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Abstract

This paper proves the existence of multiple solutions to the Coulomb friction
problem with Signorini contact conditions in continuum linear elasticity. We
consider a body lying on a rigid foundation and we propose a method in order
to exhibit two solutions to the frictional contact problem when the friction
coefficient is large enough: one solution which separates from the foundation
and another one which remains stuck on the foundation. We apply the method
to the simple class of problems with triangular bodies and linear displacement
fields and we describe the cases in which such multiple solutions exist. Denoting
by µ the friction coefficient, we come to the conclusion that such nonuniqueness
cases may appear when µ > 1.
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1. Introduction

In continuum mechanics of solids, the Coulomb law of friction [1] is the most
common model used when describing slipping or sticking bodies on a contact surface.
This law is very often considered together with the unilateral contact model (i.e., the
Signorini law introduced in [10]) in order to take into account the possible separation
of the body from the surface. In the case of elastostatics, the variational formulation
of the unilateral contact problem with Coulomb friction was obtained in [2] (see
also [3]) and followed in [9] by the existence proof in the case of an infinitely long
strip with small friction. These results were extended to more general geometries
and greater bounds ensuring existence of solutions were obtained in [8] and more
recently in [4]. Nevertheless the understanding of this frictional contact problem is not
complete so that there does not exist, to our knowledge, neither uniqueness results nor
nonexistence examples. Concerning nonuniqueness of solutions in the continuum case,
the approach introduced in [6] consists of searching sufficient conditions leading to an
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infinity of solutions with slip, located on a continuous branch for precise (eigen)values
of the friction coefficient. It has been recently shown in [7] that such non-unique
slipping solutions exist.

This paper is also concerned with nonuniqueness of solutions to the unilateral
contact problem with Coulomb friction in two-dimensional static linear elasticity.
The approach chosen in this paper is different from the one in [6, 7] and it does not
deal with slipping solutions but only with solutions involving separation and stick.
We introduce a simple setting in order to obtain at least two solutions for the problem
with assumptions which require in particular that the friction coefficient µ is large
enough. The behaviour of the two solutions on the contact surface is quite different:
the first one represents separation of the body from the rigid foundation whereas the
second one corresponds to stick on the contact area.

After defining the problem in Section 2, we introduce the setting in Section 3 and
we prove that this method allows to exhibit at least two solutions when appropriate
hypotheses are satisfied. Section 4 is concerned with the application of the results to
a simple case: triangular bodies and linear displacement fields. We study in detail
this class of problems and we show that some of them fulfill the assumptions of the
theoretical setting.

The main result obtained in this paper is issued from the discussion in Section
4 and can be summarized as follows: the unilateral contact problem with Coulomb
friction in continuum elastostatics does not admit unique solutions in the general case
when µ > 1.

2. Problem statement

Let us consider the deformation of an elastic body occupying, in the initial uncon-
strained configuration a domain Ω in R2. The boundary ∂Ω = ΓD ∪ ΓN ∪ ΓC of Ω
consists of three non-overlapping domains ΓD, ΓN and ΓC where the measures of ΓD

and ΓC are positive. The body Ω is submitted to given displacements U on ΓD, it is
subjected to surface traction forces F on ΓN and the body forces are denoted by f .
In the initial configuration, the part ΓC is considered as the candidate contact surface
on a rigid foundation which means that the contact zone cannot enlarge during the
deformation process. The contact is assumed to be frictional and the stick, slip and
separation zones on ΓC are not known in advance. We denote by µ ≥ 0 the given
friction coefficient on ΓC . The unit outward normal and tangent vectors on ∂Ω are
n = (nx, ny) and t = (−ny, nx) respectively.

The unilateral contact problem with the Coulomb friction law consists of finding
the displacement field u : Ω → R2 satisfying (2.1)–(2.6):

div σ(u) + f =0 in Ω, (2.1)

σ(u) =C ε(u) in Ω, (2.2)

u =U on ΓD, (2.3)

σ(u)n =F on ΓN . (2.4)
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The notation σ(u) : Ω → S2 represents the stress tensor field lying in S2, the space
of second order symmetric tensors on R2. The linearized strain tensor field is ε(u) =
(∇u + ∇T u)/2 and C is the fourth order symmetric and elliptic tensor of linear
elasticity.

