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Abstract

This paper presents an a posteriori error analysis for the linear finite element
approximation of the Signorini problem in two space dimensions. A posteriori
estimations of residual type are defined and upper and lower bounds of the
discretization error are obtained. We perform several numerical experiments in
order to compare the convergence of the terms in the error estimator with the
discretization error.
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1 Introduction

The numerical simulation of problems governed by partial differential equations is very
often carried out using approximation methods such as finite element methods, finite
volume methods, finite differences... An important aspect for the user is to evaluate
the discretization errors due to the use of such approximations. This quantification
requires the definition of a posteriori error estimators.

In this work we propose and study an a posteriori error estimator of residual type
for the linear finite element approximation of the Signorini problem in two space
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dimensions. Such a problem is represented by a variational inequality so that the def-
inition of an efficient estimator becomes more difficult than in the linear case. Several
studies dealing with a posteriori error estimators of residual type for finite element
approximations of variational inequalities have already been achieved. Nevertheless
it seems that most of the existing work is concerned with the obstacle problem (see
e.g., [1, 10, 9] and in particular the recent references [3, 7, 15] in which upper and
lower bounds of the error are established in the energy norm and the studies [12, 13]
dealing with the maximum norm). Let us recall that there are significant differences
in the finite element analysis (a priori and a posteriori) between the obstacle prob-
lem and the Signorini problem (since the seventies there exist optimal a priori error
estimates with linear finite elements for the obstacle problem whereas such results
are not available for the Signorini problem (see [2])). A specificity of the Signorini
problem comes from the location of the inequality conditions holding only on a open
part ΓC of the boundary:

u ≥ 0, ∂nu ≥ 0, u∂nu = 0 on ΓC ,

whereas the inequality conditions hold on the entire domain for the obstacle problem
(this is also the case in the elasto-plastic torsion or in the Bingham fluid problems).
As far as we know there is no study yielding both upper and lower bounds of the
error for the Signorini problem (or the equivalent unilateral contact problem in linear
elasticity) written as a variational inequality (or as an equivalent mixed formulation).

An outline of the paper is as follows. Section 2 deals with the continuous setting
of the Signorini problem and its piecewise linear conforming finite element approxi-
mation in which uh ≥ 0 on ΓC . In section 3 an interpolation operator is introduced
which satisfies a stability property from H1 into L2, exhibits optimal approximation
properties and preserves positivity at the nodes of ΓC . In section 4 we present a resid-
ual error estimator which consists of the standard interior and jump residuals, a term
measuring the non-fulfillment of the condition ∂nuh ≥ 0 on ΓC and a nonstandard
term taking into account (roughly speaking) the non-fulfillment of the complemen-
tary condition uh ∂nuh = 0 on ΓC . A quasi-optimal upper bound of the discretization
error is proved in the energy norm. The bound is optimal when ΓC is a straight line
segment which has no common nodes with the closure of the boundary part submitted
to Neumann conditions. Then a lower bound of the error is obtained which becomes
optimal when the above-mentioned nonstandard term vanishes. Finally section 5 is
concerned with the numerical experiments. We solve numerically three examples of
Signorini problems: a first one whose exact solution is not explicitly known, a sec-
ond one corresponding to a known solution and a third test in which the solution
is regular. From the numerical computations we observe that the estimator and the
discretization error have the same rate of convergence and therefore the effectivity
indexes remain quasi-constant. Therefore we can conclude that our estimator is reli-
able. Moreover the computations show that the nonstandard term in the estimator
is small in comparison with the standard term and that their convergence rates are
similar.

As usual, we denote by L2(.) the Lebesgue spaces and by Hs(.), s ≥ 0, the
standard Sobolev spaces. The usual norm and seminorm of Hs(D) are denoted by
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‖ · ‖s,D and | · |s,D. For shortness the L2(D)-norm will be denoted by ‖ · ‖D. In the
sequel the symbol | · | will denote either the Euclidean norm in R

2, or the length of a
line segment, or the area of a plane domain. Finally the notation a . b means here
and below that there exists a positive constant C independent of a and b (and of the
meshsize of the triangulation) such that a ≤ C b. The notation a ∼ b means that
a . b and b . a hold simultaneously.

2 Problem set-up and notation

Let Ω be an open subset of R
2, with a polygonal boundary Γ. Let us fix a “partition” of

Γ into three open subsets ΓD, ΓN and ΓC , where we will consider Dirichlet, Neumann
and Signorini boundary conditions respectively. Since ΓD, ΓN and ΓC are open we
then assume that they are disjoint and that Γ := Γ̄D ∪ Γ̄N ∪ Γ̄C . We further assume
that the measures of ΓD and ΓC are positive.

In this paper we consider the standard Signorini problem: for f ∈ L2(Ω) let
u ∈ H1(Ω) be the variational solution of















−∆u = f in Ω,
u = 0 on ΓD,
∂nu = 0 on ΓN ,
u ≥ 0, ∂nu ≥ 0, u∂nu = 0 on ΓC ,

(1)

where ∂nu means the outward normal derivative of u along the boundary. For the
sake of simplicity, in our theoretical analysis, we always assume that the Dirichlet
and Neumann boundary conditions are homogeneous. Nonhomogeneous boundary
conditions can be considered without any significant changes.

To recall the variational formulation of that problem, introduce the closed convex
cone K of H1(Ω):

K := {u ∈ H1
D(Ω) : u ≥ 0 on ΓC},

where H1
D(Ω) is defined as

H1
D(Ω) := {u ∈ H1(Ω) : u = 0 on ΓD}.

Then the variational solution of (1) is the unique solution u ∈ K of (see for instance
[5])

∫

Ω

∇u · ∇(v − u) dx ≥
∫

Ω

f(v − u) dx,∀v ∈ K.(2)

Recall that this problem is equivalent to u ∈ K and

{ ∫

Ω
∇u · ∇v dx ≥

∫

Ω
fv dx,∀v ∈ K,

∫

Ω
∇u · ∇u dx =

∫

Ω
fu dx.

(3)

We approximate this problem by a standard finite element method. Namely we fix
a family of meshes Th, h > 0, regular in Ciarlet’s sense [5], made of closed triangles.
For K ∈ Th we recall that hK is the diameter of K and h = maxK∈Th

hK . The
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regularity of the mesh implies in particular that for any edge E of K one has hE =
|E| ∼ hK .

