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Random walks

Let G = (V (G),E(G)) be a graph, we consider a random
walk (Xn)n≥0 on G with transitions probability p(., .).

Assumption : there exists a reversible measure m for X .

We let a(x , y) = m(x)p(x , y).
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Example : Simple Random walk.

p(x , y) =
1{(x ,y)∈E(G)}

ν(x)
,

where ν(x) is the number of neighbours of x in G.

In this case,
m = ν and a = 1.
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One tools to control random walk : IS

Let ISF the inequality : for all set A a(∂A)
F(m(A)) ≥ c

Proposition (Coulhon 99)
Let G a graph such that ISF is satisfied. Assume that the
function f : t → t/F(t) is increasing and that
m0 = infV (G) m > 0, then :

sup
x ,y

p2n(x , y)

m(y)
≤ 2u(n),

where u : R→]0; 1/m0] satisfies
{

u(0) = 1/m0
u′ = − u

2g(1/u)
with

g(x) = 4(f(4x)/c)2
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for all subset A
|∂A|
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implies
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Stability of IS ?

Isoperimetric inequality is not stable under perturbations.

ex : Bernouilli percolation process of Zd destroy it.

⇒ new notion more stable ! ! !

Anchored isoperimetry
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definition.

Definition
Let F a positive increasing function defined on R+. Let G a
graph with bounded valence and o ∈ G. We say that G satisfies
an anchored (or rooted) F-isoperimetric inequality in o if there
exists a constant CIS > 0 such that for any connected set A
which contains o we have :

|∂A|
F(|A|)

≥ CIS. (1)

∂A is equal to the set {(x , y) ∈ E(G); x ∈ A and y /∈ A} and |A|
stands for the cardinal of A.

We will write G satisfies AISF .
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definition.

When F = id , there is an equivalent version of this definition
which can be said as follow :

Definition
G satisfies an anchored (or rooted) isoperimetric inequality if

lim
n→∞

inf{|∂S|
|S|

; S connected , v ∈ S and |S| ≥ n} := i?(G)

is strictly positif.

This definition does not depend on the choice of the fixed
vertex v whereas in the previous definition, the constant CIS
depends on the point o.

Thierry Delmotte, Rau Clément Exit time for anchored expansion



Introduction
New results

Some ideas of the proof.
Applications

Open questions

Random walks
Links between geometry and random walks.
What is anchored expansion.
what we know
what we don’t know

definition.

When F = id , there is an equivalent version of this definition
which can be said as follow :

Definition
G satisfies an anchored (or rooted) isoperimetric inequality if

lim
n→∞

inf{|∂S|
|S|

; S connected , v ∈ S and |S| ≥ n} := i?(G)

is strictly positif.

This definition does not depend on the choice of the fixed
vertex v whereas in the previous definition, the constant CIS
depends on the point o.

Thierry Delmotte, Rau Clément Exit time for anchored expansion



Introduction
New results

Some ideas of the proof.
Applications

Open questions

Random walks
Links between geometry and random walks.
What is anchored expansion.
what we know
what we don’t know

definition.

When F = id , there is an equivalent version of this definition
which can be said as follow :

Definition
G satisfies an anchored (or rooted) isoperimetric inequality if

lim
n→∞

inf{|∂S|
|S|

; S connected , v ∈ S and |S| ≥ n} := i?(G)

is strictly positif.

This definition does not depend on the choice of the fixed
vertex v whereas in the previous definition, the constant CIS
depends on the point o.

Thierry Delmotte, Rau Clément Exit time for anchored expansion



Introduction
New results

Some ideas of the proof.
Applications

Open questions

Random walks
Links between geometry and random walks.
What is anchored expansion.
what we know
what we don’t know

definition.

When F = id , there is an equivalent version of this definition
which can be said as follow :

Definition
G satisfies an anchored (or rooted) isoperimetric inequality if

lim
n→∞

inf{|∂S|
|S|

; S connected , v ∈ S and |S| ≥ n} := i?(G)

is strictly positif.

This definition does not depend on the choice of the fixed
vertex v whereas in the previous definition, the constant CIS
depends on the point o.

Thierry Delmotte, Rau Clément Exit time for anchored expansion



Introduction
New results

Some ideas of the proof.
Applications

Open questions

Random walks
Links between geometry and random walks.
What is anchored expansion.
what we know
what we don’t know

definition.

