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Abstract

This study is concerned with the frictional contact problem governed by the normal com-
pliance law in linear elasticity. The paper presents two contributions dealing with the sta-
tionary problem: we first obtain improved bounds ensuring uniqueness of a solution. Second
we exhibit examples in which infinitely many solutions to the problem exist.
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1. Introduction and notation

In solid mechanics, contact involves highly nonlinear phenomena especially when friction
effects are taken into account. The most common model of friction is due to Coulomb at the end
of the eighteenth century ([8]) and it is generally used together with the Signorini (or unilateral)
contact conditions [25]. Such a simple macroscopic frictional contact model is strongly nonlinear
in the dynamic, quasi-static and static cases and its understanding from a mathematical point
of view is not complete yet. A more recent approach motivated by phenomenological laws on
the contact interface such as the presence of small asperities, oxides and impurities has lead to
the so-called normal compliance model (with or without friction) introduced and studied in [19]
and [18] (see also [20, 21, 22] for other early studies). Note that this model can also be seen as a
regularization of the Signorini contact conditions in which some penetration is allowed or also as
a kind of (sophisticated) penalized contact problem. In the simple case of elastostatics several
studies concerning existence and/or uniqueness of solutions have been achieved: in addition to
the previous references, an important work can be found in [16, 17]. For elastic quasi-static
problems, we refer the reader to e.g., [2, 3, 4, 5, 24].

This work deals with the two and three dimensional normal compliance models with friction
in static linear elasticity. Section 2 is concerned with the model and its corresponding weak
formulation. Section 3 deals with uniqueness: we refine the uniqueness results established in
[16] and [17]. We prove in Theorem 3.1 two kind of uniqueness results both in two and three space
dimensions: first we obtain global uniqueness (which does not depend on the normal variables
cn,mn, see (2.5)) when the tangential coefficient ct (see (2.6)) is small enough, in particular when
cn tends to infinity. Second we obtain in many cases global uniqueness results which remain
valid for any given ct under the condition that cn is large enough. Section 4 is concerned with
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nonuniqueness. We exhibit examples of nonunique solutions to the two-dimensional problem in
the simplest case where mn = mt = 1. Let us mention that a first study in [14] tried to find some
nonunique solutions to this problem but without success. In [14], multiple solutions to the finite
element problem are found but these solutions do not solve the continuous problem. Note that
the first finite dimensional nonuniqueness examples of friction problems with unilateral contact
conditions or with normal compliance have been exhibited in [15] by using a system of springs.
In Theorem 4.3 of the present paper we show that for appropriately chosen geometry, Poisson
ratio and loads, the continuous problem admits an infinity of solutions. An explicit elementary
example ends the paper.

We now introduce some useful notation and several functional spaces. In what follows,
bold letters like u,v, indicate vector valued quantities, while the capital ones (e.g., V0,VU , . . .)
represent functional sets involving vector fields. As usual, we denote by (Lq(.))d and by (Hs(.))d,
1 ≤ q ≤ ∞, s ≥ 0, d = 1, 2, 3, the Lebesgue and Sobolev spaces in one, two and three space
dimensions (see [1]). The usual norm of (Lq(D))d (resp. (Hs(D))d) is denoted by ‖ · ‖Lq(D)

(resp. ‖ · ‖Hs(D)) and we keep the same notation for any value of d. In the same spirit and in
order to lighten the notations we also skip the notation d in (Lq(D))d and (Hs(D))d and we
simply write Lq(D) and Hs(D). Finally the symbol | · | will denote the Euclidean norm in Rd.

2. Problem statement, weak formulation and various constants

We consider an elastic body occupying a domain Ω in Rd, d = 2, 3. The boundary Γ of Ω is
assumed to be Lipschitz and is divided as follows: Γ = ΓD ∪ΓN ∪ΓC where ΓD, ΓN and ΓC are
three open disjoint parts with meas(ΓD) > 0 and meas(ΓC) > 0. The given displacements U
are prescribed on the portion ΓD and we suppose that a function U ∈ H1(Ω) exists such that
U = 0 on ΓC . The part ΓN is subjected to a density of surface forces denoted F ∈ L2(ΓN )
and Ω is being acted upon by the body forces f ∈ L2(Ω). On the part ΓC the body can come
into contact with a foundation and the frictional contact interaction between the body and the
foundation is governed by the so called normal compliance law with friction. We denote by n
the unit outward normal vector on the boundary Γ.

The frictional contact problem with normal compliance in elastostatics is to find the displace-
ment field u such that equations (2.1)–(2.6) hold:

div σ(u) + f = 0 in Ω, (2.1)

σ(u) = C ε(u) in Ω, (2.2)

u = U on ΓD, (2.3)

σ(u)n = F on ΓN , (2.4)

where ε(u) denotes the linearized strain tensor defined by ε(u) = (∇u + ∇T u)/2 and C =
cijkh(x) ∈ L∞(Ω), 1 ≤ i, j, k, h ≤ d is the fourth order symmetric and elliptic tensor of linear
elasticity.

We decompose the stress vector σ(u)n on the boundary Γ into a normal stress and a vector
of tangential stresses denoted σn(u) and σt(u), respectively, so that σ(u)n = σn(u)n+σt(u).
Similarly the displacement field u on the boundary Γ is written u = unn+ut where un and ut

denote the normal displacement and the vector of tangential displacements, respectively.
Throughout this paper, we assume that the frictional contact behavior on the part ΓC is

governed by the normal compliance model introduced and studied by Oden and Martins (see
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[19], [18]) in which the stresses follow the power law,

σn(u) = −cn(un)mn
+ ,

σt(u) = −ct (un)mt
+

ut

|ut|
if sliding occurs,

where (.)+ stands for the positive part so that (un)+ represents the penetration of the body
into the foundation. In the following the notation xm

+ stands for (x+)m. The constants mn ≥ 1,
mt ≥ 1 as well as the positive functions cn and ct in L∞(ΓC) stand for interface parameters
characterizing the contact behavior between the body and the foundation. We consider these
conditions on ΓC :

σn(u) = −cn(un)mn
+ , (2.5)

and 
ut = 0 =⇒ |σt(u)| ≤ ct(un)mt

+ ,

ut 6= 0 =⇒ σt(u) = −ct(un)mt
+

ut

|ut|
.

