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Financial Time Series, 20 hours+practical exercises.
Plus Corrections of exercises.

Forecasting discipline is an issue of Statistics. Indeed, the aim is to answer the following

kind of problem: a system X is evolving in time, it is observed and one would like to predict
the future. In our case, we are interested in financial data, for instance price processes
modeling assets price. Anyway, practical observations tell us that the interesting matter is
not the price process, but the RETURN processes, and mainly, their covariance function
as a risk measure (cf. volatility in continuous time models). Actually, we do not try
to model the price processes, but the risk concerning the returns, meaning we look for a
model fitting the second order moments (meaning covariance function of return processes,
which is more or less a risk measure). Generally, underlies a modeling problem: it is to
find the mathematical “model” that realizes the better connection between a variable and
the time.
The principle is to find a mathematical model fitting the covariance function (namely )
as a function of time. Given the available observations, we try the “best” function f (the
optimality criterion depending on the method) such as v ~ f(t) where t is time. Namely,
we consider that the observations are a set (X (¢t —i),7 = 1,--- ,n). Concerning Financial
data, the more convenient models are ARCH and GARCH, due to stylised features.

Indeed, the financial data present some stylised facts:
e non stationarity of price series,

e absence of auto correlation for the price variations,
e unpredictability of returns,

e auto correlation of the squared price returns,

e volatility clustering = prediction of squared returns,
e fat tailed distributions (leptokurticity),

e leverage effects,

e seasonality.



For all these facts, ARMA are not convenient for modeling price series. But, the
correlation process, important since it is a measure of the risk, meaning more or less the
volatility, could be modeled as a GARCH process. Anyway, we will start which basic
definitions in ARMA area; as a first step, we will present processes ARMA which is a tool
to model the covariance function y(k, j) = cov(Xy, X;).

There is two parts: first one concerns ARMA processes, linear models:

Processes ARMA: Box and Jenkins'methods, general features (sophisticated meth-
ods, where is exhibited a linear function of X (¢) and its past values X (t — i), ¢ =
1, ,n).

Delay operator, ARMA equations.

Estimate of an ARMA process, covariance function.

ARMA model identification, estimation of its parameters.

The second part concerns GARCH processes, convenient to model the correlation func-
tion, meaning the volatility in discrete time case. Processes ARCH, GARCH (cf.
Gouriéroux, Zakoian) are similar to the previous one but the functions are no more lin-
ear. For instance V¢, X (t) = z;y/ap + an X (¢t — 1).

e Some non linear models

Linear ARCH-GARCH models

Identification

Estimates and forecasting

Tests based on the likelihood

Some extensions

Financial Applications.

A selection criterion is obviously the quality of the forecast. We will propose statis-
tical tests that allow to judge the goodness of fit (between the curve obtained and the
observations). An empirical way could be added: to reserve some “witnesses spots” and
to do the study, excluding them, and judging the error on witnesses.

For the concrete use of these methods it is recommended to use the free software "R”:
https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf

Some data can be found via Internet. For instance, historical prices, assets daily
returns, on “yahoofinance” to get SP500, as a column Excel.
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1 Box and Jenkins’ methods, general features

Developed in the 70s, these are very powerful methods which make maximum use of the
fact that the evolution of the studied time series is considered as one of the achievements
of a stochastic process, endowed with a strong enough structure. Indeed, once highlighted
the structure, this allows to predict more confidently the future series. The consideration
is the need for a fairly long period of observations for the forecast being reliable. The
authors recommend 5 to 6 periods in the case of periodic phenomena, and a minimum
of 30 observations in other cases.

These methods work very well for short-term forecasts macroeconomic series, especially
for the industrial production indexes. In Finance, this method does not concern the
forecast of returns, but the one of volatility.

They are based on the assumption that each observation depends quite strongly on
previous observations. Basically, this addiction to the past replaces multiplicity of ob-
servations (in Statistics) to estimate the settings by applying the law of large numbers.
So are assumed strong enough assumptions, that the series is stationary, meaning the
two first moments do not depend on time. If this is not the case, they must be done
“stationary” by transformations (called filters) that remove trend and seasonality.

1.1 Definitions

Thus, we consider processes, random series, indexed in Z and taking their values in C
(complex numbers) but we restrict this course to real numbers R:

Vn € Z, X, is a random variable : (Q, F, P) — (R, B).

We try to model the application n — X,, with a trend part, a seasonal component, and
measurement, error.

Hypothesis: The observations z,, are the values of a centered, square-integrable, station-
ary, random process X,,, i.e. there exists a function v on Z such that Vn , cov(X,,, X, ) =
v(k). Notice:

cov(Xn, Xn—k) = E[(Xn — E(X0))(Xn- — E(Xn1))].

Remark 1.1 FEzercise 1: Actually for any k € Z, v(k) = v(—k).

Definition 1.2 : Such a process is called a second order stationary time series,
S.T.S. for short.
The function ~y is called the auto covariance function.

Moreover we define the auto correlation function p : k — p(k) = %.



There exists another notion: “strict stationarity” meaning the vectors (X7, -+, X}) and
(Xna1, -+, Xpix) have the same law, for any pair (k,n).

As for the covariance function v, for any k € Z, p(k) = p(—k) and we define the
correlogram, graph of the application p, useful tool in analyzing the series as discussed
later.

We also introduce:
Definition 1.3 The partial auto correlation function, P.A.C.F., is defined on N as:
r: N=>R;r(p—n)= cor(X,, Xp/Xns1,---, Xp-1),p > n,

meaning
cov (X,, — X, X — X))

V Var (Xo = X;) Var (X, - X;)

r(p —n)

where X7 is the orthogonal projection of X; on the vector space Sy, generated by (Xpy1,- -+, Xp-1),
and completed by r(1) = p(1).

Exercise 2: this expression only depends on (p — n).

Finally, we introduce the infinite dimensional matrix of variance-covariance process

X.
Definition 1.4 : The Toeplitz matrix s

This is a symmetric matrix.

1.2 Examples of second order stationary times series, STS

First example of fundamental S.T.S. : the white noise.

Definition 1.5 The (weak) white noise is a STS (gx) (with covariance function equal
to v with y(k) = 020k0.

If moreover there is independence between the random variables (g), the white noise is
said strong.

For example, this may be a Gaussian process with covariance matrix I' = ¢2I;; in this
case, there is in addition the orthogonality of the white noise components ¢, in L? and
their independence, thanks to the Gaussian nature of the series.

A strong white noise is a white noise such that (g,,) are i.i.d.

Remark 1.6 We can show that the white noise covariance function checks the equality

2 2m
v(n) g / e,
0

" or
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This “white noise process” is used to model the measurement error. If the series is not
centered, the term is “colored noise”.

Second example:

Definition 1.7 A moving average is a STS as follows:
Xn = Z ArEn—k,
keZ

where the series (ay; k € Z) € I and € is a white noise.
For short: M.A.= “moving average”.

Proposition 1.8 The covariance function of a moving average X,, = Y, , pen_ 18
written as ¥(p) = Y _icy p—kG-i Vp € Z.

Proof : We write X,, and X,,_, definition; firstly remark that these series are L? con-
vergent using the hypothesis that the series (ay; k € Z) € 2. Secondly we compute their
covariance, meaning the mean of the product since these random variables are centered:

E[X,Xuip] = lim > apesa.
|k|<K

This limit exists since

VE >0, (Y aprar)’ < Y lapal> Y Janl* < oo

|k|<K |k|<K |k|<K

This inequality is proved recursively: it is true for K = 2, and the property for K — 1
implies it for K. °

Definition 1.9 When there exists a finite number of non null coefficients ay,, i.e. (ag,--- ,ap),
we say that X is a order p-moving average, MA(p) for short.

Third example: let € be a white noise, and define the recursive series

Xn = OéXn_l + &n-

Assuming that we know a particular element of the series, for instance X, assuming
it is a centered random variable in L? we prove the following.

Proposition 1.10 Let X be the process defined as
X, =aX,_1+e, VneEZ, Xy€ L* E[Xy =0.

Assuming |a] < 1, and E[X2] < M?, Vn € Z~, then X is a STS.

Specifically, this is a moving average with coefficients a; = o?, j > 0. Its covariance
function is defined by (k) = ot .

l—«




Proof = Exercise 3

Definition 1.11 An order 1 auto regressive series X (AR(1) for short) is a process
depending only of the previous observation, step by step.

At this point we can quote Francq and Zakoian [6] pp 7-11: Sections 1.3 Financial
Series and Section 1.4 Random variance models which shows how ARMA processes are
not appropriate to model Financial Series as it is written above in the introduction:

Indeed, once again, the financial data present some stylised facts:
e non stationarity of price series,

e absence of auto correlation for the price variations,

e unpredictability of returns,

e auto correlation of the squared price returns,

e volatility clustering = prediction of squared returns,

e fat tailed distributions (leptokurticity),

e leverage effects,

e seasonality.



First Part: ARMA

2 Delay Operator, ARMA equations

In this subsection we consider that X is a STS. In AR(1) example, X,, = aX,,_1 + &,
and V(e,) (a given white noise) we get X,, as a function of X,,_;; more generally it is
interesting to get formal this passage from n — 1 to n. Firstly we have to define the spaces
on which is defined this passage.

Definition 2.1 The closed subspace generated by the set {X,,p € Z,p < n} in L? is
denoted as HX.
This subspace of L?, HX, is named the linear past of X.
We note also:
HX =n,HY ; HY =U,H) = H.

H”X_is named the asymptotic past, H* the linear envelope.

These spaces are used to characterize two specific types of STS.
Following Francq and Zakoian [0] page 4, we consider ¢, := X, — P,_1(X,), weak or
strong white noise, where P,_; is the L? orthogonal projector on HX ;.

Definition 2.2 When HX_ = {0} the series is regular.
When HX = HX the series is singular. In this case, the linear pasts are constant and
the “innovation” does not bring any information.

A first example of regular STS is the white noise. Other examples in Section 4.4 (Exercise
6).

Actually because the process ¢ is non correlated, the vector space H; = Re,, + H,,_;. So
itY e HoNH; |, firstly, Y = ae, + P;_(Y). But Y € H® _ means that Y € HS_,, so
a=0. And so on, Y =0 and ¢ is a regular series.

Definition 2.3 The operator HX = wect {X,,, n € Z} in L* which sends X,, to X,,_,
is named the delay operator denoted S* : SX(X,) = X,_1.

Proposition 2.4 The operator SX is the unique isometric from HX to HX which sends
X, to X,,_1. Moreover, SX(HX) = HX.

Proof : The operator S¥X is defined on the {X,,n > 0} and is extended by linearity on
any finite linear combinations of X,,. This is an isometric:

1S aiXi) I3 = D aia;B[X; 1 X;]
[ 2,7
= Y aay(i—j) = > aX ;.
2,7 )



Thus we could extend this operator S* by continuity on the whole HX.

Uniqueness: it is a consequence of the fact that if 7" could be another solution, 7" = Sx
on any X,, so on any finite linear combinations of X,, so by continuity on H¥.

Any element of H¥ is a limit of finite linear combinations of X,,, image by S¥ of finite
linear combinations of X, so the equality S*(HY) = H¥. o

Theorem 2.5 (WOLD): Any STS could be written as a unique sum of a regular and a
singular parts:
X=X"+X°

so0 that the spaces HX" and HX" are L? orthogonall.

Proof : Exercise 4
Proposition 2.6 Both series X" and X*® are too STS.

Proof : Firstly by construction they are centered and in L?.
Secondly we use the following:

Lemma 2.7 For alln € Z, PX o S%X =5%o P ,.

Proof for all p € Z, P o S¥(X,) = PX(X,_1) is the unique vector in H;X such that

n

X, 1—PX(X, 1) is orthogonal to H:X. So we have to compute Vk < n the scalar product
(X, Xp—1 — S¥ o P (X,)). This scalar product is equal to:
(Xi, Xyt — S0 PXL(X,)) = (k= p+1) — (5% (Xiwr), S¥ 0 XL (X))
= y(k—p+1) = (X1, P (X))
since S* is an isometry. Then we use Vk < n, X1 € H, ;. Yields:
(X, Xpo1= 5% 0P (X)) = y(k—p+1)—(Xis1, Pi1 (X5)) = y(k—p+1)—(Xps1, X;) = 0.
[ J
We apply this lemma to the computation of the covariance function of the series X?,
whith n > p:
(P 0 8%(X), P2 0S¥ (X)) = (PAo(Xumr), PA(Xpm1))

which is exactly (X?

n—1»

X;_l) by definition of X*, step by step we go to
(XZ>X;) = (XS XS)?

n—p’

which only depends on the difference n — p; this proves the stationarity of the series (X*).
Then, the part X" = X — X® is too a STS: X" € L? with null expectation by linearity,
and we easily check the stationarity of E[(X}, X])]. More specifically we prove:

(X — X Xp — X;) =y(n—p) =7 (n—p).

This shows the stationarity of X" and the relation between the covariance functions
7=+ .



Remark 2.8 When a STS is not singular, the strict inclusion ¥n, HX | C HX is sal-
isfied. Indeed, if not, there exists n such that HX | = HX and with the lemma and the

delay operator S* we deduce that Vn, HX | = HX, so the series is singular.

The following theorem provides a characterization of regular series.

Theorem 2.9 A series X is reqular if and only if there exists a sequence (d,) in I*(C')
and a white noise € such that:
X, = Z dpen—p.

p=0
We could choose € so that the linear pasts of X and € are identical; then this white noise
and the associated sequence (d,,) are unique, except a possible multiplicative coefficient.

Definition 2.10 This white noise is named innovation white noise.

The interest of such series lies in the following corollary: the projection on the past is so
extremely simple.

Corollary 2.11 Let X be a reqular series and ¢ its innovation white noise; for allm < n,

PX(Xp)= > dyuy.

p>n—m

Proof of the theorem: By definition X,, € HZ, so H;X C HE, N, H,X C NH: = {0} since
¢ is regular, and X is regular.