Let us define Eh (resp. Nh) as the set of edges (resp. nodes) of the triangulation
and set Eint

h := {E ∈ Eh : E ⊂ Ω} the set of interior edges of Th (the edges are
supposed to be relatively open), Eext

h := Eh \ Eint
h . We denote by EN

h := {E ∈ Eh :
E ⊂ ΓN} (resp. ED

h := {E ∈ Eh : E ⊂ ΓD}) the set of exterior edges included into
the part of the boundary where we impose Neumann (resp. Dirichlet) conditions, and
similarly EC

h := {E ∈ Eh : E ⊂ ΓC} is the set of exterior edges included into the part
of the boundary where we impose Signorini conditions. Set similarly N int

h := Nh ∩Ω,
NN

h := Nh ∩ΓN ,ND
h := Nh ∩ Γ̄D (note that the extreme nodes of Γ̄D belong to ND

h ).
Let S denote the set of vertices of Ω and denote by NE

h the set of nodes which belong
to Γ̄C ∩ Γ̄N or to ΓC ∩ S. Set finally NC

h := (Nh \ NE
h )∩ ΓC (NC

h contains the nodes
in ΓC which are not vertices of Ω). For an element K, we will denote by EK the
set of edges of K and according to the above notation, we set Eint

K := EK ∩ Eint
h ,

EN
K := EK ∩ EN

h , EC
K := EK ∩ EC

h .
For an edge E of an element K introduce nK,E := (nx, ny) the unit outward normal

vector to K along E and the tangent vector tK,E = n⊥
K,E := (−ny, nx). Furthermore

for each edge E we fix one of the two normal vectors and denote it by nE and set
tE := n⊥

E.
The jump of some (scalar or vector valued) function v across an edge E at a point

y ∈ E is defined as

[[v(y)]]E :=

{

limα→+0 v(y + αnE) − v(y − αnE) ∀E ∈ Eint
h ,

v(y) ∀E ∈ Eext
h .

Note that the sign of [[v]]E depends on the orientation of nE. However, terms such as
a gradient jump [[∇v · nE]]E are independent of this orientation.

Finally we will need local subdomains (also called patches). As usual, let ωK be
the union of all elements having a nonempty intersection with K. Similarly for a
node x and an edge E, let ωx := ∪K:x∈KK and ωE := ∪x∈Ēωx.

We introduce the spaces

Vh := {vh ∈ C(Ω̄) : vh|K ∈ P1(K),∀K ∈ Th}, Wh := {vh ∈ Vh : vh = 0 on ΓD},
and we define the closed convex cone

Kh := K ∩ Wh.

The finite element approximation uh of u is the unique solution uh ∈ Kh of
∫

Ω

∇uh · ∇(vh − uh) dx ≥
∫

Ω

f(vh − uh) dx,∀vh ∈ Kh.(4)

3 The positivity preserving interpolation operator

Inspired from [3] we introduce a new interpolation operator πh that preserves posi-
tivity at the nodes belonging to NC

h , which satisfies a stability property from H1 into
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L2 and exhibits optimal approximation properties. For any v ∈ H1(Ω), we define πhv
as the unique element in Vh such that:

πhv :=
∑

x∈Nh

αx(v)λx,

where for any x ∈ Nh λx is the standard basis function in Vh satisfying λx(x
′) = δx,x′ ,

for all x′ ∈ Nh and αx(v) is defined as follows:

αx(v) :=
1

|∆x|

∫

∆x

v(x) dx,∀x ∈ N int
h ∪NN

h ,

αx(v) :=
1

|Γx|

∫

Γx

v(x) dσ(x),∀x ∈ NC
h ∪ND

h .

The sets ∆x and Γx are fixed in the following way: For x ∈ N int
h , the set ∆x is the

maximal ball centered at x such that ∆x ⊂ ωx (see [3]); for x ∈ NN
h , we take the

standard patch ∆x := ωx; for x ∈ NC
h ∪ND

h , take the maximal ball ∆x centered at x
such that ∆x∩Ω ⊂ ωx and set Γx := ∆x∩ΓC for x ∈ NC

h , Γx := ∆x∩ΓD for x ∈ ND
h .

For x ∈ NE
h , fix an edge Ex ∈ Eh containing x and included into Γ̄C . Let zx

be the node of Ex different from x and let mx be the midpoint of Ex. Note that zx

belongs to NC
h (the mesh is supposed fine enough). Now for x ∈ NE

h , we set

πhv(mx) :=
1

|Ex|

∫

Ex

v(x) dσ(x)

and we define πhv at x by extrapolation using πhv(mx) and αzx
(v), namely

αx(v) := 2πhv(mx) − αzx
(v),∀x ∈ NE

h .

Remark that the mesh regularity assumption implies that the diameters of ∆x,
Γx or Ex are equivalent to hx, hx being the diameter of ωx.

It is easy to see that πh is linear and that πh(H
1
D(Ω)) ⊂ Wh. Note also that the in-

terpolation operator is of Clément/Chen-Nochetto type in Ω∪ΓN and of Scott-Zhang
type in Γ \ ΓN , this last modification being made as in [3] to guarantee the following
properties:
1) Positivity preserving: if v ≥ 0 on ωx (x ∈ Nh \ NE

h ), then πhv(x) ≥ 0. Moreover

if v ∈ K, then πhv(x) ≥ 0, for all x ∈ NC
h (this means that πhv is almost in Kh, the

exceptional nodes are the ones in NE
h for which the nonnegativeness is not guaran-

teed).
2) Optimal approximation property: if v ∈ P1(ωx), then πhv(x) = v(x), for all

x ∈ N int
h ∪NC

h .
Let us now show the stability property from H1 into L2 of πh:

Lemma 3.1 For all v ∈ H1(Ω) and all K ∈ Th, E ∈ Eh such that K ∩ NE
h = ∅,

Ē ∩NE
h = ∅ one has

‖πhv‖K . ‖v‖ωK
+ hK‖∇v‖ωK

,(5)

‖πhv‖E . h
−1/2
E ‖v‖ωE

+ h
1/2
E ‖∇v‖ωE

.(6)
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If there is a node x ∈ NE
h which belongs to K or to Ē then the sets ωK and ωE in

(5)–(6) have to be replaced by ∪F∈Eh:x∈F̄ ωF .

Proof: For x ∈ N int
h ∪NN

h , by Cauchy-Schwarz’s inequality we have

|αx(v)| ≤ |∆x|−1/2‖v‖ωx
,

and since |∆x| ∼ h2
x we deduce

|αx(v)| . h−1
x ‖v‖ωx

+ ‖∇v‖ωx
.(7)

Similarly for x ∈ NC
h ∪ND

h , we have

|αx(v)| ≤ |Γx|−1/2‖v‖Γx
,

and using the standard trace inequality

‖v‖E . h
−1/2
E ‖v‖K + h

1/2
E ‖∇v‖K ,∀E ∈ EK ,(8)

we still obtain (7) since |Γx| ∼ hx.
Finally for x ∈ NE

h one has

|αx(v)| ≤ 2|πhv(mx)| + |αzx
(v)|

. h−1
x (‖v‖ωzx

+ ‖v‖ωx
) + (‖∇v‖ωzx

+ ‖∇v‖ωx
)

. h−1
x ‖v‖ωEx

+ ‖∇v‖ωEx

by the standard trace inequality (8) and the estimate (7) already obtained for |αzx
(v)|.

The conclusion follows from the fact that ‖λx‖K . hK , for any node x of K and

‖λx‖E . h
1/2
E , for any node x of Ē.

Lemma 3.2 For any v ∈ H1(Ω) we have

‖v − πhv‖K . hK‖∇v‖ωK
,∀K ∈ Th such that K ∩NE

h = ∅,(9)

‖v − πhv‖E . h
1/2
E ‖∇v‖ωE

,∀E ∈ Eh such that Ē ∩NE
h = ∅.(10)

If there is a node x ∈ NE
h which belongs to K or to Ē then the sets ωK and ωE in

(9)–(10) have to be replaced by ∪F∈Eh:x∈F̄ ωF .