(2.6)

Remark 2.1 Note that the true friction law involves the tangential contact velocities and not
the tangential displacements. However, a problem analogous to the one discussed here is obtained
by time discretization of the quasi-static frictional contact evolution problem. In this case U,
f and F stand for U((i + 1)∆t), f ((i + 1)∆t) and F((i + 1)∆t) respectively and ut has to be
replaced by ut((i+1)∆t)−ut(i∆t), where ∆t denotes the time step. For simplicity and without
any loss of generality only the static case (also called incremental problem in [16]) described
above will be considered in the following.

It is easy to see that the case mn = mt corresponds to the Coulomb friction model where the
friction coefficient is ct/cn. Although the condition (2.5) can be seen (from a theoretical point
of view) as a penalized version of the unilateral contact conditions there are some mechanical
arguments which justify the validity of the model (see e.g., [19, 18, 16]). The unilateral contact
conditions can be recovered when cn →∞.

Let us introduce the set of admissible displacements:

VU =
{
v ∈ H1(Ω); v = U on ΓD

}
and the space

V0 =
{
v ∈ H1(Ω); v = 0 on ΓD

}
= VU − {U}.

The weak form of problem (2.1)–(2.6) consists to find u ∈ VU such that (see e.g., [16]):

a(u,v −u) + jn(u,v −u) + jt(u,v)− jt(u,u) ≥ L(v −u), ∀v ∈ VU (2.7)

where
a(u,v) =

∫
Ω
(Cε(u)) : ε(v) dΩ, L(v) =

∫
Ω

f .v dΩ +
∫

ΓN

F.v dΓ,

jn(u,v) =
∫

ΓC

cn(un)mn
+ vn dΓ, jt(u,v) =

∫
ΓC

ct(un)mt
+ |vt| dΓ,

for any u and v in H1(Ω). In order to give a sense to jn(u,v) and jt(u,v), we need to assume
that

1 ≤ mn,mt < +∞ if d = 2, 1 ≤ mn,mt ≤ 3 if d = 3. (2.8)
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The hypothesis (2.8) allows us to use the imbedding H1/2(ΓC) ↪→ Lq(ΓC) for each q ∈ [1,+∞)
if d = 2 and for each q ∈ [1, 4] if d = 3 (see e.g., [1]) and we denote by Cq the corresponding
imbedding constant:

‖v‖Lq(ΓC) ≤ Cq‖v‖H1/2(ΓC), ∀v ∈ H1/2(ΓC). (2.9)

When d = 2 then it has been proved in [6] that there exists a constant D such that

Cq = Dq1/2, 1 ≤ q < +∞. (2.10)

Besides we denote by Ctr the constant of the trace operator H1(Ω) ↪→ H1/2(ΓC):

‖v‖H1/2(ΓC) ≤ Ctr‖v‖H1(Ω), ∀v ∈ H1(Ω). (2.11)

We denote by cK and cc the V0-ellipticity and continuity constants of the bilinear form a(., .):

cK‖v‖2
H1(Ω) ≤ a(v,v), ∀v ∈ V0,

a(v,w) ≤ cc‖v‖H1(Ω)‖w‖H1(Ω), ∀v,w ∈ H1(Ω). (2.12)

In the sequel we will use the following norm for the volume and surface loads:

‖L‖ = sup
{v∈V0,‖v‖H1(Ω)=1}

|L(v)|

and we set
χ(U) = inf

v∈VU ,v=0 on ΓC

‖v‖H1(Ω)

so that χ(0) = 0. We will also need the following quantity in some of our estimates:

cn = essinfΓC
cn,

in other words cn is the greatest number c such that c ≤ cn a.e. on ΓC . Finally in order to
lighten the notations, we introduce the following nonnegative quantities B1 and B2 which equal
zero if and only if the external ”loadings” f ,F,U|ΓC

vanish:

B1(cK , cc, L,U) =
‖L‖
cK

+
(

cc

cK
+ 1

)
χ(U),

B2(cK , cc, cn, L,U) =
‖L‖2

cncK
+ 2

cc‖L‖
cncK

χ(U) +
cc

cn

(
cc

cK
+ 1

)
χ2(U).

If d = 2 we have, according to Cauchy-Schwarz inequality, for each u,v ∈ H1(Ω) and since
C2 = 1:

|jn(u,v)| ≤ ‖cn‖L∞(ΓC)‖(un)+‖mn

L2mn (ΓC)
‖vn‖L2(ΓC)

≤ ‖cn‖L∞(ΓC)‖un‖mn

L2mn (ΓC)
‖vn‖L2(ΓC)

≤ Cmn+1
tr Cmn

2mn
‖cn‖L∞(ΓC)‖u‖mn

H1(Ω)
‖v‖H1(Ω)

and a similar bound is obtained for |jt(u,v)|:

|jt(u,v)| ≤ Cmt+1
tr Cmt

2mt
‖ct‖L∞(ΓC)‖u‖mt

H1(Ω)
‖v‖H1(Ω).