Conversely, let X be a regular series. Let the process v, = X,, — PX (X,,); this is a
STS since we could compute its covariance function:

vn, | vn =11 8™ (K1) = Py 0 8% (Xna) =1 Xowa = P (X)) 1= vnsa |
denoted o = 4(0). By definition, v, € HX and is orthogonal to HX | so to the previous

v;: so it is a STS, and more specifically a white noise denoted ac,,.

By definition, X,, = ag, + PX(X,), &, € HX and is orthogonal to H , thus
HX is the direct sum Re, & HX ;. By induction we get that H; is the direct sum
Po<i<jRen— ® H; ; ;. On this direct sum we get the decomposition

Xp = Z AiEn—i + Prf(—j—l(XTb)

0<i<j

Since X is a regular series, lim;_, PX

e j—1(Xn) =0 and X is equal to ), a;e,—, which
is the expected form.

As a consequence, X,, € HE and since previously we knew that, €, € HX, these two
spaces are identical.

10



Uniqueness: we assume that there exists a pair (¢/,d’), (white noise, [*(C) element),
solution of the problem, so satisfying

Vn, P =PX =P and X, = dig,_i = Y _die]

“n—i*
0<1i 0<1i

On both hands of this equality we apply the operator P:X |, we get :

Pr(Xn) = Z di€n—i; P{f/—l(Xn) = Z diey_i-

1<i 1<i

But PZ' = P so the difference is null and Vn, dje!, = dye,, meaning the uniqueness except
a possible multiplicative coefficient. °

The proof of the corollary is obvious since the operators PX and P¢ are the same, as
are the corresponding spaces HX and HE,.

Remark 2.12 The identity between these two families of spaces is interpreted as follows:
Linear pasts of X and € coincide. If X is observed up to time n — 1, the additional infor-
mation provided by really new X, is represented by ac, = X, — P 1(X,,), the ‘innovation’
as we called it previously.

More generally, we will now study the class of STS, solution of “ ARMA 7 equations,
written using the delay operator S¥.

Definition 2.13 Let Xbe a STS and £ a white noise, P and Q) two polynomials with
complex coefficients. We say that X is solution of ARMA(P, Q) equation if this
process satisfies for any n in Z :

(1) P(S%)(X,) = Q(5°)(en),

meaning there exist complex coefficients (ao, - -+ ,a,) and (bo, - - ,b,) such thatVn € Z :
p q

(2) > aiXui=) b
i=0 i=0

In case of p = 0, X is MA(q) ; in case of ¢ = 0, X is AR(p). In the general case we
say that X is ARMA(p,q).

Such an equation could be solved, either to get X function of process € or the converse so
that we could “forecast” X,, based solely on its past. Roughly speaking, this consists in a
“reverse” of operators P(S¥) and = Q(S¢). This is out of our agenda, but the following
Section [2.1] is an important result which will be useful in the second part of this course.

2.1 ARMA Equation: resolution
Let Ap(X) = Ag(e) an ARMA equation.

11



Theorem 2.14 (Fejer-Riesz) Let P et () be non nul polynomials with no common roots,
those of P have modulus # 1. Then the ARMA equation is solvable as soon as the modulus
of P roots are > 1 and those of Q > 1.

Definition 2.15 This ARMA representation of X is called canonical Fejer-Riesz canon-
ical representation.

3 Estimate of an ARMA Process covariance function

We come back to the observation of a STS, supposed to be stationary, non necessarily
centered:

Xp, -, X,
The first step is to estimate F(X) and covariance function 7x.

According to standard probability or statistics lecture notes in case of sampling, E(X)
is estimated by Cesaro mean, that is justified by the large numbers law (cf. [4]). But the
required assumptions are either the independence of the observations or the martingale
property for the process. Neither of these assumptions is checked in the case of STS.
Nevertheless, with similar proofs to those seen during Probability course, we get same
type results. This is what will be used to justify an approximate of mean, covariance
function.

Insert work with R: ‘plotobs(X)’ to draw the series graph; mean(X); acf(X) to get
correlogram, variogram, partial correlogram...see TD-TP Agnes Lagnou.
3.1 Large numbers law

Lemma 3.1 Let Xy,--- ,X,, n € N be a sequence of random variables with mean m.
We put S, ==Y | X; and assume:

IM >0, Var(X,) < M?, Var(S,) <nM? ¥n > 1.
Then %Sn — m in L? and almost surely, when n goes to infinity.

Proof :

(i) Var(£S,) = E[1S, — m]? since by hypothesis E(S,) = nm. But Var(:S,) =
S Var(S,) < 2M? — 0 when n goes to infinity, so the convergence in L?.

(ii) Let Z = sup{|2S, —m|, n € [k?, (k + 1)?[}. We put Y; := X; — m so:

1 1 1 1
—Sn —m = —Sk2 + _(Xk2+1 + -+ Xn - nm) = —(Skz - k;2m + Yk2+1 +--+ Yn>
n n n n
Then we deduce the bound:
1
Zi < 251 = Bl + [Viayal -+ [V 1)

12



so the L? norm satisfies:
1
1 Zk]l2 < E(HSI@ — k*mlls + [Viesalla + -+ + [ Yiesn2-1ll2)-

By hypothesis the first term is bounded by Mk, and any following terms (k+1)*—1—k? =
2k are equal to the X standard deviation bounded by M:

1
| Zkll2 < E(Mk + 2kM) = 3M /k.
Thus the series E(>", Z7) = >, E(Z}) < >, 9M?/k* is convergent, proving that Zj
converges almost surely, when k goes to infinity, exactly meaning %Sn — m converges
almost surely to zero, meaning %Sn converges almost surely to m when n goes to infinity.
[ ]

We apply this lemma to a STS: since Var(X,) = v¥(0) the first hypothesis is satisfied.
The second hypothesis concerns

Var(Sy) =Var(y_Xi) = > 4(i=3) =my () +2(n = 1)y (1) + - +27"(n = 1)

1<i,j<n

the order of which not necessarily being nM.
But for instance a MA(q) process satisfies this hypothesis since in this case there exists a
finite number of non null 4 (4), v(k) = 0 for all k£ > ¢:

Var(S,) < n(y(0) + - +(q)).

Exercise 7: under the assumption of the lemma above, in case of an AR(1), X,, = aX,,_1+

£, prove that the covariance is 7¥ (k) = 2.

l—a

3.2 Covariance function estimate, acf, pacf

Let k be fixed in N (if & < 0, (k) = y(—k)). Using the large numbers law (or rather
Lemma , if the series Y : n — X, X, has “good” properties, a v¥ (k) reasonable
estimate is:

_ 1
Fn(k) = " Z;XJ’XHk
‘]:

For that remark that we need observations at least from time 1 to n + k.
If we have only n observations, we propose:

n—=k
. 1
%(k) = n E 1: XXtk
J:

Both estimates have the following properties:
(i) Bias



meaning this estimate has a null bias Vn.

b)) = ") - A,

this estimate bias is asymptotically null.
Exercise 8: Applying Lemma [3.1, compute the biais of these both estimates.

(ii) Convergence and quadratic error: here we need more hypotheses. To apply
Lemma 3.1} E(X,,X,+x) = v(k) but we also need the existence of a constant M such that
Var(X,Xn4x) < M? and Var(>)! | X;Xivx) < nM? meaning we would need at least
X € L* and sup,, E(X}) < M?. Now to check the second hypothesis:

> BIXiXiX;Xjp] — n*y’(k) < nM?

1<i j<n

we could (for instance) assume that the series law is Gauss.

Anyway, since it is a stylized fact that price processes are not Gaussian, we can not
use such an hypothesis.
But even if we can not assume normal law, we nevertheless get:

Proposition 3.2 (c¢f. [1], p. 104) Let X be a STS in L* such that sup, B(X}) < M?
and
lim  [E[Xn Xk X Xmar] — 2 (k)] = 0.

[n—m|—o0
Then Y, (k) — ~(k) in L2
Proof : Exercise 9
The following is to skip for a first lecture.

Definition 3.3 A sequence of real random variable (X,,,n € Z) is said to be Gauss when any real linear
combination of X; follows a Gauss law.

Remark that in such a case the vector space H*X contains only Gauss variables since the Gauss laws are
preserved under L? convergence.

In this case we get the following for v* (k).

Proposition 3.4 Let X be a Gaussian STS with spectral density = restriction to 11 of a continuous
function on R with period 2m, then Yk : ~% (k) goes to (k) almost surely and in L*.

Admit the proof.

Theorem 3.5 Let X be a Gaussian centered STS with covariance function v such that:

Z Elv(k)| < oc.
k=1

14



Then v fized k € N the vector

Vi(77,(0) = 5(0), -+ 75 (k) — (k)

weakly converges to the centered Gauss law with covariance matriz I':

3) Loy = S 9 k) + i+ 5) + 7 (k)y(k +i — j).
kez

The proof is easy but tedious. Look at the details for instance in [I] pages 111 et sq.

Remark 3.6 As a consequence of this theorem we could notice:
+a r
P{vnly, (k) —v(k)| < a} — [ (z)d.
So we could get a confidence interval for the parameter v(k), with confidence level € deduced from «

(e = [ fT(@)dx):
(k) €y (k) — %mﬁ(k) + %[.

(iii) Comparison between 5 and v*: In the case where sup, F(X?) < M? when
n — 00, k being fixed, we get, Exercise 9:

_ . k
(k) = yn(R)ll2 < M — 0.
Routines R: acf, pacf, to give an example.

4 ARMA model Identification, estimation of its pa-
rameters

Cf. Chapter 5.2 [6].

We assume that the changes in the time series (differentiation, seasonal fitting) have been
made so that we have an effective centered STS, and that the obtained series is real, with
a rational spectrum meaning that there exists p and ¢ € N, polynomials P degree p
and ) degree ¢, a white noise ¢ such that the series X is solution to the ARMA equation
APX = AQE .

The aim is to find p, ¢, P,Q to identify the model. We have n observations of X and
we suppose that the covariance function ~ is known, actually estimated according to the
method provided in Section [3.2]

R command: arima, monmodele= ; X= ; with model parameters, simulation of processes,
plotobs(X) ; mean(X) ; acf(X) which gives correlogram, variogram; pacf(X), etc.

15



4.1 Estimation of P coefficients

Hypothesis : we suppose that p,q are known in N and function v is known, we put
ag = 1.

(p,q) is minimal, meaning there does not exists polynomials P’ and @’ with smaller
degrees than p, ¢ in the ARMA equation.

We detail the ARMA equation ApX = Age:

P

Z a; Xn_i = Xq: blgn—l-
0

0

We do the scalar product in L? of this equality with X,,_,, for any m > ¢ + 1 so that
X, —m is orthogonal to (Age),. For any m > ¢ + 1:

p

Zaﬁ(m—i) =0,

0
let the set of linear equations the solution of which being the vector a in RP:

P

> apy(m —i) = —y(m), Ym > q + 1.

1

Withm =q+1,--- , g+p, we get a system of equations named Yule-Walker equations;
we denote R,, the matrix of this system of p equations and p unknown variables:

I 7(q) s v@+1—p)i
;
| g—1+p) - (9) |
and Fgff the vector with coordinates v(m), m=q+1,--+ ,q + p.

Proposition 4.1 If X is an ARMA(p,q) process, (p,q) being minimal, the matriz R, is
invertible and the coefficients of the polynomial P are the coordinates of the vector

1pg+p
- R Fq—l—l

Proof : We assume that detR,, = 0, meaning there exists p coefficients «; (at least one
is non null) such that :

Y an(g+j—i)=0, V=0, ,p—1

On the other hand, for j = p, using Yule-Walker equations, we replace y(q +p — ) :

[y

—1

p p
§2%7q+p—2 Y a(gtp—i—j) ==Y a; Yy anlg+p—i-j)
1

7=1 %

3
3

Il
o
I\
o

i
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which is a sum of null terms for p—j =p—1,---,0 since detR,, = 0. By induction, step
by step, we get for j > 0:

p—1
> aiylq+j—i)=0.
=0

This exactly reflects the fact that V5 > 0 :

p—1

E> aiXniXn jq =0,

1=0

meaning Vn > 0, Zl o @i X,,_; is orthogonal to Hf_q = H;,_, and we compute its coordi-
nates in (H5_,)":

p—1 p—1
<Z Oéan—i, <C:n—q—i-l> = Z Q; <Xn—ia <c:n—q—i-l>
i=0 i=0
forl =1,---,qand equal to 0 for [ > ¢. Moreover using stationarity hypothesis (X, _;, €n—g+1)

does not depend on n: since the white noise ¢ is the innovation white noise X is expressed
as a function of ¢ and this scalar product is stationary.
Denoting ; the coordinate of ZZ 0 0 Xp_i ON Ep_gis:

p—1 q
E aan—i = E MNEn—q+i5
i=0 =1

which is an ARMA(p-1,g-1) relation and contradicts the hypothesis that the pair (p, q) is
‘minimal’. °
4.2 Estimation of () coefficients

This is a much more difficult problem and we will only give a weak approach! We assume
P is known (we estimated it in previous subsection), ¢ and ~ are also known. We put

Yn = zp: aan_k.
0

We will only put the problem, then its resolution states on numerical analysis. The
existence of solutions is proved, but not the uniqueness. The Y covariance function is
computed as a function of the (b;) using that ¥ = Age :

q

— Z b?
0
q

= bibis
;

= bibij
J

Y (q) = bebo

17



We look for a solution b such that the corresponding polynomial ) admits only zeros with
modulus > 1.

Exercise 10: solve this system for ¢ = 1,2.

For ¢ =1,0?,i=0,1 are % ( ) £ /7(0) 2) so we need v(0) > 2v(1).

For ¢ = 2..... awful computatlons !

But the aim is to find the polynomial () and there is another method, easier but using
complex numbers and what is called “spectral density”. Since Y is MA(q) process, its
spectral density is known to be

et 1 —1
%Zv = Q)P

where you only have to know that z = e~ is 2 dimensional, (cos(\),—sin())), and
satisfies 1/2 = (cos(\),sin(\)) = €. So we have to deal with: meaning

Q(2)Q(1/z) = +Zv (F +27%)

With the change of variable Z = z + 1/z we compute z* + 27* as polynomial of Z, for
instance:
242 ?=7%-2

Thus Q(2)Q(1/z) could be written as a polynomial U(Z) the zero of which Z; are linked
to those of @ by the relation Z; = z; + 1/z;.

