
EXIT TIME FOR ANCHORED EXPANSION

THIERRY DELMOTTE, CLÉMENT RAU

Abstract. Let (Xn)n≥0 be a reversible random walk on a graph G satisfying

an anchored isoperimetric inequality. We give upper bounds for exit time (and

occupation time in transient case) by X of any set which contains the root. As
an application, we consider random environments of Zd.
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1. Introduction

There exists a lot of connections linking the geometry of a graph and the be-
haviour of a random walk. One important tool is the isoperimetric profile of the
graph. For example, in [5] Coulhon has shown that a control of the isoperimetry
of a graph with bounded valence gives an upper bound of the iterated transition
probabilities of a simple random walk evolving on this graph. The problem with
uniform isoperimetric inequality is its unstability under random perturbations like
percolation. Another tool, more robust, has been introduced in the two last decades
by Thomassen in[14] and next by Benjamini, Lyons and Schramm in [2]. It is called
anchored or rooted isoperimetric inequality . Here is the definition. For a graph G,
we denote V (G) the set of vertices and E(G) the set of edges.

Definition 1.1. Let F a positive increasing function defined on R+. Let G a
graph and o ∈ G. We say that G satisfies an anchored (or rooted) F-isoperimetric
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inequality at o if there exists a constant CIS > 0 such that for any connected set A
which contains o we have:

(1)
|∂A|
F(|A|)

≥ CIS.

∂A is equal to the set {(x, y) ∈ E(G); x ∈ A and y /∈ A} and |B| stands for the
cardinal of B.

When F = id and G has bounded degree there is an equivalent version of this
definition which reads as follows:
G satisfies a strong anchored (or rooted) isoperimetric inequality if

lim
n→∞

inf{ |∂S|
|S|

; S connected, v ∈ S and |S| ≥ n} := i(G)

is strictly positif.
This definition does not depend on the choice of the fixed vertex whereas in the

previous definition, the constant CIS depends on the point o. Our object here is to
examine what anchored isoperimetric inequality implies for random walk.

1.1. What we know for anchored expansion.
The first result known for rooted F-isoperimetric inequality is due to Thomassen.
In [14], it is proved that a the simple random walk on a graph G is transient if
G satisfies a rooted F-isoperimetric inequality such that

∑
k F(k)−2 < ∞ . The

main step of the proof is to extract a subdivision of the dyadic tree from the initial
graph. Then, thanks to hypothesis, it is possible to construct a finite flow on the
tree, which proves that the tree is transient.

It was long afterwards that other results did appear for anchored expansion. In
2000 Virag has studied the case of strong anchored isoperimetric inequality. In [15],
it is proved that strong anchored isoperimetric inequality on graphs with bounded
geometry, implies a positive lim inf speed. Moreover Virag proves that in this case,
transitions probability at time n of the random walk are bounded by e−n

1/3
.

Later, still when F = id, Chen and Peres have proved that if G satisfies a strong
anchored isoperimetric inequality then so does every infinite cluster of independant
percolation with parameter p sufficiently closed to 1. Next, they have shown that
strong anchored expansion is preserved under a random stretch if, and only if, the
stretching law has an exponential tail. They also proved that for a supercritical
Galton Watson tree T given nonextinction, we have i(T) > 0 a.s.

1.2. What we don’t know. Open questions.
There is an important collection of conjectures relating to anchored expansion. Here
is some of them:
Question 1: does the sub tree of Thomassen satisfy an anchored Isoperimetric in-
equality ?
Question 2: does a general anchored isoperimetric inequality imply an upper bound
of pn(x, y) ?
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1.3. Continuous space setting. The paper is written in the discrete space setting
of graphs. The reason is that anchored isoperimetric inequality is a natural tool
in random media and is therefore more associated with this setting. In fact the
continuous setting (of Riemannian manifolds for instance) works as well, and may
be, the proofs are far more readable. As both an introduction to our technicals
and an illustration of what the continuous setting results would look like, we begin
with a key result written in this setting. Details, especially from potential theory,
will only appear later in the paper for graphs.

Let M be a Riemannian manifold with an anchored isoperimetric inequality at
root o, that is (1) for finite volume smooth connected domains A containing o.
Precisely, |A| = m(A) for the Riemannian volume element m and |∂A| = µ(∂A) for
the Riemannian volume element µ on the smooth submanifold ∂A.
Now let fix some A and consider the Brownian motion on M starting at o and killed
when hitting ∂A at time τA. We denote pAt its submarkovian kernel, As the level
sets of Green function and u(s) their measures.

As =
{
x ∈ A,GA(x) =

∫ ∞
0

pAt (x) dt ≥ s
}
, u(s) = m(As).

Thanks to harmonic properties of GA, these level sets are connected and contain
the root. Thus, they will also satisfy (1). In the following we use µ for any s and
also ν denoting the inward unit normal vector field on ∂As. The inward direction
is chosen to have GA increasing.

Theorem 1.2. The anchored isoperimetric inequality yields a differential inequa-
tion

u′(s) ≤ −
(
CISF(u(s))

)2

.