Hild / Uniqueness and solution multiplicity for normal compliance with friction 5

If d = 3, we get by Hölder inequality for 1 ≤ mn ≤ 3:

|jn(u,v)| ≤ ‖cn‖L∞(ΓC)‖(un)+‖mn

L
4mn

3 (ΓC)
‖vn‖L4(ΓC)

≤ ‖cn‖L∞(ΓC)‖un‖mn

L
4mn

3

‖vn‖L4(ΓC)

≤ Cmn+1
tr C4C

mn

4mn/3‖cn‖L∞(ΓC)‖u‖mn

H1(Ω)
‖v‖H1(Ω)

and here again similar bounds are obtained for |jt(u,v)| when 1 ≤ mt ≤ 3:

|jt(u,v)| ≤ Cmt+1
tr C4C

mt

4mt/3‖cn‖L∞(ΓC)‖u‖mt

H1(Ω)
‖v‖H1(Ω).

3. Uniqueness results

The existence of solutions to problem (2.7) when d = 2 and d = 3 under assumptions (2.8)
was proved in [16] using an abstract theorem in [9]. In references [16, 17] (where U = 0) the
authors state and prove that if the loads f ,F and the interface parameters cn and ct are small
enough (more precisely if α1‖cn‖L∞(ΓC) + α2‖ct‖L∞(ΓC) is small enough where the coefficients
αi depend on the external loads and on cK , Cq, Ctr,mn,mt), then the problem (2.7) admits
a unique solution in a ball centered at the origin and whose radius depends on the interface
parameters and the loadings.

When mn = mt = 1, the authors improve in [17] the previous result and establish that the
solution to (2.7) is globally unique when ‖cn‖L∞(ΓC) + ‖ct‖L∞(ΓC) is small enough and without
any restrictions on the forces by using a result in [7]. Again this uniqueness result does not
remain valid when ‖cn‖L∞(ΓC) →∞.

Next we propose to improve these uniqueness results and to obtain new bounds when d = 2
and d = 3 (under the assumptions (2.8)). The uniqueness results we obtain in the two and
three dimensional cases are of two different types: the first ones depend only on the ”tangential
variables” ct and mt whereas the second ones depend on the tangential and normal variables
ct,mt, cn,mn and these results are complementary.

Theorem 3.1 (i) Let d = 2 and 1 ≤ mn,mt < +∞. Then problem (2.7) admits at most one
solution if:

2Dmt+1Cmt+1
tr ‖ct‖L∞(ΓC)mt(mt + 1)(mt+1)/2 (B1(cK , cc, L,U))mt−1

cK
< 1. (3.1)

Suppose in addition that mn −mt + 2 > 0. Then problem (2.7) admits at most one solution if:

4D2C2
tr‖ct‖L∞(ΓC)

mt(mn + 1)
cK(mn −mt + 2)

(B2(cK , cc, cn, L,U))
mt−1
mn+1 < 1. (3.2)

(ii) Let d = 3 and 1 ≤ mn,mt ≤ 3. Then problem (2.7) admits at most one solution if:

2C2
8/(5−mt)

Cmt−1
4 Cmt+1

tr ‖ct‖L∞(ΓC)mt
(B1(cK , cc, L,U))mt−1

cK
< 1. (3.3)

Suppose in addition that mn− 2mt + 3 ≥ 0. Then problem (2.7) admits at most one solution if:

2C2
2(mn+1)/(mn−mt+2)C

2
tr‖ct‖L∞(ΓC)

mt

cK
(B2(cK , cc, cn, L,U))

mt−1
mn+1 < 1. (3.4)

Moreover, if mt = 1, any of the four constants in (3.1)–(3.4) can be divided into two.



Hild / Uniqueness and solution multiplicity for normal compliance with friction 6

Proof. Let u1 and u2 be two solutions of (2.7). Writing (2.7) with u = u1,v = u2 and also
with u = u2,v = u1, adding the two inequalities and using (2.12), we get:

cK‖u1 −u2‖2
H1(Ω) ≤ a(u1 −u2,u1 −u2)

≤ jn(u1,u2 −u1) + jn(u2,u1 −u2)

+jt(u1,u2) + jt(u2,u1)− jt(u1,u1)− jt(u2,u2).

First we note that

jn(u1,u2 −u1) + jn(u2,u1 −u2) = −
∫

ΓC

cn((u2n)mn
+ − (u1n)mn

+ )(u2n − u1n) dΓ ≤ 0,

according to a monotonicity argument. Besides, from the Theorem 41, p. 39 in [11] we deduce
that

|xm − ym| ≤m|x− y|
(
xm−1 + ym−1

)
,∀x ≥ 0,∀y ≥ 0,∀m ≥ 1.

Hence

|am
+ − bm

+ | ≤m|a+ − b+|
(
am−1

+ + bm−1
+

)
≤m|a− b|

(
am−1

+ + bm−1
+

)
∀ a, b ∈ R,∀m ≥ 1.

Therefore

cK‖u1 −u2‖2
H1(Ω) ≤ jt(u1,u2) + jt(u2,u1)− jt(u1,u1)− jt(u2,u2)

=
∫

ΓC

ct((u1n)mt
+ − (u2n)mt

+ )(|u2t| − |u1t|) dΓ (3.5)

≤ ‖ct‖L∞(ΓC)mt

∫
ΓC

|u2n − u1n|
(
(u1n)mt−1

+ + (u2n)mt−1
+

)
|u2t −u1t| dΓ.

