
An improved a priori error analysis for finite element

approximations of Signorini’s problem

Patrick Hild1, Yves Renard2

Abstract

The present paper is concerned with the unilateral contact model in linear elastostatics
(or the equivalent scalar Signorini problem). A standard continuous conforming linear finite
element approximation is first chosen to approach the two-dimensional problem. We develop
a new error analysis in the H1-norm using estimates on Poincaré constants with respect to
the size of the areas of the noncontact sets. In particular we do not assume any additional
hypothesis on the finiteness of the set of transition points between contact and noncontact.
This approach allows us to establish better error bounds under sole Hτ assumptions on the
solution: if 3/2 < τ < 2 we improve the existing rate by a factor h(τ−3/2)2 and if τ = 2 the
existing rate (h3/4) is improved by a new rate of h

√
| ln(h)|. We then consider a continuous

(nonconforming) linear finite element approximation in which the same kind of analysis leads
to the same convergence rates as for the first approximation.
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1 Introduction and notation

Finite element methods are currently used to approximate Signorini’s problem or the equivalent
scalar valued unilateral problem (see, e.g., [14, 17, 18, 29, 30]). Such a problem shows a nonlinear
boundary condition, which roughly speaking requires that (a component of) the solution u is
nonpositive (or equivalently nonnegative) on (a part of) the boundary of the domain Ω (see [25]).
This nonlinearity leads to a weak formulation written as a variational inequality which admits
a unique solution (see [9]) and the regularity of the solution shows limitations whatever is the
regularity of the data (see [21]). A consequence is that only finite element methods of order one
and of order two are of interest.

This paper concerns the simplest case: the two-dimensional problem (which corresponds to a
nonlinearity holding on a boundary of dimension one) written as a variational inequality and two
approximations using continuous linear finite element methods and the corresponding a priori
error estimates in the H1(Ω)-norm.

We first consider a conforming approximation (i.e., the discrete convex cone of admissible
solutions is a subset of the continuous convex cone of admissible solutions) which corresponds to
the most common approximation. The existing results concerning the problem can be classified
following the regularity assumptions Hτ (Ω) made on the solution u and following additional
assumptions, in particular the hypothesis assuming that there is a finite number of transition
points between contact and noncontact. As far as we know, the existing results for this problem
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can be summarized as follows (we denote by h the discretization parameter) in (E1), (E2), (E3)
and (E4):
(E1) If u ∈ Hτ (Ω) with 1 < τ ≤ 3/2, an optimal error estimate of order hτ−1 was obtained in
[2].
(E2) If u ∈ Hτ (Ω) with 3/2 < τ < 2, an analysis as the one in [11, 24] (see also [13, 14]) leads
to a convergence rate of order hτ/2−1/4. Adding the assumption on the finiteness of transition
points and using appropriate Sobolev-Morrey inequalities allows to recover optimality of order
hτ−1 (see [2]).
(E3) The case u ∈ H2(Ω) is more complicated and requires some technical refinements. The
initial analysis in [24] (see also [11, 13, 14]) leads to a convergence rate of order h3/4. Adding the
assumption on the finiteness of transition points has led to the following results and improvements:
in [2], the study and the use of the constants C(q) (resp. C(α)) of the embeddings H1/2(0, 1) →
Lq(0, 1) (resp. H3/2(0, 1) → C0,α(0, 1)) allows to obtain a rate of order h

√
| ln(h)|. The additional

use of Gagliardo-Nirenberg inequalities allows to obtain a slightly better rate of order h 4
√
| ln(h)|

in [3]. Finally a different analysis using an additional modified Lagrange interpolation operator
and fine estimates of the solution near the (finite number of) transition points had led to optimality
of order h in [16].
(E4) If u ∈ Hτ (Ω) with τ > 2 the analysis in [11] shows that convergence of order h is obtained
when τ = 5/2 (more precisely if the solution and its trace lie in H2). Similar assumptions are
used in [4] to obtain the convergence of order h. Recently, in [23] the use of Peetre-Tartar Lemma
(see [22, 26, 27, 7]) has led to an analysis which requires only H2+θ(Ω) regularity (θ > 0) to
obtain a convergence of order h.

Concerning the conforming approximation we assume in this paper Hτ (Ω) regularity (3/2 <
τ ≤ 2) for u without any additional assumption (in particular those concerning the finiteness of
the set of transition points). In this case the existing error bound is hτ/2−1/4. We develop a new
analysis which consists of classifying the finite elements on the contact zone into two cases. A
first case where the unknown vanishes near both extremities of the segment and the other case
where the dual unknown (the normal derivative for the scalar Signorini problem and the normal
constraint for the unilateral contact problem) vanishes on an area near a segment extremity. We
then study for various fractional Sobolev spaces the behavior of the constants C(ε) occurring in
Poincaré inequalities with respect to the length ε of the area where the unknown vanishes. This
analysis leads to the following new results denoted by (N1) and (N2):
(N1) If u ∈ Hτ (Ω) with 3/2 < τ < 2 we obtain a convergence rate of order hτ/2−1/4+(τ−3/2)2

which improves the existing rate of hτ/2−1/4. Note that the convergence rate becomes optimal
when τ → 3/2, (τ > 3/2) and when τ → 2, (τ < 2). The regularity where we are the less close to
optimality is when τ = 7/4 where we obtain a rate of h11/16 whereas optimality is h3/4. So the
maximal distance to optimality is h1/16 (see Figure 2).
(N2) If u ∈ H2(Ω) we obtain a quasi-optimal convergence rate of order h

√
| ln(h)| which improves

the existing rate of h3/4.
We also consider in this paper a nonconforming finite element approximation (i.e., the discrete

convex cone of admissible functions is not a subset of the continuous convex cone of admissible
functions) for which less results are available than for the conforming approximation. In particular
the results in (E3) are available (h3/4 error bound) without additional assumption on the contact
set (see [14, 19]). For a slightly different approach (using quadratic finite elements), [3] obtains
under H2 regularity an error bound of h3/4 and of h 4

√
| ln(h)| with an additional assumption on

the finiteness of the transition points. Note that the results in (E2) without additional assumption
on the contact set could be easily obtained using the techniques in the above references. The use
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of an adaption of our technique allows us to recover for this nonconforming approximation the
results (N1), (N2) and the result in (E4) of [23].