This naturally leads to upper estimates of u(s) and E(τA) =
∫∞

0
u(s) ds.

For instance if F(u) = u1−1/d, E(τA) ≤ Cm(A)2/d,
and if F(u) = u, E(τA) ≤ C lnm(A).

Proof. Schwarz inequality(
CISF(u(s))

)2

≤ µ(∂As)2 =
(∫

∂As

dµ
)2

≤
∫
∂As

∂GA

∂ν
dµ
∫
∂As

dµ
∂GA/∂ν

involves the flow ∫
∂As

∂GA

∂ν
dµ = 1

and the derivative of u since whith the co-area formula,

u(s) =
∫
GA≥s

dm =
∫ ∞
s

(∫
GA=t

dµ
∂GA/∂ν

)
dt.

This yields the differential inequation.
For F(u) = u1−1/d, computations may be avoided if we compare with the case

when A is a ball of radius R in Rd. Then all inequalities are equalities and the
result should be that E(τA) is like R2. �



4 THIERRY DELMOTTE, CLÉMENT RAU

1.4. Results of the paper.

Let G be a graph and o one particular vertex. Consider a random walk (Xn)n≥0

on G with transition probability p(., .) and assume there exists a reversible measure
m for X. We use the symmetric kernel µ(x, y) := m(x)p(x, y) to measure surfaces:

∀A ⊂ G, µ(∂A) =
∑

x∈A,y 6∈A

µ(x, y).

In this setting the anchored isoperimetric inequality reads:

Definition 1.3. We say G satisfies the anchored isoperimetric inequality at root o
with increasing function F when for any connected o ∈ A ⊂ G,

(2)
µ(∂A)
F(m(A))

≥ CIS .

“Connected” means that one can find a discrete path in A between any two points
for which p(xi, xi+1) is positive when xi, xi+1 are following points.

No distance will play a role here and the graph is not assumed to be locally
finite.

We denote Px [resp Ex] the law of the walk starting from point x [resp the
expectation], τA the exit time and lA the occupation time (which may be infinite
if X is not transient):

τA = inf{k ≥ 0 ; Xk /∈ A}, lA = card{k ∈ N ; Xk ∈ A}.

Theorem 1.4. If G satisfies (2), then for any subset A we have:

(3) Eo(τA) ≤ 2
∫ ∞

0

vA+(s) ds

(4) and Eo(lA) ≤ 2
∫ ∞

0

v+A(s) ds,

where vA, v are solutions of

{
vA(0) = m(A)
(vA)′ = −(CISF(vA))2,

and

{
v(0) = +∞
v′ = −(CISF(v))2.

The truncations in indices mean

vA+(s) =

{
0 if vA(s) ≤ 0
vA(s) otherwise.

and v+A(s) =


0 if v(s) ≤ 0
m(A) if v(s) ≥ m(A)
v(s) otherwise.

For comparison when X is transient, note that∫ ∞
0

vA+(s) ds =
∫ ∞
v−1(m(A))

v+(s) ds.

We consider usual functions F in Section 3.1.1. It is sometimes useful to precise
the values F(x) = F(m(o)) for x ≤ m(o), which is justified in Proposition 2.4.
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2. Green functions.

2.1. Definitions and harmonicity. The submarkovian kernel of the killed ran-

dom walk is pA(x, y) =

{
p(x, y) if x ∈ A,
0 otherwise.

Although Theorem 1.4 is true for A non connected, we have in this section to as-
sume A is connected. When X is transient, Green function may be defined for the
non-killed random walk and we can consider A = G (or the connected component
of o if G was not connected, which would have little interest). This leads to the
result for lA in next section.

The discrete Laplacian is

4Af = (Id− PA)f,

where PA is the operator defined on functions which are zero outside A by

PAf(x) = Ex(f(X1) 1{x,X1∈A})

=
∑
y∈A

pA(x, y)f(y).

The Green function is

GA(x, y) =
1

m(y)

∑
k≥0

PAx (Xk = y).

In particular we denote GA(x) = GA(o, x). Note that GA(x) = 0 if x 6∈ A.
Recall that reversibility means p(x, y)/m(y) = p(y, x)/m(x). In other words p(x, y)/m(y)
is the precise analog of a density kernel in y starting from x and is symmetric. This
explains the factor 1/m(y) in the definition of GA which is symmetric for x, y ∈ A.

Proposition 2.1. 4AGA = δ0
m(0)

Proof. For all x ∈ A we have :

4AGA(x) = [(Id− PA)(GA)](x)

=
1

m(x)

∑
k≥0

PAo (Xk = x)−
∑
k≥0

∑
y∈A

pA(x, y)
m(y)

PAo (Xk = y)

=
1

m(x)

∑
k≥0

PAo (Xk = x)−
∑
k≥0

∑
y∈A

pA(y, x)
m(x)

PAo (Xk = y)

=
1

m(x)

∑
k≥0

PAo (Xk = x)−
∑
k≥0

1
m(x)

PAo (Xk+1 = x)

=
PAo (X0 = x)

m(x)

=
δ0(x)
m(0)

And for x 6∈ A, we have 4AGA(x) = 0. �

Corollary 2.2. GA is harmonic on A r o. As a consequence the level sets
As = {x ∈ A ;GA(x) ≥ s} are connected and contain o. Moreover the inward flow
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through any ∂As is 1 or more generally for any B ⊂ A:

(5)
∑

(x,y)∈∂B

µ(x, y)∇(y,x)G
A = 1{o∈B}.