Let i = 1 or i = 2 and let v ∈ VU such that v = 0 on ΓC . Since jn(ui,ui) + jt(ui,ui) ≥ 0,
(2.7) implies

cK‖v −ui‖2
H1(Ω) ≤ a(v −ui,v −ui) ≤ −jn(ui,ui)− jt(ui,ui) + L(ui − v) + a(v,v −ui)

≤ L(ui − v) + a(v,v −ui)

≤
(
‖L‖+ cc‖v‖H1(Ω)

)
‖ui − v‖H1(Ω). (3.6)

A triangular inequality and (3.6) yield for i = 1 or i = 2:

‖ui‖H1(Ω) ≤
‖L‖
cK

+
(

cc

cK
+ 1

)
χ(U)

= B1(cK , cc, L,U). (3.7)

From (2.7) and since a(ui,ui) + jt(ui,ui) ≥ 0 we have for any v ∈ VU such that v = 0 on ΓC :

jn(ui,ui) ≤ a(ui,v) + L(ui − v) ≤ cc‖ui‖H1(Ω)‖v‖H1(Ω) +
‖L‖
cK

(
‖L‖+ cc‖v‖H1(Ω)

)
≤ ‖L‖2

cK
+

(
2
cc‖L‖
cK

+ cc

(
cc

cK
+ 1

)
‖v‖H1(Ω)

)
‖v‖H1(Ω)
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where we use (3.6) and (3.7). Besides

cn‖(uin)+‖mn+1
Lmn+1(ΓC)

≤
∫

ΓC

cn(uin)mn+1
+ dΓ = jn(ui,ui)

where we recall that cn = essinf cn. Combining the last two estimates we obtain for i = 1 or
i = 2

‖(uin)+‖Lmn+1(ΓC) ≤
(
‖L‖2

cncK
+ 2

cc‖L‖
cncK

χ(U) +
cc

cn

(
cc

cK
+ 1

)
χ2(U)

) 1
mn+1

= (B2(cK , cc, cn, L,U))
1

mn+1 . (3.8)

(i) We begin with the case d = 2. The case mt = 1 is straightforward. Let mt > 1. Let
1/r + 1/r + 1/q = 1, so r = 2q/(q − 1) with q > 1. We choose q such that q(mt − 1) ≥ 1. From
(3.5) we get by Hölder inequality

cK‖u1 −u2‖2
H1(Ω)

≤ ‖ct‖L∞(ΓC)mt‖u2n − u1n‖Lr(ΓC)

(
‖(u1n)mt−1

+ ‖Lq(ΓC) + ‖(u2n)mt−1
+ ‖Lq(ΓC)

)
‖u2t −u1t‖Lr(ΓC)

≤ C2
r C2

tr‖ct‖L∞(ΓC)mt‖u2 −u1‖2
H1(Ω)

(
‖(u1n)+‖mt−1

Lq(mt−1)(ΓC)
+ ‖(u2n)+‖mt−1

Lq(mt−1)(ΓC)

)
≤D2C2

tr‖ct‖L∞(ΓC)mtr‖u2 −u1‖2
H1(Ω)

(
‖u1n‖mt−1

Lq(mt−1)(ΓC)
+ ‖u2n‖mt−1

Lq(mt−1)(ΓC)

)
≤Dmt+1Cmt+1

tr ‖ct‖L∞(ΓC)mtr(q(mt − 1))(mt−1)/2‖u2 −u1‖2
H1(Ω)

(
‖u1‖mt−1

H1(Ω)
+ ‖u2‖mt−1

H1(Ω)

)
≤ 2Dmt+1Cmt+1

tr ‖ct‖L∞(ΓC)mtr(q(mt − 1))(mt−1)/2‖u2 −u1‖2
H1(Ω) (B1(cK , cc, L,U))mt−1

where we use the Sobolev inequality (2.9) and (2.10),the trace inequality (2.11) and (3.7). Keep-
ing in mind that q > 1 and q(mt − 1) ≥ 1, we deduce that q(mt+1)/2/(q − 1) attains its minimal
value when q = (mt + 1)/(mt − 1). So we deduce that uniqueness holds when d = 2 and mt > 1
if

2Dmt+1Cmt+1
tr ‖ct‖L∞(ΓC)mt(mt + 1)(mt+1)/2 (B1(cK , cc, L,U))mt−1

cK
< 1.

Now we propose to obtain for certain values of mn and mt some different estimates involving
mt,mn, ct, cn which ensure uniqueness by using (3.8). We consider again (3.5) and we suppose
that mn−mt + 2 > 0. Note that this assumption takes into account the case mt = mn. We use
in (3.5) Hölder inequalities with 1/r + 1/r + 1/q = 1 and

q =
mn + 1
mt − 1

, r =
2(mn + 1)

mn −mt + 2

which requires that mt > 1. Therefore

cK‖u1 −u2‖2
H1(Ω)

≤ ‖ct‖L∞(ΓC)mt‖u2n − u1n‖Lr(ΓC)

(
‖(u1n)mt−1

+ ‖Lq(ΓC) + ‖(u2n)mt−1
+ ‖Lq(ΓC)

)
‖u2t −u1t‖Lr(ΓC)

≤D2C2
tr‖ct‖L∞(ΓC)mtr‖u2 −u1‖2

H1(Ω)

(
‖(u1n)+‖mt−1

Lmn+1(ΓC)
+ ‖(u2n)+‖mt−1

Lmn+1(ΓC)

)
where we use again (2.9), (2.10) and (2.11). From (3.8) we deduce

cK‖u1 −u2‖2
H1(Ω) ≤ 4D2C2

tr‖ct‖L∞(ΓC)
mt(mn + 1)

(mn −mt + 2)
(B2(cK , cc, cn, L,U))

mt−1
mn+1 ‖u2 −u1‖2

H1(Ω).
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Hence uniqueness holds when d = 2 and mt > 1 (the case mt = 1 is straightforward) if

4D2C2
tr‖ct‖L∞(ΓC)

mt(mn + 1)
cK(mn −mt + 2)

(B2(cK , cc, cn, L,U))
mt−1
mn+1 < 1.