Afterwards we choose the following notation for any displacement field u and for
any density of surface forces σ(u)n defined on ∂Ω:

u = unn + utt and σ(u)n = σn(u)n + σt(u)t.

On ΓC , the three conditions representing unilateral contact are as follows

un ≤ 0, σn(u) ≤ 0, σn(u) un = 0, (2.5)

and the Coulomb friction law on ΓC is described by the following conditions:
ut = 0 =⇒ |σt(u)| ≤ µ|σn(u)|,

ut 6= 0 =⇒ σt(u) = −µ|σn(u)| ut

|ut|
.

(2.6)

As far as we know there only exist existence results in the case of small friction
coefficients (see in particular [9, 8, 4]) and some nonuniqueness examples involving
slipping solutions (see [7]) for problem (2.1)–(2.6). There are neither uniqueness
results (unless the loads f ,F and U are equal to zero) nor nonexistence examples
available. Let us mention that the frictionless case which corresponds to µ = 0 or
equivalently σt(u) = 0 in (2.6) admits a unique solution according to [5].

3. Sufficient conditions of existence of at least two solutions for large
friction coefficients

First we consider a solution u of the unilateral contact problem without friction
(i.e., when µ = 0 in (2.1)–(2.6)) which separates the body from the rigid foundation
almost everywhere on the contact zone ΓC . Therefore u solves the following system
of equations: 

div σ(u) + f =0 in Ω,

σ(u) =C ε(u) in Ω,

u =U on ΓD,

σ(u)n =F on ΓN ,

un < 0 on ΓC ,

σn(u) = σt(u) = 0 on ΓC .

(3.1)

It is easy to check that a displacement field u verifying (3.1) is also a solution of the
frictional unilateral contact problem (2.1)–(2.6) for any µ > 0. Having at our disposal
the field u solving (3.1), we consider the following elasticity problem with Dirichlet
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conditions on ΓD ∪ ΓC and Neumann conditions on ΓN .

div σ(Φ) =0 in Ω,

σ(Φ) =C ε(Φ) in Ω,

Φ=0 on ΓD,

σ(Φ)n =0 on ΓN ,

Φn =−un on ΓC ,

Φt =−ut on ΓC .

(3.2)

When the compatibility conditions at the interfaces of the boundary parts ΓD and
ΓC are satisfied which we assume for the sake of simplicity, problem (3.2) admits a
unique solution Φ 6= 0 according to the Lax-Milgram theorem.

The following Proposition establishes sufficient conditions for the nonuniqueness
of the equilibrium solution u to problem (2.1)–(2.6) under assumptions which require
that the friction coefficient µ is large enough in a sense which is detailed hereafter.
Let us mention that the framework we propose in this study deals only with ”regular”
solutions. As a consequence, the normal and tangential stresses we consider on the
contact zone are at least defined almost everywhere.

Proposition 3.1 Let u be a displacement field satisfying the conditions (3.1) and
let Φ be the solution of problem (3.2). If µ > 0 and −µσn(Φ) ≥ |σt(Φ)| on ΓC,
then u and u + Φ are two distinct solutions of Coulomb’s frictional contact problem
(2.1)–(2.6).

Proof. As already mentioned, the displacement field u satisfies (2.1)–(2.6) for any
nonnegative µ. Let us check that u + Φ also satisfies these conditions when µ > 0
and −µσn(Φ) ≥ |σt(Φ)| on ΓC . It is straightforward that div σ(u + Φ) + f =
0 in Ω, σ(u + Φ) = C ε(u + Φ) in Ω, u + Φ = U on ΓD and σ(u + Φ)n = F on ΓN .
It remains to show the fulfillment of the conditions (2.5)–(2.6) on the contact zone
ΓC . One gets on ΓC :

un + Φn = 0 and σn(u + Φ) ≤ 0

so that (2.5) holds. The conditions (2.6) on ΓC are verified since

ut + Φt = 0 and |σt(u + Φ)| ≤ µ|σn(u + Φ)|.

Hence u + Φ solves (2.1)–(2.6).