The surface notations are ∂B = {(x, y) ;x ∈ B, y 6∈ B} and ∇(y,x)f = f(x) −
f(y).

Proof. For all x ∈ A, Propostion 2.1 may be written∑
y∈G

pA(x, y)(GA(x)−GA(y)) =
δ0(x)
m(0)

.

Summing over x in B with respect to m we get∑
x∈B

∑
y∈G

m(x)pA(x, y)(GA(x)−GA(y)) = 1{o∈B}.

Now the usual integration by parts becomes in this discrete summation a cancella-
tion of terms by symmetry when y also belongs to B. Only (5) remains.

Maximum principle and properties of level sets As may be extracted from this
result when o 6∈ B. In this case the flow is 0 so there must be an edge x, y with
GA(y) ≥ GA(x). This leads to a contradiction if there was a connected component
of As not containing o. �

2.2. Differential inequation. We use a linearized version of m(As), namely

u(s) =
∑

x∈As,y∈G
µ(x, y)

GA(x)−max{s,GA(y)}
GA(x)−GA(y)

.

For x ∈ As such that µ(x, y) > 0 ⇒ y ∈ As, the contribution of x is indeed m(x).
Furthermore u(s) ≤ m(As). The reason for this definition is to have:

Lemma 2.3. Piecewise linear function u has left derivative

u′(s) = −
∑

(x,y)∈∂As

µ(x, y)
∇(y,x)GA

.

Proof. Variation in s in the definition of u(s) comes from the y’s such that GA(y) <
s, that is y 6∈ As. This is clear but note that it uses GA ≡ 0 outside A and this
would not be correct for small values of s and the ũ at page 8 when occupation
time is considered. �

Proposition 2.4. If G satisfies (2), then:

u′ ≤ −(CIS F(u))2.

Proof. Same Schwarz inequality as for Theorem 1.2:(
CISF(u(s))

)2

≤
(
CISF(m(As))

)2

≤ µ(∂As)2

≤

 ∑
(x,y)∈As

µ(x, y)∇(y,x)G
A

 ∑
(x,y)∈∂As

µ(x, y)
∇(y,x)GA


= −u′(s).
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This is of course correct when u > 0, that is when As is not empty and contains o.
It works therefore with F(x) = F(m(o)) for x ≤ m(o). �

3. Applications

3.1. Exit time.

Lemma 3.1. For any set A we have:
(i) Eo(τA) =

∑
x∈Am(x)GA(x),

(ii) Eo(lA) =
∑
x∈Am(x)G(x) in the transient case.

Proof. Given a path γ = (γ0, γ1, . . . , γn) from γ0 = o to Ac, that is only γn /∈ A,
we denote its probability P(γ) = p(γ0, γ1) . . . p(γn−1, γn). Its length l(γ) = n =∑
x∈ANx(γ) where Nx(γ) is the number of indices i such that γi = x. This yields

(i) since

Eo(τA) =
∑
γ

l(γ)P(γ) and GA(x) =
1

m(x)

∑
γ

Nx(γ)P(γ).

We adapt this argument to prove (ii). We keep γn /∈ A and γn−1 ∈ A but we may
have γi 6∈ A for i < n− 1. The probability of the path is not easy to compute but
denotes

P(γ) = P0(∀i ≤ n,Xi = γi and ∀i ≥ n,Xi 6∈ A).

We also replace the length l(γ) by the natural occupation time NA(γ). �

Now we could use
∑
x∈Am(x)GA(x) =

∫∞
0
m(As) ds. It is a little more intricate

since we have control on u which is a linearized version of m(As).

Lemma 3.2. For any set A we have:∫ ∞
0

u(s) ds =
∑

x∈A,y∈G
µ(x, y) min

{
GA(x),

GA(x) +GA(y)
2

}
.

Proof. From the definition of u we just have to compute carefully∫ ∞
0

GA(x)−max{s,GA(y)}
GA(x)−GA(y)

1x∈As ds.

�

We now have completed the proof of (3) in Theorem 1.4. Factor 2 in the right-
hand sides comes from∑

x∈A
m(x)GA(x) =

∑
x∈A,y∈G

µ(x, y)GA(x)

≤ 2
∑

x∈A,y∈G
µ(x, y) min

{
GA(x),

GA(x) +GA(y)
2

}
.

As far as (3) is concerned, the result first for A connected is clearly sufficient.
To prove (4), we first use the differential inequation with A = G, that is we

obtain u(s) ≤ v(s) for

u(s) =
∑

G(x)≥s,y∈G

µ(x, y)
G(x)−max{s,G(y)}

G(x)−G(y)
.
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Then we argue (here A is not necessarly connected)

Eo(lA) ≤ 2
∑

x∈A,y∈G
µ(x, y) min

{
G(x),

G(x) +G(y)
2

}
≤ 2

∫ ∞
0

ũ(s) ds,

where

ũ(s) =
∑

x∈As,y∈G
µ(x, y)

G(x)−max{s,G(y)}
G(x)−G(y)

.