(ii) Consider the case where d = 3. Let 1 < mt ≤ 3. Here again the case mt = 1 is
straightforward. Write 1/r + 1/r + 1/q = 1 with r = 8/(5 − mt) (note that r ∈ (2, 4]) and
q = 4/(mt − 1) and use Hölder inequality in (3.5):

cK‖u1 −u2‖2
H1(Ω)

≤ ‖ct‖L∞(ΓC)mt‖u2n − u1n‖Lr(ΓC)

(
‖(u1n)mt−1

+ ‖Lq(ΓC) + ‖(u2n)mt−1
+ ‖Lq(ΓC)

)
‖u2t −u1t‖Lr(ΓC)

≤ C2
r C2

tr‖ct‖L∞(ΓC)mt‖u2 −u1‖2
H1(Ω)

(
‖(u1n)+‖mt−1

L4(ΓC)
+ ‖(u2n)+‖mt−1

L4(ΓC)

)
≤ C2

r C2
tr‖ct‖L∞(ΓC)mt‖u2 −u1‖2

H1(Ω)

(
‖u1n‖mt−1

L4(ΓC)
+ ‖u2n‖mt−1

L4(ΓC)

)
≤ C2

8/(5−mt)
Cmt−1

4 Cmt+1
tr ‖ct‖L∞(ΓC)mt‖u2 −u1‖2

H1(Ω)

(
‖u1‖mt−1

H1(Ω)
+ ‖u2‖mt−1

H1(Ω)

)
≤ 2C2

8/(5−mt)
Cmt−1

4 Cmt+1
tr ‖ct‖L∞(ΓC)mt‖u2 −u1‖2

H1(Ω)(B1(cK , cc, L,U))mt−1.

Hence uniqueness holds when d = 3 and 1 < mt ≤ 3

2C2
8/(5−mt)

Cmt−1
4 Cmt+1

tr ‖ct‖L∞(ΓC)mt
(B1(cK , cc, L,U))mt−1

cK
< 1.

As in the two dimensional case we obtain hereafter for certain values of mn and mt by using
(3.8) some different estimates involving mt,mn, ct, cn which ensure uniqueness. We consider
again (3.5) and we suppose that mn − 2mt + 3 ≥ 0. Note that this assumption takes into
account the case mt = mn(≤ 3). By Hölder inequality with 1/r + 1/r + 1/q = 1 (with mt > 1
keeping in mind that the case mt = 1 is straightforward) and

q =
mn + 1
mt − 1

, r =
2(mn + 1)

mn −mt + 2
,

(which implies r ≤ 4) we get:

cK‖u1 −u2‖2
H1(Ω)

≤ ‖ct‖L∞(ΓC)mt‖u2n − u1n‖Lr(ΓC)

(
‖(u1n)mt−1

+ ‖Lq(ΓC) + ‖(u2n)mt−1
+ ‖Lq(ΓC)

)
‖u2t −u1t‖Lr(ΓC)

≤ C2
r C2

tr‖ct‖L∞(ΓC)mt‖u2 −u1‖2
H1(Ω)

(
‖(u1n)+‖mt−1

Lmn+1(ΓC)
+ ‖(u2n)+‖mt−1

Lmn+1(ΓC)

)
.

Hence uniqueness holds when

2C2
2(mn+1)/(mn−mt+2)C

2
tr‖ct‖L∞(ΓC)

mt

cK
(B2(cK , cc, cn, L,U))

mt−1
mn+1 < 1.

Remark 3.2 1. In comparison with the existing results in [16, 17] we prove that the solutions
are unique when ‖ct‖L∞(ΓC) is small enough. In cases (3.1) and (3.3) the sufficient conditions
of uniqueness do not depend on cn.

2. Suppose to simplify that ct and cn are constant functions. According to (3.2) and (3.4),
for certain values of mn and mt the solution is unique when

ct

c
mt−1
mn+1
n

is small enough.
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This means that for any fixed ct and mt > 1, global uniqueness holds if cn is large enough (when
the contact model tends to the unilateral contact model).

3. All the uniqueness results in (3.1)–(3.4) are global.
4. If mt = 1, the all the uniqueness conditions are independent on the external ”loads”

f ,F,U.
5. When mt = mn satisfy (2.8) then the four cases (3.1)–(3.4) provide uniqueness conditions.
6. If there is a constant µ such that ct = µcn (we assume here that cn and ct are constant)

and mt = mn = m which corresponds to the Coulomb friction model, then the most interesting
bounds are (3.2) and (3.4). Define B3 such that B3(cK , cc, L,U) = cnB2(cK , cc, cn, L,U). Then
uniqueness holds if

2D2C2
tr

m(m + 1)
cK

(B3(cK , cc, L,U))
m−1
m+1 c

2
m+1
n µ < 1

when d = 2 and if

2C2
m+1C

2
tr

m

cK
(B3(cK , cc, L,U))

m−1
m+1 c

2
m+1
n µ < 1.

when d = 3. Unfortunately the uniqueness condition disappears when cn →∞. Note that when
m behaves like ln(cn) then the bound ensuring uniqueness behaves like µ(ln(cn))2 when d = 2.
Although it grows slowly when µ is constant, it still depends on cn.

7. For the unilateral contact model with Coulomb friction obtained when µ = ct/cn is con-
stant, mn = mt and cn →∞ there exist some existence results for small µ whose proof is quite
technical (see [10] and the references therein). No standard uniqueness results like the ones of
Theorem 3.1 are available. Nevertheless there exist some partial uniqueness results recently ob-
tained in [23]. On the contrary the nonuniqueness examples are (from the author’s point of view)
simpler to find for the unilateral contact model with Coulomb friction (see [12, 13]) than for the
normal compliance model (see next section) since the latter model contains less nonlinearities.