Remark 3.2 The above result is a sufficient condition for the existence of at least
two solutions of (2.1)–(2.6). It suffices first to determine loads F, f ,U such that
separation occurs almost everywhere on ΓC for u (u is the unique solution of the
frictionless unilateral contact problem). Then one solves an elasticity problem involv-
ing u, admitting Φ as solution, and yielding σn(Φ) (which must be nonpositive) and
σt(Φ). Besides note that there does not always exist a positive number µ such that



Hild / Multiple solutions for Coulomb friction 5

−µσn(Φ) ≥ |σt(Φ)| on ΓC. Clearly u + Φ is a displacement field with stick every-
where on the contact zone. Moreover if there exists a positive number µ such that
−µσn(Φ) ≥ |σt(Φ)| then u and u + Φ are solutions of the frictional contact problem
(2.1)–(2.6) for any µ verifying µ ≥ µ.

Remark 3.3 Let u and Φ verify (3.1) and (3.2) respectively. Then

min
v=U on ΓD,vn≤0 on ΓC

J(v) = J(u) < J(u + Φ) = min
v=U on ΓD,v=0 on ΓC

J(v), (3.3)

where J denotes the energy functional defined by

J(v) =
1

2
a(v, v)− L(v)

and

a(u, v) =

∫
Ω

(Cε(u)) : ε(v) dΩ, L(v) =

∫
Ω

f .v dΩ +

∫
ΓN

F.v dΓ,

for any u and v in the Sobolev space (H1(Ω))2. In these definitions the notations ·
and : represent the canonical inner products in R2 and S2 respectively. This means
that u and u+Φ are solutions of an unilateral contact problem without friction and an
elasticity problem respectively and that the corresponding energy functional J admits
a value which is lower for u than for u + Φ.

As a matter of fact the two equalities in (3.3) follow from the equivalence between
the formulations (3.1)–(3.2) and the corresponding minimization problems. Moreover
both minimizers u and u + Φ in (3.3) are unique. Finally

J(u + Φ)− J(u) = a(u,Φ)− L(Φ) +
1

2
a(Φ,Φ)

=

∫
Ω

(−div σ(u)− f).Φ dΩ +

∫
ΓN

(σ(u)n− F).Φ dΓ

+

∫
ΓD

σ(u)n.Φ dΓ

∫
ΓC

σ(u)n.Φ dΓ +
1

2
a(Φ,Φ)

=
1

2
a(Φ,Φ) > 0

where the second equality follows from the Green formula and the positiveness of
a(Φ,Φ) results from the Korn inequality.

Remark 3.4 If u and Φ satisfy (3.1) and (3.2) then Φ and u+Φ are not rigid body
displacements.

As a matter of fact, assume that Φ is a rigid body displacement. One has Φ = 0
on ΓD which is of positive measure. Therefore Φ = 0 on Ω which contradicts Φn 6= 0
on ΓC. Suppose now that u + Φ is a rigid body displacement. From the definition of
u and Φ, we get u + Φ = 0 on ΓC which is of positive measure; so u + Φ = 0 on Ω.
Since div σ(u + Φ) = −f on Ω, σ(u + Φ)n = F on ΓN and u + Φ = U on ΓD, we
deduce that f = F = U = 0. This together with conditions σn(u) = σt(u) = 0 on ΓC

implies that u = 0 on Ω which contradicts un < 0 in (3.1).
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4. Study of the linear case

In this section we show that the theory can be illustrated in the case when Ω is a
triangle (in which the edges represent ΓD, ΓN and ΓC) and the displacement fields u
and Φ are linear. Afterwards we look after fields u and Φ satisfying the assumptions
of Proposition 3.1 in order to exhibit some examples of non-unique solutions to the
frictional contact problem.

So we consider the triangle Ω of vertexes A = (0, 0), B = (1, 0) and C = (xc, yc)
with yc > 0 and we define ΓD =]B, C[, ΓN =]A, C[, ΓC =]A, B[. The body Ω lies on
a rigid foundation, the half-space delimited by the straight line (A, B) as suggested
in Figure 1.