The paper is organized as follows. Section 2 deals with the formulation of the problem, its
associated weak form written as a variational inequality and the most common discretization using
the standard continuous linear finite element method and a conforming approach of the convex
set of admissible displacements. In section 3, we achieve a new error analysis for this method
to improve the existing results. Section 4 deals again with the standard continuous linear finite
element method but a nonconforming approach of the convex set of admissible displacements is
chosen. All the results of section 3 can be generalized to this case. Two appendices concerning
the estimates of Poincaré constants and some interpolation error estimates in fractional Sobolev
spaces terminate the paper.

Next, we specify some notations we shall use. Let a Lipschitz domain Ω ⊂ R2 be given ; the
generic point of Ω is denoted x. The classical Lebesgue space Lp(Ω) is endowed with the norm

‖ψ‖Lp(Ω) =
(∫

Ω
|ψ(x)|p dx

) 1
p

.

We will make a constant use of the standard Sobolev space Hm(Ω), m ≥ 0 (we adopt the
convention H0(Ω) = L2(Ω)), provided with the norm

‖ψ‖m,Ω =


 ∑

0≤|α|≤m

‖∂αψ‖2
L2(Ω)




1
2

,

where α = (α1, α2) is a multi–index in N2 and the symbol ∂α represents a partial derivative. As
in [1, 10] the fractionally Sobolev space Hτ (Ω), τ ∈ R+ \ N, is defined by the norm

‖ψ‖τ,Ω =


‖ψ‖2

m,Ω +
∑

|α|=m

∫

Ω

∫

Ω

(∂αψ(x)− ∂αψ(y))2

|x− y|2+2ν
dx dy




1
2

=


‖ψ‖2

m,Ω +
∑

|α|=m

|∂αψ|2τ,Ω




1
2

,

where τ = m + ν, m being the integer part of τ and ν ∈ (0, 1).
For the sake of simplicity, not to deal with a non-conformity coming from the approximation

of the domain, we shall only consider here polygonally shaped domains. The boundary ∂Ω is the
union of a finite number of segments Γj , 0 ≤ j ≤ J . In such a case, the space Hτ (Ω) defined
above coincides not only with the set of restrictions to Ω of all functions of Hτ (R2) (see [10]) but
also with the Sobolev space defined by Hilbertian interpolation of standard spaces (Hm(Ω))m∈N
and the norms resulting from the different definitions of Hτ (Ω) are equivalent (see [28]).

To handle trace functions we introduce, for any τ ∈ R+\N, the Hilbert space Hτ (Γj) associated
with the norm

‖ψ‖τ,Γj =

(
‖ψ‖2

m,Γj
+

∫

Γj

∫

Γj

(ψ(m)(x)− ψ(m)(y))2

|x− y|1+2ν
dΓdΓ

) 1
2

=
(
‖ψ‖2

m,Γj
+ |ψ(m)|2τ,Γj

) 1
2
, (1)

where m is the integer part of τ and ν stands for its decimal part. Finally the trace operator
T : ψ 7→ (ψ|Γj

)1≤j≤J , maps continuously Hτ (Ω) onto
∏J

j=1 Hτ−1/2(Γj) when τ > 1/2 (see, e.g.,
[20]).
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Figure 1: Elastic body Ω in contact.

2 Signorini’s problem and its finite element discretization

2.1 Setting of the problem

Let Ω ⊂ R2 be a polygonal domain representing the reference configuration of a linearly elastic
body whose boundary ∂Ω consists of three nonoverlapping open parts ΓN , ΓD and ΓC with
ΓN ∪ ΓD ∪ ΓC = ∂Ω. We assume that the measures of ΓC and ΓD are positive and, in order to
simplify, that ΓC is a straight line segment. The body is submitted to a Neumann condition on
ΓN with a density of loads F ∈ (L2(ΓN ))2, a Dirichlet condition on ΓD (the body is assumed
to be clamped on ΓD to simplify) and to volume loads denoted f ∈ (L2(Ω))2 in Ω. Finally, a
(frictionless) unilateral contact condition between the body and a flat rigid foundation holds on
ΓC (see Fig. 1). The problem consists in finding the displacement field u : Ω → R2 satisfying
(2)–(7):

− div σ(u) = f in Ω, (2)
σ(u) = Aε(u) in Ω, (3)

σ(u)n = F on ΓN , (4)
u = 0 on ΓD , (5)

where σ(u) represents the stress tensor field, ε(u) = (∇u + (∇u)T )/2 denotes the linearized
strain tensor field, n stands for the outward unit normal to Ω on ∂Ω, and A is the fourth order
elastic coefficient tensor which satisfies the usual symmetry and ellipticity conditions and whose
components are in L∞(Ω).

On ΓC , we decompose the displacement and the stress vector fields in normal and tangential
components as follows:

uN = u.n, uT = u− uN n,

σN = (σ(u)n).n, σT = σ(u)n− σN n.

The unilateral contact condition on ΓC is expressed by the following complementary condition:

uN ≤ 0, σN ≤ 0, uN σN = 0, (6)

where a vanishing gap between the elastic solid and the rigid foundation has been chosen in the
reference configuration.
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The frictionless condition on ΓC reads as:

σT = 0. (7)

Remark 1 This problem is the vector valued version of the scalar Signorini problem which (writ-
ten in its simplest form) consists of finding the field u : Ω → R satisfying:

−∆u + u = f in Ω, u ≤ 0,
∂u

∂n
≤ 0, u

∂u

∂n
= 0 on ∂Ω.

A close formulation of this problem consists in writing −∆u = f in Ω and adding Dirichlet
(and eventually) Neumann conditions on some parts the boundary by keeping the conditions u ≤
0, ∂u/∂n ≤ 0, u (∂u/∂n) = 0 on the remaining part of the boundary. All the results proved in this
paper, in particular the error estimates in Theorem 1 and Theorem 2, can be straightforwardly
extended to the scalar Signorini problem.

Let us introduce the following Hilbert space:

V =
{
v ∈ (H1(Ω))2 : v = 0 on ΓD

}
.

The set of admissible displacements satisfying the noninterpenetration conditions on the contact
zone is:

K = {v ∈ V : vN = v.n ≤ 0 on ΓC} .

Let be given the following forms for any u and v in V :

a(u, v) =
∫

Ω
Aε(u) : ε(v) dΩ,

l(v) =
∫

Ω
f.v dΩ +

∫

Γ
N

F.v dΓ,

which represent the virtual work of the elastic forces and of the external loads respectively. From
the previous assumptions it follows that a(·, ·) is a bilinear symmetric V -elliptic and continuous
form on V × V and l is a linear continuous form on V .