It is clear that ũ(s) ≤ u(s) ≤ v(s) and ũ(s) ≤ m(A).

3.1.1. Examples of F functions. If F(x) = x1−1/d as in Zd then Theorem 1.4 gives

E(τA) ≤ d

C2
IS

m(A)2/d

and E(lA) ≤ d2

C2
IS(d− 2)

m(A)2/d for d > 2.

Indeed for d > 2 the Thomassen criterium implies the transience, see below. The
computations involve

vA(s) =
(
m(A)

2−d
d − C2

IS

2− d
d

s

) d
2−d

for d 6= 2,

v(s) =
(
C2

IS

d− 2
d

s

) −d
d−2

for d > 2

and vA(s) = m(A)e−C
2
ISs for d = 2.

If F(x) = x as in a non-amenable graph then Theorem 1.4 gives

E(τA) ≤ 1
C2

IS

(
1 + 2 ln

m(A)
m(o)

)
and E(lA) ≤ 1

C2
IS

(
3 + 2 ln

m(A)
m(o)

)
.

Here we need the precision F(x) = m(o) for x ≤ m(o) so that
1

vA(s)
=

1
m(A)

+ C2
ISs

does not arise any issue of integration for s→∞.
We can summarize these computations in:

Proposition 3.3. Let G a graph satisfying a weighted anchored isoperimetric in-
equality with function F and anchored expansion constant CIS (see (2)). Then,
there exists constants c(d) and c such that:

• if F(x) = x1− 1
d (d ≥ 3) we have: Eo(lA) ≤ c(d) m(A)

2
d ,

• if F(x) = x
1
2 (d = 2) we have: Eo(τA) ≤ c(d) m(A),

• if F(x) = x we have: Eo(τA) ≤ Eo(lA) ≤ c ln(m(A)).

Remark 3.4. These inequalities are sharped. Take the particular case where G
satisfies a not ancored isoperimetric inequality.
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3.2. Transience. We retrieve Thomassen result’s cited in the introduction. In-
deed, proposition 2.4 provides a new proof of the transience of the random walk
under the sommable assumption on F without introducing the complex construc-
tion of dyadic subtrees of Thomassen. Assume

(6)
∫ +∞

1

1
F(n)2

< +∞,

for F : R+ → R?+, not decreasing, with F(0) = 0 and let us prove transience with
the help of proposition 2.4.

Let A a connected subset of G containing the origin ( A is intended to grow up)
and consider random walk killed whenever it leaves A and the associated Green
function GA. Integrating the differential equation (??) between time 0 and t gives:

(7)
∫ u(0)

u(t)

ds

F(s)2
≥ C2

IS t.∫ u(0)

1
ds
F(s)2 is bounded by a constant independant of A. Indeed, thanks to hypoth-

esis (6), for all subset A we have:
∫ u(0)

1
ds
F(s)2 =

∫m(A)

1
1

F(s)2 ds ≤
∫ +∞

1
ds
F(s)2 < +∞.

So for large enough t which depends only on CIS and F , inequality (7) turns into:∫ 1

u(t)

ds

F(s)2
≥ 1

2
C2
IS t.

Then, we deduce that:

lim
t→+∞

u(t) = 0 uniformly in A.

In particular, there exists t0 independant of A such that for all t ≥ t0, u(t) <
infGm. Therefore by definition of u we get that for all set A, GA ≤ t0. Now we
can make A growing and finally we deduce that G < +∞ so the walk is transient.

3.3. Speed. When F = id, the upper bound of the exit time gives us that the
speed of the random walk is strictly positif. We retrieve a weak version of Virag’s
result. We assume in this subsection that the graph has uniformly localy bounded
valency. Let d(a, b) denote the graph distance between point a and b.

Proposition 3.5. Let G a graph satisfying 1 with F = id and let (Xn)n a simple
random walk on G. Then we have:

P( lim
n

d(o,Xn)
n

= 0) = 0.

Proof. Suppose there exists ε > 0 such that P(limn
d(o,Xn)

n = 0) > ε. So, we have:

∀α > 0 P(∃Nα ∀n ≥ Nα
d(o,Xn)

n
≤ α) > ε

By considering the event Eq = {∃Nα < q, ∀n ≥ Nα
d(o,Xn)

n ≤ α} and by
continuity of measure P, we get:

∃Nα ≥ 0 P(∀n ≥ Nα
d(o,Xn)

n
≤ α) >

ε

2
(8)

Take now R > 0, we have:

P(∀n ∈ [Nα;
R

α
] d(o,Xn) < αn) >

ε

2
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On this event we have: lB(o,R) ≥ R
α − Nα, where lA is the local time of X in the

set A, which is well defined in this case since when F = id the walk is transient by
Thomassen result. Therefore, by using (8), we get

Eo(lB(o,R)) ≥
ε

2
(
R

α
−Nα)(9)

By prop... and since strong anchored isoperimetric inequality implies a subexpo-
nential volume growth, there exists c > 0 such that:

Eo(lB(o,R)) ≤ ln(|B(o,R)|) ≤ cR(10)

Choose now α such that ε
2α > c. Gathering (9)and (10), we get:

ε

2
(
R

α
−Nα) ≤ cR

Letting R goes to infinity in this last expression, we get a contradiction. �

3.4. Random environments of Zd. We consider discrete time, nearest-neighbor
random walk among random (i.i.d) conductances in Zd, d ≥ 2. We assume conduc-
tances are bounded from above but we do not require they are bounded from below.
After a presentation of random environment in the first subsection, we prove an
isoperimetric inequality for big sets in the second part, which enable us to bound
the occupation time for sets of volume large enough.