In the next section we consider a solution to the friction problem with normal compliance
(2.1)–(2.6) when mn = mt = 1 and d = 2 and we look for sufficient conditions for nonuniqueness
and also for nonuniqueness examples keeping in mind that the solution is unique when ‖ct‖L∞(ΓC)

is small enough.

4. Nonuniqueness results

4.1. Sufficient conditions of existence of at least two solutions

We consider the case where d = 2 with mn = mt = 1. According to bounds (3.1) and (3.2)
in Theorem 3.1 and the fact that if mt = 1 the constants in (3.1) and (3.2) can be divided into
two, Problem (2.7) admits a unique solution when

2D2C2
trc

−1
K ‖ct‖L∞(ΓC) < 1. (4.1)

Let n = (nx, ny) and t = (−ny, nx) be the unit outward normal and tangent vectors on Γ. On
Γ we write for any displacement field v:

v = vnn + vt = vnn + vtt and σ(v)n = σn(v)n + σt(v) = σn(v)n + σt(v)t.
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First we consider a solution u of (2.1)–(2.6) where ut is of constant sign on ΓC (either positive
or negative) such that:

div σ(u) + f = 0 in Ω,

σ(u) = C ε(u) in Ω,

u = U on ΓD,

σ(u)n = F on ΓN ,

σn(u) = −cn(un)+ on ΓC ,

σt(u) = −ct(un)+sgn(ut) on ΓC ,

(4.2)

where sgn(ut) = ut/|ut|. Consider now the problem of finding the displacement field ϕ such
that: 

div σ(ϕ) = 0 in Ω,

σ(ϕ) = C ε(ϕ) in Ω,

ϕ = 0 on ΓD,

σ(ϕ)n = 0 on ΓN ,

σn(ϕ) = −cnϕn on ΓC ,

σt(ϕ) = −ctϕnsgn(ut) on ΓC ,

(4.3)

where ut is the tangential displacement of the field u solving (4.2). Note that the set of solutions
to (4.3) is a function space.

Proposition 4.1 Let u be a solution of the frictional contact problem with normal compliance
(2.1)–(2.6) satisfying (4.2) and let ϕ be a solution to problem (4.3). If (un)+ +ϕn = (un +ϕn)+
and sgn(ut) = sgn(ut + ϕt) on ΓC then u and u + ϕ solve (2.1)–(2.6).

Proof. Straightforward. Of course the proposition is interesting only when a nonzero ϕ is
considered.

4.2. Some explicit examples in the case d = 2 and mn = mt = 1

Now we show that the statement of Proposition 4.1 can be illustrated in the case when Ω is
a trapezoid (in which the edges represent ΓD, ΓN and ΓC) and the displacement fields u and ϕ

are linear. So we look after fields u and ϕ satisfying the assumptions of Proposition 4.1 in order
to exhibit some examples of non-unique solutions to the frictional contact problem (2.1)–(2.6).

We consider a trapezoid of vertexes A = (0, 0), B = (θ, 0), C = (xc, yc) and D = (xc + θ(1−
xc), (1 − θ)yc) with yc > 0 and 0 < θ < 1 . We define ΓD = (C,D), ΓN = (A,C) ∪ (B,D),
ΓC = (A,B) so that the lines AC and BD are parallel (see Figure 1). The body Ω lies on
a foundation, the half-space delimited by the straight line (A,B) as suggested in Figure 1.
Consequently n = (0,−1) and t = (1, 0) on ΓC .

We suppose that the body Ω is governed by Hooke’s law concerning homogeneous isotropic
materials so that (2.2) becomes

σ(u) =
Eν

(1− 2ν)(1 + ν)
tr(ε(u))I +

E

1 + ν
ε(u) (4.4)
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Figure 1: The geometry of the body Ω

where I represents the identity matrix, tr is the matrix trace operator, E and ν denote Young’s
modulus and Poisson ratio, respectively with E > 0 and 0 ≤ ν < 1/2.

Let (x = (1, 0), y = (0, 1)) stand for the canonical basis of R2. We suppose that the volume
forces f = (fx, fy) = (0, 0) are absent in Ω and that the surface forces on ΓN are denoted by F.
Let U represent the given displacements on ΓD.

4.2.1. Determination of ϕ

We begin with the determination of a (nonzero) linear displacement field ϕ = (ϕx, ϕy) in
(4.3). Since ϕ = 0 on ΓD = (C,D), we get

ϕx = α
(
ycx + (1− xc)y − yc

)
, (4.5)

ϕy = β
(
ycx + (1− xc)y − yc

)
, (4.6)

with (α, β) 6= (0, 0).
Obviously div (σ(ϕ)) = 0. Inserting now the expressions (4.5)–(4.6) of ϕ in the constitutive

law (4.4) yields

σ(ϕ) =


E(αyc(ν − 1) + νβ(xc − 1))

(1 + ν)(−1 + 2ν)
E(βyc + α(1− xc))

2(1 + ν)

E(βyc + α(1− xc))
2(1 + ν)

E(ναyc + β(1− xc)(1− ν))
(1 + ν)(1− 2ν)

 . (4.7)

Now we consider the Neumann conditions: σ(ϕ)n = 0 on ΓN . Since the unit outward normal
vector on ΓN is n = ±(−yc/

√
x2

c + y2
c , xc/

√
x2

c + y2
c ), the stress vector on ΓN becomes

σ(ϕ)n =


E(α(2νy2

c − 2y2
c − x2

c + 2x2
cν + xc − 2xcν) + β(−2ycν + xcyc))

2(1− 2ν)(1 + ν)
√

x2
c + y2

c

E(α(ycxc − yc + 2νyc) + β(−y2
c + 2y2

cν + 2νx2
c − 2νxc − 2x2

c + 2xc))
2(1− 2ν)(1 + ν)

√
x2

c + y2
c

 .