Proof: The proof is relatively standard and is based on the above stability properties
and the fact that πh preserves the constant functions (see [6, 14], or [3, Coro 3.1]).
Let us give the proof for the sake of completeness. Let be given an arbitrary constant
function c(x) = c, x ∈ Ω̄, then from the definition of πh, we may write for any
v ∈ H1(Ω):

v − πhv = v − c − πh(v − c).

Therefore by Lemma 3.1 we get

‖v − πhv‖K . ‖v − c‖ωK
+ hK‖∇v‖ωK

,∀c ∈ R,(11)

‖v − πhv‖E . h
−1/2
E ‖v − c‖ωE

+ h
1/2
E ‖∇v‖ωE

,∀c ∈ R.(12)

The conclusion follows from a standard interpolation property choosing in (11), (12)
c :=

∫

X
v(x) dx/|X| where X := ωK , X := ωE or X := ∪F∈Eh:x∈F̄ ωF (see [5]).
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We will now exploit the maximal approximation property to deduce the next
result:

Lemma 3.3 For any vh ∈ Wh we have

|vh(x) − πhvh(x)| . h1/2
x

∑

E∈Eint
h

∪EN
h

:x∈Ē

‖JE,n(vh)‖E,∀x ∈ N int
h ∪NC

h ,(13)

|vh(x) − πhvh(x)| . h1/2
x

∑

E∈Eint
h

:zx∈Ē

‖JE,n(vh)‖E,∀x ∈ NE
h ,(14)

where JE,n(vh) means the gradient jump of vh in the normal direction, i.e.,

JE,n(vh) :=

{

[[ ∂vh

∂nE
]]
E
,∀E ∈ Eint

h ,
∂vh

∂nE
,∀E ∈ EN

h .

Proof: If x ∈ N int
h the estimate (13) is proved in Lemma 3.3 of [3], we adapt this

proof for x ∈ NC
h ∪NE

h .
If x ∈ NC

h , denote by Ej, j = 1, 2 the two edges of EC
h having x as node. Since vh

is continuous at x and is piecewise P1, for j = 1, 2, we may write

vh|Ej
(t) = vh(x) + (∂tvh|Ej

)(t − x) on Ej.

Integrating this identity on Γx ∩ Ej, using the definition of πhvh(x) and denoting by
2ρ the diameter of Γx, we get

vh(x) − πhvh(x) = vh(x) − 1

2ρ

∫ x+ρ

x−ρ

vh(t) dt

= − 1

2ρ

∫ 0

−ρ

(∂tvh|E1
)t dt − 1

2ρ

∫ ρ

0

(∂tvh|E2
)t dt

=
ρ

4
(∂tvh|E1

− ∂tvh|E2
).

Using the estimate ρ ≤ hx and using the fact that x is not a vertex of Ω, we obtain

|vh(x) − πhvh(x)| . hx|∂tvh|E1
− ∂tvh|E2

| ≤ hx

∣

∣∇vh|K1
−∇vh|Kn

∣

∣ ,

where K1 (resp. Kn) is the triangle containing E1 (resp. E2). We then conclude
using Lemma 3.4 below and Cauchy-Schwarz inequality.

Now fix x ∈ NE
h . Since vh is a polynomial of degree ≤ 1 on Ex, we have

vh(mx) =
1

|Ex|

∫

Ex

vh(x) dσ(x).

Consequently by the definition of πh, we have vh(mx) = πhvh(mx) and

vh(x)−πhvh(x) = 2(vh(mx)−πhvh(mx))−(vh(zx)−πhvh(zx)) = −(vh(zx)−πhvh(zx)).

As zx belongs to NC
h , the estimate (13) already proved for zx leads to the conclu-

sion in (14).
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It is easy to see that the result (13) is generally false when x ∈ NN
h and that (13)

is trivially true when x ∈ ND
h .

Lemma 3.4 Let x ∈ Nh \N int
h and denote by Ki, i = 1, · · · , n the set of elements of

Th having x as node and such that Ki ∩Ki+1 = Ēi (Ei ∈ Eh), i = 1, · · · , n− 1. Then
for any vh ∈ Wh and all k = 1, · · · , n − 1, we have

∣

∣∇vh|Kk
−∇vh|Kn

∣

∣ ≤
n−1
∑

i=1

∣

∣

∣

∣

[[ ∂vh

∂nEi

]]
Ei

∣

∣

∣

∣

.

Proof: For an arbitrary edge Ēi = Ki ∩ Ki+1, there exists a matrix of rotation Bi

such that

∇vh|Ki
= Bi





∂vh|Ki

∂nEi
∂vh|Ki

∂tEi



 ;∇vh|Ki+1
= Bi





∂vh|Ki+1

∂nEi
∂vh|Ki+1

∂tEi



 .

The continuity of vh through Ei implies that
∂vh|Ki

∂tEi

=
∂vh|Ki+1

∂tEi

and therefore by differ-

ence we get

∇vh|Ki
−∇vh|Ki+1

= Bi

(

[[ ∂vh

∂nEi

]]
Ei

0

)

.

Summing this identity from i = k to n − 1, we obtain

∇vh|Kk
−∇vh|Kn

=
n−1
∑

i=k

Bi

(

[[ ∂vh

∂nEi

]]
Ei

0

)

.

The conclusion follows from the property ‖Bi‖2 = 1 where ‖.‖2 denotes the matrix
2-norm.

Corollary 3.5 Let vh ∈ Wh and E ∈ Eh such that Ē ∩ ΓN = ∅. Set

XE :=
⋃

G∈Eint
h

∪EN
h

:Ḡ∩Ē 6=∅

Ḡ.

Then

‖vh − πhvh‖E . hE

∑

F∈Eint
h

∪EN
h

:F̄∩XE 6=∅

‖JE,n(vh)‖F .(15)

Proof: The corollary directly follows from Lemma 3.3 and the equivalence

‖vh‖E ∼ h
1/2
E

∑

x∈Nh:x∈Ē

|vh(x)|,∀vh ∈ Wh.

We finally mention that if Ē ∩NE
h = ∅ (and also Ē ∩ΓN = ∅) then the estimate (15)

merely becomes

‖vh − πhvh‖E . hE

∑

F∈Eint
h

∪EN
h

:F̄∩Ē 6=∅

‖JE,n(vh)‖F .
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4 Error estimators

4.1 Definition of the residual error estimators

The exact element residual is defined by

RK := f + ∆uh = f on K.

As usual this exact residual is replaced by some finite dimensional approximation
called approximate element residual

rK ∈ Pk(K).

A current choice is to take rK :=
∫

K
f(x) dx/|K| since for f ∈ H1(Ω), scaling ar-

guments yield ‖RK − rK‖K . hK |f |1,K and is then negligible with respect to the
estimator η.