3.4.1. Random environments, random walks. Consider the graph Ld = (Zd, Ed)
where Ed be the set of non-oriented nearest-neighbor pair. We write x ∼ y if
(x, y) ∈ Ed. An environment is a function ω : Ed → [0; +∞[. Since edges in Ed are
not oriented, the edge (x, y) is identified with the edge (y, x) and so it is implicit in
the definition that environment are symmetric, ie ω(x, y) = ω(y, x) for any pair of
neighbors x and y. The value ω(x, y) is called the conductance of edge (x, y). We
always assume that our environment are uniformly bounded from above. Without
loss of generality, we may assume that an environment is a function ω : Ed → [0, 1].

Let Ω = [0, 1]Ed for the set of environments. Let Q be a product probabil-
ity measure on Ω such that the family (ω(e))e∈Ed

forms independant identically
distributed random variables. (Thus, Q is invariant by translation.)

Starting from a point x, a walker or a electric currant can cross only edges
with strictly positive conductances. So we call a cluster of the environment ω
a connected component of the graph (Zd, {e ∈ Ed;ω(e) > 0}). The random
variables (1{ω(e)>0}; e ∈ Ed) are independant Bernoulli variables with parameter
q = Q(ω(e) > 0). By percolation theory, we know that there exists a critical value
pc = pc(d) ∈]0; 1[ such that for q < pc, Q a.s all cluster of ω are finite and for
q > pc, Q a.s there is a unique infinite cluster. We shall assume that the law Q
satisfies

(11) q = Q(ω(e) > 0) = 1.

X will design the random walk on the graph Ld starting from the origin with
transitions probabilty given by:

pω(x, y) =
ω(x, y)∑
z∼x ω(x, z)

.
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We denote by Pω0 the law of X and by Eω0 its expectation. The random walk X
admits reversible measures which are proportional to the measure mω defined by:

mω(x) =
∑
z∼x

ω(x, z).

Notice that the usual kernels, µω defined by µω(x, y) = mω(x)pω(x, y) are merely
equal to ω(x, y). We keep on using notation µω for convenience.

3.4.2. (Anchored) isoperimetric inequality. In order to apply our previous results
for the occupation time on a random environment context, we look after a anchored
isoperimetric inequality on the graph Ld with respect to weight ω which enables
us to get an estimate of the correct order of the exit time (or occupation time).
Differents forms of strong isoperimetric inequality have been raised by many authors
(see [8], [12], [11] and [3]) in the percolation context. We use the same kind of idea
in random environments but the lack of strictly positive bound from below, enables
us to have only a control for big sets. The form which seems to be adapted to our
problem and that we are going to prove is the following:

Proposition 3.6. Let Q a law on environments such that Q(ω(e) > 0) = 1. There
exists β0(Q, d) > 0 such that Q a.s for all environment ω, there exists N0(ω) ∈ N
such that for all connected sets A which contained 0

(mω(A) ≥ N0(ω)⇒ µω(∂Ld
A)

mω(A)1− 1
d

≥ β0, )(12)

where ∂Ld
A = {(x, y) ∈ Ed; ω(x, y) > 0, x ∈ A and y 6∈ A}.

Proof. Let A ⊂ Zd, connected and containing the origin. Let B the infinite con-
nected component of Zd−A in graph Ld and let A′ the complementary of B in Zd,
ie: A′ = Zd −B. Then we have:

(i) A′ and Zd −A′ are connected in Ld,
(ii) A ⊂ A′ so mω(A) ≤ mω(A′),

(iii) {e ∈ ∂LdA′; ω(e) > 0} ⊂ ∂Ld
A.

Thus, it is sufficient to prove isoperimetric inequality for set A′.
For n ∈ N, let Ed(n) the set of edges with both end points in [−n, n]d. Consider

now the events:

An = {∃F ⊂ Ed(n);
∑
e∈F ω(e)
|F |

≤ β, F ∗ -connected and |F | ≥ ln(n)3/2},

where β is a constant strictly positive which be adjusted later.
Let λ and ξ two constants strictly positives. For a given set of edges F ⊂ Ed(n),

since the random variables (ω(e), e ∈ F ) are i.i.d and by the Bienaymee Tchebytchef
inequality applied to each term EQ(e−λω(e)) for e ∈ F ( EQ designs the expectation
in regard to law Q.)we have:

Q(
∑
e∈F ω(e)
|F |

≤ β) ≤ eλβ|F | [Q(ω ≥ ξ)(e−λξ − 1) + 1]|F |.