Practically, once found U and its zeros, we deduce those of (), chosen with modulus > 1.
The coefficients b are got from the expansion of II;(z — z;).

Routines R: for instance for ARMA(2,1) needs arima commands:
arima(z, order = ¢(2,0,1)),

seasonal = list(order = ¢(2,0,1), period = NA),
xreq = NULL, include.mean = TRUEF,
transform.pars = TRUE,

fized = NULL, init = NULL,

method = ¢(”CSS-ML”, "ML”, "CSS5”), n.cond,
SSinit = ¢(”Gardner1980”, ”Rossignol2011”),
optim.method = "BFGS”,

optim.control = list(), kappa = 1e6)
X.ord=c(2,9,1)
X.arima=arima(X,ord=X.ord)

Remark: CSS= Conditional Square Sum.
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4.3 Characterization of parameters p and q

Definition 4.2 A rational spectrum ARMA process is said to be with minimal type
(p,q) when in the “canonical Fejer-Riesz relation”, the degrees of P and Q are exactly p
and q.

More concretely: (p,q) is minimal when there does not exist polynomials P' and Q' with
smaller degrees than p,q in the ARMA equation.

Consequence: if an ARMA(p’,q’) process is minimal type (p, q), necessarily p’ > p,q¢ > q.
Theorem 4.3 A regular STS X is minimal type (0,q) if and only if

v(m) =0, Vlm| > q+1 et v(q) # 0.
Proof Exercise 11.

Definition 4.4 Let (p,q) be a pair of positive numbers. We say that a real sequence
rn, n € Z satisfies a (p,q) induction if there exists coefficients (ap, - - , o) with g =
1,ap, # 0, such that > ajrp—; =0, Ym > g+ 1.

The induction is minimal (p,q) if any pair (p',q') satisfying the property above are

such that p' > p,q" > q.

As we saw that in Subsection the sequence y(n) of an ARMA(p,q) satisfies a minimal
(p, q) induction. With the 7 (or at least their estimates), we can find p and ¢ highlighting
the minimal induction. A priori it is not so obvious but this property is equivalent to
others properties which are easier to check numerically.

Lemma 4.5 Let a sequence (x,,, m € Z) and the matriz R, with (i,j) coefficient equal
to x,_;, i and j going from 1 to s. If rso # 0, the following are equivalent:

(i) The sequence (x,,, m € Z) satisfies a minimal induction (p,q) relation;

(ii) among the determinants 14, we have rsy # 0 while s <p ort < q, and rs; = 0 if
s>p+1landt>qg+1.

(111) Tpi14 #0 and rp g1 #0 and rpp1;, =0 if j > g+ 1.
(1v) Tpr14 #0 and rp g1 #0 and r; 441 =0 si i > p+ 1.

Here 7, , will denote the determinant of the matrix R, , defined in Section

Remark 4.6 In case of ARMA process, Rs is the variance matriz of the vector (Xq, -+ , X).
The lemma hypothesis corresponds to the case where the series X is non singular.

So this hypothesis is not too strong:
Exercise, if X is non singular, prove that r;¢ # 0, meaning: prove that 7,0 = 0 implies
X is singular.

The lemma proof is tedious, for a complete proof, look at [1], pp. 137-138.
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Proposition 4.7 Let X be a rational spectrum STS. It is minimal type ARMA (p,q) if
and only if the covariance function satisfies a minimal (p, q) induction relation.

In this case the induction relation is the one which provides the coefficients (a;) of the
polynomial P:

v(m) +ary(m =1) + -+ apy(m —p) =0, ¥m > ¢q.

Definition 4.8 The order s partial auto correlation of X, denoted as ®(s), is the
last coordinate of the vector —R;éF‘{.

Previously it was denoted r (Definition
B cov (X,, — X7, Xp — X)
N/Vm(Xﬁ—A@)Wn(Xb—Agf

r(p—n)

Proposition 4.9 Let a rational spectrum non singular real STS X. It is an AR(p)
process if and only if ®(s) =0, Vs > p+ 1 and ®(p) # 0.

Proof : Exercise 12 proves the necessary condition.
Conversely, to prove the sufficient condition, we use Lemma We consider the Cramer

system:
R57004 = —Fi .

We noticed that, for a non singular series, 7,0 = det Rs # 0. By performing the Cramer
resolution, the last coordinate of « is:

det R,

Ts,0

where R is the matrix R, with the last column replaced by I']. Using a sequence of s
permutations, we see that R is actually R, and the last coordinate of « is: (—1)5:3—’;.
We then can express the hypothesis

P(s) =0, Vs >p+1and &(p) #0
as 151 =0 Vs >p+1and r,; # 0, meaning the property (iv) in Lemma when ¢ = 0
which is a characterization of an AR(p). °
4.4 Exercises

Below ¢ is a white noise with variance = 1 on the probability space (€2, .4, P).

1. Let a STS X, the covariance function is y(k) = FE[X,X,_x]. Prove that for any
keZ,~v(k)=~(—k) and

[v(n)] < ~(0) 3 v(=n) =y(n)
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and Vk, Vk-uplet (nq,--- ,ng) and Vk-uplet of real numbers (cy,--- ,¢;), we get:
Z ciciy(ni —nj) >0
i7j

meaning that the Toeplitz matrix 7" is positive, meaning for all non equal to 0 vector
ceRF Te>0.

Indication: to study the variance of the random variable ). ¢;X,,,.

2. Prove that the partial auto correlation function, P.A.C.F., defined on N as:

r: N—=R; cor (X,, X,/ Xns1,---,Xp—1),p>n,

meaning
cov (X, — X7, X — X)
\/ Var (X, — X;) Var (X, — X)
where X7 is the orthogonal projection of X; on the vector space generated by (X411, -+, Xp-1),

depends only on the lag p — n.

3. Prove that an AR(1) is a STS, proof of Proposition [L.10]
Prove that a moving average Zk <7, QkEn—k 18 & STS. Compute its covariance function with
the coefficients a;.

4. Wold’s Theorem: Prove that the regular and singular parts of a STS are still STS.

X:=P* (X,); X" =X, - P*_(X,).

5. MidTerm Test 2016: Let X be a STS such that Vn € Z, X,, = &, + ag,_1, |af = 1.
(i) Prove that for all n, HX C HE.

ii) Prove that Vn € Z and for all p > 1, there exists a constant /3, such that: e, +8,e,—, €
HX.

iii) Prove that for all n € Z and for all p > 1,

| 2 — PX(ea) 13<I Poylen — PX()) Il

Indication: inside the squared norm, keep one of the factors and decompose the other
using &, + Bpen—p-
(iv) Deduce that ¢ is an innovation white noise for X.

6. Look at the regularity of the STS:

X, = g(n)Xy where g is an application from Z to R such that X is a STS;
White noise

Moving average ), ‘N @kEn—k;

Moving average ZkeZ AREn—rk;

AR(1).
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7. Under the assumption of Lemma , in case of an AR(1), X,, = aX,,_1 + €, prove that

ak

1—a

the covariance is ¥ (k) = 1%.

8. Applying Lemma (3.1, compute the biais of the estimates 7, (k) = %Z?Zl XXk,
Talk) = 230000 XX

9. Assuming the existence of moments in L* (sup, E[X2] < M),
(i) study the quadratic convergence, lim,, o E[(7.(k) —v(k))?].
(ii) Moreover, bound the norm |5, (k) — v (k)]|2.

10. Let X be an ARMA(p,1) > 5 apX,—x = boey, + bie,—1. Propose estimates of by, b;.
11. Prove Theorem L3
12. Prove necessary condition of Proposition [£.9}

13. Let X be a STS defined as X,, = ¢,, + 0.85,,—1 — 0.2¢,,_5.

(i) What is the regularity of this STS ? Compute its covariance function.

(i) Prove that &, +&,_1 € HX. Then use the scheme of exercise 5 above to prove that &
is an innovation white noise for X.

14. 1II. of 2016 Midterm test. Let be ¢ an ARCH(1): there exists a white noise 7,
strong or Weak, there exists ag and «q positive constants, and a process h such that
hy = g + a7 1(also denoted o) such that e, = oyn;.

(i) Prove that (¢7) is an AR(1): €7 = ap+aqe}_; +pu where i, = £7 —hy is the innovation
process, meaning the supplementary information given by ¢; after time ¢t — 1.
(ii) Prove E(p:) = 0.

(ili) We now assume ay < 1, then ¢ satisfies the following Efe;/F;-1] = 0; Var(e,) = 122,
(iv) (¢?) is a stationary process,

(v) and the conditional variance of € given the past F;_p, h > 0, is non constant in time:

1— h
Var(e)Fi_n) = aie? , + ag 4
1— (05}

(vi) Study the case a; > 1.
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Second Part: Processes ARCH, GARCH

5 Some non linear models

We now look for models taking in account the stylized facts of financial series. The
standard ARMA can not do that. Remember that our aim is to model financial series such
that a forecasting could be efficient: perhaps a linear combination of past values could be a
forecast. But the linearity does not allow to take in account asymmetry, leptokurticity, for
instance. Actually, given the past at time ¢, meaning the o-algebra F;_; := o(X;_;,i > 0),
the better approximation (in L? sense) is the conditional expectation with respect to the
o—algebra F;¥ | generated by the past of process X, {X; ;i > 1}:

Xt - E[Xt/ft)il]

Thinking of the first part, there exists a white noise ¢ generating a sub filtration F C F*.

Recall that a process n is a strong white noise if it is a series of centered i.1.d. random
variables, Var(n,) = 1, and a weak white noise if the linear projection of n; on the past
{M—i,i > 1} is 0, but there is no more the independence, the n; are only non correlated.

Thus, Campbell, Lo, McKinlay propose

X = 9(771:71, TNe—2, ) + nth(ntfla Nt—2, )

the first term is the conditional expectation, the second term is the forecasting error. So
there could be two types of non linear models, according to g or h could be non linear.
Anyway, there is two different approaches.

e Non linear extensions of ARMA processes, which take in account the asymmetric
features.

e ENGLE (1982): Autoregressive Conditional heteroscedasticity (=ARCH), with es-
timates of the variance.

Francq and Zakoian [6]; see also BOLLERSEV (1986) [3].

Definition of heteroscedasticity: the covariance function is not stationary; Here we
deal with “Conditional Heteroscedasticity” (so CH in the acronym GARCH, G being for
?general”): the conditional covariance is non stationary.

Below, 7 is a white noise process, meaning (7;) are centered independent identically
distributed with variance = 1. Some authors consider 0,27 # 1. Actually, non correlated 7
could be a sufficient condition.
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5.1 First approach

Here are some examples, but it is not an exhaustive description.

(i) GRANGER-ANDERSEN (1978):

p q
Xy =p+ Z GiXe—i + Z Omi—; + Z i j Xe—ifi—j.
i—1 =1

1,720
(ii) EXPAR

p
Xe=p+ Z[Oéi + Biexp(—=y X7 + -

i=1

(iii) Markov switching models, threshold auto regressive (TONG, 1978) meaning
Xi = 01 (S™) (X)L ix, ooy + P2(ST)(X)Lx, gy + s

where ®; are polynomial functions, S¥ is the delay operator, ~ is the threshold, meaning
according to this threshold there is a switching.
This method allows to take in account the asymmetry feature.

5.2 Second approach, Engle

The aim is to model the conditional variance of the price variation:
Pt — Pt—1
DPt—1
Then we look at ARCH/GARCH: Let us suppose that X = logp is an AR(1) process:

e, = log(1 + 1) ; where r, = ol =Var(e /i, i > 0).

Xt = 9Xt_1 + &;.

Fi_1 is the o-algebra generated by (g;,_;,7 > 0), sub o-algebra of the one generated by
the prices observations (X; ; = logp,_;,7 > 0).

Then the conditional expectation E[X;/F; 1] = 6X; 1. On the one hand &, = X; —
0X; 1. On the other hand, recursively we get E(X;) = 0F(X;_1) = 0'xy which goes to
0 when ¢ — oo if |f] < 1. Similarly, the conditional variance E[(X; — 0X; 1)%/Fi_1] =
E(£?) = 02 does not depend on time and (once again recursively) the variance is E(X?) =
lf—;;, with such models we can not forecast the changes in forecasting errors
So the estimates of the variance are constant and do not highlight any evolution in the
time.... Thus it could be better to model the covariance function as a process.

ENGLE’s hypothesis is: ARCH model for the volatility process. Such models can take
in account the non stationarity of the variance along the time. There exists two types of
such models:

e Linear ARCH with quadratic specification of conditional variance:

ARCH(q), GARCH(q), IGARCH (p,q);
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e Non linear ARCH with asymmetric specification of variance:

EGARCH(p,q), TARCH(q), APAGARCH....(cf. below Chapter

We think of random variance model, ARMA are not convenient to model these facts,
such as the property of conditional heteroscedasticity: Var(ey/e,_;,1 > 0) is non constant,
below we will put e, = oy, where oy > 0 s Fy;_1 measurable, and n is a white noise,
n: being independent on Fi_1. € is the current price variation, €, := Xy — E[X;/Fi—1],
Elei/Fi-1] = 0, E[e2/F;_1] = 02, 0 represents the volatility process, € is a weak white noise
with kurtosis, cf. [6] (1.7): % = k[l + %ﬁg)?], where K, is 1 kurtosis coefficient.

Look at some models [6] p. 11 with random variance models, e, = o1, where o, > 0
is F;_1 measurable, n white noise independent of F;_i:

e Conditionally heteroscedastic (=GARCH) process, where the filtration is induced
by the past of the process (¢;) and the volatility at time ¢, is a function of (g;,7 < t).
In the standard case, the volatility at time ¢ is a LINEAR function of (¢;,7 < t).

e Stochastic volatility processes: logo; = w+ ¢logoy_1 + v where v is a strong white
noise independent of 7. We can say that actually, logo is an AR(1) process.

e Switching regime models: o, = o(A;, F;_1) where A; represents a ‘regime’, unob-
servable process, independent of 7. Conditionally to A;, o; could be a GARCH. The
process A is for instance a finite-state Markov chain (cf. Markov-switching models).