-
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Figure 1: The geometry of the body Ω

We suppose that the body Ω is governed by Hooke’s law concerning homogeneous
isotropic materials so that (2.2) becomes

σ(u) =
Eν

(1− 2ν)(1 + ν)
tr(ε(u))I +

E

1 + ν
ε(u) (4.1)

where I represents the identity matrix, tr is the trace operator, E and ν denote
Young’s modulus and Poisson ratio, respectively with E > 0 and 0 ≤ ν < 1/2. Let
(x = (1, 0), y = (0, 1)) stand for the canonical basis of R2. We suppose that the
volume forces f = (fx, fy) = (0, 0) are absent in Ω and that the surface forces on ΓN

are denoted by F = (Fx, Fy). Let U = (Ux, Uy) represent the given displacements on
ΓD.

We begin with the determination of Φ = (Φx, Φy) in (3.2). Since Φ = 0 on
ΓD =]B, C[ and Φ is linear, we get

Φx = α
(
ycx + (1− xc)y − yc

)
, (4.2)

Φy = β
(
ycx + (1− xc)y − yc

)
, (4.3)
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where α and β are real numbers.
Let us now focus on the field u = (ux, uy) solving problem (3.1). Since u is linear

and ux + Φx = uy + Φy = 0 on ΓC , it can be written

ux =−αycx + ay + αyc,

uy =−βycx + by + βyc,

with a, b in R. Inserting the previous expression of u in the constitutive law (4.1)
and writing σn(u) = σt(u) = 0 on ΓC (where n = (0,−1)) yields the conditions
E(ναyc + νb− b)/((1 + ν)(−1 + 2ν)) = E(−a + βyc)/(1 + ν) = 0.
Therefore a = βyc, b = ανyc/(1− ν) and the field u becomes

ux =−αycx + βycy + αyc, (4.4)

uy =−βycx +
ανyc

1− ν
y + βyc. (4.5)

Obviously div (σ(u)) = 0 and un|ΓC
= βyc(x− 1) which according to (3.1) requires

β > 0. (4.6)

Inserting now the expressions (4.2)–(4.3) of Φ in the constitutive law (4.1) yields

σ(Φ) =


E(αyc(ν − 1) + νβ(xc − 1))

(1 + ν)(−1 + 2ν)

E(βyc + α(1− xc))

2(1 + ν)

E(βyc + α(1− xc))

2(1 + ν)

E(ναyc + β(1− xc)(1− ν))

(1 + ν)(1− 2ν)

 , (4.7)

and div (σ(Φ)) = 0. Then we consider the Neumann conditions: σ(Φ)n = 0 on ΓN .
Since the unit outward normal vector on ΓN is n = (−yc/

√
x2

c + y2
c , xc/

√
x2

c + y2
c ),

the stress vector on ΓN becomes

σ(Φ)n

=


E(α(2νy2

c − 2y2
c − x2

c + 2x2
cν + xc − 2xcν) + β(−2ycν + xcyc))

2(1− 2ν)(1 + ν)
√

x2
c + y2

c

E(α(ycxc − yc + 2νyc) + β(−y2
c + 2y2

cν + 2νx2
c − 2νxc − 2x2

c + 2xc))

2(1− 2ν)(1 + ν)
√

x2
c + y2

c

 .

So the Neumann condition is equivalent to the linear system

M

(
α
β

)
=

(
0
0

)
.

Since (α, β) 6= (0, 0), we deduce that det(M) = 0. After some calculation (and
keeping in mind that yc > 0 and 0 ≤ ν < 1/2) this leads to the expression of the
Poisson ratio:

ν =
(y2

c − xc + x2
c)

2

((xc − 1)2 + y2
c )(x

2
c + y2

c )
. (4.8)
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Inserting the expression of ν in the linear system reduces the condition σ(Φ)n = 0
to one of the two following cases (4.9) or (4.10):

α = 0, yc =
√

xc(2− xc),
(
ν =

xc

2

)
(4.9)

β = −x3
c − x2

c + y2
cxc + y2

c

(x2
c − 2xc + y2

c )yc

α. (4.10)

Let us show that case (4.9) does not fit with the assumptions of the Proposition
3.1. If condition (4.9) holds, it follows that on ΓC , σn(Φ) = βE(2 − xc)/(2 + xc).
According to (4.6) we deduce that σn(Φ) > 0. As a consequence, such a field Φ does
not satisfy the assumptions of the Proposition.