Since the number of ∗-connected sets of cardinality m included in Ed(n) is bounded
by eam (for some constant a > 0 which depends only on d), we deduce that:

Q(An) ≤
∑

m≥ln(n)3/2

eameλβm [Q(ω ≥ ξ)(e−λξ − 1) + 1]m.
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Let −γ = a+ λβ + ln[Q(ω > ξ)(e−λξ − 1) + 1].
First, we choose ξ > 0 such that Q(ω > ξ) is closed to 1, which is possible due to
assumption (11). Then, we choose λ > 0 and then β > 0 small enough such that
γ > 0.

Thus, we get
Q(An) ≤ e−γ ln(n)3/2

.

Since this expression in summable in n, by the Borel-Cantelli lemma we deduce
that :
for Q a.s ω there exists n0(ω) such that for n ≥ n0(ω), for all ∗-connected set
F ⊂ Ed(n) with |F | ≥ ln(n)3/2, we have:

(13)
∑
e∈F ω(e)
|F |

≥ β.

Now the set of edges ∂Ld
A′ satisfies the three following points :

a. ∂Ld
A′ is ∗-connected

b.

|∂Ld
A′| ≥ Cd|A′|1−1/d (Cd is the classical isoperimetric constant in Ld.)

≥ Cd|A|1−1/d

≥ ln(|A|)3/2 if |A| larger than a certain n1.

c. ∂Ld
A′ ⊂ Ed(|A|).

Since mω(A) ≤ 2d|A|, if we let N0(ω) = 2d max(n1, n
ω
0 ) and if mω(A) ≥ N0(ω),

we can apply (13) to F = ∂Ld
A′. So we have:∑
e∈∂Ld

A′

ω(e) ≥ β|∂Ld
A′|.

Since,

|∂Ld
A′| ≥ Cd|A′|1−1/d ≥ Cd

(2d)1−1/d
mω(A′)1−1/d ≥ Cd

(2d)1−1/d
mω(A)1−1/d

and ∑
e∈∂Ld

A

ω(e) ≥
∑

e∈∂Ld
A′

ω(e).

We deduce there exists β0 > 0 such that:∑
e∈∂Ld

A

ω(e) ≥ β0m
ω(A)1−1/d.

�

Remark 3.7. Let ω a fixed environment and N0(ω) as in proposition 3.6. Since
Q(ω > 0) = 1, there is a finite number of sets B containing 0 and satisfying
mω(B) ≤ N0(ω). Thus for a set A such that mω(A) ≤ N0(ω), we can have

µω(∂Ld
A) ≥ cω := min{

∑
e∈∂Ld

B

ω(e); 0 3 B such that mω(B) ≤ N0(ω)} > 0.

This can be re written as well as follow:

(14) µω(∂Ld
A) =

∑
e∈∂Ld

A

ω(e) ≥ βω mω(A)1−1/d,
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with βω = cω/N0(ω)1−1/d, constant which depends on ω.

Remark 3.8. In [10], it is proved that we can build environments where the re-
turn probability is greater than 1/n2. By our proposition 3.6, the d-dimensional
anchored isoperimetric inequality is satisfied on these environments and so in di-
mension higher than 4, no one can hope to prove that in this case, the return
probability is in 1/nd/2.

3.4.3. Upper bound for the occupation time. We apply result of Theorem 1.4 in the
particular case of random walk on random environment satisfying asumption (11).
Let B ⊂ Zd connected and which contains the origin. We are going to estimate
E(τB) (or E(lB) in transient case).

(i) case d ≥ 3
By our isoperimetic inequality (proposition 3.6 and remark 3.7), and by result

of Thomassen, we deduce that the walk is transcient. So we can deal with G the
whole Green fonction. For t ≥ 0 we let

u(t) = mω({x ∈ B; G(0, x) ≥ t}).
By proposition 2.4 and thanks to inequality (19), function u satisfies:{

u(0) = mω(B)
u′ ≤ −(β0 u

1− 1
d )2, until u ≥ N0(ω)

Assume volume of B is large enough. In a first time, assume:

(H1) mω(B) ≥ N0(ω).

Solving this differential equation, we get:

u(t) ≤
[
d− 2
d

β2
0t+mω(B)

2
d−1

] d
2−d

if t ≤ t0(15)

with

t0 =
1
β2

0

d

d− 2

(
N0(ω)

2
d−1 −mω(B)

2
d−1
)

Now Corollary 3.2 gives us the expectation of the occupation time. We have:

E0(lB) =
∫ +∞

0

u(s) ds

We split into two parts the computation of this integral. First, we have:∫ t0

0

u(s) ds ≤ d

2β2
0

[
mω(B)

2
d −N0(ω)

2
d

]
Secondly we have to deal with the term

∫ +∞
t0

u(s) ds∫ +∞

t0

u(t) dt =
∫ +∞

t0

m({x ∈ B; G(x) ≥ t}) dt

=
∫ G(0)

t0

m({x ∈ B; G(x) ≥ t}) dt

≤ (G(0)− t0)m({x ∈ B; G(x) ≥ t0})
= (G(0)− t0)N0(ω)
≤ G(0)N0(ω)
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Gathering the two previous computations, we get:

E0(lB) ≤ d

2β2
0

[
mω(B)

2
d −N0(ω)

2
d

]
+G(0)N0(ω).