The weak formulation of Problem (2)–(7) (written as an inequality), introduced in [9] (see
also, e.g., [12, 14, 17]) is: {

Find u ∈ K satisfying:

a(u, v − u) ≥ l(v − u), ∀ v ∈ K.
(8)

Problem (8) admits a unique solution according to Stampacchia’s Theorem.

2.2 The standard finite element approximation

Let V h ⊂ V be a family of finite dimensional vector spaces indexed by h coming from a regular
family T h (see [5]) of triangulations of the domain Ω. The notation h represents the largest
diameter among all elements T ∈ T h which are supposed closed. We choose standard continuous
and piecewise affine functions, i.e.:

V h =
{

vh ∈ (C(Ω))2 : vh|T∈ P1(T ), ∀T ∈ T h, vh = 0 on ΓD

}
. (9)
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The discrete set of admissible displacements satisfying the noninterpenetration conditions on the
contact zone is given by

Kh =
{

vh ∈ V h : vh
N
≤ 0 on ΓC

}
.

The discrete variational inequality issued from (8) is
{

Find uh ∈ Kh satisfying:

a(uh, vh − uh) ≥ l(vh − uh), ∀ vh ∈ Kh.
(10)

According to Stampacchia’s Theorem, problem (10) admits also a unique solution.

3 Error analysis

The forthcoming theorem gives a priori error estimates and it is divided into two parts. A first
part where the regularity of u is assumed to lie strictly between H3/2(Ω) and H2(Ω) and a
second part in which the H2(Ω)-regularity is considered separately. Afterwards, we denote by C
a positive generic constant which does neither depend on the mesh size h nor on the solution u.

Theorem 1 Let u be the solution to Problem (8). Assume that u ∈ (Hτ (Ω))2 with 3/2 < τ < 2
and let uh be the solution to the discrete problem (10). Then, there exists a constant C > 0
independent of h and u such that

‖u− uh‖1,Ω ≤ Chτ2− 5
2
τ+2‖u‖τ,Ω. (11)

Let u be the solution to Problem (8). Assume that u ∈ (H2(Ω))2 and let uh be the solution to the
discrete problem (10). Then, there exists a constant C > 0 independent of h and u such that

‖u− uh‖1,Ω ≤ Ch
√
| ln(h)|‖u‖2,Ω. (12)

Remark 2 In comparison with the standard analysis which gives an error bound of hτ/2−1/4 for
3/2 < τ ≤ 2 (in particular h3/4 when τ = 2) (see, e.g., [24, 11, 14, 3]) we improve the rate by
a factor h(τ−3/2)2 when 3/2 < τ < 2 and by a factor h1/4

√
| ln(h)| when τ = 2. The curve of

the new rate (as a function of the Sobolev exponent τ), which is compared to the existing one
and to the optimal one is depicted in Figure 2. Note that the convergence rate becomes optimal
when τ → 3/2, (τ > 3/2) and when τ → 2, (τ < 2). The regularity where we are the less close to
optimality is when τ = 7/4 where we obtain a rate of h11/16 whereas optimality is h3/4. So the
maximal distance to optimality is h1/16.

Remark 3 Unlike some other problems governed by variational inequalities, the location of the
nonlinearity in Signorini’s problem is in the boundary conditions. When using the standard
approach issued from Falk’s Lemma [8], the inequalities in the boundary conditions require the
handling of dual Sobolev norms (i.e., when u ∈ H2(Ω) the estimate of ‖uN−(Ihu)N ‖1/2,∗,Γ

C
where

‖.‖1/2,∗,Γ
C

stands for the dual norm of ‖.‖1/2,Γ
C

and where Ih denotes the Lagrange interpolation
operator mapping into V h). As already mentioned in the early analysis of [24], better bounds than
h3/4 were not available. In [15] counterexamples were given which confirm that better bounds could
not be obtained when estimating ‖uN − (Ihu)N ‖1/2,∗,Γ

C
. As a consequence other techniques must

be developed.
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Figure 2: Convergence rates: the existing ones, the ones obtained in this paper and the optimal
ones

Remark 4 Actually, we are not able to extend successfully the results of the theorem to the three-
dimensional case since the estimates of the Poincaré constants (in Lemma 2) are different and do
not lead to improved convergence rates. This question remains nevertheless under investigation.
In the same way, the extension of the technique to improve the existing results obtained when
using quadratic finite element methods could be interesting.

Proof. The use of Falk’s Lemma (see [8] for the early idea and e.g., [24, 17, 14] for the adaption
to contact problems) leads to the following bound:

‖u− uh‖2
1,Ω ≤ C inf

vh∈Kh

(
‖u− vh‖2

1,Ω +
∫

Γ
C

σN (vh − u)N dΓ

)

where C is a positive constant which only depends on the continuity and the ellipticity constants
of a(., .). The usual choice for vh (which we also adopt in this study) is vh = Ihu where Ih is
the Lagrange interpolation operator mapping onto V h. Of course Ihu ∈ Kh and ‖u− Ihu‖1,Ω ≤
Chτ−1‖u‖τ,Ω for any 1 < τ ≤ 2.

To prove the theorem it remains then to estimate the term
∫

Γ
C

σN (Ihu)N dΓ,

for u ∈ (Hτ (Ω))2, 3/2 < τ ≤ 2. From the trace theorem we deduce that uN ∈ Hτ−1/2(ΓC ) (hence
uN is continuous) and σN ∈ Hτ−3/2(ΓC ). Let T ∈ T h with T ∩ ΓC 6= ∅. In the forthcoming proof
we will estimate ∫

T∩Γ
C

σN (Ihu)N dΓ,
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and we will denote by he the length of the segment T ∩ ΓC .
Let 0 < ε < 1 be fixed (the optimal choice of ε will be done later) and let be an element

T ∈ T h with T ∩ ΓC 6= ∅. We will consider the following alternative which is an important point
of our analysis:

First case: for any of the two vertices of T ∩ ΓC there exists a point where uN vanishes at a
distance less than heε to a vertex of T ∩ ΓC .

Second case: the normal stress σN vanishes on a segment of length heε including one of the
two vertices.

Note that any of the straight line segments T ∩ΓC satisfy (at least) one of both previous cases
because of the complementarity condition σN uN = 0 satisfied on ΓC .

• For 3/2 < τ < 2.