⇒ Now, the work is to examin what anchored isoperimetric
inequality implies for random walk.
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Results known.

Theorem
(Thomassen 92) Let G a graph satisfying a AISF , then∑

k

1
F(k)2 <∞⇒ the simple random walk on G is transient.
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Results known.

Theorem (Virag 00)

Let G a graph (with bounded geometry) satisfying AISid (strong
anchored isoperimetric inequality (F = id)), then

1 there exists a constant c > 0 such that
lim infn

|Xn|
n ≥ c i?(G)7 a.s

2 for all x ∈ G there exists N such that for all n ≥ N and for
all y ∈ G one has :

pn(x , y) ≤ e−αn1/3

where α = c′ i?(G)2
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Results known.

Theorem (Chen and Peres 05)
Consider a p−Bernouilli percolation on a graph G with constant
i?(G) > 0, if p < 1 is sufficiently close to 1 then, almost surely
on the event that the open cluster H containing 0 is infinite, we
have i?(H) > 0

A refinement of the argument due to Gabor Pete shows that the
conclusion holds for all p > 1

1+i(?G) .
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Results known.

For a graph G, we replace each edge e ∈ E(G) by a path that
consists in Le new edges, where the random variable
(Le)e∈E(G) are independant with law ν.

Let Gν the graph obtained in this way, we call it a random
strech of G.
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Results known.

ν has an exponential tail if ν([l ; +∞[) ≤ e−εl for ε > 0 and l
large enough.

Theorem (Chen and Peres 05)
Suppose that G is an infinite graph of bounded degree and
i?(G) > 0. If ν has an exponential tail then i?(Gν) > 0 a.s.
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what we don’t know and we will be happy to know

Question 1 : does anchored isoperimetry is a good tool ?
Question 2 : does a general anchored isoperimetric
inequality imply an upper bound of pn(x , y) ?
Question 3 : does the sub tree of Thomassen satisfy an
anchored Isoperimetric inequality ?
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Summary

ISF AISF
Stability Not in general ! ok if p is close to 1

under percolation Chen,Peres, (Pete)
Transcience Computation if

∑
k F(k)−2 <∞

or recurrence g(1/x) integrable in 0 Thomassen

λ1(A) λ1(A) ≥ C2
IS
F(|A|)2

|A|2 ?
Cheeger

Transition kernel pn(x , y) ≤ u(n) For F = id (Virag)
u sol of an ED pn(x , y) ≤ e−n1/3

(Coulhon)
Speed Computation For F = id (Virag)

... lim inf |Xn|
n ≥ ci(G)7
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time due to transitions kernel
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For A ⊂ G, let τA the exit time of A for X :

τA = inf{k ≥ 0 ; Xk /∈ A}

and when X is transient let lA the occupation time of A by :

lA = card{k ∈ N; Xk ∈ A}.
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Open questions

General statement
Consequences

New results.

Theorem
Let G satisfying AISF , then for any A ⊂ G containing 0 we
have :

Eo(τA) ≤ 2
∫ GA(0)

0
v(s) ds, (2)

where v is solution of the differential equation{
v(0) = m(A)

v ′ = −(CISF(v))2.

In fact this estimate holds for E0(lA) when X is transient.
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New results

Examples :

if F(x) = x1− 1
d , (d ≥ 3) we have :

Eo(τA) ≤ Eo(lA) ≤ c(d) m(A)
2
d ,

if F(x) = x
1
2 (d = 2) we have :

Eo(τA) ≤ c m(A),

if F(x) = x we have :

Eo(τA) ≤ Eo(lA) ≤ c ln(m(A)),
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New results

Let GA(., .) the Green function associated to random walk killed
outside A and let

At = {x ∈ A; GA(0, x) ≥ t}

and
u(t) = m(At )

Proposition
If G satisfies AISF , then u satisfies the following differential

inequation :

{
u(0) = m(A)

u′ ≤ −(CISF(u))2.
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We retrieve Thomassen’s result

Assume
∫ +∞

1
du
F(u)2 < +∞ for F continuous on R+.

Integrating

{
u(0) = m(A)

u′ ≤ −(CISF(u))2.
gives us that

∫ u(0)

u(t)

ds
F(s)2 ≥ C2

IS t .