So the Neumann condition is equivalent to the linear system

M

(
α
β

)
=

(
0
0

)
(4.8)
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with

M =

 2νy2
c − 2y2

c − x2
c + 2x2

cν + xc − 2xcν −2ycν + xcyc

ycxc − yc + 2νyc −y2
c + 2y2

cν + 2νx2
c − 2νxc − 2x2

c + 2xc

 .

Since (α, β) 6= (0, 0), we deduce that det(M) = 0. After some calculation we get

det(M) = 2(−1+2ν)(x4
cν+2νy2

cx
2
c−2νy2

cxc+νy4
c−2x3

cν+x2
cν+νy2

c−2y2
cx

2
c−x4

c+2x3
c−x2

c−y4
c+2y2

cxc).

Hence this leads to the expression of the Poisson ratio:

ν =
(y2

c − xc + x2
c)

2

((xc − 1)2 + y2
c )(x2

c + y2
c )

. (4.9)

We insert the expression of ν in the definition of M so that

M =


(y2

cxc+y2
c−x2

c+x3
c)(y2

cxc−2y2
c+xc−2x2

c+x3
c)

(x2
c+y2

c )(x2
c−2xc+1+y2

c )
yc(y2

cxc−2y2
c+xc−2x2

c+x3
c)(y2

c−2xc+x2
c)

(x2
c+y2

c )(x2
c−2xc+1+y2

c )

yc(y2
cxc+y2

c−x2
c+x3

c)(y2
c−1+x2

c)
(x2

c+y2
c )(x2

c−2xc+1+y2
c )

y2
c (y2

c−1+x2
c)(y2

c−2xc+x2
c)

(x2
c+y2

c )(x2
c−2xc+1+y2

c )

 .

Denoting δ1 = y2
cxc+y2

c−x2
c+x3

c , δ2 = y2
cxc−2y2

c +xc−2x2
c+x3

c , δ3 = y2
c−2xc+x2

c , δ4 = y2
c−1+x2

c ,
the system (4.8) can be written in an equivalent way:

δ2(δ1α + ycδ3β) = 0

and
δ4(δ1α + ycδ3β) = 0.

The case δ2 = δ4 = 0 leads to (xc, yc) = (1, 0) which contradicts yc > 0. Therefore δ1α+ycδ3β = 0
and the condition σ(ϕ)n = 0 reduces to one of the two following cases: the first one corresponds
to δ1 = 0 and we have necessarily β = 0 (supposing δ3 = 0 implies yc = 0 which contradicts
yc > 0). This implies that ϕn = 0 on ΓC and from (4.3) we deduce that ϕ = 0 in Ω which is
not interesting. The second case corresponds to δ1 6= 0:

α = − (x2
c − 2xc + y2

c )yc

x3
c − x2

c + y2
cxc + y2

c

β. (4.10)

A calculation of σn(ϕ) on ΓC by using (4.7) as well as the previous expressions of α and ν

gives:

σn(ϕ) =
Eβy2

c (y
2
c + (xc − 1)2)2(x2

c + y2
c )

(x3
c − x2

c + xcy2
c + y2

c )(2(y2
c − xc + x2

c)2 + y2
c )

= −cnϕn

= cnβyc(x− 1). (4.11)

So we deduce that

x3
c − x2

c + xcy
2
c + y2

c < 0. (4.12)

It is straightforward that ν ≥ 0 in (4.9). Besides, the condition ν < 1/2 is equivalent to

(x2
c − xc + y2

c + yc)(x2
c − xc + y2

c − yc) < 0. (4.13)
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Figure 2: The open admissible region Σ for point C = (xc, yc).

Putting together conditions (4.12) and (4.13) gives

xc ∈ (0, 1),

√
1
4

+ xc − x2
c −

1
2

< yc < xc

√
1− xc

1 + xc
. (4.14)

The admissible domain Σ in which are located the pairs (xc, yc) satisfying (4.14) is depicted in
Figure 2. Note that this also implies that αβ < 0. Besides, we obtain on ΓC :

σt(ϕ)
σn(ϕ)

= −xc

yc
. (4.15)

Finally (4.6) and (4.11) allow us to define cn on ΓC = (0, θ)× {0}:

cn = cn(x) =
Eyc(y2

c + (xc − 1)2)2(x2
c + y2

c )
(x3

c − x2
c + xcy2

c + y2
c )(2(y2

c − xc + x2
c)2 + y2

c )(x− 1)
(4.16)

and we deduce the expression of ct from (4.3) and (4.15): ct = −xccnsgn(ut)/yc which requires
that ut < 0 on ΓC . So

ct =
xc

yc
cn. (4.17)

Note that any choice of (nonzero) β can be made in (4.6).

Remark 4.2 1. The choice of θ ∈ (0, 1) is not fundamental in our study. We exclude the value
θ = 1 in our discussion (case where Ω is a triangle) since we want that cn and ct belong to
L∞(ΓC). Note that

‖cn‖L∞(ΓC) =
Eyc(y2

c + (xc − 1)2)2(x2
c + y2

c )
(x3

c − x2
c + xcy2

c + y2
c )(2(y2

c − xc + x2
c)2 + y2

c )(θ − 1)
, ‖ct‖L∞(ΓC) =

xc

yc
‖cn‖L∞(ΓC).

2. The above functions cn and ct are not constant although ct/cn is constant. It seems difficult
to find a function ϕ satisfying (4.3) and involving functions cn and ct which are constant on
ΓC .