First case. Let us denote by a1, a2 the two vertices of T ∩ ΓC . There exist ξ1, ξ2 ∈ T ∩ ΓC

such that uN (ξ1) = uN (ξ2) = 0 and |ai − ξi| ≤ heε, i = 1, 2 (where he = |a2 − a1|). Then
∫

T∩Γ
C

σN (Ihu)N dΓ ≤ ‖σN ‖0,T∩Γ
C
‖(Ihu)N ‖0,T∩Γ

C

≤ ‖σN ‖0,T∩Γ
C
h1/2

e max (|uN (a1)|, |uN (a2)|) . (13)

Moreover, for i = 1, 2

|uN (ai)| = |uN (ai)− uN (ξi)| =
∣∣∣∣
∫ ξi

ai

u′
N

(ζ)dζ

∣∣∣∣ , (14)

where u′
N

denotes the derivative along the line (a1, a2). For q = 1/(2− τ) (so q ∈ (2, +∞))
one obtains thanks to Hölder inequality

∣∣∣∣
∫ ξi

ai

u′
N

(ζ)dζ

∣∣∣∣ ≤ (heε)τ−1‖u′
N
‖Lq(T∩Γ

C
). (15)

Now, we can use the continuous embedding of Hτ−3/2(T ∩ ΓC ) into Lq(T ∩ ΓC ) (see, e.g.,
[1]). In order to obtain a continuity constant independent of the element size, we use the
reference element Ĩ = (0, 1) and we denote ũN (x̃) = uN (θ(x̃)) where θ : Ĩ → T ∩ ΓC is an
affine transformation. We obtain

‖u′
N
‖Lq(T∩Γ

C
) = h1/q

e ‖ũ′
N
‖Lq(Ĩ) = h2−τ

e ‖ũ′
N
‖Lq(Ĩ) ≤ Ch2−τ

e ‖ũ′
N
‖τ−3/2,Ĩ . (16)

It remains to bound ‖ũ′
N
‖τ−3/2,Ĩ . From the definition of the norms and the affine transfor-

mation, we get

‖ũ′
N
‖τ−3/2,Ĩ ≤ ‖ũ′

N
‖0,Ĩ + |ũ′

N
|τ−3/2,Ĩ

= h−1/2
e ‖u′

N
‖0,T∩Γ

C
+ hτ−2

e |u′
N
|τ−3/2,T∩Γ

C

≤ Ch−1/2
e ‖u′

N
‖τ−3/2,T∩Γ

C
. (17)

From (16) and (17), we deduce

‖u′
N
‖Lq(T∩Γ

C
) ≤ Ch3/2−τ

e ‖u′
N
‖τ−3/2,T∩Γ

C
. (18)
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Combining estimates (13), (14), (15), (18) and Young’s inequality, we obtain the estimate
∫

T∩Γ
C

σN (Ihu)N dΓ ≤ Cheε
τ−1‖σN ‖0,T∩Γ

C
‖u′

N
‖τ−3/2,T∩Γ

C

≤ Cheε
τ−1

(
‖σN ‖2

τ−3/2,T∩Γ
C

+ ‖uN ‖2
τ−1/2,T∩Γ

C

)
. (19)

Second case. Otherwise, by the complementarity condition, σN vanishes on an interval of
length heε included in T ∩ΓC and having one of the two vertices of T ∩ΓC as an extremity.
We make the following estimate

∫

T∩Γ
C

σN (Ihu)N dΓ =
∫

T∩Γ
C

σN ((Ihu)N − uN ) dΓ

≤ ‖σN ‖0,T∩Γ
C
‖(Ihu)N − uN ‖0,T∩Γ

C
. (20)

On the one hand, by passing on the reference element and applying (40) in Lemma 2 we
obtain

‖σN ‖0,T∩Γ
C

= h1/2
e ‖σ̃N ‖0,Ĩ ≤ Ch1/2

e ετ−2|σ̃N |τ−3/2,Ĩ = Chτ−3/2
e ετ−2|σN |τ−3/2,T∩Γ

C
. (21)

On the other hand, Lemma 3 gives the following estimate:

‖(Ihu)N − uN ‖0,T∩Γ
C
≤ hτ−1/2

e |uN |τ−1/2,T∩Γ
C
. (22)

Thanks to (20), (21) and (22), we get
∫

T∩Γ
C

σN (Ihu)N dΓ ≤ Ch2τ−2
e ετ−2|σN |τ−3/2,T∩Γ

C
|uN |τ−1/2,T∩Γ

C

≤ Ch2τ−2
e ετ−2

(
‖σN ‖2

τ−3/2,T∩Γ
C

+ ‖uN ‖2
τ−1/2,T∩Γ

C

)
. (23)

Globally. The optimal choice of the value of ε to make a compromise between the estimates
of the first and second cases (19) and (23) is ε = h2τ−3. This leads to

∫

Γ
C

σN (Ihu)N dΓ ≤ Ch2τ2−5τ+4‖u‖2
τ,Ω

which establishes (11).

• For τ = 2, the same reasoning leads to the following estimates

First case. The same approach as in (13)–(19) is chosen by using for any q > 1 the
continuous embedding of H1/2(T ∩ ΓC ) into Lq(T ∩ ΓC ) (see, e.g., [1]). So we get for any
q > 1:

∫

T∩Γ
C

σN (Ihu)N dΓ ≤ C(q)heε
1− 1

q

(
‖σN ‖2

1/2,T∩Γ
C

+ ‖uN ‖2
3/2,T∩Γ

C

)
. (24)

Second case. Achieving the same calculations as in (20)–(23) and using (41) in Lemma 2,
we get

∫

T∩Γ
C

σN (Ihu)N dΓ ≤ Ch2
e ln(1/ε)

(
‖σN ‖2

1/2,T∩Γ
C

+ ‖uN ‖2
3/2,T∩Γ

C

)
. (25)
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Globally. In (24), (25) we choose q = 2 and ε = h2. So we obtain
∫

Γ
C

σN (Ihu)N dΓ ≤ Ch2 ln(1/h)‖u‖2
2,Ω

from which estimate (12) follows.

4 An extension of the technique to a nonconforming contact con-
dition

Let us again choose the P1 finite element space V h defined in (9) and consider now the discrete
contact condition incorporated in the closed convex cone Kh:

Kh =

{
vh ∈ V h,

∫

T∩Γ
C

vh
N

dΓ ≤ 0,∀T ∈ T h

}

=
{

vh ∈ V h, vh
N

(ξi) ≤ 0, ∀1 ≤ i ≤ I
}

,

where the ξi are the midpoints of the I contact segments (i.e., the segments T ∩ ΓC of positive
measure). Such a contact condition is classical when using hybrid methods involving Lagrange
multipliers (see, e.g., [14, 19, 3]). Note that the method is nonconforming (i.e., Kh 6⊂ K). The
discrete variational inequality becomes:

{
Find uh ∈ Kh satisfying:

a(uh, vh − uh) ≥ l(vh − uh), ∀ vh ∈ Kh.
(26)

According to Stampacchia’s Theorem, problem (26) admits a unique solution.
The specificity in the analysis of this problem comes from the nonconformity of the approxi-

mation. As far as we know the existing results are the following: if u ∈ Hτ (Ω) with 3/2 < τ ≤ 2,
the analysis in [14, 19] leads to a convergence rate of order hτ/2−1/4 (the existing results are of the
same order than for the conforming approach using Kh previously improved in this paper). In
particular an error bound of h3/4 is obtained when τ = 2 (see [14, 19]). Note also that a standard
analysis gives a convergence of order h when supposing that u ∈ H5/2(Ω).