Finally, we have proved that there exists C > 0 such that for Q a.s environment
ω, there exists Nω ∈ N such that for any connected subset B which contains the
origin with, mω(B) ≥ Nω then E0(lB) ≤ Cmω(B)2/d. We can state this result as
follow.

Proposition 3.9. Let d ≥ 3. There exists constants C = C(Q, d) such that Q a.s
for all environment ω:
for any connected subset B which contains the origin and with volume mω(B) large
enough,

(16) E0(lB) ≤ Cmω(B)2/d

(ii) case d = 2
The same kind of arguments gives the bound in the dimension two replacing the

occupation time by the exit time. In recurrence case, for t ≥ 0 we let

u(t) = mω({x ∈ B; GB(0, x) ≥ t}),
where GB is the Green function of the random walk killed outside B. Once again,
we use isoperimetric inequality of proposition 3.6 (equation (19)) and moreover we
use remark 3.7 (equation (14)). By proposition 2.6, we get:

u(t) ≤

{
mω(B)e−β

2
0t if t ≤ t0,

N0(ω)e−β
2
ω(t−t0) if t > t0.

(17)

with t0 = 1
β2
0

ln
(
mω(B)
N0(ω)

)
. Then,

E0(τB) =
∫ +∞

0

u(s) ds

≤ mω(B)[
1
β2

0

+
N0(ω)
mω(B)

(
1
β2
ω

− 1
β2

0

)]

Finaly, we get the same proposition.

Proposition 3.10. Let d = 2. There exists constant C = C(Q, d) such that Q a.s
for all environment ω:
for any connected subset B of C which contains the origin and with mω(B) large
enough,

(18) E0(τB) ≤ Cmω(B)

3.5. Percolation of Zd. Percolation context can be seen as a particular case of
random environments. But assumption (11) does not allow to include percolation
case in the previous subsection, although techniques are analogous. We keep same
notations as previous subsection.

Pick a number p ∈]0, 1[ and let this time ω : Ed → {0, 1}. Q is here the probabil-
ity measure under which the variable (ω(e), e ∈ Ed) are Bernouilli(p) independent
variables. Hence each edge e is kept if ω(e) = 1 [resp removed if ω(e) = 0 ] with
probability p [resp 1 − p] in an independant way. If p is larger than some crit-
ical value pc(d), we know by percolation theory that the Q probability that the
connected component C that contains the origine is infinite, is strictly positive.
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We denote by Cg the graph such that V (Cg) = C and E(Cg) = {(x, y) ∈
Ed; ω(x, y) = 1} and Cgn the graph such that V (Cgn) = Cn and E(Cgn) = {(x, y) ∈
Ed; x, y ∈ Cn and ω(x, y) = 1}.

From now on and until the end, p would be larger than pc(d) and we will work
on the event {#C = +∞}.
X will design the simple random walk on the graph Cg starting from the origin. The
random walk X admits reversible measures which are proportional to the measure
m (which represents the number of neighbors of x in Cg) such that:

m(x) = card{y; ω(x, y) = 1}.

3.5.1. (Anchored) isoperimetric inequality. We have the following proposition which
is essentially the same as proposition 3.6, excepted there is the use of renormaliza-
tion.

Proposition 3.11. Let p > pc(d). There exists β0(p, d) > 0 such that Q a.s on
#C = +∞, there exists N0(ω) ∈ N such that, for all connected sets A of C which
contained 0

(|A| ≥ N0 ⇒
|∂CgA|
|A|1− 1

d

≥ β0, )(19)

where ∂CgA = {(x, y) ∈ Ed; ω(x, y) = 1 et x ∈ A ; y 6∈ A}.

This proposition can be deduced easily from the results of Biskup, Pete or Rau
(see respectively proposition 5.1 of [3] or corollary 1.3 of [11] or proposition 1.4 of
[12]. For example, here is the isoperimetric profile we can find in Biskup:

Proposition 3.12. Let p > pc(d). There exists β0(p, d) > 0 and c0(p, d) > 0 such
that Q a.s on #C = +∞, for n large enough, we have:

|∂CgA|
fc0(|A|)

≥ β0 for all connected sets A contained in Cn,(20)

where fc0(x) =

{
1 if x < (c0 ln(n))

d
d−1

x1− 1
d if x ≥ (c0 ln(n))

d
d−1 ,

and ∂CgA = {(x, y) ∈ Ed; ω(x, y) = 1 et x ∈ A ; y 6∈ A}.
Inequality (19) is satisfied from a rank which depends on the cluster ω.