6 Linear ARCH-GARCH models

6.1 ARCH(1)

The first model is Engel’s one:

_ 2
€t = Tty/ Qo + azgi_q,

where 7 is a weak white noise (centered, E(n;/F;—1) = 0, and variance 1) and «;,7 = 0,1
are positive real parameters. It is equivalent to write &, = n;\/h; with hy = ag + a€7_4.

Definition 6.1 A process € is said to be an ARCH(1) if there exists a (strong or weak)
white noise n (satisfying also E[n,/Fi—1] = 0) and a process h such that hy = ag + are?_4
(usually denoted as o?) and

Et = Oy, O > O,Z = O, 1.

Actually we remark that (e7) is an AR(1):

2 2 2 2
o, =hy =ap+ a5, &g = ap+ g, + (i

25



where y; := 2 — hy is the innovation process, meaning the supplementary information
given by &; after time t — 1.
Remark that E(u) = E(o?n} —o?) =0 and E(w,/Fi—1) = o} [E(n? —1)/Fi_1] = 0.

The following proposition proves that in case of a; < 1, (¢2); is a stationary process:

Proposition 6.2 Assume that a; < 1, and let € be an ARCH(1) process satisfying: there
exist K and M such that sup,. ;. E(e7) < M. It satisfies the following

%)

Elei/Fiq] =05 Var(e) = T
—Qq

There exists a similar result for GARCH(1,1) if a + 5 < 1.
Proof Exercise 15

Such properties allow us to consider such process as an error model, for instance the
variation, the volatility.

Proposition 6.3 Assume ay < 1. The conditional variance of € given the past F;_p, h >
0, is non constant in time:

1—al
Var(e/Fip) = o/fa?_h + ap L
1-— aq

It is the main feature of such models: ¢ is similar to a homoscedastic white noise but its
conditional variance is not stationary.
Proof Exercise 16 (i)

Proposition 6.4 The conditional covariance is null

cov(ey, epup/Fien) =0Vh > 1, k> 1.

Proof Exercise 16 (ii)

Proposition 6.5 We assume that there exist K and M such that sup,.; E(e?) < M.
(i) Assume oy > 0 and almost surely oo + p; > 0. Then the process (2) defined by the
ARCH(1) Deﬁnition 1s positive. So we have some conditions on the support of random
variable fi;.

(11) ag > 0 and 0 < oy < 1 < the variance of random variable €; exists.

Proof : (i) Definition 6.1]is e7 = o + 167, + p, the assumptions imply &, > 0 almost
everywhere.

(ii) the proof of = is Proposition [6.2]

Conversely under the assumtion ¢, € L?, and the fact that p, are centered, once again we
get the recursive formula

2 1—a’f h .2
E[gt] = 0501 o +a1E[€t—h]'
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Using that for i great enough E[e? ,] < M, this series is converging if and only if |a;| < 1.

Since the result is positive, the limit lfgq > 0, so ag > 0. °

Under the hypothesis “the process ¢ belongs to L, we get (cf. Berra and Higgins,
1993):

Proposition 6.6 (i) Assume Vt, &, € L* and E[n}] = 3. Then
E[&?/.Ft_l] = 3(040 + 06183702.
(i) If there exist K and M such that sup,. i E(o}) < M and 303 < 1,

30(8(1 -+ O{l)

E[éf] = 3(@8 + 20(0041E(E?_1) + O‘%E[dﬁl—l] = (1 — 304%)(1 — 041).

(iii) Thus we get the kurtosis

Eley] _ 3(1—oaf)

= > 3.
(Ele])?  1-3a?

kurtosis =

Remark that the kurtosis is greater than the Gaussian law kurtosis. So this model can
take in account this leptokurtic feature of the observed data.
Proof Exercise 17.

6.2 Models with ARCH(q) errors

Definition 6.7 A process € is said to be an ARCH(q) if there exist a white noise n and
a process h such that hy = ag + > 1 auer;, ap >0, a; >0 fori > 1, and

€t :Ut\/h_t~

Similarly to ARCH(1), we have results for ARCH(q) models, at least Ele;/F;_1] =0
and Varle,/Fi1] = hy = ap + D1, e ;.

Thus we now consider a financial series AR(1): (X;) and its residual, a “weak white
noise”, meaning ¢, := X; — E[X;/F; 1] and Xy = p+ pX; 1+ &4, |p| < 1.

But actually ¢ is an ARCH(q) process; there exists a weak white noise 1 so that

q
€ = Ut\/h_t, hy = ag + Zaﬁg—i-
=1

Thus, for instance if ¢ = 1, the process ¢ satisfies Propositions ,[6.4 [6.5

Exercise 18 : In case of a linear model, we can prove recursively
1—p" h
Vh > 0, E[Xt/ft_h] =u+ ,OE[Xt_l/J—"t_h] =u ﬁ + p" Xip.

Then we have some properties for initial process X:
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Proposition 6.8 Let an AR(1) X with error € being an ARCH(1). Then

2h
Var(X,/Fp) = [ —20 1—p™\ ol — ph ol — ph
- 1—p? e a — p? + o 2 2 Ei_p-
=

Proof Exercise 19

A .
s a corollary: Var(X;/F;_1) = ag + aye?_,. This means that the forecasting error

d S C S . p 9
C C

6.3 GARCH(p,q)

[[6] 2.1 pp. 19 et sq.]

1Once again we consider the white noise of a financial time series, meaning ¢, := log p; —
og pi—1. But we now assume that ¢ is a GARCH(p,q) process. , v sh

W it could happen that ¢ cSuld be too 1ar.ge, and in such a case, following Box and

N nkins, we would gpply the “parsimony” principle to the process h.

COI;yway, the practitioners usually only consider GARCH(1,1) even if it is not always
venient, so we have to be careful, cf. [6] page 205, ZakTab205.pdf; very often the

hypothesis “the model is ARCH(5)” is
: accepted at level 0.05 and i
GARCH(1,1) is accepted only for DJU, Nasdaq. e DL e model s

Table 84 Portmantcau test p-values for adequacy of the ARCH(S) and GARCH( 1) models
for daily returns of stock market indices, based on m squared residual aulocovariances. p-values
less than 5% are in bold, those less than 1% are underlined

1 2 3 4 5 6 ? 8 9 10 11 12

Portmanteau tests for adequacy of the ARCH(S)

cac 50104 0010 0.001 0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
DAX 0506 0.157 0.140 0.049 0.044 0061 0.080 0.[19 0.140 0.196 0.185 0237
DIA 0441 034 0.139 0002 0000 0.000 0.000 0.000 0.00 X

DI 0451 0374 0.015 0.000 0.000 0.000 0.000 0.000
DIT 0255 0514 0.356 0.044 0025 0013 0.020 0.023
DIU 0477 0341 0.002 0.000 0.000 0.0

0.0

ETSE  0.139 0.001 0. 0.000
Nasdag 0025 0 0. 0.000

Mkei  0.004 0.000 0.001 0.000 0.000
sy 0502 0692 0407 0370 0211 3 0.700
S&p 500 0647 0540 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.000

| portmanteau tests for adequacy of the GARCH(L.1)
B cac 0312 0379 0523 0229 0301 039% 0495 0.578 0672 0.660 0.704 0743
DAX 0302 0583 0574 0704 0823 0901 0938 0968 0983 0.989 0.994 0.995
DIA 0376 0424 0634 0740 0337 0908 0338 0886 0909 0916 0938 0.959
DIl 0202 0208 0363 0505 0.632 0742 0770 0812 0871 0729 0748 0811
DIT 0750 0100 0203 0276 0.398 0518 0635 0721 0804 0834 0.883 0925
DIU 0,000 0.000 0.000 0.000 0.000 0.000 0.

FTSE 0733 0940 0934 0.980 0919 0964
Nosdag 0523 0024 0061 0.019 0.001 0.001 0002 0.001 0.002 0.001 0.
Nikker 0049 0.146 0246 0386 0356 0.475 0567 0.624 0.703 0775 X

sMi 058 0758 0908 0959 0.986 0.995 099 0999 0.999 0999 0999 0.999
S&P 500 0598 0364 0.528 0.643 0673 0394 0512 0535 0639 0432 0.496 0594

Figure 1: Portmanteau test.
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Definition 6.9 A process e is a GARCH(p,q) if there exist a weak white noise n, integers
p and q, real numbers oy > 0, o; > 0, 8; > 0, so that

q p
_ 2 __ 2 2
Et = M0t, 0, = O + E Q& -+ E ﬂjat—jv
i=1 j=1

et € L?, Elg/Fi ] =0,
with sufficient conditions to insure 0t2 > 0.
Recall: 7 is a white noise, E(n;/F;_1) = 0, E(n?) = 1.
We recall ji; := € — o7 the innovation process for £? | which is an uncorrelated process;
it is also defined as ju; = €2 — Var(e;/Fi_1).

Remark that E(e;/Fi—1) = 0 since 1, is centered and independent on F;_1.
So Var(e;)Fi_1) = E(e2/Fi_1) = o2 since Var(n;) = 1.

Exercise 20: Prove that the process (¢7) is an ARMA (sup(p, q),p) process, more specifi-

cally:
PVq P

e = ap + Z(Oﬁ + Bi)et i+ — Z Bjbu—j-
i=1 j=1
This is named an “ARMA representation”.

Thus it could be an idea to apply usual ARMA methods to the process €2 to identify
P, q, o, Bj.... but actually it is not really convenient, because the lack of strict stationarity.

Example 1: GARCH(1,1): &; = n,04, 07 = ag + a7, + B107_, induces an ARMA(1,1):

6? =ap+ (ag + /31)5?_1 + pe — Biphe—1-
Proof : &} = iy + 07 = py + ag + arg]_y + rofy = e+ ag + argl_y + Bulefy — pa)-
If oy + B1 < 1, and if M, 3N, sup,. y E[}] < M, by induction we get
Qo
l—op =1

Here we once again have a necessary condition, ay + 1 < 1, for the existence of Var(g;)
and the stationarity of the process (7).

Var(s,) = E[e?] =

More generally we now look for a link between kurtosis and conditional heteroscedas-
ticity, using 0% = 2 —

Proposition 6.10 Let ¢, = n,0; with n a Gaussian white noise (so E(n}) = 3) and
of = ag+ Y cugl + >0 Biof ;. Then Elgf] >3 (E[e2))? and

Var(B(e}/Fi )]

Kurtosis =3+ 3 3
(E[7])
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Proof cf. Proposition case ARCH(1).
Ele}] = 3E[o}]; Ele?] = E[o?]; so the Kurtosis= E(;t)z =3 2ol

)
On the other hand: E(e?/F, 1) = o2, so Var|E(e?/F,_1)] = E(a}) — (E(c?))?, and
E(oy) = (E(07))* + Var[E(e} | Fi-1)].

So we get the result putting these moments inside the ratio Kurtosis expression. e

Example 2, [6] p. 45: GARCH(1,1) with n a Gaussian white noise, &, = n;0y,

2 __ 2 2
0y = + Q& 4 + ﬁlatfl.

Exercise 21: Prove that &, € L* only if (a; + 81)? + 2a? < 1. In this case

1— (a1 + f1)?
1— (a1 + 51)2 — 20(%

kurtosis = 3

Stylized facts:
- process £? is correlated, € is not; e.g. €7 = ag+ aer_ | + Bipu—1, tu-1 = €1, — 07_1. We
assume ¢; € L*, then we can look at cor(e?,e2 ;) (cf. [6] remark 2.1 page 20).

Definition 6.11 A process € is a STRONG GARCH(p,q) if there exist a strong white
noise n, p and q, ap > 0, o, 1 = 1...p, B;,j = 1....q so that
q p
€ = Oy, 0152 =aqp + Zaﬁ?_i + Zﬂjaf_]‘a
i=1 j=1
(4) & € L2= E[gt/"t;‘il] = 07
with sufficient conditions to insure af > 0.

Remark that using €7 ; = o7 77 ;, 07 = ao + i (aini ; + fi)o7;, meaning o® is an
AR(pV q) with random coefficients.

Properties of simulated paths:
look at fig 2.1 [6] pp 21 et sq. and real data “Bourse de Paris”

showing the volatility clustering property, succession of large magnitudes of |;| then
low magnitudes of |&;|. Large absolute values are not uniformly distributed but tend to
cluster.
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Séries mensuelles des cours des actions

1000000
Krachde 1987 — p
1920
Greéves des chemins de fer et
100000 des mines du nord
Krach de 1929
1881

b Cri's? Choc pétrolier
10000 oursicre .

Révolution Election de Miterrand
isis de 1848 ‘
1000 Les Cent-Jours '
T 1936 k

100 Victoire du Front Populaire

‘ | aux élections législatives 1939-1944 |
l | Deuxi¢me Guerre Mondiale |
|
ol | | ,

TFERESIERNEREELEEIEEEEEEERZR

-
V.
b=
| ’
| 1 fl | 1
d | | i b A
s f e I | I‘}I! ] ‘ i‘ll\ 1 | i *i ! | X I l LII P
1 | | ‘B il il-1 HET I A
I' H ) | !""‘lll [ i 30 ” ‘l’l {[‘:bl
. ‘ | :

Figure 2.1 Simulation of size 500 of the ARCH(]) process with w =1, « = 0.5 and 75, ~
N, 1).

Stationarity study: The aim is to look at the stationary solutions to Equation in Defi-
nition 4] similarly to what we did in ARMA study. As an example, look at GARCH(1,1):
let a strong white noise n and

g = 0y, 0 = g+ arg;_y + Prop
and denote the polynomial function a(z) = a;2* + ;. With this notation we get
he = 0} = ag + (eamy + Bi)o_y = ag +a(m)oy_y,
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so recursively we get

he =ao(1+ > a(n—1)....a(m—)).

i>1
The following proposition proves the strict stationarity of any strong GARCH(1,1).