The forthcoming theorem gives improved a priori error estimates and it is divided into three
parts. A first part where the regularity of u is assumed to lie between H3/2(Ω) and H2(Ω), a
second part in which the H2(Ω)-regularity is considered separately and a third result dealing with
H2+θ(Ω) regularity with θ > 0. As previously we denote by C a positive generic constant which
does neither depend on the mesh size h nor on the solution u.

Theorem 2 Let u be the solution to Problem (8). Assume that u ∈ (Hτ (Ω))2 with 3/2 < τ < 2
and let uh be the solution to the discrete problem (26). Then, there exists a constant C > 0
independent of h and u such that

‖u− uh‖1,Ω ≤ Chτ2− 5
2
τ+2‖u‖τ,Ω. (27)

Let u be the solution to Problem (8). Assume that u ∈ (H2(Ω))2 and let uh be the solution to the
discrete problem (26). Then, there exists a constant C > 0 independent of h and u such that

‖u− uh‖1,Ω ≤ Ch
√
| ln(h)|‖u‖2,Ω. (28)
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Let u be the solution to Problem (8). Assume that there is θ > 0 such that u ∈ (H2+θ(Ω))2 and let
uh be the solution to the discrete problem (26). Then, there exists a constant C > 0 independent
of h and u such that

‖u− uh‖1,Ω ≤ Ch‖u‖2+θ,Ω. (29)

Remark 5 The results in Theorem 2 are the same as in Theorem 1. The forthcoming analysis
uses the same basic idea as in Theorem 1 but the technical details are quite different (see proof
hereafter).

Remark 6 In comparison with the standard analysis which gives an error bound of hτ/2−1/4 for
3/2 < τ ≤ 2 (in particular h3/4 when τ = 2) (see, e.g., [14, 19, 3]) we improve the rate by a
factor h(τ−3/2)2 when 3/2 < τ < 2 and by a factor h1/4

√
| ln(h)| when τ = 2. The comments in

Remark 2 are still valid in this case.

Remark 7 Contrary to the previous approximation in (10) where the loss of optimality comes
from the Lagrange interpolation operator which does not satisfy appropriate estimates in Sobolev
norms with negative exponents, the loss of optimality in the case of approximation (26) comes
from the L2-projection operator on piecewise constant functions which does not approximate in a
convenient way the functions that are more than H1 regular.

Proof. The use of Falk’s Lemma in the nonconforming case gives (see, e.g., [3]):

‖u− uh‖2
1,Ω ≤ C

[
inf

vh∈Kh

(
‖u− vh‖2

1,Ω +
∫

Γ
C

σN (vh − u)N dΓ

)

+ inf
v∈K

∫

Γ
C

σN (v − uh)N dΓ

]
. (30)

As previously we can choose vh = Ihu where Ih is the Lagrange interpolation operator mapping
onto V h since Ihu ∈ Kh ⊂ Kh. The first infimum in (30) therefore satisfies the error bounds (27)
and (28) in the Theorem 2 according to Theorem 1. The first infimum in (30) satisfies also the
bound of order h in (29) when H2+θ regularity is assumed : this follows from the same analysis
as in Theorem 1 by using estimate (42), (see also [23]).

In the second infimum in (30), we choose v = 0. To prove the theorem it remains then to
estimate the term

−
∫

Γ
C

σN uh
N

dΓ.

We next consider the space Xh of the piecewise constant functions on the meshes of T ∩ ΓC

Xh =
{

χh ∈ L2(ΓC ) : χh|T∩Γ
C

∈ P0(T ∩ ΓC ), ∀T ∈ T h
}

,

and the classical L2(ΓC )−projection operator πh : L2(ΓC ) → Xh defined for any ϕ ∈ L2(ΓC ) by
∫

Γ
C

(ϕ− πhϕ)χh dΓ = 0, ∀χh ∈ Xh.

We still denote by he the length of the segment T ∩ ΓC . The operator πh satisfies the following
estimates for any 0 ≤ r ≤ 1 and any ϕ ∈ Hr(ΓC ) (the proof is the same as the one in Lemma 3):

‖ϕ− πhϕ‖0,T∩Γ
C
≤ Chr

e |ϕ|r,T∩Γ
C

and ‖ϕ− πhϕ‖0,Γ
C
≤ Chr |ϕ|r,Γ

C
. (31)
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When considering the dual norm ‖.‖1/2,∗,Γ
C

of ‖.‖1/2,Γ
C

we deduce for any 0 ≤ r ≤ 1 and any
ϕ ∈ Hr(ΓC ):

‖ϕ− πhϕ‖1/2,∗,Γ
C

= sup
ψ∈H1/2(Γ

C
)

∫

Γ
C

(ϕ− πhϕ)ψ dΓ

‖ψ‖1/2,Γ
C

≤ sup
ψ∈H1/2(Γ

C
)

‖ϕ− πhϕ‖0,Γ
C
‖ψ − πhψ‖0,Γ

C

‖ψ‖1/2,Γ
C

≤ Chr+1/2 |ϕ|r,Γ
C
. (32)

We have, since πhσN is a nonpositive piecewise constant function on ΓC :

−
∫

Γ
C

σN uh
N

dΓ ≤ −
∫

Γ
C

(σN − πhσN )uh
N

dΓ

= −
∫

Γ
C

(σN − πhσN )(uh
N
− uN ) dΓ−

∫

Γ
C

(σN − πhσN )uN dΓ. (33)

The first term in (33) is bounded in a optimal way by using (32), the trace theorem and Young’s
inequality:

−
∫

Γ
C

(σN − πhσN )(uh
N
− uN ) dΓ ≤ ‖σN − πhσN ‖1/2,∗,Γ

C
‖uh

N
− uN ‖1/2,Γ

C

≤ Chτ−1|σN |τ−3/2,Γ
C
‖uh − u‖1,Ω

≤ Ch2(τ−1)|σN |2τ−3/2,Γ
C

+
1
2
‖u− uh‖2

1,Ω.