Let us prove quickly that proposition 3.12 implies 3.11. Let β0, c0 as in propos-
tion 3.12 and let n0(ω) the rank from which inequality (20) is true. Take N0 = n0,
et let A ⊂ C which contains the origin and with |A| ≥ N0. We notice that |A| ⊂ C|A|
and since |A| ≥ n0 and |A| ≥ (c0 ln(|A|))

d
d−1 (for |A| large), we can apply inequality

(20) of proposition 3.12 and so inequality (19) is proved.

Let us raise two points concerning this isoperimetric inequality. First, one can
think that we can hope to get a ”better ” isoperimetric inequality for set which
contains the origin than for any sets. In fact, a precise rereading of these proofs
shows us that additional assumption of the fact that the origin is contained in the
set A, does not simplify the proof. Secondly, notice that, thanks to proposition 5.1
in [3], anchored isoperimetric inequality with any root in Cn, holds with the same
isoperimetric constant (in [3] there is no root). So proposition 3.11 is still true
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with the same constant β0 for any roots. Thus, the estimates we get in the next
subsection for the occupation time, are satisfied for all connected sets contained in
C with the same constant(see remark 3.14). Finally, we choose this form because
for big sets we retrieve the isoperimetry of Zd. This suggests that we can hope to
have a good control of the occupation time of big set B, since our method is based
in a study of a serie of decreasing sets from B.

3.5.2. Upper bound for the exit or occupation time in percolation cluster. Let B ⊂
C connected and which contains the origin. Since m is bounded between 1 and
2d, we deduce that inequality (19) is still true by counting boundary and volume
respectively by measure m and µ (µ = 1 here). This can affect only constants β0

and N0. That is: there exists β > 0 and N > 0 such that Q a.s on {#C = +∞},
µ(∂CgA)

m(A)1−
1
d
≥ β for all connected sets A which contained 0 with m(A) ≥ N ,

and
µ(∂CgA) ≥ β for all connected sets A which contained 0 with m(A) ≤ N .

Now, by the same way as for random environments, computation of u(t) = m({x ∈
B; GB(0, x) ≥ t}) due to proposition 2.4 and computation of integral of u on R+

gives the following proposition:

Proposition 3.13. Let p > pc(d) and d ≥ 2. There exist constants C = C(p, d)
such that Q a.s on the event {#C = +∞}:
for any connected subset B of C which contains the origin and with volume large
enough,

(21)
{

E0(lB) ≤ C|B|2/d if d ≥ 3,
E0(τB) ≤ C|B| if d = 2.

3.5.3. Some remarks.

Remark 3.14. Since proposition 3.12 is true for all connected set A contained in
Cn, we can replace the root by any point of Cn with keeping the same constants. So
we can state an improvement of propositions 3.9 and 3.10 as follow:
Let p > pc(d) and d ≥ 2. Let x0 ∈ C. There exists constant C = C(p, d) such that
Q a.s on the event {#C = +∞}, for large enough connected set B which contains
x0, one have:

(22) Ex0(lB) ≤ C|B|2/d

Constant C is the same as in proposition 3.9, whereas the size of B from which
(22) holds depends on x0 and ω.

Remark 3.15. We retrieve a consequence of results of Barlow. Indeed, in [1] it is
proved that:

Theorem 3.16. There exists Ω1 with Q(Ω1) = 1 and random variables Sx;x ∈ Zd
such that for each x ∈ C and for all ω ∈ Ω1, Sx(ω) <∞ and there exists constants
ci = ci(d; p) > 0 such that for all x, y ∈ C and t ≥ 1 with

k ≥ Sx(ω) ∨ |x− y|1
the transition density Px(Xk = y) of X satisfies:

ν(y)c1k−d/2e−c2
|x−y|21

k ≤ Px(Xk = y) ≤ ν(y)c3k−d/2e
−c4|x−y|21

k .
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Let x0 ∈ C and let B ⊂ C connected which contains the point x0. First, for all
k ≥ 0 we can write:

Px0(τB > k) ≤
∑
y∈B

Px0(Xk = y)

. With the help of the previous Theorem (we keep the same notation), there exists
a constant c > 0 such that Q a.s for all y ∈ B and for all k ≥ Sx0(ω) ∨ |x0 − y|1,
we have :

Px0(Xk = y) ≤ cν(y)k−d/2.
Hence,

Px0(τB > k) ≤ cν(B)k−d/2.
Let k0 = (2c.ν(B))2/d and fix the environement ω. For B large enough, the condi-
tion k0 ≥ Sx0(ω)∨|x0−y|1 is satisfied (once again the size from which the condition
is satisfied depends on the point x0 and ω).

Then, for all x0 and for B large enough, connected and which contains x0, we
have :

Px0(τB > k0) ≤ 1/2.
So, for all i ≥ 0,

Px0(τB > ik0) ≤ (1/2)i.
And then,

Ex0(τB) ≤
∑
i≥0

(i+ 1)k0 Px0 (τB ∈ [ik0; (i+ 1)k0[)

≤
∑
i≥0

(i+ 1)k0 Px0 (τB > (i+ 1)k0)

≤ c′k0

≤ c′′ν(B)2/d.

Finally, we well retrieve inequality (22) of remark 3.14.

Acknowledgments: The authors would like to thank Pierre Mathieu for his com-
ments on earlier version of the paper.
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