Theorem 6.12 ([6] pp 24-25 and Cor p. 26) Assume v = E[log(a(n)] < 0, where a(x) =
a1z + (1, then the series

he = ap(1 + Za(nt_l)....a(nt_i)),

1>1

converges almost surely and e, = /by is the unique strictly stationary solution of the

system , case p=q = 1.
Moreover the process € is F" adapted and ergodic.
If v > 0 and ag > 0, there exists no strictly stationary solution of .

Proof : only an idea.... '

(i) Using large numbers theorem, remark that * In[a(n,_1)....a(n—;)] = = >°;_ Ina(n;) —
v < 0, so the order of a(n;_1)....a(n;—;) is about €™ = (e?)"™ which is a convergent series
when v < 0.

Then starting with the definition of h and a we get

hy = ap(1 + Z(Oém?—l + 5)~~(04177t2—i +8)),
i>1

E(e}) = E(h) = ap(1+ Y El(aunf y + B1)....(cam}; + ).

i>1

Since the process 7 is non correlated and E (n?) =1

E(e}) = E(h) = ao(1+ Y _(an + 1))

i>1

which does not depend on ¢ and exists as soon as oy + 51 < 1.

(ii) By definition the process ¢ is F"-adapted. Ergodic definition: Vk € N, VB Borel set
in R¥ limy, 00 2 55 15(Z, ey Zoiir) = P{U(Z0, oy Zess1) € BY.

(iii) If v > 0, the series in (i) is not converging, no solution. .

Corollary 6.13 Whent — oo : v > 0= 02 —,, o0 and

v >0 and E[|logn?|] < oo = €2 —,.,. 0.

Second-order stationarity of solutions to Equation th 2.2 page 27 [0]:
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Theorem 6.14 o Let ag > 0, if oy + 51 > 1, there does not exist a solution to Equation
).

o [fay + By <1, the process defined by

€1 = moy; 07 = oy + Z I_ya(n—;)), a(z) = aox® + fi,

i>1

is a second order stationary solution to Equation (4)).
e More precisely, € is a weak white noise. Moreover there exists no other adapted second-
order stationary solution.

Proof e [6] Th 2.2 page 27, case p = ¢ = 1: Suppose there exists a solution to then
E(ey) =0, E(e7) = E(0}) = ag + (a1 + B1)E(07_ ). Recursively we get E(07) = ey
if and only if oy + 7 < 1, so there is no solution in case of a; + 31 > 1.

o If oy + 1 < 1, look at

er = moy; 0f = Zﬂé-:la(m—j)), a(z) = agz® + fi.

i>1

As previously, 1 is a white noise process, independent on the process . Thus E(e?) =
E(n})E(0?) = E(0?) which is computable via the recursive equation

E(0}) = ag + Y Ela(n)]'

i>1

This sum is finite if and only if Efa(n;)] < 1 which is equivalent to oy + f; < 1.
Denote that the assumptions implies that €2 | = n? ;07 ;, so on the one hand,

2 2 2 2 2
Qo+ a6 + ﬁ10t_1 = Qo+ a1M;_10;_1 + Blgt—l =+ a(nt—l)

which on the other hand can be identified to o7 meaning that actually the process defined
in the theorem is actually solution to Equation ({4]).

e The process ¢ is a weak white noise: it is centered as 7 is, and uncorrelated for the
same reason, since o and 7 are uncorrelated.
Under this assumption, we see above that necessarily any solution of Equation satisfies
the definition of the theorem with such a definition of function a. ( [6] chap 2 pp 28 et

sq.)

7 Identification [6] Chap. 5

Let (p1,---,pn) be observed prices of a centered stationary process, deduced from a
financial time series, X = logp. The log-price variation,X; — X;_1, should coincide with
its innovation process e: Vt, e, = log -2~ = X; — X;_; where p is the financial time series.

Pi—1
Notice this series ¢ is dependent though uncorrelated:
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X stationary so €, is centered; concerning the € covariance function: cov(es, e;_s) =
Elmomy_sor—s] = E[En ) Fi_1)om—soi—s] = 0. Cf. [6] page 93 line -1

We have to identify the model GARCH(p,q), meaning identify the orders p, ¢ and the
coefficients:

g = oy, O =g+ 5 e?  + E Bjo7- s

7j=1
ge € L? Eleg/Ff = O,ao >0, 0, >0,i=1.p, 5;>0,5=1....q.

7.1 Autocorrelation check for white noise

Recall that the theoretical covariances Elene, k] = 0 Vk # 0. They can be estimated by
SACYV (S for sample):

Y(k) =A(= Y e

i=1,n—k
and the autocorrelation function, SACR by
. Y(k)
plk) = —=.
(k) 7(0)

We now need to test the null hypothesis: v = 0. It is done by the following theorem which
is similar to a central limit theorem, so provides confident intervals:

Theorem 7.1 Let the GARCH process defined above satisfying €, € L* and the sym-
metric covariance m X m matriz Uy, defined by Uy, (i,j) = Elep | ., _,]. Then when

n — oo, the distribution of the m vector SACV \/n¥m = /n(¥(1),....,5(m)) goes to a
centered vector Gaussian law with variance matriz I',,.

LetT',(m) := mfm, then the distribution of the m vector SACR v/np, = /n(p(1),...., p(m))
goes to a centered vector Gaussian law with variance matriz I',(m).

Look for R code to draw a given number of /(j) and their confident intervals, [6] page 96.

Then there exists “Portmanteau” tests for checking that the data is a strong realization
of a strong white noise, it involves the statistic

Qul =n(n+2) Y p*(0)/(n—1).

i=1m

Under null hypothesis: “c is a weak white noise”, QEP asymptotic distribution is x2,. So
the null hypothesis is rejected as soon as QLZ > (1 — a) quantile of y2,.
But there exists a more robust statistic using estimated covariance and correlation ma-

trices

. P | 5 1 =
L= |Ti(i, J) := n Z Eeh—ichj| » Lp(m) = [E(52)]2Fm'

k=1,n
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Theorem 7.2 Let the GARCH process defined above satisfying €, € L* and the symmet-
ric covariance m X m matriz Uy, defined by T (i,7) = Elel,,_e0,, ;] The Portmanteau

statistic Qu = npl, T ,(m) ™ pm has an asymptotic x2, distribution.

Let r(k) = Corr(et,er—x/Fi—1) named partial auto correlation, and its estimate 7(k),
the sample partial auto correlation SPAC. It could be easily computed with Durbin’s
algorithm [6] p. 355. It satisfies the convergence in law /nr(k) — N(0,1), Vk > p for
an AR(p), but be careful: with such too narrow confident intervals, we could be wrong
rejecting the null hypothesis.

Think that tests based on SPAC could be more powerful than the ones based on SACR
(cf. [6] pp 97-99).

7.2 Identifying the ARMA orders of an ARMA-GARCH

Let ARMA-GARCH model, ARMA(P,Q), GARCH(p,q):
X — Z a; Xy =€ — Z bict—;
i=1,P i=1,Q

where ¢ is a GARCH (weak) white noise as defined above. The first task is to identify
the orders P and Q. Recall that px(k) =0 Vk > @, and rx (k) =0VEk > P :

let us refer to the first part, explicitly Chapter [4] Section 4.3]

From now on we assume that the law of 7, is symmetric.

We will identify (P, Q) using the “corner method”: look at the (j x j) Toeplitz matrix
D(i,j) with D(i,j)g; == px(i — 1+ k,i+ 1 — 1) and A(4,j) its determinant. Since
px(h) =3, aipx(hi) =0 for all h > Q, A(i,j) = 0 as soon as i > P,j > Q. Thus we
look for P and @ such that (P 4+ 1,Q + 1) is a corner of 0 in the table of A(i, 7).

Note that this is automatically done by R routines.

7.3 Identifying the GARCH orders of an ARMA-GARCH

In this case we could use the same methods for the ARMA(p,q) process (£2);: corner
method, cf. [6] Section 5.3.1. and above in these notes Lemma [£.5

We could also look at the estimates of SACV and SPACV....

But a priori the most used pairisp=¢q = 1..... even if it is not the most convenient
model, cf. Tables in [6].

7.4 Lagrange multiplier test for conditional homoscedasticity

[6] pp 111-116. The purpose is to test the absence of “GARCH effect”, meaning a null

hypothesis Hy : ap; = -+ - = apg = 0. We introduce “Lagrange multiplier” the statistic
2
10 A nnn O . 1 < 1 n. g2 &2
LM, = — 1,01 ~1,(6°) = — L)Lk
n oo’ (%) O (6°) n; /%n—1;<dzc >(I)C ’
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to complete after Sections and defining the notations: éc, Ry, and the function [,,.

8 Estimates and forecasting

Francq and Zakoian [6] Chapters 6,7
We here suppose that p and ¢ are known and we present two methods to estimate: ordinary
least squares (OLS) or (quasi) Maximal Likelihood (MLE).

The aim is to estimate the unknown parameter
0= (v, i=1,..q; Bj,5=1,...,p) for a GARCH(p,q) process.

OLS is a useful method but there is two drawbacks:
- OLS estimate is not efficient, (less good than MLE estimate...)
- Hypothesis L? is needed for better properties.

An improvement is provided with “feasible generalized least squares” (FGLS).

8.1 OLS to estimate ARCH(q) models

Recall the model:

q
g = oy, af = wy + Z@zo&??,i, wo > 0,
=1
(5) e € L, Ele/Fiq]=0

where (1) are independent identically distributed, centered and E(n?) = 1 meaning 7 is
a strong white noise.

The parameter to be estimated is fy = (wp, aip) € R?™, the observations are (g;,t =
1,...,n), for instance g, = log(1 + r;) = log p; — log p;—1 where 7, is the return, we denote
the vector of observations as Z,_y := (1,671, ,e7_,). We get the scalar product in R*":

5? = (Z4_1,60) + 11t

ie. Y = X6+ U in R", where U = (u; = o?(n? — 1), t =1,...n), X is the matrix with 1
in the first colum, elsewhere the X elements are 5?_j,i =0,...n—1; 5=0,...,qg — 1.

The consistent OLS estimate is defined as
(6) f(n) := argmin ||Y — X6||> = (XX)"'XY.

Under assumptions: € € L* and satisfies above, the following is an estimate of o2 =
Var(u) = E[(ef — (Zi-1,00))°]:

n

2
1 X 1 d
~2 L 2 2 ~ A2
g (TL) = n——q—]_HY — X@(TL)H = ﬁz (515 — W — izlazgt_i) .

q i=1
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Theorem 8.1 (i) If € is a strictly stationary non anticipative (F" adapted) solution to
system (@) with wy > 0, g € L*, P{nt = 1} < 1 then almost surely the sequence of
estimates 0(n) — 0y and 6%(n) — o

(ii) If moreover e, € L® then there z's a central limit Theorem, convergence in distribution:

V() — 86) — N (0, (BGr") — 1A~ BA)
where A is the matriz E[Z,_1Z,_] and B = Elo}Z,_1Z,_1].

These matrices are “information matrices” and can be approximated by

ZZt 1Zt 15 : ZJtZt IZt 1-

8.2 FGLS to estimate ARCH(q) models

Remember that the error vector is yu, = o7(nf — 1) = 7 — o7, E(u;) = 0, the observa-
tions being the ¢; (and recall that 7, € L? for all ¢). The F;_; conditional variance is
Var(p/Fir) = Var(n;)o}.

Let § = (w,a) € Rq+1, we denote the application o7 : 0 — w + (o, &), o} : 0 —
(w+ (e, )2, and Q := Diag(o7*(6(n)),...,o.4(0(n))) Where 0(n) is the OLS estimate

ren
given in Equation

Theorem 8.2 Under the assumptions of Theorem (i), the FGLS estimator defined
" . = (XOX)- KAy
almost surely goes to Oy and
Vb, —0o) =, N (0,Var(n;)J ")
where J = F (0‘;4Zt_12t_1) 1s positive definite.

Remember that (Z;,t € N) are the observations.
We skip the too long proof, cf. [6] Th 6.3 pp. 132-134. but here are some elements:

e J is a positive definite matrix.

o bty = (S 0 O Zir Z) (Secyo 6n) Zias).

e Taylor expansion of the above expression.

e Bound )
1231, 00 8(0%) Zi e X Z{ 1 (0, — 60)|

16(n) — 6ol

(6% € (65,0(n))) to prove the almost sure convergence.
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e Then apply central limit theorem.

By the way, remark that such an estimator 0, is the orthogonal projection of ¥ under
the norm || X | := XQX.
Remark that we need n >> ¢: ¢ parameters are to be estimated using n observations.

8.3 Constrained OLS to estimate ARCH(q) models

A problem could occur: the estimate of one component € could be non positive.... So it
is convenient to add this constraint and we turn to the constrained optimization problem:

0(n)° :=arg min |V — X6
0 RQ-H

+

Since 6 — [|[Y — X0||? is a convex application and [|Y" — X6 > [| X0 — |[Y']| = oo when
16]] — oo in RE™ A(n)¢ exists.

We get the following properties, cf. Theorems 6.5, 6.6, 6.7 [0].

—~—

(ii) If rank(X) = q + 1, 6(n)° = arg min,_pa+1 (0(n) — 0)X X (6(n) — 6).

Theorem 8.3 (i) If rank(X) = g+ 1, (n)° = (n) < 0(n) € RY,
( )
(iii) Under the assumptions of Theorem (i), 0

(n)¢ — 6y almost surely.

8.4  Quasi-maximal Likelihood (QML)

QML method needs stronger assumptions than the previous method. It provides consis-
tent and asymptotically normal estimators in case of strictly stationary GARCH processes.

8.4.1 Conditional QL

We observe (&1, ...6,). We suppose that: p and ¢ are known and the model is

q P

& = oy, 0p =wo+ Zaigii + Zﬁjat{jﬂ
i=1 j=1

e € L% Ele/F 1] =0,

1 being independent identically distributed, centered, with variance equal to 1.