To prove the theorem it remains now to bound the second term in (33). We estimate this term
on any element T ∩ ΓC :

−
∫

T∩Γ
C

(σN − πhσN )uN dΓ =
∫

T∩Γ
C

(σN − πhσN )(πhuN − uN ) dΓ. (34)

For any contact element T ∩ ΓC we consider the (closed) set of contact points:

CT = {x ∈ T ∩ ΓC ; uN (x) = 0} .

Let 0 < ε < 1 be fixed (the optimal choice of ε will be done later) and let be an element
T ∈ T h such that T ∩ ΓC 6= ∅. We next consider the following alternative (which differs from the
alternative leading to the result in Theorem 1).

First case: the diameter of CT is lower than heε

Second case: the diameter of CT is greater than heε.

• For 3/2 < τ < 2.

First case. In this case the contact zone can be included into a segment S of length heε
which means that σN vanishes outside this segment. So

∫

T∩Γ
C

(σN − πhσN )(πhuN − uN ) dΓ =
∫

T∩Γ
C

σN (πhuN − uN ) dΓ

≤ ‖σN ‖L1(T∩Γ
C

)‖uN − πhuN ‖L∞(T∩Γ
C

)

≤ ‖σN ‖L1(T∩Γ
C

)h
1/2
e ‖u′

N
‖0,T∩Γ

C

= ‖σN ‖L1(S)h
1/2
e ‖u′

N
‖0,T∩Γ

C
,
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where we use (50). The estimate of ‖σN ‖L1(S) is handled exactly as ‖u′
N
‖L1(ai,ξi) in (15)

and we obtain
‖σN ‖L1(S) ≤ Ch1/2

e ετ−1‖σN ‖τ−3/2,T∩Γ
C
.

Combining both previous estimates yields
∫

T∩Γ
C

(σN − πhσN )(πhuN − uN ) dΓ ≤ Cheε
τ−1‖σN ‖τ−3/2,T∩Γ

C
‖u′

N
‖0,T∩Γ

C
. (35)

Second case. In this case there exist two contact points c1 and c2 such that |c1−c2| ≥ heε
and we have ∫ c2

c1

u′
N

(x) = 0,

which allows us to use estimate (40) together with Remark 10.
∫

T∩Γ
C

(σN − πhσN )(πhuN − uN ) dΓ ≤ ‖σN − πhσN ‖0,T∩Γ
C
‖uN − πhuN ‖0,T∩Γ

C

≤ Chτ−1/2
e |σN |τ−3/2,T∩Γ

C
‖u′

N
‖0,T∩Γ

C

≤ Ch2τ−2
e ετ−2|σN |τ−3/2,T∩Γ

C
|u′

N
|τ−3/2,T∩Γ

C
(36)

where we use (31) and the same estimate as in (21) to bound ‖u′
N
‖0,T∩Γ

C
.

Globally. In (35) and (36) we choose ε = h2τ−3 which yields
∫

Γ
C

(σN − πhσN )(πhuN − uN ) dΓ ≤ Ch2τ2−5τ+4‖u‖2
τ,Ω

and gives the result in (27).

• For τ = 2, the same method leads to the following estimates.

First case. The same approach as in (35) is chosen by using for any q > 1 the continuous
embedding of H1/2(T ∩ ΓC ) into Lq(T ∩ ΓC ). So, for any q > 1, we get

∫

T∩Γ
C

(σN − πhσN )(πhuN − uN ) dΓ ≤ C(q)heε
1− 1

q ‖σN ‖1/2,T∩Γ
C
‖u′

N
‖0,T∩Γ

C
. (37)

Second case. Achieving the same calculations as in (36) and using (41), we get
∫

T∩Γ
C

(σN − πhσN )(πhuN − uN ) dΓ ≤ Ch2
e ln(1/ε)|σN |1/2,T∩Γ

C
|u′

N
|1/2,T∩Γ

C
. (38)

Globally. In (37), (38) we choose q = 2 and ε = h2. So we obtain
∫

Γ
C

(σN − πhσN )(πhuN − uN ) dΓ ≤ Ch2 ln(1/h)‖u‖2
2,Ω

which gives the result in (28).
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• For τ = 2 + θ (θ > 0 can be supposed arbitrarily small), the situation is simpler. Either
there is no contact point on T ∩ ΓC and the term (34) vanishes or there exists a contact
point and the same calculations as in (36) (or (38)) using (42) lead to the bound

∫

T∩Γ
C

(σN − πhσN )(πhuN − uN ) dΓ ≤ Ch2+2θ
e |σN |1/2+θ,T∩Γ

C
|u′

N
|1/2+θ,T∩Γ

C
. (39)

As a consequence
∫

Γ
C

(σN − πhσN )(πhuN − uN ) dΓ ≤ Ch2+2θ‖u‖2
2+θ,Ω

which leads to the result in (29).

Appendix A: Estimate for some Poincaré constants

The use of Poincaré inequalities is a key tool to obtain the estimates of the “second cases” in
(23), (25), (36), (38) and (39). In these estimates σN or u′

N
are supposed to vanish on a area of

length at least heε. So we need to estimate precisely the constant C as a function of the length of
the vanishing area. Note that there is a close link between the determination of these constants
and Bessel’s theory of capacity (see, e.g., [31]). We do not use the tools of this theory and all the
proofs concerning Poincaré constants are made independently using scaling arguments to render
the paper self contained.

For u ∈ Hν(0, 1) and 0 < ν < 1 we denote by

|u|ν,(0,1) =
(∫ 1

0

∫ 1

0

(u(x)− u(y))2

|x− y|1+2ν dxdy

)1/2

,

the classical semi-norm and we recall that (see (1)):

‖u‖ν,(0,1) =
(
‖u‖2

0,(0,1) + |u|2ν,(0,1)

)1/2
.

Let us first recall the Peetre-Tartar Lemma which is a standard tool to establish Poincaré
inequalities (see, e.g., [22, 26, 27, 7]).

Lemma 1 (Peetre-Tartar) Let X,Y, Z be three Banach spaces. Let A ∈ L(X, Y ) be injective
and let T ∈ L(X,Z) be compact. If there exists a constant c > 0 such that ∀x ∈ X, c‖x‖X ≤
‖Ax‖Y + ‖Tx‖Z then there exists α > 0 such that, for all x ∈ X:

α‖x‖X ≤ ‖Ax‖Y .