So
lim

t→+∞
u(t) = 0 uniformly in A.

Since
u(t) = m(x ∈ A; GA(0, x) ≥ t)

There exists t0 such that for all t ≥ t0, GA(0, x) ≤ t0.
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We retrieve a weak version of Virag’s result

Proposition

Let G a graph satisfying AISid and let (Xn)n simple random walk
on G. Then we have :

P( lim
n

d(o,Xn)

n
= 0) = 0.
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Green function

Let A connected such that 0 ∈ A. Consider the random walk
killed outside A, with following transitions :

pA(x , y) =

{
p(x , y) if x ∈ A,
0 otherwise.

GA(x , y) =
1

m(y)

∑
k≥0

PA
x (Xk = y).

GA(x) = GA(o, x).
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The discrete Laplacian is

4Af = (Id − PA)f ,

where PA is the operator defined on functions which are zero
outside A by :

PAf (x) = Ex (f (X1) 1{X1∈A}) =
∑
y∈A

pA(x , y)f (y)
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Some properties of Green function

Let A a connected set that contains 0.

Proposition

GA is harmonic on A r {0}, more precisely :

4AGA =
δ0

m(0)

Consequence :

Corollary
The inward flow through any B ⊂ A satisfies :∑

e∈∂B

a(e)∇eGA = 1{o∈B}. (3)
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Some properties of Green function
Connexion with exit time

Level sets of Green function

Let As = {x ∈ A ; GA(x) ≥ s} and let C a connected
component of As. Assume 0 /∈ C

By previous corollary,
∑

e∈∂C a(e)∇eGA = 0,
So there exist an edge e = (x , y) such that G(x) ≥ G(y)
that gives a contradiction since C ⊂ As = {x ∈ A ; GA(x) ≥ s}.
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Level sets of Green function

Proposition

The level sets As = {x ∈ A ; GA(x) ≥ s} are connected and
contain o.

So if G satisfies AISF , we can apply isoperimetric inequality to
the sets As.
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Differential equation for level sets of Green function

So we get the differential inequation :

{
u(0) = m(A)

u′ ≤ −(CISF(u))2.
.
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Connexion with exit time.

Eo(τA) =
∑

x∈A, k≥0

PA
o (Xk = x)

=
∑
x∈A

m(x) GA(x)

=
∑
x∈A

m(x)

∫
R+

1{GA(x)≥t} dt

=

∫
R+

m({x ∈ A; GA(x) ≥ t}) dt

=

∫
R+

u(t) dt
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Minoration of the diffusion constant.

Assume that X is a random walk on a graph G which is now
supposed to be a subgraph of Zd .
We suppose that X admits a reversible measure m satisfying :

∀x ∈ G m(x) ≤ c.

Let X̃ N
k the renormalized random walk defined by

X̃ N
k =

1
N

XkN2 .
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Minoration of the diffusion constant.

Proposition

Assume G satifies d−dimensionnal anchored isoperimetric
inequality with constant CIS and that (X̃ N

k )k converges in law to
a brownian motion with matrix covariance σId, then there exists
a constant a(d) > 0 such that

σ > a(d) Cis.

In particular, σ > 0.

Proof : That follows from our estimates for exit time.
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Random environments.

Consider the graph Ld = (Zd ,Ed ).
An environment is a function ω : Ed → [0; 1].

Let Ω = [0,1]Ed be the set of environments and let Q be a
product probability measure on Ω such that the family
(ω(e))e∈Ed forms independant identically distributed
random variables.
Assumption : Q(ω(e) > 0) = 1
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Random environments.

X will design the random walk on the graph Ld starting
from the origin with transitions probabilty given by :

pω(x , y) =
ω(x , y)∑

z∼x ω(x , z)
.

We denote by Pω0 the law of X and by Eω0 its expectation.
The random walk X admits reversible measures which are
proportional to the measure mω defined by :

mω(x) =
∑
z∼x

ω(x , z).

In this case, we have : aω(x , y) = ω(x , y).
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Isoperimetry for random environments.

Proposition

Let Q be a law on environments such that Q(ω(e) > 0) = 1.
There exists β0(Q,d) > 0 such that Q a.s for all environment ω,
there exists N0(ω) ∈ N such that for all connected sets A which
contained 0,

mω(A) ≥ N0(ω)⇒ aω(∂A)

mω(A)1− 1
d

≥ β0.