Definition 4.1 (Residual error estimator) The local and global residual error es-
timators are defined by

η2
K := η2

sK + η2
nsK ,

η2
sK := hK



hK‖rK‖2
K +

∑

E∈Eint
K

∪EN
K

‖JE,n(uh)‖2
E +

∑

E∈EC
K

‖
(

∂uh

∂nE

)−

‖2
E



 ,

η2
nsK :=

∑

E∈EC
K

∫

E

π̃huh

(

∂uh

∂nE

)+

,

η2 :=
∑

K∈Th

η2
K ,

where π̃huh is defined as the unique element in Kh defined at each node as follows:

π̃huh(x) := πhuh(x),∀x ∈ Nh \ NE
h ,

π̃huh(x) := uh(x),∀x ∈ NE
h .

Moreover we set

ηs :=
(

∑

K∈Th

η2
sK

)1/2

and ηns :=
(

∑

K∈Th

η2
nsK

)1/2

.

The local and global approximation terms are defined by

ζ2
K := h2

K

∑

K′⊂ωK

‖RK′ − rK′‖2
K′ , ζ2 :=

∑

K∈Th

ζ2
K .

In the above definition we used the indexes s and ns to underline the fact that the
estimator ηsK is quite standard, while ηnsK is not. Recall that the estimator ηnsK

measures the non fulfillment of the complementary condition u∂nu = 0 on Γ.
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4.2 Upper error bound

Theorem 4.2 Let u ∈ K be the solution of (2) and uh ∈ Kh the solution of (4), and
denote the error by

e := u − uh.

Then we have
|e|1,Ω . (1 + C(h))(η + ζ),

where C(h) = 0 if NE
h = ∅, otherwise C(h) =

√

− ln(h) (h is supposed small enough).

Proof: Applying (2) with v = uh we have

|e|21,Ω = (∇u,∇(u − uh)) − (∇uh,∇(u − uh)) ≤ (f, u − uh) − (∇uh,∇(u − uh)),

where from now on (·, ·) means the L2(Ω) inner product (for scalar or vector-valued
functions according to the context). Therefore for any vh ∈ Kh we may write

|e|21,Ω ≤ (f, u − uh) − (∇uh,∇(u − vh)) − (∇uh,∇(vh − uh)).

Applying the inequality (4) we obtain

|e|21,Ω ≤ (f, u − vh) − (∇uh,∇(u − vh)),∀vh ∈ Kh.

Now applying elementwise integration by parts we arrive at

|e|21,Ω ≤ (f, u − vh)(16)

−
∑

E∈Eint
h

∫

E

JE,n(uh)(u − vh) −
∑

E∈EN
h
∪EC

h

∫

E

∂uh

∂nE

(u − vh),∀vh ∈ Kh.

At this stage we fix the choice of vh. Namely vh is the unique element of Kh

defined at each node x as follows:

vh(x) :=















πhu(x) if x ∈ N int
h ,

uh(x) + πhe(x) if x ∈ NN
h ,

πhuh(x) + π?
he

+(x) − π?
he

−(x) if x ∈ NC
h ,

uh(x) if x ∈ NE
h ,

where for v ∈ H1(Ω) and x ∈ NC
h we define

π?
hv(x) := min

{

πhv(x),
1

|E1|

∫

E1

v(x) dσ(x),
1

|E2|

∫

E2

v(x) dσ(x)

}

,

Ej, j = 1, 2 being the two edges of ΓC having x as extremity. We then set π?
hv(x) =

πhv(x) at the nodes in Nh\NC
h . From the nodal values π?

hv(x) we may define π?
hv ∈ Vh

(note that π?
h is not linear). Note that the following positivity preserving property

holds: v ≥ 0 on ΓC ⇒ π?
hv(x) ≥ 0, ∀x ∈ NC

h . With this choice we deduce that
vh(x) ≥ 0 for all x ∈ NC

h because for such a x

π?
he

−(x) ≤ πhe
−(x) ≤ πhuh(x).

10



This last estimate follows from the estimate e− ≤ uh on ΓC , which is a consequence of
the non negativeness of u and uh on ΓC , and from the positivity preserving property
of πh at the nodes in NC

h . Remark furthermore that π?
he

+(x) ≥ 0 for all x ∈ NC
h .

With the above choice we are able to estimate each term of the right-hand side of
(16). We start with the integral term. Cauchy-Schwarz’s inequality implies

|(f, u − vh)| ≤
∑

K∈Th

‖f‖K‖u − vh‖K .(17)

Therefore it remains to estimate ‖u − vh‖K for any triangle K. From the definition
of vh we have

u − vh = u −
∑

x∈N int
h

:x∈K

πhu(x)λx(18)

−
∑

x∈NN
h

:x∈K

(uh(x) + πhe(x))λx

−
∑

x∈NC
h

:x∈K

(πhuh(x) + π?
he

+(x) − π?
he

−(x))λx

−
∑

x∈NE
h

:x∈K

uh(x)λx on K.

This identity may be equivalently written

u − vh = e − πhe +
∑

x∈N int
h

:x∈K

(uh(x) − πhuh(x))λx(19)

+
∑

x∈NC
h

:x∈K

(uh(x) − 2πhuh(x) + πhu(x) − π?
he

+(x) + π?
he

−(x))λx

+
∑

x∈NE
h

:x∈K

(πhu(x) − πhuh(x))λx on K.

By the triangular inequality and the fact that ‖λx‖K ∼ hK for any node x of K,
we then obtain

‖u − vh‖K . ‖e − πhe‖K + hK

∑

x∈N int
h

∪NC
h

:x∈K

|uh(x) − πhuh(x)|

+ hK

∑

x∈NC
h

:x∈K

|πhu(x) − πhuh(x) − π?
he

+(x) + π?
he

−(x)|

+ hK

∑

x∈NE
h

:x∈K

|πhu(x) − πhuh(x)|,∀K ∈ Th.

Using Lemmas 3.2 and 3.3 as well as Lemma 4.4 below, we obtain

‖u − vh‖K . hK‖∇e‖ω̃K
+ hK

∑

K′⊂ωK

ηsK′ + CKhK

√

− ln(hK)‖∇e‖Ω,(20)

11



where ω̃K := ∪E∈Eh:Ē∩K 6=∅ ωE, CK = 0 if K ∩NE
h = ∅, otherwise CK = 1.

Using estimates (20), (17) and the fact that a node in NE
h belongs at most to a

bounded number of elements (independently of h) leads to

|(f, u − vh)| . (1 + C(h))(η + ζ)(η + ζ + ‖∇e‖Ω).(21)

Let us now pass to the estimate of the interior boundary terms in (16): as before
the application of Cauchy-Schwarz’s inequality leads to

∣

∣

∣

∣

∣

∣

∑

E∈Eint
h

∫

E

JE,n(uh)(u − vh)

∣

∣

∣

∣

∣

∣

≤
∑

E∈Eint
h

‖JE,n(uh)‖E‖u − vh‖E.(22)

Therefore using the expression (19) of u − vh, the triangular inequality and the fact

that ‖λx‖E ∼ h
1/2
E for any extremity x of Ē, we then obtain

‖u − vh‖E . ‖e − πhe‖E + h
1/2
E

∑

x∈N int
h

∪NC
h

:x∈Ē

|uh(x) − πhuh(x)|

+ h
1/2
E

∑

x∈NC
h

:x∈Ē

|πhu(x) − πhuh(x) − π?
he

+(x) + π?
he

−(x)|

+ h
1/2
E

∑

x∈NE
h

:x∈Ē

|πhu(x) − πhuh(x)|,∀E ∈ Eint
h .