The following result concerns the estimate of the Poincaré constant on the interval I = (0, 1)
for the functions in Hν(I), 0 < ν < 1 with respect to the length of the interval on which the
mean of the function vanishes.

Lemma 2 Let 0 < ν < 1, I = (0, 1), 0 < ε < 1 and u ∈ Hν(I), satisfying
∫ ε
0 u(x)dx = 0. There

exist constants C = C(ν) > 0 independent of u and ε such that

• If 0 < ν < 1/2 then
‖u‖0,I ≤ Cεν−1/2|u|ν,I . (40)
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• If ν = 1/2 then
‖u‖0,I ≤ C ln(1/ε)|u|ν,I . (41)

• If 1/2 < ν < 1 then
‖u‖0,I ≤ C|u|ν,I . (42)

Remark 8 It is easy to show that estimate (42) does not hold when ν = 1/2. Consider a
nonnegative function u ∈ H1/2(I) which is not in L∞(I) (e.g., u(x) = | ln(x)|α with 0 < α <
1/2) and suppose without loss of generality that ‖u‖1/2,I = 1. Define the truncated functions
(un)n = min(u, n). Therefore ‖un‖L∞(I) = n and ‖un‖1/2,I ≤ ‖u‖1/2,I = 1. Let vn = un/n, then
‖vn‖L∞(I) = 1 and ‖vn‖1/2,I ≤ 1/n. Set finally wn = 1 − vn ; wn vanishes on a small interval
and ‖wn‖L2(I) ≥ ‖1‖L2(I) − ‖vn‖L2(I) ≥ 1− 1/n whereas |wn|1/2,I ≤ ‖wn‖1/2,I = ‖vn‖1/2,I ≤ 1/n.

Proof. Let us consider the following closed sub-space of Hν(I):

Vε =
{

v ∈ Hν(I) :
∫ ε

0
v(x)dx = 0

}
.

One can apply the Peetre-Tartar Lemma for X = Vε, Y = L2(I × I), Z = L2(I), A : u 7→ Au
such that Au(x, y) = (u(x)− u(y))/|x− y|1/2+ν and T is the compact embedding operator from
X into Z. The operator A is injective since Au = 0 implies that u is a.e. a constant and the only
constant of Vε is 0. Consequently, there exists a constant γ > 0 such that

‖u‖0,I ≤ γ|u|ν,I ∀u ∈ Vε. (43)

In the following, we denote by γε the best constant satisfying this inequality in (43). The proof
of the estimate of γε as a function of ε consists in a scaling argument. Let u ∈ Hν(I) ; consider
now the interval Ĩ = (0, 1/ε). Denoting

ũ(x̃) = u(εx̃),

for any x̃ ∈ (0, 1/ε), we have ũ ∈ Hν(Ĩ), and an elementary calculation leads to

‖ũ‖0,Ĩ = ε−1/2‖u‖0,I , |ũ|ν,Ĩ = εν−1/2|u|ν,I . (44)

Denoting by c̃ =
∫ 1
0 ũ(x̃)dx̃ = ε−1

∫ ε
0 u(x)dx the mean value of u on [0, ε], observing that u−c̃ ∈ Vε,

one obtains thanks to (43) and (44):

‖ũ− c̃‖0,Ĩ = ε−1/2‖u− c̃‖0,I ≤ ε−1/2γε|u|ν,I = ε−νγε|ũ|ν,Ĩ ,

and consequently

‖ũ‖0,Ĩ ≤ ‖c̃‖0,Ĩ + ‖ũ− c̃‖0,Ĩ ≤ ε−1/2c̃ + ε−νγε|ũ|ν,Ĩ . (45)

Suppose now that ũ satisfies
∫ ε
0 ũ(x̃)dx̃ = 0, one obtains (since ũ ∈ Vε):

c̃ ≤ ‖ũ‖0,I ≤ γε|ũ|ν,I ≤ γε|ũ|ν,Ĩ . (46)

From (45) and (46), we deduce

‖ũ‖0,Ĩ ≤ γε(ε−1/2 + ε−ν)|ũ|ν,Ĩ .
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The latter bound allows to obtain the following estimate for u ∈ Vε2

‖u‖0,I = ε1/2‖ũ‖0,Ĩ ≤ γε(1 + ε1/2−ν)|ũ|ν,Ĩ = γε(1 + εν−1/2)|u|ν,I .

With this method, we obtain an estimate of the evolution of the Poincaré constant when the
length of the zone on which the mean of u vanishes varies from ε to ε2:

γε2 ≤ γε(1 + εν−1/2). (47)

By induction from (47), the Poincaré constant for a zone of length ε2n
on which the mean of u

vanishes is

γε2n ≤ γε(1 + εν−1/2)(1 + ε2(ν−1/2)) · · · (1 + ε2n−1(ν−1/2)) = γε

n−1∏

i=0

(1 + ε2i(ν−1/2)). (48)

Now, we fix ε0 ∈ (0, 1) (e.g., ε0 = 1/2). If ε ∈ (0, ε0), there exists n ∈ N such that ε2n+1

0 ≤ ε ≤ ε2n

0

(hence 2n ≤ ln(ε)/ ln(ε0)), so γε2n
0
≤ γε ≤ γ

ε2n+1
0

. The three cases of the lemma are handled as
follows by using (48):
• If ν = 1/2 this gives

γε ≤ γ
ε2n+1
0

≤ 2n+1γε0 ≤ 2
γε0

ln(ε0)
ln(ε) = 2

γε0

ln(1/ε0)
ln(1/ε) = C(γε0 , ε0) ln(1/ε)

which proves (41).
• If 1/2 < ν < 1, one has (using the estimate ln(1 + x) ≤ x for x ≥ 0):

ln(γε) ≤ ln(γ
ε2n+1
0

) ≤ ln(γε0) +
n∑

i=0

ln(1 + ε
2i(ν−1/2)
0 ) ≤ ln(γε0) +

n∑

i=0

(
ε
(ν−1/2)
0

)2i

≤ C(γε0 , ε0, ν),

with C(γε0 , ε0, ν) independent of n (since 0 < ε
ν−1/2
0 < 1), which implies that γε is bounded by

a constant independent of ε and leads to estimate (42).
• If 0 < ν < 1/2, we need to achieve a more precise analysis than in the first two cases. As
previously mentioned we have 0 < ε < ε0 < 1 and there exists n ∈ N such that ε2n+1

0 ≤ ε ≤ ε2n

0 or
equivalently ε = εα2n

0 with 1 ≤ α ≤ 2. Consequently, setting ε = ε0
α/2 we have ε0 ≤ ε ≤ ε

1/2
0 < 1

(hence γε ≤ γε0) and ε = ε2n+1
. One has (using again the estimate ln(1 + x) ≤ x for x ≥ 0):

ln(γε) = ln(γ
ε2n+1 ) ≤ ln(γε) +

n∑

i=0

ln(1 + ε2i(ν−1/2))

≤ ln(γε) +
n∑

i=0

(
ln(ε2i(ν−1/2)) + ln(1 + ε2i(1/2−ν))

)

≤ ln(γε) + ln(ε(2n+1−1)(ν−1/2)) +
n∑

i=0

(
ε1/2−ν

)2i

≤ ln(γε0) + (1/2− ν) ln(1/ε) +
n∑

i=0

(
ε
1/4−ν/2
0

)2i

.