Therefore we consider condition (4.10). In that case the normal constraint on ΓC

given by (4.7) becomes

σn(Φ) =
Eβy2

c (y
2
c + (xc − 1)2)2(x2

c + y2
c )

(x3
c − x2

c + xcy2
c + y2

c )(2(y
2
c − xc + x2

c)
2 + y2

c )

and the assumptions of Proposition 3.1 require that

x3
c − x2

c + xcy
2
c + y2

c < 0. (4.11)

Obviously, the Poisson ratio ν is nonnegative in (4.8). The condition ν < 1/2 is
equivalent to

(x2
c − xc + y2

c + yc)(x
2
c − xc + y2

c − yc) < 0 (4.12)

which means that (xc, yc) belongs to the open disk centered at (1/2,1/2) of radius
1/
√

2 and not to the closed disk centered at (1/2,-1/2) of radius 1/
√

2. Putting
together conditions (4.11) and (4.12) yields

xc ∈]0, 1[,

√
1

4
+ xc − x2

c −
1

2
< yc < xc

√
1− xc

1 + xc

. (4.13)

The admissible domain Σ in which are located the pairs (xc, yc) satisfying (4.13) is
depicted in Figure 2.

Note that (xc, yc) ∈ Σ and β > 0 implies α < 0 according to (4.10). Besides, we
obtain on ΓC : ∣∣∣∣∣ σt(Φ)

σn(Φ)

∣∣∣∣∣ =
xc

yc

.

According to (4.4)–(4.5), (4.8) and (4.10) the field u is

ux = βyc

(
(x2

c − 2xc + y2
c )yc

x3
c − x2

c + y2
cxc + y2

c

(x− 1) + y

)
, (4.14)

uy =−βyc

(
(x− 1) +

(
(y2

c − xc + x2
c)

2(x2
c − 2xc + y2

c )

yc(x3
c − x2

c + xcy2
c + y2

c )

)
y

)
, (4.15)
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Figure 2: The open admissible region Σ for point C = (xc, yc).

and we set (Ux, Uy) = (ux, uy) on ΓD. The densities of surface forces σ(u)n = (Fx, Fy)
on ΓN are then

σ(u)n =

 −Eβyc(x
2
c − 2xc + y2

c )(y
2
c + (xc − 1)2)2(x2

c + y2
c )

3/2

(2(x2
c − xc + y2

c )
2 + y2

c )(x
3
c − x2

c + xcy2
c + y2

c )

0

 . (4.16)

Finally, combining (4.14)–(4.15) with (4.2)–(4.3) and (4.10) leads to the expression
of u + Φ:

(u + Φ)x =
2βxcyc((xc − 1)2 + y2

c )

x3
c − x2

c + xcy2
c + y2

c

y, (4.17)

(u + Φ)y =
−β((xc − 1)2 + y2

c )(y
2
c + yc − xc + x2

c)(y
2
c − yc − xc + x2

c)

x3
c − x2

c + xcy2
c + y2

c

y. (4.18)

Let us remark that the displacement field u moves points A and C to the new
positions

A′ =

(
−β

(x2
c − 2xc + y2

c )y
2
c

x3
c − x2

c + y2
cxc + y2

c

, βyc

)
(4.19)

and

C ′ =

(
xc + β

2y2
cxc((xc − 1)2 + y2

c )

x3
c − x2

c + xcy2
c + y2

c

,

yc− β
yc((xc − 1)2 + y2

c )(y
2
c + yc − xc + x2

c)(y
2
c − yc − xc + x2

c)

x3
c − x2

c + xcy2
c + y2

c

)
, (4.20)

respectively whereas position of point B remains unchanged.
When considering the field u + Φ, the points A and B are stuck on the rigid

foundation and point C admits after deformation the new coordinates given by C ′ in
(4.20).
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Note that we can add an additional (and facultative) smallness assumption on β

which is not linked to the equations (2.1)–(2.6) but to the small strain hypothesis.
Clearly the point C ′ should remain over the straight line (A′, B) after deformation for
both linear displacement fields u and u+Φ to avoid some turning over of the triangle
Ω. In fact it suffices to check this property for the displacement field u. Denoting to
simplify A′ = (−βδ1, βδ2) and C ′ = (xc − βδ3, yc − βδ4) where (δi)1≤i≤4 are positive
constants depending on xc and yc (obtained from (4.19) and (4.20)), the point C ′

remains over the straight line (A′, B) if and only if

yc − βδ4 > − βδ2

βδ1 + 1
(xc − βδ3 − 1),

which is satisfied for small positive β. In other words β should be chosen small enough
so that 0 < β < β(xc, yc).

