) (use the Hille-Yosida theorem).
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Study the control problem

(P )
inf{J(y, u) | u ∈ L2(0, T ;L2(`1, `2)),

(y, u) satisfies (TE)}.

with

J(y, u) =
1
2

∫ L

0

(y(T )− yd(T ))2 +
1
2

∫ T

0

∫ `2

`1

u2,

where yd ∈ C([0, T ];L2(0, L)). Prove the existence of a

unique solution. Write first order optimality conditions.
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Optimal control of a first order

hyperbolic system
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The state equation

Consider the first order hyperbolic system

∂

∂t

[
z1(x, t)
z2(x, t)

]
=

∂

∂x

[
m1z1
−m2z2

]
−

[
a11z1 + a12z2 + b1u1

a21z1 + a22z2 + b2u2

]
,

in (0, `)× (0, T ), with the initial condition

z1(x, 0) = z01(x), z2(x, 0) = z02(x) in (0, `),

and the boundary conditions

z1(`, t) = 0, z2(0, t) = 0 in (0, T ).

We refer to this system as the system (HE). This kind

of systems intervenes in heat exchangers [9].

– Typeset by FoilTEX – 61



We suppose that the constant coefficients m1 > 0,

m2 > 0, and that a11, a12, a21, a22, b1, b2 are regular.

State equation

We set Y = L2(0, `) × L2(0, `), and we define the

unbounded operator A in Y by

D(A) = {z ∈ H1(0, `)×H1(0, `) | z1(`) = 0, z2(0) = 0}

and

Az =

 m1
dz1
dx

−m2
dz2
dx

 .
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We define the operator L ∈ L(Y ) by

Lz =

[
−a11z1 − a12z2

−a21z1 − a22z2

]
.
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Theorem. The operator (A,D(A)) is the infinitesimal

generator of a strongly continuous semigroup of

contractions on Y .

Proof. The theorem relies the Hille-Yosida theorem.

(i) The operator A is dissipative in Y :

(Az, z) =
∫ `

0

m1
dz1
dx
z1 −

∫ `

0

m2
dz2
dx
z2

= −m1

2
z1(0)2 − m2

2
z2(`)2 ≤ 0.
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(ii) For λ > 0, f ∈ L2(0, `), g ∈ L2(0, `), consider the

equation

z ∈ D(A), λ

(
z1
z2

)
−A

(
z1
z2

)
=

(
f

g

)
,

that is

λz1 −m1
dz1
dx

= f in (0, `), z1(`) = 0,

λz2 +m2
dz2
dx

= g in (0, `), z2(0) = 0.

This equation admits a unique solution z ∈ D(A).
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Theorem. The operator (A + L,D(A)) is the

infinitesimal generator of a strongly continuous

semigroup on Y .

Theorem. For all z0 = (z10, z20) ∈ Y , u1 ∈ L2((0, `)×
(0, T )), u2 ∈ L2((0, `) × (0, T )), the system (HE)
admits a unique weak solution in L2(0, T ;L2(0, `)),
this solution belongs to C([0, T ];Y ) and satisfies

‖z‖C([0,T ];Y )

≤ C
(
‖z0‖Y + ‖u1‖L2((0,`)×(0,T )) + ‖u2‖L2((0,`)×(0,T ))

)
.
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The adjoint operator of (A,D(A)), with respect to the

Y -topology, is defined by

D(A∗) =
{

(φ, ψ) ∈ H1(0, `)×H1(0, `)

| φ(0) = 0, ψ(`) = 0
}
,

and

(A∗ + L∗)

[
φ

ψ

]
=

 −m1
dφ

dx
− a11φ− a21ψ

m2
dψ

dx
− a12φ− a22ψ

 .
To study the system (HE), we define the operator

B ∈ L((L2(0, `))2) by

B

[
u1

u2

]
=

[
b1u1

b2u2

]
.
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The (HE) is of the form

z′ = (A+ L)z +Bu, z(0) = z0.

The control problem

We want to study the control problem

(P )
inf{J(z, u) | (z, u) obeys (HE),
u ∈ (L2((0, `)× (0, T )))2},

where

J(z, u) =
1
2

∫ `

0

|z(T )− zd(T )|2 +
β

2

∫ T

0

∫ `

0

(u2
1 + u2

2),

and β > 0. We assume that zd ∈ C([0, T ];Y ).
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Theorem. Problem (P ) admits a unique solution

(z̄, ū). Moreover ū is characterized by

ū1(x, t) = −b1
β
φ(x, t) and ū2(x, t) = −b2

β
ψ(x, t),

in (0, T ), where (φ, ψ) is the solution to the adjoint

system

− ∂

∂t

[
φ(x, t)
ψ(x, t)

]
=

∂

∂x

[
−m1φ

m2ψ

]
−

[
a11φ+ a21ψ

a12φ+ a22ψ

]
in (0, `)× (0, T ), with the terminal condition

φ(T ) = z̄1(T )− zd,1(T ), ψ(T ) = z̄2(T )− zd,2(T )

in (0, `), and the boundary conditions

φ(0, t) = 0, ψ(`, t) = 0 in (0, T ).
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Proof. (i) The existence of a unique solution to (P ) is

classical and is left as exercice.

(ii) The state equation is of the form

z′ = (A+ L)z +Bu, z(0) = z0,

and the cost functional

J(z, u) =
1
2
‖z(T )−zd(T )‖2

L2(0,`)+
β

2

∫ T

0

‖u(t)‖2
(L2(0,`))2.

Thus the optimal control ū is characterized by

ū(t) = −1
β
B∗p(t),

where p is the solution to

−p′ = (A+ L)∗p, p(T ) = z̄(T )− zd(T ).
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Set

p =
(
φ

ψ

)
.

We can verify that (φ, ψ) is the solution to the adjoint

equation corresponding to z̄.

We can prove that

B∗(φ(t), ψ(t)) = (b1φ(x, t), b2ψ(x, t)).
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(iii) We can directly prove the optimality conditions for

problem (P ) by using the same method as for the heat

and the wave equations. Setting F (u) = J(z(z0, u), u),
where z(z0, u) is the solution to (HE), we have

F ′(ū)u =
∫ `

0

(z̄1(T )− zd1(T ))wu1(T )

+
∫ `

0

(z̄2(T )− zd2(T ))wu2(T ) + β

∫ T

0

(ū1u1 + ū2u2),

where wu = z(0, u), and z(0, u) is the solution to (HE)

for z0 = 0.

We can establish an integration by parts formula

between wu and the solution (φ, ψ) to (AE) to complete

the proof.
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