As before using Lemmas 3.2 and 3.3 as well as Lemma 4.4 below, we arrive at

‖u − vh‖E . h
1/2
E ‖∇e‖ω̃E

+ h
1/2
E

∑

K⊂ωE

ηsK + CEh
1/2
E

√

− ln(hE)‖∇e‖Ω,

where ω̃E := ∪F∈Eh:F̄∩Ē 6=∅ ωF , CE = 0 if Ē ∩NE
h = ∅, otherwise CE = 1.

Inserting this estimate in (22) we arrive at

∣

∣

∣

∣

∣

∣

∑

E∈Eint
h

∫

E

JE,n(uh)(u − vh)

∣

∣

∣

∣

∣

∣

. (1 + C(h))(η + ζ)(η + ζ + ‖∇e‖Ω).(23)

The estimate of the exterior boundary term is split up into terms on ΓN and on
ΓC . The term on ΓN is estimated exactly as interior boundary terms so that

∣

∣

∣

∣

∣

∣

∑

E∈EN
h

∫

E

JE,n(uh)(u − vh)

∣

∣

∣

∣

∣

∣

. (1 + C(h))(η + ζ)(η + ζ + ‖∇e‖Ω).(24)

On the contrary the terms on ΓC are more carefully analyzed. Namely we write

−
∑

E∈EC
h

∫

E

∂uh

∂nE

(u − vh) = I+ + I−,(25)
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where

I+ :=
∑

E∈EC
h

∫

E

(

∂uh

∂nE

)+

(vh − u),

I− :=
∑

E∈EC
h

∫

E

(

∂uh

∂nE

)−

(u − vh).

The term I− is estimated exactly as the interior boundary terms where JE,n(uh)

is replaced with
(

∂uh

∂nE

)−

. So we obtain

|I−| . (1 + C(h))(η + ζ)(η + ζ + ‖∇e‖Ω).(26)

To estimate the term I+ we consider an edge E ∈ EC
h . Using the expression (18)

and since π?
he

−(x) ≥ 0, ∀x ∈ NC
h , we get

vh − u = −u +
∑

x∈NC
h

:x∈Ē

(πhuh(x) + π?
he

+(x) − π?
he

−(x))λx +
∑

x∈NE
h

:x∈Ē

uh(x)λx

≤ −u +
∑

x∈NC
h

:x∈Ē

(πhuh(x) + π?
he

+(x))λx +
∑

x∈NE
h

:x∈Ē

uh(x)λx on E.

If Ē ∩NE
h = ∅ then

vh − u ≤ π̃huh + π?
he

+ − u on E,(27)

where we have set
π?

he
+ :=

∑

x∈Nh:x∈Ē

π?
he

+(x)λx.

If Ē ∩NE
h = x, then denote by x′ = Ē ∩NC

h . Therefore we have on E

vh − u ≤ −u + (πhuh(x
′) + π?

he
+(x′))λx′ + (uh(x) + π?

he
+(x′))λx,(28)

since π?
he

+(x′) ≥ 0. Integrating the above estimates (27) (resp. (28)) and using the
properties

∫

E

π?
he

+ ≤
∫

E

e+
(

resp. π?
he

+(x′) ≤ 1

|E|

∫

E

e+
)

,(29)

which follow from the definition of π?
he

+(x), we deduce that for any E ∈ EC
h :

∫

E

(vh − u) ≤
∫

E

(π̃huh + e+ − u).

Now using the property e+ = e + e− and the estimate e− ≤ uh on ΓC we arrive at

∫

E

(vh − u) ≤
∫

E

π̃huh.

13



Using this estimate and the fact that
(

∂uh

∂nE

)+

is a nonnegative constant on each edge

E of ΓC , we conclude that

0 ≤ I+ .
∑

E∈EC
h

∫

E

π̃huh

(

∂uh

∂nE

)+

= η2
ns.(30)

Going back to the identity (16), using the estimates (21), (23), (24), (26) and (30),
as well as the identity (25), we conclude that

|e|21,Ω . (1 + C(h))(η + ζ)(η + ζ + ‖∇e‖Ω).

The conclusion follows from Young’s inequality.

Remark 4.3 This remark is concerned with the choice of vh on Γ in (16). From the
above proof, the following three main properties have to be satisfied:
1. vh(x) ≥ 0, for all x ∈ NC

h ∪NE
h ,

2. estimation of uh(x) + πhu(x) − πhuh(x) − vh(x), for all x ∈ Nh,
3. for all E ∈ EC

h , estimate the quantity
∫

E
(vh − u) by a term representing the error

estimator.
The first idea is to choose vh = πhu but this choice does not guarantee point 1

at NE
h , point 2 at NN

h since Lemma 3.3 is not available in this case, while point 3
seems not possible. The second possibility is to take vh = uh + πhe (since uh + πhe =
uh+πhu−πhuh is close to πhu). This latter choice guarantees point 2 for NN

h , but does
not fit point 1 for NC

h ∪NE
h . Point 3 suggests to use a new operator π?

h which satisfies
∫

E
π?

hv − v ≤ 0 for almost all edges in EC
h (see (29)) but also the edge approximation

property as in Lemma 3.2. After some tentatives, an appropriate choice seems to be
vh = πhuh + π?

he
+ − π?

he
−, since it guarantees points 1 and 2 at NC

h and point 3. For
the exceptional nodes NE

h , we choose vh = uh since points 1 and 3 are satisfied and
point 2 is almost optimal (see Lemma 4.4 below).

Lemma 4.4 The next estimates hold:
i) For any x ∈ NC

h , one has

|πhuh(x) − πhu(x) + π?
he

+(x) − π?
he

−(x)| . ‖∇e‖ωE
,(31)

where E ∈ EC
h is such that x ∈ Ē and Ē ∩NE

h = ∅.
ii) For any x ∈ NE

h , one has

|πhuh(x) − πhu(x)| .
√

− ln(h)‖∇e‖Ω.(32)

Proof: Fix x ∈ NC
h and E ∈ EC

h such that x ∈ Ē and Ē ∩ NE
h = ∅. From a scaling

argument and since all norms are equivalent on any finite dimensional space, we have

|πhuh(x) − πhu(x) + π?
he

+(x) − π?
he

−(x)| . h
−1/2
E ‖ − πhe + π?

he
+ − π?

he
−‖E.

By the triangular inequality we get

|πhuh(x)−πhu(x)+π?
he

+(x)−π?
he

−(x)| . h
−1/2
E (‖e−πhe‖E+‖e+−π?

he
+‖E+‖e−−π?

he
−‖E).
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By Lemma 3.2 and since |∇e+| ≤ |∇e|, |∇e−| ≤ |∇e| we conclude that

|πhuh(x) − πhu(x) + π?
he

+(x) − π?
he

−(x)| . ‖∇e‖ωE
,

recalling that if π?
h(v) :=

∑

x∈Nh
α?

x(v)λx we have for any x ∈ NC
h , |α?

x(v)| .

h−1
x ‖v‖ωx

+ ‖∇v‖ωx
. Since π?

h preserves the constant functions (because for c ∈ R,
π?

h(v+c)(x) = π?
hv(x)+c and therefore π?

h(v+c) = π?
hv+c) we come to the conclusion

that ‖v − π?
hv‖E . h

1/2
E ‖∇v‖ωE

. Hence estimate (31) holds.