The parameter to be estimated is 6 = (w, o, 8) € © C RS x (R*)P*. We suppose that
conditionally to initial values (go, ..., €1-¢, 03, .-, 07_,), the law of the vector ¢ is Gaussian,

meaning the likelihood

Ln(e) = H?:l

1 t
N IRETHOL
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where recursively
—W+Z@5t z_'_ZBJO—t -7
2

the choice of the initial values could be g = ... = €14 = 0§ = ... = 0{_, = the common
value ﬁ But, if this choice gives negative values for the parameters, a better
choice could be w or €2: &2 is observed, and w is a component of the parameter 6 to be
estimated.

Then the QMLE is

O(n) == arg max(0 — Ly (0))-

Actually, we look for the arg min of the application

0~ 1,(0) := —2log L, () = Z[&;—é) +1log(7(0))],

0(n) := arg min(0 — 1, (6)).

Anyway, there does not exist an explicit expression for this estimator, but it could be
exhibited via numerical procedures.

We admit the following theorem.
Theorem 8.4 The QML estimator O(n) is solution to the system in RY x (RT)P+d

Z%VG (9) =0

with initial values w or &2.

(i) Assume the true parameter 6y € ©, compact subset of R} x (R*Y)P*9, plus some technical
assumptions (cf. [6] p.144 and A.i below), then almost surely 0(n) —n_o0 Oo-

(ii) If moreover 8y € ©° (means 6y ¢ 90) and k, = E(n}) < oo, then we get a CLT:

V(0(n) = 6o) =2 N(0,(E(nf) = 1)J7)

where the matriz J is defined by J; ; = Ego[ 6_8@0)]

Assumptions:
A.1: 0y € ©,0 is compact.
A.2: y(Ag) < 0 ~v(Ag) being deduced from some matrices, V0 € © : 30| B; < 1.
A.3: n? law is non degenerate, E(n?) = 1, for instance P(n? = 1) < 1, ¢f. Theorem|8.1}

Ad: Tfp > 0, Y07 iz and 1 — 379, Bjo2? polynomials have no common roots,

Zgzl (o711 7é 0, Qg0 + 6p0 7é 0.
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Exercise 22: Give the log likelihood of a process ARCH(1) g, = (v/w + agi_|)n;.
Stationarity imposes o < 1. Recall (7;) are iid, standard Gaussian law. The conditional
law of &, given F;_1 is N(0,w + ae?_;). So the density is

1 2
expl— P
V21 (w + ae? ;) P 2(w + aef_y)

}

Considering that the observations are &y, ....e,, the likelihood is

2
1 an

I exp|—
= 2n(w + agl ) bl 2(w + aci_y)

]

and the loglikelihood is 1, (0) = >~} 1[w+a5 +In(w + ae?_;)]. The MLE has to minimize
0= (w,a) = > 1[w+az +1In(w + ae?_)]. Remark that for each term in the above sum

the application x — ; + ln x is not convex but its derivative is negative then positive. So
we can argue that ¢ — In, (6) could have a minimum. Anyway, such a minimum does not
exist in a close form but it could be provided with numerical procedures, as a solution of
the system

2 1 _
( ) Zt 1 ( w—l—as 1)2 + w+ae%71> =0
_ .2
Ouln(0) = S0 2, <(w+a§§_l)2 + stg_l) ~0

8.4.2 Estimation of ARMA-GARCH models by QML

We now look at ARMA(P,Q)-GARCH(p,q) model: The process X is observed (for in-
stance log of prices):

Xt_CO E aOz Xt z_cz +€t E bO]et 7

but the noise is not directly observed and is modeled as a GARCH(p,q) process .

e = Moy, 07 = wo + E agiey_; + E Bojor- —j

In this case the parameter to be estimated is ¢ = (¢, a,b, a, ). With QML method we
get estimators which are consistent and asymptotically Gaussian. (cf. [6] page 150, 7.21)

Routines in R to estimate these parameters by MLE:
garchFitControl, MLE 1is the by default method; on another hand, method=CSS-ML,
or ML or CSS...
ML means Maximal Likelihood, and CSS means Contributed Squared Sum, it minimizes
the sum of squared residuals.
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8.5 Forecast and confident intervals

With the identified model we now can predict the future behavior of the time series. With
the central limit theorems, (cf. Theorems (ii), (ii)) any estimated parameters
actually are estimated via a confident interval, so the forecasting is an interval for any
time.

R routines: look at fGarchUse.pdf, predict(....) ; value....

9 Tests based on the likelihood

Cf. Francq and Zakoian [6] Chapter 8, pp. 185-206.

The asymptotic normality of QML estimators allows to test the estimated model. But be
careful: when some true coefficients are null, in this case, asymptotic normality fails....
indeed, for a fy; = 0, we should have /nf;(n) = /n(6;(n) — y;) > 0 almost surely,

impossible for a Gaussian random variable !

9.1 Test of second order stationarity assumption

In such a test, the null hypothesis Hy is a necessary condition for stationarity, look at
Example 1 in Section : a+ 3 < 1. If not, the 7 is not integrable, the stationarity fails.

We mean to test
Hy: Za0i+ZBoj<1againstH1: Z&0i+250j21

since the assumption Hj is necessary for the series belonging to L?. Let us consider a vector
c with all components equal to 1, Hy is exactly (c,fp) < 1. Under convenient hypotheses
we deduce from the asymptotic normality of §(n) the convergence in distribution

V(e 0(n)) = (¢,60)) = N (0, (E(nf) = 1)¢' T e)

recalling J; j = Ey, [823?6(,?0)]. We have to replace unknown parameters E(n}) and J by their

estimates: &, and J :

n

Proposition 9.1 Under assumptions in Theorem (i1), a test of assumption Hy at
level «v 1s defined by the critical region

{Tn = \/ﬁ

where ® is the normal Gaussian law distribution function.
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9.2 Case of 6, € 06

This subsection is to skip in a first reading, cf. [6] Section 8.2 page 187.

Recall [;(f) = ;—z +log&?, I,(0) = L5, I;(9) and the Hessian matrix J,, (= D31,,)(6p). We define the
normalized score vector
Zy = —J; (V) (0o).

Theorem 9.2 (Theorem 8.1 [6]])
Under convenient hypotheses, the asymptotic distribution of \/n(0(n) — 6y) is the one of the statistic

A : _ / _
A .—argr)\nelf\l()\ Z2)JN=2)

where J law is N'(0, (k, — 1)J %

9.3 Portmanteau tests, [6] p. 205

The “residuals methods” mean that we extract the residuals, which could be a white noise,
so we have to check the correlogram of these residuals.

Concerning the ARMA models we test the significance of the residual correlations. For
GARCH models, we look at the square residual auto covariances

1 g?
r(h) = — 2 — )77, — 1 here 7?7 := —1—.
T( ) n t:%:ml(nt )(nt7|h| )7 where 7, 5_3((9)

We recall the following estimates:

1 e} - 1 1
I'Ain = NA—t; J = — Y-V V95'2
025t n  sy !

and the m x (p + ¢ + 1) matrix C,, defined as:

D>
—~
N
SN—
SN—
<
S
Qv
(N}
SN—
/-:
D>
—
S
S~—
S~—

Conli, ) = == S0 = 1) (00,5%) (B,

n

Theorem 9.3 Let the matriz D = (k, — 1)1, — (i, — 1)CnJ1C"..
Under assumptions in Theorem (i), !t D7, — 2 2.
Thus we reject the GARCH (p,q) model when

nit D7V, > 2 (1 — ).

Remark that the GARCH(1,1) model is too often assumed by the practitioners as [0]
presents page 205. Here they show that CAC or S&P are not GARCH(1,1) but could be
better modeled as ARCH(5).
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206 GARCH MODELS

Table 8.5 p-values for tests of the null of a GARCH(1,1) model against the GARCH(1,2),
GARCH(1,3), GARCH(1,4) and GARCH(2,1) alternatives, for returns of stock market indices
and exchange rates. p-values less than 5% are in bold, those less than 1% are underlined.

Alternative
GARCH(1,2) GARCH(1,3) GARCH(1,4) GARCH(2,1)
W, Ri L. W, R Ln Wi R, L. W. R Ln

Daily returns of indices

CAC 0.007 0.033 0.013 0.005 0.000 0.001 0.024 0. 188 0.040 0.500 0.280 0.500
DAX 0002 0.001 0.003 0.001 0000 0.000 0.001 0.162 0.014 0350 0.031 0.143
DIA 0.158 0337 0.166 0.259 0285 0.269 0.081 0.134 0.064 0.500 0.189 0.500
DII 0.044 0.100 0.049 0.088 0.071 0.094 0.107 0.143 0.114 0.500 0.012 0.500
DIT 0469 0942 0.470 0.648 0.009 0.648 0.5 19 0.116 0517 0369 0.261 0.262
DJU 0.500 0.000 0.500 0.643 0.000 0.643 0.725 0.001 0725 0.017 0.000 0.005
FTSE 0.080 0.122 0.071 0.093 0223 0083 0213 0423 0.205 0.458 0.843 0.442
Nasdaq 0.469 0.922 0468 0.579 0.983 0.578 0.683 0995 0.702 0.500 0.928 0.500
Nikkei 0.004 0.002 0.004 0.042 0332 0.081 0.052 0526 0.108 0.238 0.000 0.027
SMI 0224 0530 0245 0.058 0.202 0.063 0.086 0.431 0.108 0.500 0.932 0.500
SP 500 0.053 0.079 0.047 0.089 0.035 0.078 0.055 0.052 0.043 0.500 0.045 0.500
Weekly returns of indices

CAC . 0017 0.143 0049 0028 0272 0068 0061 0478 0.142 0.500 0573 0.500
DAX  0.154 0.000 0.004 0.674 0798 0.674 0667 0892 0.661 0.043 0.000 0.000
DIA 0194 0.001 0052 0.692 0.607 0692 0679 0899 0597 0.003 0.000 0.000
DI 0173 0.000 0.030 0.682 0.482 0.682 0788 0358 0.788 0.000 0.000 0.000

:
:

DIT 0428 0623 0385 0.628 0456 0.628 0.693 0.552 0.693 0.002 0.
DIU 0.500 0747 0.500 0.646 0.011 0.646 0.747 0.038 0747 0.071 0.003 0.017
FTSE  0.188 0.484 0222 0.183 0.534 0214 0242 0472 0272 0.500 0532 0500
Nasdaq 0.441 0.905 0448 0.387 0.868 0412 0.199 0927 0266 0.069 0.961 0.344
Nikkei 0.500 0.140 0.500 0310 0.154 0.260 0330 0316 0462 0.030 0.138 0.053
SMI 0.500 0720 0.500 0217 0.144 0.150 0796 0754 0796 0314 0.769 0.360 5
SP 500 0.117 0.000 0.001 0.659 0.114 0659 0.724 005! 0.724 0.000 0.000 0.000
Daily exchange rates

$1€ 0452 0904 0.452 0.194 0.423 0.181 0.066 0.000 0.015 0.500 0.002 0.500
¥/€  0.037 0.000 0.002 0.616 0.090 0.618 0.304 0.000 0.227 0.136 0.000 0.000
£/€ 0439 0879 0440 0471 0905 0464 0.677 0.981 0.677 0.258
CHF/€ 0.141 0.000 0.012 0.641 0.152 0.641 0.520 0.154 0.562 0.012
C$/€ 0500 0268 0.500 0.631 0714 0.631 0.032 0.000 0.002 0.045 0.045 0.029
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Look at the tables from [6], Table page 205 Hj is rejected when the p-value, p =
Py, [x2, < ni, D~'#, computed ], is more than .
Table page 206 is testing GARCH(1,1) against others GARCH and use statistics W,,, R,,, Ly,
defined in [6] section 8.3.1. The table provides the corresponding p-values.

Use in R routines: residuals-methods.

GED, see https://en.wikipedia.org/wiki/Generalized_normal_distribution, means ‘General Ex-
ponential Distribution’.

10 Some extensions, [6] Chapter 10.

Above, we modeled the conditional variances o; as linear functions of the squared past
innovations €;_5, h > 0. But from an empirical point of view, there exist important draw-
backs: actually in the previous models, we do not take in account the sign of innovations.
However, the conditional asymmetry is a stylized fact: the volatility p increase due to a
price decrease is stronger than the one resulting from a price increase of the same magni-
tude.

Think of py | yields (Aoy)™ and py T yields (Aoy)™, then (Aoy)™ > (Aoy)™.

If the law is symmetric, cov(oy, g;_p,) = 0, Yh > 0, which is equivalent to cov(e/, &,_;) =
cov(e; i) = 0, Yh > 0. This is an hypothesis which could be often rejected, look at
table below ([6] p. 246) where the correlations p((g, 1), p(e/,e:_1) and p(e; , 41, are
not equal to zero altogether. We can observe cov(oy,e;_5) < 0, meaning a leverage effect:
the volatility increases dramatically after bad news, but increases moderately after good
news.

h 1 2 3 4 5 10 20 40

p(et,€4—n): 0.030 0.005 —0.032  0.028 —0.046*  0.016 0.003  —0.019

p(lee], lec—nD) = [ 0.090%  0.100%  0.118%  0.099% 0.086*  0.118* 0.055*  0.032

plef ein): 0.011  —0.094* —0.148* —0.018 —0.127* —0.039* —0.026 —0.064*

Table 1: Empirical autocorrelations CAC40 series, period 1988-1998

10.1 Exponential GARCH model: EGARCH

Definition 10.1 Let n a strong white noise. Then (&) is called an EGARCH process if
it satisfies

& = Oy,

q p
(7) logo; = w+ Z ;g(ne—i) + Z Bjlog Ut2—j7
i=1 Jj=1
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where

(8) 9Me—i) = i + C(Ine—i| — E([me—il),
and w, 3,0,( € R.

Exercise 23: Remark that the volatility o has a multiplicative dynamics. The log allows
the coefficients to be negative or positive. Actually ¢, = o1, and the dynamics of o is

o7 =expolno; = e“IIL_, exp(aig(m,i))l'[?ﬂ(ot,j)wf.

However we would like that the innovations of large modulus should increase the volatility.
Thus we add some constraints on the coefficients, for instance

The coefficient 6 reflects the asymmetry property: look at the model logo? = w + 01,
with 6 < 0. ([6] page 247, 3):

in this case 02 = e“e?™-1 and 02 — e¥ = e¥(e-1 — 1).