The latter discussion and the statement of Proposition 3.1 prove the next result
of nonuniqueness when the friction coefficient is large enough.

Proposition 4.1 Let be given the triangle Ω of vertexes A = (0, 0), B = (1, 0) and
C = (xc, yc) with yc > 0. Set ΓD =]B, C[, ΓN =]A, C[, ΓC =]A, B[ and let E > 0.
Assume that the pair (xc, yc) satisfies (4.13) and that β > 0. Suppose that ν and α are
given by (4.8) and (4.10) respectively and that f = 0. Let F and U given by (4.16)
and (4.14)–(4.15) respectively.

For any µ ≥ xc/yc there exist at least two solutions (given by (4.14)–(4.15) and
(4.17)–(4.18)) of the Coulomb frictional contact problem (2.1)–(2.6).

Remark 4.2 We mentioned in Section 3 that Φ and u+Φ are never rigid body dis-
placements in the general case. We remark that in the particular case of the functions
involved in Proposition 4.1, u is never a rigid body displacement. This results from
the definition of u in (4.14)–(4.15) since for any (xc, yc) ∈ Σ, e.g., ∂ux/∂x 6= 0.

A consequence of the previous study is the following result.

Corollary 4.3 The Coulomb friction problem (2.1)–(2.6) does not admit a unique
solution in the general case when µ > 1. More precisely, for any 0 < ν < 1/2, the
problem (2.1)–(2.6) does generally not admit a unique solution when

µ >

√
1− ν

ν
.

Proof. Let us consider the domain Σ depicted in Figure 2:

Σ =

{
(xc, yc) ∈ R2, xc ∈]0, 1[,

√
1

4
+ xc − x2

c −
1

2
< yc < xc

√
1− xc

1 + xc

}
and introduce the function f defined on Σ as follows: f(xc, yc) = xc/yc. Set g(x) =√

1/4 + x− x2 − 1/2 and h(x) = x
√

(1− x)/(1 + x). From the definition of Σ and
since the right derivatives of g and h at 0 are equal to 1 we deduce that

f(Σ) =]1, +∞[.
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Combining this with Proposition 4.1 proves the existence of non-unique solutions
when µ > 1.

Next, we consider the second part of the Corollary and we show that the non-
unique solutions of the Proposition 4.1 occur when the Poisson ratio is greater than
1/(1+µ2). It suffices to study the function ν(xc, yc) introduced in (4.8) when (xc, yc) ∈
Σ and yc = xc/µ with µ ∈]1, +∞[. This consists of studying the function ν on the
straight line segment ]D, E[ where D = ((µ2 − µ)/(µ2 + 1), (µ − 1)/(µ2 + 1)) and
E = ((µ2 − 1)/(µ2 + 1), (µ − 1/µ)/(µ2 + 1)). On the interval ]D, E[, yc = xc/µ and
the function ν(xc) is decreasing from 1/2 to 1/(1 + µ2) since

ν ′(xc) = 2
µ2(xc − µ2 + xcµ

2)

(x2
c + µ2(xc − 1)2)2(1 + µ2)

< 0, ∀xc ∈

]
µ2 − µ

µ2 + 1
,
µ2 − 1

µ2 + 1

[
.

Hence the problem does generally not admit unique solutions when µ > 1 and ν >
1/(1 + µ2). That ends the proof.

5. Concluding remarks

The setting introduced in this work allows to prove that the unilateral contact
problem with Coulomb friction in continuum elastostatics does not admit unique
solutions for large friction coefficients in the general case. Nevertheless numerous
problems concerning nonuniqueness seem to remain open. Let us briefly enumerate
some of them.

The existence of an example with multiple solutions to (2.1)–(2.6) for arbitrary
small friction coefficients is an open problem. The weaker problem which consists of
finding for any small friction coefficient an example of nonuniqueness remains open.
Another question concerns the existence of multiple solutions for some problems in
the pure compressible case when the Poisson ratio vanishes.
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