Let us now fix x ∈ NE
h and denote by E an edge in ΓC such that x ∈ Ē. Then by

the fact that all norms are equivalent on any finite dimensional space, we have

|πhuh(x) − πhu(x)| = |πhe(x)| . h
−1/2
E ‖πhe‖E.

Introducing e artificially and using the triangular inequality we obtain

|πhuh(x) − πhu(x)| . h
−1/2
E (‖e − πhe‖E + ‖e‖E).

The first term is estimated using Lemma 3.2:

h
−1/2
E ‖e − πhe‖E . ‖∇e‖ω̄x

(33)

where ω̄x := ∪F∈Eh:x∈F̄ ωF . To estimate the second term we remark that by Hölder’s
inequality we have

‖e‖E ≤ ‖e‖Lp(E)h
1/q
E ,

for any p, q > 2 such that 1/p + 1/q = 1/2. Since E is a subset of ΓC we write

‖e‖E ≤ ‖e‖Lp(ΓC)h
1/q
E .

At this stage we use the trace theorem H1(Ω) ↪→ H1/2(ΓC) and the following embed-
ding (see [2]): for any real number p ∈ [1,∞[,

‖v‖Lp(ΓC) ≤ C
√

p‖v‖
H

1
2 (ΓC)

, ∀v ∈ H
1

2 (ΓC),

where C is independent of p. As a consequence

‖e‖E . ‖e‖1,Ω
√

p h
−1/p
E h

1/2
E .

Choosing p = − ln(hE) (hE is supposed sufficiently small) we finally get the estimate

‖e‖E . ‖∇e‖Ω h
1/2
E

√

− ln(hE),

by using Poincaré’s inequality. This last estimate and (33) lead to (32).
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4.3 Lower error bound

Theorem 4.5 For all elements K, the following local lower error bound holds:

ηsK . ‖∇e‖ωK
+ ζK .(34)

Proof: The estimates of the element residual

hK‖rK‖K . ‖∇e‖K + ζK ,(35)

for K ∈ Th and of the normal jump

h
1/2
E ‖JE,n(uh)‖E . ‖∇e‖ωK

+ ζK ,(36)

for E ∈ Eint
K ∪ EN

K are standard [16] since for any w ∈ V := {v ∈ H1(Ω) : v = 0 on
ΓD ∪ ΓC}, w and −w belong to K and therefore

∫

Ω

∇u · ∇w dx =

∫

Ω

fw dx, ∀w ∈ V.

We slightly modify this argument to estimate the negative part of the normal deriva-
tives on ΓC . Namely for an arbitrary edge E ∈ EC

h , we introduce the edge bubble func-
tion bE associated with E defined on the element K containing E (i.e., bE := 4λa1

λa2
,

where a1, a2 are the two extremities of E). Then we set bE := 0 on Ω̄ \ K. We recall
that (∂uh/∂nE)− ∈ P0(E) and set

wE :=

(

∂uh

∂nE

)−

bE ∈ K,

We first remark that

∫

E

∂uh

∂nE

wE =

∫

E

∂uh

∂nE

(

∂uh

∂nE

)−

bE = −
∫

E

(

(

∂uh

∂nE

)−
)2

bE.

Using an integration by parts on K such that E ⊂ K we have

∫

K

∇uh · ∇wE =

∫

E

∂uh

∂nE

wE.

The last two identities lead to

∫

E

(

(

∂uh

∂nE

)−
)2

bE = −
∫

K

∇uh · ∇wE,

or equivalently

∫

E

(

(

∂uh

∂nE

)−
)2

bE =

∫

K

∇e · ∇wE −
∫

K

∇u · ∇wE.(37)
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Besides as wE ∈ K by the inequality (3) we may write

∫

K

∇u · ∇wE ≥
∫

K

fwE.

This inequality in (37) yields

∫

E

(

(

∂uh

∂nE

)−
)2

bE ≤
∫

K

∇e · ∇wE −
∫

K

fwE.

Applying Cauchy-Schwarz’s inequality we obtain

‖
(

∂uh

∂nE

)−

‖2
E ∼

∫

E

(

(

∂uh

∂nE

)−
)2

bE ≤ ‖∇e‖K‖∇wE‖K + ‖f‖K‖wE‖K .

From a standard inverse inequality [16] we arrive at

h
1/2
E ‖

(

∂uh

∂nE

)−

‖E . ‖∇e‖K + hK‖f‖K .

Writing f = RK − rK + rK and using the estimate in (35) we finally conclude that

h
1/2
E ‖

(

∂uh

∂nE

)−

‖E . ‖∇e‖K + ζK .(38)

We obtain (34) by putting together the estimates (35), (36) and (38).

For the non standard residual estimator we may prove the following non optimal
estimate:

Theorem 4.6 For all element K such that K ∩ EC
h 6= ∅, the following local lower

error bound holds:

η2
nsK .

∑

E∈EC
K

(

(‖∇e‖ωK
+ ζK)h

−1/2
K ‖π̃huh‖E(39)

+ ‖ ∂u

∂nE

‖E

(

h
1/2
K

∑

K⊂ω̃E

(‖∇e‖ωK
+ ζK) + ‖e‖E

))

,

where ω̃E := ∪F∈Eh:F̄∩Ē 6=∅ ωF .

Proof: We only need to prove (39) if
(

∂uh

∂nE

)+

> 0 on E, and in that case
(

∂uh

∂nE

)+

=
∂uh

∂nE
. Therefore using the equivalence of norm in any finite dimensional space, we may

write

∫

E

(

∂uh

∂nE

)+

π̃huh =

∫

E

| ∂uh

∂nE

π̃huh| ∼
∫

E

| ∂uh

∂nE

π̃huh|bE =

∫

E

∂uh

∂nE

π̃huh bE,
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where bE stands for the edge bubble function defined on the triangle K containing
E. Let x be the node of K which is not located in Ē. We define π̂huh ∈ P1(K) such
that π̂huh(x) := 0 and π̂huh := π̃huh on E. Setting v := π̂huh bE, which belongs to
H1(K) and applying Green’s formula we obtain

∫

E

(

∂uh

∂nE

)+

π̃huh ∼
∫

K

∇uh · ∇v.

Again Green’s formula on K yields
∫

K

∇u · ∇v =

∫

K

fv +

∫

E

∂nuv.

The last two identities show that

∫

E

(

∂uh

∂nE

)+

π̃huh ∼ −
∫

K

∇e · ∇v +

∫

K

fv +

∫

E

∂nuv.

Now we transform the last term in the previous expression as follows:
∫

E

∂nuv =

∫

E

∂nu(π̃huh − uh)bE +

∫

E

∂nu(uh − u)bE,

reminding that u∂nu = 0 on ΓC . This identity in the previous one yields using a
standard inverse inequality

∫

E

(

∂uh

∂nE

)+

π̃huh . (‖∇e‖K + hK‖f‖K)h
−1/2
E ‖π̃huh‖E

+ ‖∂nu‖E(‖π̃huh − uh‖E + ‖uh − u‖E).