4.2.2. Determination of u

Let us now focus on the field u = (ux, uy) solving problem (4.2). To simplify we search a
linear field

ux = ax + by + c,

uy = dx + ey + f,
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with un(= −uy) > 0 on ΓC and keeping in ming that the condition ut(= ux) < 0 on ΓC was
required in the previous section when determining ϕ. Since σn(u) and σt(u) are constant on
ΓC , we get from the definitions of cn and ct in (4.16)–(4.17) and from (4.2):

uy = d(x− 1) + ey, (4.18)

with d > 0. Again to simplify we search a tangential displacement field with c = −a:

ux = a(x− 1) + by, (4.19)

where a > 0. Inserting the previous expressions of (ux, uy) in the constitutive law (4.4), we
obtain that the condition σn(u) = −cn(un)+ is equivalent to

d = − (a(x2
c + y2

c − xc)2 + ey2
c )(x

3
c − x2

c + xcy
2
c + y2

c )
yc((xc − 1)2 + y2

c )(x2
c − xc + y2

c + yc)(x2
c − xc + y2

c − yc)
(4.20)

which requires that

a(x2
c + y2

c − xc)2 + ey2
c < 0. (4.21)

Finally, condition σt(u) = −ct(un)+sgn(ut) is equivalent to

b = −d− 2
xc(a + e)

yc(x2
c − xc + y2

c + yc)(x2
c − xc + y2

c − yc)
. (4.22)

In order to satisfy the assumptions of Proposition 4.1 we have to check that (un)+ + ϕn =
(un + ϕn)+ and sgn(ut) = sgn(ut + ϕt) which reduces to the inequalities 0 ≤ d + βyc and
0 ≤ a + αyc or equivalently

− d

yc
≤ β ≤ a(x3

c − x2
c + y2

cxc + y2
c )

y2
c (x2

c − 2xc + y2
c )

. (4.23)

We are now in a position to conclude our discussion with the following theorem.

Theorem 4.3 Let be given the trapezoid Ω of vertexes A = (0, 0), B = (θ, 0), C = (xc, yc) and
D = (xc+θ(1−xc), (1−θ)yc) with yc > 0 and 0 < θ < 1. Set ΓD = (C,D), ΓN = (A,C)∪(B,D),
ΓC = (A,B). Assume that the pair (xc, yc) satisfies (4.14) (i.e., point C belongs to the domain
Σ depicted in Figure 2). Suppose that ν is given by (4.9) and let E > 0. Assume that cn and ct

are given by (4.16) and (4.17) respectively and that mn = mt = 1.
Let u be a displacement field defined in (4.18), (4.19) with a > 0, e satisfying (4.21), d given

by (4.20) and b given by (4.22). Assume that f = 0 and let F and U obtained from u as follows:
U = u on ΓD and F = σ(u)n on ΓN . Let ϕ given by (4.5), (4.6) where α is defined in (4.10).

Then there exist an infinity of solutions to the problem (2.1)–(2.6). More precisely any
displacement field u + ϕ where β satisfies (4.23) solves (2.1)–(2.6).

Remark 4.4 According to (4.4), we have for any v ∈ V0

a(v,v) ≥ E

1 + ν
‖ε(v)‖2

L2(Ω) ≥
KE

1 + ν
‖v‖2

H1(Ω),

where K stands for a Korn type constant which does neither depend on E nor on ν. So we can
choose cK = KE/(1+ν). According to (4.1) we deduce that the data in Theorem 4.3 is such that
2D2C2

tr(EK)−1(1+ν)‖ct‖L∞(ΓC) = 2D2C2
trxc(y2

c+x2
c−2xc+1)/(K(x3

c−x2
c+y2

c+y2
cxc)(θ−1)) ≥ 1.
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4.3. A simple example

Finally we illustrate Theorem 4.3 with a simple example and an illustration. Set xc =
1/2, yc = 1/4 and choose θ = 1/2. Clearly C = (xc, yc) ∈ Σ. Let be given E > 0. According to
Theorem 4.3, we obtain D = (3/4, 1/8), ν = 9/25, cn = 125E/(68(1−x)), ct = 125E/(34(1−x)).
Then we choose a = 1/10. Clearly e = −1/10 satisfies (4.21) and we obtain d = 1/25 and
b = −11/25. So f = 0 in Ω, F = (−5E

√
5/68, 0) on ΓN , U is linear on ΓD with U(C) =

(−4/25,−9/200) and U(D) = (−2/25,−9/400).
Any displacement field u + ϕ = ((u + ϕ)x, (u + ϕ)y) defined by

(u + ϕ)x =
( 1

10
− 11β

8

)
x +

(
− 11

25
− 11β

4

)
y − 1

10
+

11β

8
,

(u + ϕ)y =
( 1

25
+

β

4

)
x +

(
− 1

10
+

β

2

)
y − 1

25
− β

4
,

with −4/25 ≤ β ≤ 4/55 solves Problem (2.1)–(2.6) according to Theorem 4.3. The case β =
−4/25 corresponds to slip with grazing contact (i.e., σn(u + ϕ) = σt(u + ϕ) = (u + ϕ)n = 0
and (u + ϕ)t = 8(x − 1)/25) and the case β = 4/55 corresponds to stick with penetration
(i.e., (u + ϕ)t = 0 with (u + ϕ)n > 0, σt(u + ϕ) = ct(u + ϕ)n). Figure 3 depicts the initial
configuration (ABDC) and three of the infinitely possible deformed configurations corresponding
to β = −4/25, β = 0, β = 4/55. Finally we mention that this example involves important strains

Figure 3: Initial configuration (ABDC) and three possible deformed configurations: (A+, B+)
corresponds to β = 4/55, (A0, B0) corresponds to β = 0 and (A−, B−) corresponds to β =
−4/25.

(although the small strain hypothesis has been adopted). Of course this is in order to have a
better graphical representation and it could be avoided.
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