If n,_1 < 0, the variation 02 — e = e“(e®”-1 — 1) is less than the one when 7,_; > 0,
because of the asymetry of the function exp, e™® < e® when a > 0.

The specification g(n;—;) = 0ni—; + ((|mi—i| — E(|m—:|) allows for sign and modulus
effects:
e sign effect with 6n,_;,
e modulus effect with ((|7:—i| — E(|ni—il)-

So we also could take 6 depending on the lag:

q p
logo? =w+ > aillmi + In—il = E(lne—i) + > _ Bjlogat;.

i=1 j=1

Theorem 10.2 Assume that g(n;) is not almost surely equal to zero and that the poly-
nomials a(z) = 331 a2 and B(z) = 1 —37F_| B2/ have no common root, a(z) being
non identically null. Then the system (@ admits a strictly stationary and F-adapted so-
lution if and only if the roots z; of polynomial B are outside the unit circle (meaning in R,
2| > 1 for any i). This solution satisfies E[(loge?)?] < oo as soon as E[(logn?)?] < co and
E[g*(m)] < o0,

Proof exercise 24: Prove the theorem in case of p = 1, |3] < 1, E[(logn?)?] < oo and
G = Elg*(n)] < oc.

(i) We here have to use Theorem in Section w1 aig(n—i) + Bloga}
could be seen as an AR(1,q) equation

q
logo? — Bloga} | = w + Z%Q(ﬁt—i)

=1
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with the polynomials Q(z) = Y 7, 2 and P(z) = 1 — ;2. Theorem in Section asks
P and () have no common root and g < 1.

(i) Since €2 = nZo?, loge? = logn? + logo?, and E[(logn?)?] < oo we have to prove
E|(log c?)?] < .

(iii) The asumption E[g?(n;)] < oo and the fact that (1;) are uniformly distributed implies

E[(Z aig(m—i))?] = ZO&?E[(g(nﬂ < 00

(iv) Since |3] < 1, admitting log o2 , almost surely bounded in the past, the induction
q
logo} = Blogo} y +w+ Y cig(m—i)
i=1

is solved as

logaf———l—z Zﬁ I(M—i—r)-

k>0

Thus the L? norm of log o7 exists as soon as G = F|[(g(n))? < co and

E[(Z Q; Zﬁkg(nt—i k GZBZJ Zazﬁ_z

i=1 k>0 >1

The following theorem is to skip.
Theorem 10.3 Let m be an integer and suppose
pam = B[i™] < oo; T2, Elexp(jmAig(m)|)] < o0

then E[e?™] = ,ugmem“’ 1122, gn(mA;) where A; are defined as the coefficient of the development
f 50 = Tihizhy W =w/B(L), g5(w) = Elexp(xg(n)))-

10.2 Threshold GARCH model: TGARCH

To take in account asymmetry, we specify the conditional variance of positive and negative
part of g;: &/ = sup(e,0), e, =sup(—e,0), e, =< —¢;, el =& +¢;.

Definition 10.4 Let n be a strong white noise. Then (g;) is called an TGARCH if it
satisfies

& = O,
q p
(9) o = W Z(az‘+5;r—i g, )+ Z Biot—j,
i=1 j=1
where w, B, a;+ € R.
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Remark that if w > 0 and a;4, 3; > 0, then o; > 0. In this case 0y = \/E[e?/F;_1] is the
conditional standard deviation. Such a model allows the lags ¢ to have an influence on
the past, so the asymmetry is taken into account.

Figure 10.1 in [6] page 251 stress the difference between GARCH and TGARCH.
GARCH is symmetric: g, = /1 + 0.38¢7_,1, and TGARCH is asymmetric:
g = (1—0.5e", —0.2¢;, ).

10 - =5 5 10 r_s
Figures 10,1 MNews impact curves for the ARCH{ 1Y masdel, &, » 1 =@ 1}..‘”4:‘ 5 W {ilashedd Lire),
ard TARCH{I) maodel, ¢, = ({1 5a, , 4+ 0.2, by (sclid line)

Under the constraints w > 0 and o, 8 > 0, since ¢ > 0, then & = oy, and the
conditional standard deviation is o, = w + Zmax(p ) a;(ne—i)or_i, with a;(2) = 2™ +
;2" + f;.

In case of TGARCH(1,1) model, if E[log(a1+n™ 4+ a1_n~ + f1)] < 0, then the model
is stationary (cf. Theorem |6.12]).

Finally, we look at the moments of o; to go to the kurtosis. We can prove that the
mth moment exists if and only if Ea™(n;)] < 1.
Exercise 25: TGARCH(1,1) model, &, = g0y, 0y = w + a(ni_1)o_1, with a(z) = a 2zt +
a_z~ + 3, assume Ela™(n,)] < 1.
(i) Prove that the assumption ||a(n)|l2 < 1 implies the condition F[lna(n)] < 0 in case of
£ =1 and symmetrical law for the n, ;

(11) Compute the moments of 7, to provide skewness and kurtosis k. = 34 E[ 2] . Cf. [g]
. 252.

(0) Case By = 0: a(n) = arn*+an™ = aynLysota|n[lyco = |n(as1;0+a-1,<0)
so looking at the two disjoint sets according to the sign of n:

log a(n) = log |n| + log(ary) 1,50 +log a1, <.

Using the symmetry of n law
1
Elloga(n)] = Ellog |n]] + 5 (log(at) +log a-) = Ellog |n]] + log /ara—
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or E[2loga(n)]) = Ellog |n|?] + log(a o) meaning

exp E[2loga(n)]) = (ara-) exp Ellog|[n|?].
We now use (aya_) < (a2 4 a?) and Minkowski inequality:
exp Ellog [n]*] < Elexplog n[*] = E[|n|’], so

exp E[2loga(n)]) < 5(af + o2)E[lnl*] = El(a(n)?],

N | —

and we conclude that F[(a(n)?] < 1 yields exp E[2loga(n)] < 1 and E[2loga(n)] < 0.

(i) We first control the mth moment of ¢; by the bound ||e¢||m = ||7]|m|o¢]|m since m
are iid and 7, is independant on oy.

(i) From [|o¢|lm < |w| + ||la(0)|lm||ot—1]|m, we recursively deduce

1 — [la(m)ll,
1 —lla(m)[lm

If moreover sup,<_p ||0¢—|lm are uniformly bounded, the following are too and ||o||,, <
0.

1 llm < o] + lla(m i llorkllm-

(iii) Now compute these moments: Eloy| = w+ Ela(n_1)|E[oi_1] = w+]|a(n)|1 Eoi-1].
Under the previous assumptions we solve this induction:

w

1= [la(m)[h

Now let 07 = w? + 2wa(n—1)oe—1 + a*(i—1)07_y, 50

Eloy] =

Elo}] = w* + 2wlla(n) 1 Elow] + la(n) 3 Elo7]

+la()2El? ] = w2 i Ik

= el T la(mlzEloi],

= w? + 2wla(n) | ————
1= [a(mll

.. . w2 (1+]|a
we solve this induction: E[o?] = (1—|Ia(77()IIJlr)”((gn—):I'flzzn)H%)'

(iii) Skewness is a measure of the asymmetry of the probability distribution of a real-valued
random variable about its mean: E [(Z£)3] .

oz

Now let 0} = w? + 3w?a(n;_1)o-1 + 3wa?(n_1)o? | + a®(n_1)0}_,, after once again a
standard induction:

Elo?] = w?(1+ 2)|a(n)[lx + 2[la(m)|I3 + llalm)lllla(m)3)
' (I = flam )@ = lla@3) @ = llam)ls)

(iv) Fourth moment: after tedious computations, to be checked !! Denote a; =
la(ml; i=1,2,3,4.

w41 + 3a1 + Sas + 3as + 3aias + dajas + 3asas + a1a2a3‘
(1 —a)((1 —a2)(1 —a3)(1 — a)
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10.3 Asymmetric Power GARCH model, APAGARCH, APARCH

The following gathers GARCH, TGARCH, Log-GARCH.

Definition 10.5 Let 1 a strong white noise. Then (g;) is called an APAGARCH process
if it satisfies

€ = Oy,

q p
(10) U? = W+ Z(O&i(|€t,i’ — QEtii)é + Z ﬁjO’f_j,
i=1 j=1

where w > 0,6 > 0, and B,a € RT.

e We recover GARCH model with § =2,( = 0.

e The case 0 = 1 is the TgARCH model.

e Using logo, = lims_, UtT_l, the log-GARCH model can be interpreted as the limit of
APAGARCH when ¢ goes to 0.

The role of parameter ¢ in ARCH(1) model can be seen in the following :
ol =w+a(1—¢)%? when g, >0,

of =w+ ay(1+ ()% when g4 <0.

Thus the choice of (; > 0 ensures that a negative innovation ¢ has more impact on the
current volatility o2 than positive ones of the same magnitude.

Stationarity : we can write

pVq

o) =w+ Z a; (1)),

i=1

with a;(2) = a;(|z| — (2)° + B;. Remind Theorem [6.12} Such a process is stationary if and
only if
Ellog(au(|ne| = Gime) + 51)°] < 0,

Exercise 26: In the case f; = 0 and when the law of 7, is symmetric, express this condi-

tion, cf. [6] (10.24) page 257.

0} =w+ allee1| — Cer1)’ =w +a(n)or_y.

log a(n) = log a + log |n|° + 1,50 log(1 — ¢)° + 1,<0log(1 + ¢)°.
We use the symetry of n law

1 1
Ellog a(n] = log a+E[log |77|‘5]+§(log(l—C)‘5+log(1+C)5) = log a+E[log |n|5}+§ log(1—¢?)°.
The condition E[loga(n] < 0 is equivalent to
Ellog[n|?] < —log(a(1 — ¢?)3).
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Remark that exp Eflog|n|’] < Elexplog|n|’] = E|n/°], so a sufficient condition for
Elloga(n] <0 is
1

0
Bl <~

11 Financial Applications, [6] Chapter 12, pp. 311-
326.

11.1 Relation between GARCH and continuous time models

Consider a Wiener filtered probability space (2, F, (F;),P) with a Brownian motion W.
Recall a stochastic differential equation (SDE) for X; = log p;, p being a price process.

dXt = ,U(Xt)dt + O'(Xt)th, X[) = Xy.

Under convenient hypotheses on the volatility o and the drift x4 (Lipschitz property, sub
linear increase) there exists a unique strong solution. The concrete interpretation of these
parameters p and o is:

p(r) =lm h 'E[X 1 — X;/X; = 2]; o(z)o(z) = lim h ' Var[ X, — X;/X; = 2].

h—0 h—0

e To this diffusion X is associated an infinitesimal operator

L,

L = po, + 3¢ o2

Using It6’s formula we get for any Cf function ¢

t
o(Xy) — p(xo) — / Ly(X)ds is a martingale.
0

Such diffusion could have a stationary distribution. For instance look at
dXt = ((.U + /LXt>dt + O'Xtth, Xo = Xyp-
Actually it can be proved that, for any ¢, the distribution density of X, law is

1 [2w\* QW ., 21
—1¢ _
m (;) exp(—w)x where C =1- ;,

and the distribution of 1/X; is the law I'(24, (), [6] page 313.

e A second point concerns the simulation of these diffusion trajectories (paths). We
can proceed to the Fuler discretization:

X(hn+1)h = Xﬁh + hN(X:LLh) + O-(erzlh>(W(n+1)h — Whan), XSL = Zo-

20



Actually, we consider the increment W, 11y, — Wi, as \/Ean where ¢ is a Gaussian white

noise. It can be proved that the process X, converges in distribution to X when A — 0.
Black-Schole’s model admits an exact simulation. Indeed

1
log Xy = (pn — 502)15 + oW,

SO
1
log Xy p, = log X; + (1 — Eaz)h + oVhey.

e The third point considers the GARCH models as approximation of a diffusion(cf.
[6] page 315). Let u; be the conditional mean of the returns

Mt:€+)‘at7 )‘>07

where A and p are some parameters and (o) is the volatility process. In GARCH model,

(02) is an ARCH. More generally, let  be a white noise and look at the system [6] 12.16
Xy = Xe1+ flon) + oy,

(11) g(or) = w+a(m-1)g9(o-1).

With g(z) = 2% and a(z) = az? + 3 in (11)) we get a GARCH(1,1) model.

Recall the results on stationarity (Theorem[6.12)): Eloga(n:)] < 0 = X; — X} exists
as an adapted and strictly stationary process. Thus the approximation is

Xpp = X(n—l)h + f(Gun) + VhEun,
(12) 9(5(n+1)h) = Wp+ ah(nﬁ)g(c?nh)-

The following theorem is th 12.2 in [6].

Theorem 11.1 Assume 36 > 0, wy, 1, an, 0 < p* <, such that when h — 0
(13)
h™lwp — w; BN = Elan(ny)]) = 6 B~ 'Varlan(n})] = ¢ h™2Cov(an(n}), mn) = p,

limsup h™'°E [(an(nl!) — 1)2(1+5)] < o0,
h—0

then when h — 0, the system (@ converges to
(14) dXt = f(O't)dt + O'tthl,
dg(or) = (w—0dg(ov))dt + g(oy)(pdW, + /¢ — p*dW}.

Exercise 27: in the following example, check the above assumptions .
Example: wy, = hw, ap(2) = 1 — hd + Vh(pz + /¢ — p*1),

1’ being independent of n; n and 7’ € L2119,
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11.2 Option pricing

e The aim is to "price” the derivatives, for instance option (call and put option), at the
“maturity” 7. We denote K the ‘strike’ (or ‘exercise’, cf. Stochastic calculus applied to
Finance): considering the assets price process (S;), we look for the price of (S — K)™ or
(K — S7)". In Black-Scholes model the dynamics is

1
Sy = uSidt + oS, dWy, log Sy =log Sp + (u — 502)75 + ocW;.
The discretized version is

1
log S; — log S;—1 = p — 502 + o0&y
where ¢ is a Gaussian white noise.
But actually, o is not constant (cf. estimated volatility with data from ”Bourse de Paris”).
The price is given by Feymann-Kac formula:

(15) C(S,t) = e " TV Eq[g(Sr)/Fi]

where () is a risk neutral probability measure. So is deduced the famous Black-Scholes’
formula (cf. Lecture Notes Stochastic Calculus applied to Finance). In particular, the
partial derivative dgC'(Sy, t) provides the hedging portfolio (named “delta”). We want to
extend such a scheme to more general diffusions:

dSt = /,L(t, St)dt =+ O-(t7 St)th

e Actually the drift p has no influence on the hedge price, the important point is the
volatility . We first consider the "historic” volatility based on the observations, for
instance (Sg, S1,- -+ ,S,) :

n—1
~ 1
0121 = n ;(Si - Si—1)2

is an estimate of o2 if this one is constant on the observed period.