Since we readily check that

‖π̃huh − uh‖E ≤ 2√
3
‖πhuh − uh‖E,

by Corollary 3.5 and Theorem 4.5, we get

‖π̃huh − uh‖E . h
1/2
E

∑

K⊂ω̃E

ηsK . h
1/2
E

∑

K⊂ω̃E

(‖∇e‖ωK
+ ζK).

This estimate in the previous one leads to the conclusion.

Corollary 4.7 The following global lower error bound holds:

η2
ns .





∑

K∈Th:K∩EC
h
6=∅

h−1
(

∑

K′⊂ω̃K

(‖∇e‖2
ωK′

+ ζ2
K′)

)





1/2

+ ‖∂nu‖ΓC
‖e‖ΓC

,

where ω̃K := ∪E∈Eh:Ē∩K 6=∅ ωE.
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Proof: Summing the estimate (39), using discrete Cauchy-Schwarz’s inequality we
come to the conclusion since one readily sees that

‖π̃huh‖ΓC
. ‖uh‖ΓC

. ‖f‖Ω.

Remark 4.8 If theoretically one has ‖∇e‖K . hK‖u‖2,ωK
and ‖e‖K . h2

K‖u‖2,ωK
,

then the previous Corollary gives the rough estimate

η2
ns . h1/2‖u‖2,Bh

,(40)

where Bh is a small neighbourhood of ΓC satisfying |Bh| ∼ h. If we suppose that the
H2-norm is uniformly distributed in Ω then (40) guarantees the convergence to 0 of
the estimator ηns (quicker than h1/2). We finally mention that the following numerical
experiments show that the convergence rates of ηns and ηs are similar and that ηns is
small in comparison with ηs independently of the regularity of u.

5 Numerical experiments

In this section, we solve numerically three examples of Signorini problems with linear
triangular finite elements. As previously mentioned we denote by e := u − uh the
exact error and by η the estimator. Among others we are interested in computing the
convergence rates α and β of the errors η and |e|1,Ω. We compute these convergence
rates by considering families of uniform meshes made of triangular elements and
supposing that η and |e|1,Ω behave as Chα and Dhβ respectively, where C,D denote
positive constants. We are especially interested in determining the effectivity index

γ :=
η

|e|1,Ω

.

This ratio measures the reliability of our proposed estimator.
We skip over the study concerning optimized computations obtained using to-

gether the error estimator and a mesh adaptivity procedure which is beyond the
scope of this paper.

In the following we denote by NC , the number of elements of the mesh on ΓC .
Since we use uniform meshes, this parameter measures the size of the mesh.

5.1 Test 1 : an example where the exact solution u is not
explicitly known

We consider the problem depicted in Figure 1 where Ω is the square ]0, 1[×]0, 1[. The
Dirichlet condition u = −1 is applied on the left edge {0}×]0, 1[ and the condition
u = 1 is applied on the right edge {1}×]0, 1[. The part ΓC of the boundary submitted
to Signorini conditions is ]0.25, 0.75[×{0}. The remaining boundary parts of Γ = ∂Ω
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ΓN ΓN

Figure 1: The geometry of the problem

are submitted to homogeneous Neumann conditions ∂nu = 0. We further take f = 0
in Ω.

As far as we know this problem does not admit an explicit solution. Consequently,
in order to obtain error estimates for |e|1,Ω, we must compute a reference solution
denoted by uref corresponding to a mesh which is as fine as possible. The most
refined mesh comprises 66049 nodes, 131072 triangles and 256 elements on each edge
(128 on ΓC). It furnishes the reference solution uref which is represented in Figure 2.
Therefore we assume in the computations that e = uref − uh.

We observe numerically on ΓC that u = 0 (and ∂nu > 0) on ]0.25, x0] × {0} and
that ∂nu = 0 (and u > 0) on [x0, 0.75[×{0} where x0 is approximately 0.37. From this
observation, we may expect that the exact solution u belongs to Hs(Ω), for all s < 3/2,
since u may be considered as a solution of a mixed (Dirichlet-Neumann) problem [8]
(see also [4, 11] for Signorini problems). By classical a priori error estimates for finite
element methods we may then expect that |e|1,Ω ≤ Chs−1, for all s < 3/2. Note that
if the Signorini condition is replaced by an homogeneous Neumann condition then
the solution becomes u(x, y) = 2x − 1, ∀(x, y) ∈ Ω. Since this function is negative
on ]0.25, 0.5[×{0} we see that the Signorini conditions modify the latter solution, in
particular on the left part of ΓC .

In Table 1 we report the square of the estimator η2 together with the standard and
nonstandard contributions (we recall that η2

s :=
∑

K∈Th
η2

sK , η2
ns :=

∑

K∈Th
η2

nsK and
η2 = η2

s + η2
ns). In this table we see that the contribution η2

ns corresponding roughly
speaking to the non-fulfillment of the complementarity condition u ∂nu = 0 on ΓC is
always negligible (lower than 2%) in comparison with η2

s and that ηns/η converges
(approximately towards 0.08) as h vanishes. Moreover we note that the norm terms
included in ηs involving the negative part of ∂uh/∂n are always equal to zero, at
least in this example. If we compute the convergence rates of η, ηs, ηns respectively
on the two most refined meshes (NC = 32 and NC = 64) we find 0.508, 0.508, 0.521
respectively which seems to indicate that the convergence rates of ηs and ηns are
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close. We also remark that if instead of π̃huh we take uh in the computation of ηns

the values of this modified nonstandard term are similar.
The ”exact” error |e|1,Ω, the estimator η and the effectivity index γ are reported

in Table 2. The average convergence rate α for the estimator η and the average
convergence rate β for the exact error |e|1,Ω are α = 0.567 and β = 0.588 and are
therefore very close. Note that the convergence rate for |e|1,Ω is even better than
“theoretically” expected. We also observe that the effectivity index varies between
3.9 and 5.3 and more precisely between 3.9 and 4.3 for the intermediate meshes (the
value 4.9 corresponds to the coarsest mesh with only 4 elements on each edge of Ω
and the value 5.3 is obtained with the finest mesh comprising 128 elements on each
edge of Ω. One can reasonably think that the latter value is a bit overestimated since
the finite element solution is in this case ”artificially” closer to the reference solution
uref . Of course we cannot compute the effectivity index for NC = 128 since |e|1,Ω = 0
in this case). Finally, Figure 3 depicts both the exact and the a posteriori errors as
a function of 1/h, this figure confirms the equivalence between |e|1,Ω and η.

Figure 4 represents the distribution of the local indicators ηK for a specific mesh
comprising 32 elements on each edge of Ω. We see that the local indicators ηK increase
near the singularity located at (0.25, 0).