No control for small sets.
Proof : Contour argument.

Thierry Delmotte, Rau Clément Exit time for anchored expansion



Introduction
New results

Some ideas of the proof.
Applications

Open questions

Non degeneration for invariance principle
Exit time in random environments
Exit time in percolation model

Isoperimetry for random environments.

Proposition

Let Q be a law on environments such that Q(ω(e) > 0) = 1.
There exists β0(Q,d) > 0 such that Q a.s for all environment ω,
there exists N0(ω) ∈ N such that for all connected sets A which
contained 0,

mω(A) ≥ N0(ω)⇒ aω(∂A)

mω(A)1− 1
d

≥ β0.

No control for small sets.
Proof : Contour argument.

Thierry Delmotte, Rau Clément Exit time for anchored expansion



Introduction
New results

Some ideas of the proof.
Applications

Open questions

Non degeneration for invariance principle
Exit time in random environments
Exit time in percolation model

Isoperimetry for random environments.

Proposition

Let Q be a law on environments such that Q(ω(e) > 0) = 1.
There exists β0(Q,d) > 0 such that Q a.s for all environment ω,
there exists N0(ω) ∈ N such that for all connected sets A which
contained 0,

mω(A) ≥ N0(ω)⇒ aω(∂A)

mω(A)1− 1
d

≥ β0.

No control for small sets.
Proof : Contour argument.

Thierry Delmotte, Rau Clément Exit time for anchored expansion



Introduction
New results

Some ideas of the proof.
Applications

Open questions

Non degeneration for invariance principle
Exit time in random environments
Exit time in percolation model

Exit or occupation time for random environments.

Proposition

Let d ≥ 1. There exists constants C = C(Q,d) such that Q a.s
for all environment ω :
for any connected subset B which contains the origin and with
volume mω(B) large enough,

for d ≥ 3, E0(lB) ≤ C mω(B)2/d

for d = 2 E0(τB) ≤ C mω(B).
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Go back to isoperimetry.

Remark
In papers of Boukhadra or Berger-Biskup, it is proved that we
can build environments where the return probability is greater
than 1/n2. By our proposition 4.2, the d-dimensional anchored
isoperimetric inequality is satisfied on these environments and
so in dimension higher than 4, no one can hope to prove that in
this case, the return probability is in 1/nd/2.
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Percolation context.

Consider the particular case ω : Ed → {0,1}
Let Q be the probability measure under which the variable
(ω(e),e ∈ Ed ) are Bernouilli(p) independent variables.
Let C the connected component that contains 0.
If p is larger than some critical value pc(d), the Q
probability that C is infinite, is strictly positive and so we
can work on the event {#C = +∞}.
Anchored isoperimetry on C ?
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Anchored isoperimetry on percolation cluster.

Proposition

Let p > pc(d). There exists β0(p,d) > 0 such that Q a.s on
#C = +∞, there exists N0(ω) ∈ N, for all connected sets A of C
which contained 0 :

(|A| ≥ N0 ⇒
|∂Cg A|
|A|1−

1
d

≥ β0, ) (4)

where ∂Cg A = {(x , y) ∈ Ed ; ω(x , y) = 1 et x ∈ A ; y 6∈ A}.

Proof : Similary to isoperimetry on random environment, but
one more ingredient : renormalization.
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Exit or occupation time on percolation cluster.

Proposition

Let p > pc(d) and d ≥ 1. There exist constants C = C(p,d)
such that Q a.s on the event {#C = +∞} :
for any connected subset B of C which contains the origin and
with volume large enough,

for d ≥ 3, E0(lB) ≤ C|B|2/d

for d = 2, E0(τB) ≤ C|B|
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Exit or occupation time on percolation cluster.

Remark
We retrieve a consequence of Barlow or Mathieu and Remy
result’s.

Indeed, the control P0(Xk = y) ≤ ν(y)c1k−d/2e
−c2|y|

2
1

k enables
us to get upper bound of exit (or occupation) time of the correct
order.
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Open questions.

Question 1 : does a general anchored isoperimetric
inequality imply an upper bound of pn(x , y) ?
Question 2 : does anchored expansion is the good tool to
prove an invariance principle (in random environments) ?
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