Hence

γε ≤ C(γε0 , ε0, ν)εν−1/2,

where C(γε0 , ε0, ν) is a positive constant depending only on γε0 , ε0 and ν. That concludes the
proof.
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Remark 9 The space Hν(I) is compactly included into C0(I) for ν > 1/2 so that the Poincaré
inequality is valid for functions vanishing at a single point of I (this is a direct consequence of
the Peetre-Tartar Lemma, see [23]).

Remark 10 It is easy to check that the constants C(ε) obtained in the Lemma 2 (i.e., C(ε) =
Cεν−1/2 if 0 < ν < 1/2, C(ε) = C ln(1/ε) if ν = 1/2 and C(ε) = C if 1/2 < ν < 1) are still valid
independently on the location of the set (of length ε) where the average of u vanishes. Suppose
that

∫ a+ε
a u(x)dx = 0 with 0 < a < a + ε < 1 and set I1 = (0, a/(1− ε)) and I2 = (a/(1− ε), 1).

Denoting by |I1| (resp. |I2|) the length of I1 (resp. I2), passing on the reference element and
according to the Lemma 2 we have:

‖u‖2
0,I = ‖u‖2

0,I1 + ‖u‖2
0,I2

≤ (C(ε)|I1|ν |u|ν,I1)
2 + (C(ε)|I2|ν |u|ν,I2)

2

≤ (C(ε))2|u|2ν,I .

Appendix B. Some interpolation error estimates in fractional or-
der Hilbert spaces

In this appendix we denote by Ih the Lagrange interpolation operator of degree one in one dimen-
sion (note that we still choose the notation Ih in section 3 to denote the Lagrange interpolation
operator of degree one in the two dimension space). If ν ∈ (0, 1) and I stands for an interval, we
set

|u|1+ν,I =
(∫

I

∫

I

(u′(x)− u′(y))2

|x− y|1+2ν dxdy

)1/2

.

According to (1), the previous expression equals |u′|ν,I . The following lemma deals with error
estimates for u−Ihu when u lies in fractional order Hilbert spaces (the case of standard Hilbert
spaces is well known, see, e.g., [5]). Note that the same kind of interpolation error estimate can
be found for instance in [6]. The proof of the result we need is given here for the self-consistency
of the paper.

Lemma 3 (local estimate) Let I = (a, b) with |b − a| = h > 0 and 0 < ν < 1. Then for
u ∈ H1+ν(I), we have

‖u− Ihu‖0,I ≤ h1+ν |u|1+ν,I ,

‖u− Ihu‖1,I ≤ hν |u|1+ν,I .

Proof. One obtains, by an elementary calculation (since (u− Ihu)(a) = 0):

‖u− Ihu‖0,I ≤ h‖(u− Ihu)′‖0,I = h‖u′ − u′‖0,I

where u′ = (u(b) − u(a))/(b − a) denotes the mean value of u′ on I. Let v ∈ Hν(I) and denote
by v its mean value on I. For any x ∈ I, we get

v(x)− v̄ = h−1

∫

I
v(x)− v(y)dy

= h−1

∫

I

v(x)− v(y)

|x− y| 1+2ν
2

|x− y| 1+2ν
2 dy. (49)
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Note that when x ∈ I and ν = 1 we have

v(x)− v̄ = h−1

∫

I
v(x)− v(y)dy = h−1

∫

I

∫ x

y
v′(t) dtdy.

Hence

|v(x)− v̄| ≤ h
1
2 ‖v′‖0,I . (50)

Using Cauchy-Schwarz inequality in estimate (49) we deduce

∫

I
(v(x)− v̄)2dx = h−2

∫

I

(∫

I

v(x)− v(y)

|x− y| 1+2ν
2

|x− y| 1+2ν
2 dy

)2

dx

≤ h−2

∫

I

(∫

I

(v(x)− v(y))2

|x− y|1+2ν
dy

∫

I
|x− y|1+2νdy

)
dx

≤ h2ν

∫

I

∫

I

(v(x)− v(y))2

|x− y|1+2ν
dydx

= h2ν |v|2ν,I .

Changing v with u′ yields the result. The same calculation on ‖u − Ihu‖1,I leads to the second
bound.

Lemma 4 (global estimate) Let Ih be a mesh of a one dimensional domain Γ. Then the
following estimate holds for u ∈ H1+ν(Γ), 0 < ν < 1:

‖u− Ihu‖0,Γ ≤ h1+ν |u|1+ν,Γ,

‖u− Ihu‖1,Γ ≤ hν |u|1+ν,Γ,

where h is the size of the largest element of Ih.

Proof. By the previous lemma, one has

‖u− Ihu‖2
0,Γ =

∑

I∈Ih

‖u− Ihu‖2
0,I ≤

∑

I∈Ih

h2+2ν |u|21+ν,I ≤ h2+2ν |u|21+ν,Γ.

The same calculation on ‖u− Ihu‖1,Γ leads to the second result.

5 Conclusion

In this paper we present a new technique in order to improve the existing convergence rates for
the two-dimensional Signorini problem approximated by the linear finite element method. The
extension of this technique to other nonlinear problems, in particular free boundary problems, or
to other approximation methods or to three dimensional problems could be considered.
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[25] A. Signorini, Questioni di elasticità non linearizzata e semilinearizzata, Rend. Mat. e Appl.
(5) 18 (1959), 95–139.

[26] L. Tartar, Nonlinear partial differential equations using compactness methods, Report 1584.
Mathematics Research Center, Univ. of Wisconsin, Madison, 1975.

[27] L. Tartar, Sur un lemme d’équivalence utilisé en analyse numérique, Calcolo, 24, (1987),
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