 

 
MIN = −1.00E+00
MAX = 1.00E+00

A −0.98
B −0.89
C −0.80
D −0.70
E −0.61
F −0.52
G −0.42
H −0.33
I −0.23
J −0.14
K −4.69E−02
L  4.69E−02
M  0.14
N  0.23
O  0.33
P  0.42
Q  0.52
R  0.61
S  0.70
T  0.80
U  0.89
V  0.98

A D G J K L M P S V

A D G J
K

L M P S V

Figure 2: The reference solution (256×256 finite element mesh) and its corresponding
isovalues
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η2 η2
s η2

ns η2
ns/η2( in %)

NC = 2 3.6742 3.6245 4.97046 10−2 1.352%

NC = 4 1.2940 1.2789 1.51296 10−2 1.169%

NC = 8 0.60746 0.60233 5.13779 10−3 0.846%

NC = 16 0.29630 0.29424 2.06056 10−3 0.695%

NC = 32 0.14556 0.14462 9.45764 10−4 0.649%

NC = 64 0.07198 0.07152 4.59264 10−4 0.638%

Table 1: Standard and nonstandard contributions in the estimator

η |e|1,Ω γ = η/|e|1,Ω

NC = 2 1.9168 0.38904 4.9269

NC = 4 1.1375 0.28701 3.9634

NC = 8 0.77879 0.19894 3.9146

NC = 16 0.54433 0.13475 4.0395

NC = 32 0.38152 0.08777 4.3468

NC = 64 0.26829 0.05054 5.3084

Table 2: The estimator, the exact error and the effectivity index

4 8 16 32 64 128
1/h

0.01

0.1

Errors

1

η

|e|1,Ω

Convergence rate: 1/2

Figure 3: The exact and a posteriori errors |e|1,Ω and η as a function of 1/h (log-log
scale)
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MAX =  2.59E−01
 2.04E−03
 1.42E−02
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 0.26

Figure 4: The map of local indicators ηK (case of the 32 × 32 finite element mesh)

5.2 Test 2 : an example where the exact solution u is explic-
itly known

We consider the domain Ω as the 3/4 of the unit disk, whose geometry is suggested
in Figure 5. It corresponds to the unit disk in which a quarter (the lower right part)
has been removed. We suppose that ΓC =]0, 1[×{0}, ΓN = {0}×] − 1, 0[ and ΓD is
the remaining part of the boundary. On ΓN we set ∂nu = 0 and impose the non-
homogeneous Dirichlet condition u(r, θ) = cos(2θ/3) on ΓD, where (r, θ) stand for the
polar coordinates. Moreover we take f = 0 in Ω.

-

6

0 x

y

Ω

ΓN

ΓC

ΓD

Figure 5: Problem set-up
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It can be checked that the exact solution of this Signorini problem is

u(r, θ) = r
2

3 cos
2θ

3

and that ∂nu = 0 and u > 0 on ΓC . Such a solution belongs to Hs(Ω), for all s < 5/3.
Therefore |e|1,Ω ≤ Chs−1, for all s < 5/3, thanks to classical a priori error estimates
for finite element methods.

We compute the exact (here it is not necessary to determine a reference solution)
and the a posteriori errors and we report these quantities together with the effectivity
index in Table 3. For this example the contribution η2

ns is always zero, a phenomenon
that we cannot explain but which confirms that ηns seems to be negligible. We observe
that the average convergence rates α and β for the estimator η and the exact error
|e|1,Ω are given by: α = 0.652 and β = 0.662, and are still very close in this example.
Note that β is close to 2/3 as theoretically expected. Moreover the effectivity indexes
show few variations since they stay between 10.5 and 11.1. We finally observe that
these values are greater than those from the previous example. Figure 6 represents
both the exact and the a posteriori errors as a function of 1/h, where we still see their
equivalence.

Figure 7 represents the distribution of the local estimators ηK for a specific mesh.
Again we see that the estimator increases near the origin in which a singularity is
located.

η |e|1,Ω γ = η/|e|1,Ω

NC = 10 0.47541 0.043546 10.917

NC = 20 0.30731 0.029029 10.586

NC = 40 0.19165 0.018050 10.617

NC = 80 0.12246 0.010990 11.142

Table 3: The estimator, the exact error and the effectivity index

5.3 Test 3 : a more regular example

We consider the triangle Ω of vertexes A = (0, 0), B = (1, 0) and C = (1/2, 1/2) and
we define ΓD =]B,C[, ΓN =]A,C[, ΓC =]A,B[. The Dirichlet condition u = 0.05 is
applied on ΓD, the Neumann condition ∂nu = 0 holds on ΓN and we choose f = 1
in Ω. The solution (approximated with a fine mesh) is depicted in Figure 8 and we
observe that it is more regular in comparison with the two first tests. As in the first
example ΓC is divided into two parts: the right side where u > 0 and the left one
where ∂nu > 0. So we determine the convergence of all the terms involved in the
global estimator η and we report the results in Table 4 where we set

η1 =
(

h
∑

E∈Eint
h

‖JE,n(uh)‖2
E

)1/2

,
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Convergence rate: 2/3

Figure 6: The exact and a posteriori errors |e|1,Ω and η as a function of 1/h (log-log
scale)

η2 =
(

h
∑

E∈EN
h

‖JE,n(uh)‖2
E

)1/2

,

η3 =
(

h
∑

E∈EC
h

‖
(

∂uh

∂nE

)−

‖2
E

)1/2

.

Note that the convergence rate of the term: h(
∑

K∈Th
‖rK‖2

K)1/2 = h/2 is 1.

η1 η2 η3 ηns

NC = 20 3.40463 10−2 2.75369 10−3 4.11545 10−3 1.18376 10−3

NC = 40 1.66169 10−2 9.81873 10−4 1.54214 10−3 6.03231 10−4

NC = 80 8.67974 10−3 3.49439 10−4 5.64690 10−4 3.15263 10−4

NC = 160 4.39990 10−3 1.33811 10−4 1.85859 10−4 1.76036 10−4

Convergence rate 0.98 1.45 1.49 0.92

Table 4: Contributions in the estimator

We first observe that neither η3 nor ηns vanish in this test (in the first example
we had η3 = 0 and in the second one ηns = 0). From these results we see that the
convergence rate of η1 is near 1 and that η3 is close to η2 (the convergence rates around
1.5 for η2 and η3 are due to the fact that the number of edges on the boundary parts
is ∼ 1/h whereas the number of edges in Ω is ∼ 1/h2). The interesting phenomena
are that the nonstandard error term admits (as ηs) a convergence rate close to 1 and
that it remains small in comparison with ηs while it is of the same size than η2 and
η3, so it is not negligible.

We also remark that the nonstandard error term is located on a small area (whose
length does not really depend on h) near the transition point (i.e. the point where
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 1.12E−02
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 0.19

Figure 7: The map of local indicators ηK (case NC = 10)

u > 0 at right and ∂nu > 0 at left); the number of elements in which ηnsK 6= 0
is 2, 3, 5, 9 when NC = 20, 40, 80, 160 respectively and we observe that the values of
ηnsK are of the same order on the triangles of the little area. Besides the number
of elements K where (∂nuh)

− 6= 0 in EC
K is 9, 17, 34, 67 when NC = 20, 40, 80, 160.

These elements are located on the right part of ΓC and (∂nuh)
− grows when one

reaches point B.

In conclusion, the above experiments show that our estimator is reliable, as the-
oretically expected. It is furthermore appropriate for adaptivity since it detects the
region of large errors.
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