An alternative solution is the "implied volatility”: actually the formula depends
on o (as a constant). The application ¢ — C(S, 0,t) is increasing and the prices (S;) are
observed. This application is not analytically invertible. But with numerical computa-
tions, we can extract ¢ from the observations.

Exercise 28: prove that o — C(S,0,t) is increasing (cf. Jeanblanc-Yor) so at least nu-
merically invertible.
This is the "implied volatility”, and in the practical cases, it is not a constant.

e We now turn to the option pricing when the underlying volatility is a GARCH process.
We observe the process Z (which as usually generates the filtration F) up to the maturity
T. Suppose that at the time ¢t < T' there exists a price Cy(Z,g,T) for the payoff g(Zr).
It can be proved that there exists a random variable M, > 0, Fr-measurable, which is
called stochastic discount coefficient (SDF) and such that

Ct(Z7g7T> = E[g(ZT)Mt,T/ft]‘
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suite A RETRAVAILLER

This applied to the ”zero-coupon bond” of maturity 7" (meaning g = 1) yields
B(t,T) = E[M;7/F]. So Ci(Z, 9, T) = E[g(Zr) M r/F:] can be written as

Ci(Z,9.T) = B(uT)E[g(zT)%/m

e So we can introduce the “forward risk neutral probability”
Tt T = Mt,T]P)a
we deduce (using the probability change formula)

Elg(Zr) M1/ Fi]

Eﬂ't,T [g(ZT)/‘Ft] = E[Mt T/ft] 5

and Ct(Za g, T) - B(t’ T>E7Ft,T [g(ZT)/]:;t]
e Suppose that actually (in discrete time) M, = II.* M; ;. 1. Notice the constraints
(16) B(t,t +1) = E[My 41/ Ft), St = E[Sty1 M1/ Fl,

this is (12.41) in [6] which actually is the martingale property for the discounted price
process, which means that S, M, = Er, .\ [Si1 My 11/ F).
So recursively

Mii
Elg(Zr)Mux/F] = B(t,t+ DElg(Z0) T4 Bl i + VIS gr=m=s /7l

We introduce a “risk neutral probability measure”

Mii
mip = B ] x P

=t B(i,i+1)
such that
Elg(Zr) M1/ F) = B(t,t + 1)E*[9(ZT)H1'T:_1:}F1B(Z'J +1)/F].

e Pricing formulas, two exercises

Exercise 29: Look at Black-Scholes model, Z; = log S; —log S;_1 = p — %02 + o0&y, one
step SDF is defined as B(t,t +1) =e™", M; ;11 = exp(a+ bZ;11).
With the constraint B(t,t + 1) = E[M,;1/F:] (16]) we get e = Elexp(a + bZ1/F,
and Sy = E[S;y1M;411/F;] means 1 = E[e¢T0+D%e /7]

Use that the law of Zy1 given F; is the Gaussian law (pu — 302, 0?)

to prove the existence of a and b. Then define the risk neutral probability with its
characteristic function Eﬁ(e“ZHI]

E(eaX) - lma+%a202 if X Gaussian (m,aQ)
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Exercise 30: GARCH-type model: Z; = log S; —log S; 1 = py + &4, €, = oyn, where n
is a white noise. Suppose that the filtrations generated by ¢, Z, n are the same. Once
again B(t,t+1) = e~ ", and the SDF M, ,; = exp(a; + by1:11), where the processes a and
b are F-adapted. The constraints lead to a; = —1 — 307, byoyyy =1 — fys1 — 3054
The risk neutral probability measure m; ;1 will be defined through its characteristic func-

tion. Under the probability measure 7441,
_ 1 2 * * *
Zt—r—§0' +8t7€t_atnt

where n* = U%(Zt — r+ 30?) is a white noise under the risk neutral probability measure.
We can check that (12.49) [6]:

Ci(Z,9,T) = e "TIE™Tg(Z7) | FY] = Elg(Zr) T My i1 ) F7).

e Under the hypothesis that a and b do not depend on ¢, we consider a numerical pricing
of Option Prices since a closed expression is not available. (cf. Example 12.5 [6] p. 325).
We consider the GARCH model:

1
log(St/St_l) = T—}-)\Jt — 50‘? +€t,
g = oy 0F =w+aer | + Bor .

Such a pricing is done using independent simulations of the n paths, at the step @

T T
i i 1 i i
T — St eXp[(T - t)T’ - 5 Z (05)2 + Z OsMss
s=t+1 i=t+1

7

where (69)% = & + (0 _,)2(énj_, + f3) is computed recursively.

11.3 Value at risk and other risk measures

Market risk is the risk of change in the value of a financial position ; Credit risk is the risk
of not receiving repayments on outstanding loans (borrower default); Model risk can be
defined as the risk due to the use of a mis-specified model; etc. There is also operational
risk, liquidity risk... These risks increased in the two last decades. So Basel Committee
on Banking Supervision set new rules against these risks, meaning Basel I, Basel II, for
instance look at https://en.wikipedia.org/wiki/Basel 11

11.3.1 Value at risk, VaR

This one is the most widely used risk measure in financial institutions. Look at
http://www.gloriamundi.org/
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Definition 11.2 VaR(«) is the value such that the portfolio value V' satisfies
P{V; — Viyn > VaR(a)/ F} < a.

This means that the loss Vi — Viyy has to be less than VaR(«) with probability greater
than 1 — a. VaR(«) is the (1 — «)-quantile of the conditional loss distribution.

We consider the value V of a portfolio on d assets, and the loss between time t and ¢ 4 h:

d d
i T STt t+h —
Vi= E aiSt, Lign = — E a;Sy(e" —1) =V, — Vi,
=1 i=1

We can prove that
VaRyp(a) = inf{z € R, P{Lyzp < 2/Fi} > a}.

Recall r},,, :=log S, — log S}.

11.3.2 Other risk measures

e Previously, the variance (volatility) is only used to measure the risk. Anyway, this one
hides the sign of the variations.
e In insurance is used ezpected shortfall, ES(«):

Definition 11.3
ESin(a) = Ey [Lygin/{Ligsn > VaRyp(a)}]
where By means E|./F.

When L;rt n

E, [Lt,t+h1Lt,t+h>VaRt7h(a)}] = Et[Lt,t+h/Lt,t+h > VaRt,h(a)] X Pt{Lt,t+h > VaRt,h<Oé)}

, € L', and admits a distribution absolutely continuous,

By definition of the VaR, actually Pi{L;++n > VaR;n(a)} = a so

1
ESin(@) = ~ Bl LtrnLiypn>Varin(e) ]

Exercise 31: prove that in this last case ES; (o) = = ["VaR, p(u)du, Exercise 12.16 in
[6].
Plus: example 12.11 page 332.

Let X be a Gaussian random variable (m, 0?): by definition,

VaR(a) —m

o

l—a=P{X <VaR(a)} =P{m+ 00Xy < VaR(a)} = §( )
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Thus, by monotonicity, ®1(1 — a) = w and VaR(a) =m+ c® (1 — «).

We now look at

1 « 1 « a 1
—/ VaRy p(u)du = —/ (m+o® ' (1—u))du = m+g/ O (1—u)du = m+z/ O (v)dv
0 @ Jo @ Jo @ J1-a

«

We now operate the change of variable v = ®(y) so

1 [e'e)
1 o
/1 o - / o PO

e Distortion risk measure (DRM) when L, admits a density law strictly positive f
and note the distribution function F F' = f
We remark that E'S; j( 1 fo Y1 — ) q)(u)du, (using
LB Liinly, t+h>VaRth(a)} fVaRth If(1)dl and the change of variable | = F~1(1 — u))
so more generally, we introduce for any distribution G on [0, 1]

r(F;G) = /0 FH (1 = u)100)(w)dG(u).

We then recover the previous risk measures:

e Var(a) with G is Dirac in «,

e ES(a) with G uniform law on [0, «.

We skip Coherent risk measures page 333, def 12.2.

11.3.3 Estimation methods

We here only present the so called GARCH-based estimation: we observe K returns (for
instance K = 250): 1y = logpian_i—logpi_i, i = h,h+ K —1, AP, = logp, —log p;_1.
Consider the example 12.9 [6] page 330: h=d =a = 1.

(AR)* = (w+ a1 (AP1)")UY

U, standard Gaussian law. It is exactly an ARCH(1): ¢ = AP, U, = n, o0y =
Vw + ai(g,-1)%. Then the conditional law of the loss L; 1 is N'(0,w + ;1 (AP;)?). There-
fore

VaR;i(a) = \/w+ a1 (AP)20 711 — a).

It is more problematic when h > 1... Then we work with r, = A;Inp; assumed to be
stationary, then we get VaR;(a) = (1 — e®1)p, where (1, a) is the a quantile of the
conditional law of r,,1. This one, ¢;(1, @), can be estimated by

6t+11}*1(a)
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where 67 is the conditional variance estimated by a GARCH model, and F'~! is an estimate
of the distribution of the normalized residuals.

The suggested steps are the following

e Fit a model for instance on a GARCH(1,1) on the n observations and deduce an estimate
of 62,t =1,---,n+1.

e Simulate a large number N of €41, -+, eptn:
- simulate the values of the iid (according to the distribution function ﬁ’) n ITREE ,nfl o
- set 0y, 1 = Opy1 and €)1 = 0711
- for k =2,--- , h, recursively set

C e ) . .y . .
(Ufwrk) :W+0‘(5%+k—1) +B(U:z+k—1) ; 5:z+k:(7:z+k77:z+k)‘

e Determine the empirical quantile of simulations 5; it =1, N.

11.4 Exercises on second part
15. Proof of Proposition [6.2]

16. (i) Proof of Proposition [6.3]
(ii) Proof of Proposition (6.4}

17. Proof of Proposition [6.6]

18. In case of a linear model, X being an AR(1) process, X; = u + pX;_1 + &, prove
recursively:

1 — h
Vh>0, E[Xt/‘/t-t—h]:M—i_pE[Xt—l/Ft—h]:M(l_pp)—|—phXt—h'

19. Proof of Proposition [6.8]

20. Let a GARCH(p,q) process ¢. Prove that it is an ARM A(sup(p, q), p) process.

21. Let a GARCH(1,1) process with  a Gaussian white noise: ¢, = n,04, 07 = ag +
aie? | + pro? . Prove that g, € L* only if (o + 31)? + 202 < 1.

1—(a1+B1)>

In this case prove that kurtosis = SW.

22. Give the log likelihood of an ARCH(1) process &, = (\/w + ac?_;)n, where (n;)
are iid, standard Gaussian law.

23. Let an EGARCH process: &; = oy, logo? = w + 31, cig(ne—s) + 34—, Bjloga

57



where g(n;—;) = O + C(|ni—i| — E(|ni—i]), and w, 8,0, € R. Prove that the volatility o
has a multiplicative dynamics.

24. Proof of Th. in case p =1, |8] < 1, E[(logn?)?] < oo and G = E[g?*(n;)] < 00

25. TGARCH(1,1) model: g, = m04, 0r = w+ a(n—1)o¢—1, with a(z) = ayzt +a_z" + 5,
assume Ela™(n;)] < 1.

(i)Prove that the assumption ||a(n)||2 < 1 implies the condition E[lna(n)] < 0 in case of
£ =1 and symmetrical law for the 7y, ;

(ii) Compute the moments of 7; to provide skewness and kurtosis k. = 3 Eor)e E[[ 2?) Ct. [6]
p. 252.

26. APAGARCH: In the case f; = 0 and when the law of 7, is symmetric, express
the condition E[log(aq(|n:] — Cime) + £1)°] < 0, cf. [6] (10.24) page 257.

27. In the following example, w;, = hw, ap(z) = 1 — hé + Vh(pz + /¢ — p*1), i/ being
independent of n, n and 1’ € L>*9 check the assumptions:

h™lwy, — wi k7' (1 = Elan(n})]) — 6 h'Warlan(n)] — ¢ h™2Cov(an(n)),nf) — p,
lim supy,_,o h ™' F [(an(nl) — 1)29] < +o0,

28. Feymann-Kac formula for the option price: C(S,t) = e =TV Eg[g(Sy)/F] : prove
that o — C(S, 0,t) is increasing (cf. Jeanblanc-Yor) so at least numerically invertible.

29. Look at Black-Scholes model, Z;, = logS; — logS;_1 = u — %O’2 + o0&, one step
SDF is defined as B(t,t + 1) =e™", M1 = exp(a + bZi4q).

With the constraint B(t,t + 1) = E[M; 41/ F] we get e = Elexp(a + bZ;41)/Fl,
and S; = E[Siy1 My 141/ F:) means 1 = Ele*t®+DZen /7]

Using that the law of Z;,; given F; is the Gaussian law (u — 202, 02), prove the exis-

2
tence of a and b. Then define the risk neutral probability with its characteristic function

E,[e"Zt+1]

E(e*X) = emat390® if X Gaussian (m,o?)

30. GARCH-type model: Z; = logS; —logS;1 = ut + &, ¢ = oy where n is a
white noise. Suppose that the filtrations generated by e, Z, n are the same. Once again
B(t,t+1) = e ", and the SDF M, = exp(a; + bini11), where the F-adapted processes

a and b are to be provided.

31. Prove that the expected shortfall satisfies £'S; j(c 1 fo VaRy p(u)du.
(Exercise 12.16 in [6], look also at Example 12.11 page 332)
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